JPWO2013161970A1 - Polyamic acid solution composition and polyimide - Google Patents

Polyamic acid solution composition and polyimide Download PDF

Info

Publication number
JPWO2013161970A1
JPWO2013161970A1 JP2014512696A JP2014512696A JPWO2013161970A1 JP WO2013161970 A1 JPWO2013161970 A1 JP WO2013161970A1 JP 2014512696 A JP2014512696 A JP 2014512696A JP 2014512696 A JP2014512696 A JP 2014512696A JP WO2013161970 A1 JPWO2013161970 A1 JP WO2013161970A1
Authority
JP
Japan
Prior art keywords
polyamic acid
acid solution
solution composition
polyimide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014512696A
Other languages
Japanese (ja)
Other versions
JP6086118B2 (en
Inventor
知則 中山
知則 中山
剛成 中山
剛成 中山
哲治 加峯
哲治 加峯
北山 直樹
直樹 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2013161970A1 publication Critical patent/JPWO2013161970A1/en
Application granted granted Critical
Publication of JP6086118B2 publication Critical patent/JP6086118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/10Purification; Separation; Use of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells

Abstract

本発明は、フッ素原子を含有するテトラカルボン酸二無水物を50モル%以上の量で含むテトラカルボン酸成分と、フッ素原子を含有するジアミンを50モル%以上の量で含むジアミン成分とを溶媒中で反応させて得られるポリアミック酸溶液に、シリカの量がテトラカルボン酸成分とジアミン成分の合計量100質量部に対して1〜100質量部の量になるように、有機溶媒にコロイダルシリカを分散させてなるコロイド溶液を添加してなるポリアミック酸溶液組成物に関する。The present invention uses a tetracarboxylic acid component containing a fluorine atom-containing tetracarboxylic dianhydride in an amount of 50 mol% or more and a diamine component containing a fluorine atom-containing diamine in an amount of 50 mol% or more. Colloidal silica is added to the organic solvent so that the amount of silica is 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the tetracarboxylic acid component and the diamine component. The present invention relates to a polyamic acid solution composition to which a dispersed colloidal solution is added.

Description

本発明は、透明性に優れ、線膨張係数(CTE)、特に高温での線膨張係数が比較的低く制御されたポリイミドを得ることができるポリアミック酸溶液組成物に関する。   The present invention relates to a polyamic acid solution composition capable of obtaining a polyimide having excellent transparency and having a linear expansion coefficient (CTE), particularly a linear expansion coefficient controlled at a relatively low temperature.

テトラカルボン酸二無水物とジアミンから得られるポリイミドは、耐熱性、機械的強度、電気特性、耐溶剤性などの特性が優れるために、電気電子産業分野などで広く用いられている。しかし、ポリイミドは有機溶媒への溶解性が悪いので、通常は、ポリイミド前駆体のポリアミック酸を溶媒に溶解した溶液組成物(ポリアミック酸溶液組成物)を、例えば基材表面上に塗布し、次いで高温で加熱して脱水閉環(イミド化)させることでポリイミドを得ている。   Polyimides obtained from tetracarboxylic dianhydrides and diamines are widely used in the electrical and electronic industries because of their excellent properties such as heat resistance, mechanical strength, electrical properties, and solvent resistance. However, since polyimide has poor solubility in an organic solvent, usually, a solution composition (polyamic acid solution composition) in which a polyimide precursor polyamic acid is dissolved in a solvent is applied onto a substrate surface, for example, and then A polyimide is obtained by heating at a high temperature to cause dehydration ring closure (imidization).

しかしながら、ポリイミドは、一般に、分子内共役や電荷移動錯体の形成により本質的に黄褐色に着色する傾向があり、用途によっては透明性の向上が求められている。   However, polyimides generally tend to be essentially yellowish brown due to intramolecular conjugation or charge transfer complex formation, and improved transparency is required for some applications.

特許文献1には、脂環式テトラカルボン酸二無水物であるシクロペンタン−1,2,3,4−テトラカルボン酸二無水物と芳香族ジアミンとから得られる、光透過性に優れたポリイミドが開示されている。しかしながら、脂環式テトラカルボン酸二無水物および/または脂環式ジアミンをモノマー成分として使用したポリイミドは、芳香族ポリイミドと比較して、耐熱性や耐薬品性が劣る傾向がある。   Patent Document 1 discloses a polyimide excellent in light transmittance obtained from cyclopentane-1,2,3,4-tetracarboxylic dianhydride which is an alicyclic tetracarboxylic dianhydride and an aromatic diamine. Is disclosed. However, polyimides using alicyclic tetracarboxylic dianhydrides and / or alicyclic diamines as monomer components tend to be inferior in heat resistance and chemical resistance compared to aromatic polyimides.

特許文献2には、フルオレン骨格を有する、透光性に優れたポリイミドが開示されている。しかしながら、このフルオレン骨格を有するポリイミドは、必ずしも十分な透明性を有してはいないことがある。また、フルオレン骨格を有するポリイミドは、線膨張係数が比較的高い傾向がある。   Patent Document 2 discloses a polyimide having a fluorene skeleton and excellent in translucency. However, the polyimide having this fluorene skeleton may not always have sufficient transparency. In addition, polyimides having a fluorene skeleton tend to have a relatively high linear expansion coefficient.

特許文献3には、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物および4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸二無水物を含む芳香族二無水物成分と、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、4,4’−ビス(3−アミノフェノキシ)ジフェニルスルホン、ビス(3−アミノフェニル)スルホンおよびビス(4−アミノフェニル)スルホンの中から選ばれた1種または2種以上を含む芳香族ジアミン成分とから得られる、透明性に優れたポリイミドが開示されている。しかしながら、このポリイミドは、必ずしも十分に低い線膨張係数を有してはいないことがあり、特に200℃を超える高温(例えば300℃〜400℃)での線膨張係数については、より低く制御されることが望ましい。   Patent Document 3 includes 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3. Aromatic dianhydride components including 4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3,3′-bis Selected from (trifluoromethyl) -4,4′-diaminobiphenyl, 4,4′-bis (3-aminophenoxy) diphenylsulfone, bis (3-aminophenyl) sulfone and bis (4-aminophenyl) sulfone A polyimide having excellent transparency obtained from an aromatic diamine component containing one or more of them is disclosed. However, this polyimide may not necessarily have a sufficiently low linear expansion coefficient, and the linear expansion coefficient at a high temperature exceeding 200 ° C. (for example, 300 ° C. to 400 ° C.) is controlled to be lower. It is desirable.

一方で、特許文献4には、分子鎖末端が酸無水物となるように調製されたポリアミド酸と、3−アミノプロピルトリエトキシシラン等の高分子と結合し得る置換基を有する化合物(カップリング試薬)とを反応させ、次いで、テトラエトキシシランを加えて反応(加熱イミド化・シリカへの転化反応)させて得られる、ポリイミド/シリカハイブリッド材料が開示されている。しかしながら、この方法では、熱イミド化時にアミノプロピル基が熱分解して、得られるポリイミドの透過率が低下することがある。   On the other hand, Patent Document 4 discloses a compound having a substituent capable of binding to a polyamic acid prepared so that the molecular chain terminal is an acid anhydride and a polymer such as 3-aminopropyltriethoxysilane (coupling). A polyimide / silica hybrid material obtained by reacting with (reagent) and then reacting by adding tetraethoxysilane (heat imidization / conversion to silica) is disclosed. However, in this method, the aminopropyl group may be thermally decomposed during thermal imidization, and the transmittance of the resulting polyimide may be reduced.

特開2010−30972号公報JP 2010-30972 A 特開2010−235641号公報JP 2010-235641 A 特表2010−513591号公報Special table 2010-513591 gazette 特開2006−312680号公報JP 2006-31680 A

本発明は、透明性に優れ、線膨張係数、特に高温での線膨張係数が比較的低く制御されたポリイミドを得ることができるポリアミック酸溶液組成物を提供することを目的とする。   An object of the present invention is to provide a polyamic acid solution composition which can obtain a polyimide which is excellent in transparency and whose linear expansion coefficient, particularly a linear expansion coefficient at a high temperature, is controlled to be relatively low.

本発明は、以下の事項に関する。
1. フッ素原子を含有するテトラカルボン酸二無水物を50モル%以上の量で含むテトラカルボン酸成分と、フッ素原子を含有するジアミンを50モル%以上の量で含むジアミン成分とを溶媒中で反応させて得られるポリアミック酸溶液に、シリカの量がテトラカルボン酸成分とジアミン成分の合計量100質量部に対して1〜100質量部の量になるように、有機溶媒にコロイダルシリカを分散させてなるコロイド溶液を添加してなるポリアミック酸溶液組成物。
2. 添加されるシリカの量が、テトラカルボン酸成分とジアミン成分の合計量100質量部に対して、5〜70質量部の量であることを特徴とする前記項1に記載のポリアミック酸溶液組成物。
3. 前記シリカの粒子径が、1〜60nmであることを特徴とする前記項1〜2のいずれかに記載のポリアミック酸溶液組成物。
The present invention relates to the following matters.
1. A tetracarboxylic acid component containing a fluorine atom-containing tetracarboxylic dianhydride in an amount of 50 mol% or more and a diamine component containing a fluorine atom-containing diamine in an amount of 50 mol% or more are reacted in a solvent. Colloidal silica is dispersed in an organic solvent so that the amount of silica is 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the tetracarboxylic acid component and the diamine component. A polyamic acid solution composition obtained by adding a colloidal solution.
2. 2. The polyamic acid solution composition according to item 1, wherein the amount of silica added is 5 to 70 parts by mass with respect to 100 parts by mass of the total amount of the tetracarboxylic acid component and the diamine component. .
3. Item 3. The polyamic acid solution composition according to any one of Items 1 to 2, wherein the silica has a particle size of 1 to 60 nm.

4. ポリアミック酸溶液組成物を加熱処理して得られるポリイミドが、膜厚10μmのフィルムでの波長400nmの光透過率が70%以上であり、且つ、300〜400℃の線膨張係数が350ppm/℃以下であることを特徴とする前記項1〜3のいずれかに記載のポリアミック酸溶液組成物。
5. ポリアミック酸溶液組成物を加熱処理して得られるポリイミドが、300〜400℃の線膨張係数が250ppm/℃以下であることを特徴とする前記項4に記載のポリアミック酸溶液組成物。
4). The polyimide obtained by heat-treating the polyamic acid solution composition has a light transmittance at a wavelength of 400 nm of a film having a thickness of 10 μm of 70% or more, and a linear expansion coefficient of 300 to 400 ° C. is 350 ppm / ° C. or less. Item 4. The polyamic acid solution composition according to any one of Items 1 to 3, wherein the solution is a polyamic acid solution composition.
5. Item 5. The polyamic acid solution composition according to item 4, wherein the polyimide obtained by heat-treating the polyamic acid solution composition has a linear expansion coefficient of 300 to 400 ° C of 250 ppm / ° C or less.

6. 前記フッ素原子を含有するテトラカルボン酸二無水物が、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物であり、
前記フッ素原子を含有するジアミンが、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、及び/又は2,2’−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパンであることを特徴とする前記項1〜5のいずれかに記載のポリアミック酸溶液組成物。
6). The tetracarboxylic dianhydride containing the fluorine atom is 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride,
The diamine containing a fluorine atom is 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl and / or 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoro. Item 6. The polyamic acid solution composition according to any one of Items 1 to 5, which is propane.

7. 前記項1〜6のいずれかに記載のポリアミック酸溶液組成物を製造する方法であって、
フッ素原子を含有するテトラカルボン酸二無水物を50モル%以上の量で含むテトラカルボン酸成分と、フッ素原子を含有するジアミンを50モル%以上の量で含むジアミン成分とを溶媒中で反応させてポリアミック酸溶液を製造する工程と、
得られたポリアミック酸溶液に、シリカの量がテトラカルボン酸成分とジアミン成分の合計量100質量部に対して1〜100質量部の量になるように、有機溶媒にコロイダルシリカを分散させてなるコロイド溶液を添加し、混合する工程と
を有するポリアミック酸溶液組成物の製造方法。
7). A method for producing the polyamic acid solution composition according to any one of Items 1 to 6,
A tetracarboxylic acid component containing a fluorine atom-containing tetracarboxylic dianhydride in an amount of 50 mol% or more and a diamine component containing a fluorine atom-containing diamine in an amount of 50 mol% or more are reacted in a solvent. Producing a polyamic acid solution,
In the obtained polyamic acid solution, colloidal silica is dispersed in an organic solvent so that the amount of silica is 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the tetracarboxylic acid component and the diamine component. A method for producing a polyamic acid solution composition comprising the steps of adding and mixing a colloidal solution.

8. 前記項1〜6のいずれかに記載のポリアミック酸溶液組成物を加熱処理して得られるポリイミド。
9. 前記項8に記載のポリイミドを含む電気装置、電子装置、光学装置、表示装置、タッチパネル、太陽電池、又はLED照明装置。
8). The polyimide obtained by heat-processing the polyamic acid solution composition in any one of said claim | item 1 -6.
9. An electric device, an electronic device, an optical device, a display device, a touch panel, a solar cell, or an LED lighting device including the polyimide according to Item 8.

10. 表示デバイス又は受光デバイスであるフレキシブルデバイスの製造方法であって、
前記項1〜6のいずれかに記載のポリアミック酸溶液組成物をキャリア基板上に塗布し、加熱処理して固体状のポリイミド樹脂膜を形成する工程、前記ポリイミド樹脂膜上に回路を形成する工程、及び、前記回路が表面に形成されたポリイミド樹脂膜を前記キャリア基板から剥離する工程を含むことを特徴とするフレキシブルデバイスの製造方法。
11. 前記項10に記載のフレキシブルデバイスの製造方法により製造された表示デバイス又は受光デバイスであるフレキシブルデバイス。
10. A method of manufacturing a flexible device which is a display device or a light receiving device,
The process of forming the solid polyimide resin film by applying the polyamic acid solution composition according to any one of Items 1 to 6 on a carrier substrate and heat-treating, and the process of forming a circuit on the polyimide resin film And the manufacturing method of the flexible device characterized by including the process of peeling the polyimide resin film in which the said circuit was formed in the surface from the said carrier substrate.
11. A flexible device which is a display device or a light receiving device manufactured by the method for manufacturing a flexible device according to Item 10.

本発明によって、透明性に優れ、線膨張係数、特に高温での線膨張係数(例えば300〜400℃の線膨張係数)が比較的低く制御されたポリイミドを得ることができるポリアミック酸溶液組成物を提供することができる。   According to the present invention, there is provided a polyamic acid solution composition capable of obtaining a polyimide having excellent transparency and a linear expansion coefficient, particularly a linear expansion coefficient at a high temperature (for example, a linear expansion coefficient of 300 to 400 ° C.) controlled to be relatively low. Can be provided.

本発明のポリアミック酸溶液組成物から得られるポリイミド、すなわち本発明のポリイミドは、透明性が高く、且つ線膨張係数、特に高温での線膨張係数(例えば300〜400℃の線膨張係数)が比較的低く制御されている。本発明のポリイミドは、電気装置、電子装置、光学装置に好適に用いることができ、例えば、液晶ディスプレイ、ELディスプレイ、電子ペーパー等の表示装置、タッチパネルや、太陽電池、LED照明装置の基板、又は保護膜などとして好適に用いることができる。特に、例えば液晶ディスプレイ、有機ELディスプレイ、電子ペーパー等の表示デバイス、薄膜太陽電池の受光素子等の受光デバイスなどのフレキシブルデバイスの基板として好適に用いることができる。   The polyimide obtained from the polyamic acid solution composition of the present invention, that is, the polyimide of the present invention is highly transparent and has a comparatively high linear expansion coefficient, particularly a linear expansion coefficient at a high temperature (for example, a linear expansion coefficient of 300 to 400 ° C.). Is controlled low. The polyimide of the present invention can be suitably used for an electric device, an electronic device, and an optical device. For example, a display device such as a liquid crystal display, an EL display, and electronic paper, a touch panel, a solar cell, a substrate for an LED lighting device, or It can be suitably used as a protective film. In particular, it can be suitably used as a substrate for flexible devices such as display devices such as liquid crystal displays, organic EL displays and electronic paper, and light receiving devices such as light receiving elements of thin film solar cells.

本発明のポリアミック酸溶液組成物中のポリアミック酸は、フッ素原子を含有するテトラカルボン酸二無水物を50モル%以上、好ましくは75モル%以上、より好ましくは80モル%以上、特に好ましくは90モル%以上の量で含むテトラカルボン酸成分と、フッ素原子を含有するジアミンを50モル%以上、好ましくは75モル%以上、より好ましくは80モル%以上、特に好ましくは90モル%以上の量で含むジアミン成分とから得られるものである。なお、テトラカルボン酸成分には、テトラカルボン酸と、テトラカルボン酸二無水物等のテトラカルボン酸誘導体が含まれる。   The polyamic acid in the polyamic acid solution composition of the present invention contains 50 mol% or more, preferably 75 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% of tetracarboxylic dianhydride containing a fluorine atom. The tetracarboxylic acid component contained in an amount of at least mol% and the diamine containing a fluorine atom in an amount of at least 50 mol%, preferably at least 75 mol%, more preferably at least 80 mol%, particularly preferably at least 90 mol%. It is obtained from the diamine component contained. The tetracarboxylic acid component includes tetracarboxylic acid and tetracarboxylic acid derivatives such as tetracarboxylic dianhydride.

したがって、本発明のポリアミック酸は、下記化学式(1)で表される繰返し単位からなる。   Therefore, the polyamic acid of the present invention comprises a repeating unit represented by the following chemical formula (1).

Figure 2013161970
Figure 2013161970

化学式(1)のAは、テトラカルボン酸成分に由来する化学構造であって、テトラカルボン酸からカルボキシル基を除いた4価の基であり、Bは、ジアミン成分に由来する化学構造であって、ジアミンからアミノ基を除いた2価の基であり、ただし、Aの50モル%以上、好ましくは75モル%以上、より好ましくは80モル%以上、特に好ましくは90モル%以上が、フッ素原子を含有するテトラカルボン酸からカルボキシル基を除いた4価の基であり、Bの50モル%以上、好ましくは75モル%以上、より好ましくは80モル%以上、特に好ましくは90モル%以上が、フッ素原子を含有するジアミンからアミノ基を除いた2価の基である。   A in chemical formula (1) is a chemical structure derived from a tetracarboxylic acid component, which is a tetravalent group obtained by removing a carboxyl group from tetracarboxylic acid, and B is a chemical structure derived from a diamine component. , A divalent group obtained by removing an amino group from a diamine, provided that 50 mol% or more, preferably 75 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more of A is a fluorine atom. Is a tetravalent group obtained by removing a carboxyl group from tetracarboxylic acid containing B, and B is 50 mol% or more, preferably 75 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more. A divalent group obtained by removing an amino group from a diamine containing a fluorine atom.

本発明において用いるフッ素原子を含有するテトラカルボン酸二無水物としては、例えば、下記式(2)で示される2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、5,5’−[2,2,2−トリフルオロ−1−[3−(トリフルオロメチル)フェニル]エチリデン]ジフタル酸無水物、5,5’−[2,2,3,3,3−ペンタフルオロ−1−(トリフルオロメチル)プロピリデン]ジフタル酸無水物、1H−ジフロ[3,4−b:3’,4’−i]キサンテン−1,3,7,9(11H)−テトロン、5,5’−オキシビス[4,6,7−トリフルオロ−ピロメリット酸無水物]、3,6−ビス(トリフルオロメチル)ピロメリット酸二無水物、4−(トリフルオロメチル)ピロメリット酸二無水物、1,4−ジフルオロピロメリット酸二無水物、1,4−ビス(3,4−ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン二無水物などが挙げられる。中でも、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物を好適に用いることができる。   Examples of the tetracarboxylic dianhydride containing a fluorine atom used in the present invention include 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) represented by the following formula (2). ), 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 ′-(hexafluoroisopropylidene) diphthalic anhydride, 5,5 ′-[2,2,2-trifluoro-1 -[3- (trifluoromethyl) phenyl] ethylidene] diphthalic anhydride, 5,5 '-[2,2,3,3,3-pentafluoro-1- (trifluoromethyl) propylidene] diphthalic anhydride 1H-difuro [3,4-b: 3 ′, 4′-i] xanthene-1,3,7,9 (11H) -tetron, 5,5′-oxybis [4,6,7-trifluoro -Pyromellitic anhydride], 3,6-bis (trifluoromethyl) pyromellitic dianhydride, 4- (trifluoromethyl) pyromellitic dianhydride, 1,4-difluoropyromellitic dianhydride 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride and the like. Among these, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride can be preferably used.

Figure 2013161970
Figure 2013161970

なお、フッ素原子を含有するテトラカルボン酸二無水物は、1種を用いても、2種以上を用いてもよい。   In addition, the tetracarboxylic dianhydride containing a fluorine atom may use 1 type, or may use 2 or more types.

本発明において用いるフッ素原子を含有するジアミンとしては、例えば、下記式(3)で示される2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(2,2’−TFMB)、下記式(4)で示される2,2’−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(6FAP)、2,3,5,6−テトラフルオロ−1,4−ジアミノベンゼン、2,4,5,6−テトラフルオロ−1,3−ジアミノベンゼン、2,3,5,6−テトラフルオロ−1,4−ベンゼン(ジメタンアミン)、2,2’−ジフルオロ−(1,1’−ビフェニル)−4,4’−ジアミン、2,2’,6,6’−テトラフルオロ−(1,1’−ビフェニル)−4,4’−ジアミン、4,4’−ジアミノオクタフルオロビフェニル、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−オキシビス(2,3,5,6−テトラフルオロアニリン)、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(3,3’−TFMB)、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ジフェニルエーテル、1,4−ビス[4−アミノ−2−(トリフルオロメチル)フェノキシ]ベンゼン、2,2−ビス[4−[4−アミノ−2−(トリフルオロメチル)フェノキシ]ヘキサフルオロプロパン、3,5−ジアミノベンゼントリフロリド、4,4−ジアミノ−2−(トリフルオロメチル)ジフェニルエーテルなどが挙げられる。中でも、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル及び2,2’−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパンを好適に用いることができる。   Examples of the diamine containing a fluorine atom used in the present invention include 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (2,2′-TFMB) represented by the following formula (3). 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (6FAP) represented by the following formula (4), 2,3,5,6-tetrafluoro-1,4-diaminobenzene, 2,4,5,6-tetrafluoro-1,3-diaminobenzene, 2,3,5,6-tetrafluoro-1,4-benzene (dimethanamine), 2,2'-difluoro- (1,1 ' -Biphenyl) -4,4'-diamine, 2,2 ', 6,6'-tetrafluoro- (1,1'-biphenyl) -4,4'-diamine, 4,4'-diaminooctafluorobiphenyl, , 2-bis (4-aminophenyl) hexafluoropropane, 4,4′-oxybis (2,3,5,6-tetrafluoroaniline), 3,3′-bis (trifluoromethyl) -4,4 ′ -Diaminobiphenyl (3,3'-TFMB), 4,4'-diamino-2,2'-bis (trifluoromethyl) diphenyl ether, 1,4-bis [4-amino-2- (trifluoromethyl) phenoxy ] Benzene, 2,2-bis [4- [4-amino-2- (trifluoromethyl) phenoxy] hexafluoropropane, 3,5-diaminobenzene trifluoride, 4,4-diamino-2- (trifluoro) And methyl) diphenyl ether. Among these, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl and 2,2'-bis (3-amino-4-hydroxyphenyl) hexafluoropropane can be preferably used.

Figure 2013161970
Figure 2013161970

Figure 2013161970
Figure 2013161970

なお、フッ素原子を含有するジアミンは、1種を用いても、2種以上を用いてもよい。   In addition, 1 type may be used for the diamine containing a fluorine atom, or 2 or more types may be used for it.

本発明のポリアミック酸は、本発明の特性を損なわない範囲で、他のテトラカルボン酸成分および/または他のジアミン成分を使用して得られるものであってもよい。例えば、全テトラカルボン酸成分100モル%中、50モル%以下、好ましくは25モル%以下、より好ましくは20モル%以下、特に好ましくは10モル%以下が1種以上の他のテトラカルボン酸成分であってもよく、また、ジアミン成分100モル%中、50モル%以下、好ましくは25モル%以下、より好ましくは20モル%以下、特に好ましくは10モル%以下が1種以上の他のジアミン成分であってもよい。   The polyamic acid of the present invention may be obtained using other tetracarboxylic acid components and / or other diamine components as long as the properties of the present invention are not impaired. For example, in 100 mol% of all tetracarboxylic acid components, 50 mol% or less, preferably 25 mol% or less, more preferably 20 mol% or less, particularly preferably 10 mol% or less is one or more other tetracarboxylic acid components. Further, in 100 mol% of the diamine component, 50 mol% or less, preferably 25 mol% or less, more preferably 20 mol% or less, particularly preferably 10 mol% or less is one or more other diamines. It may be a component.

使用可能な他のテトラカルボン酸成分としては、例えば、1,2,3,4−シクロブタンテトラカルボン酸二無水物(CBDA)、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、ジシクロヘキシル−3,3’,4,4’−テトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸−1,2:4,5−二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3;5,6−テトラカルボン酸二無水物、4,8−エタノ−1H,3H−ベンゾ[1,2−c:4,5−c’]ジフラン1,3,5,7−テトロンなどの脂環式テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン二無水物(BPAF)などのフルオレン骨格を含むテトラカルボン酸二無水物、4,4’−チオジフタル酸二無水物などの硫黄原子を含有するテトラカルボン酸二無水物、4,4’−(ジメチルシラジイル)ジフタル酸二無水物などのケイ素原子を含有するテトラカルボン酸二無水物や、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、p−ターフェニルテトラカルボン酸二無水物、m−ターフェニルテトラカルボン酸二無水物などが挙げられる。   Examples of other tetracarboxylic acid components that can be used include 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and dicyclohexyl. −3,3 ′, 4,4′-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid-1,2: 4,5-dianhydride, 1,2,3,4 -Cyclobutanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3; 5,6-tetracarboxylic dianhydride, 4,8-ethano-1H, 3H-benzo [ 1,2-c: 4,5-c ′] difuran 1,3,5,7-tetron and the like alicyclic tetracarboxylic dianhydrides, aliphatic tetracarboxylic dianhydrides, 9,9-bis ( 3,4-dicarboxyphenyl) fluorene Tetracarboxylic dianhydrides containing a fluorene skeleton such as anhydride (BPAF), tetracarboxylic dianhydrides containing sulfur atoms such as 4,4′-thiodiphthalic dianhydride, 4,4 ′-(dimethylsila Diyl) diphthalic dianhydride and other tetracarboxylic dianhydrides containing silicon atoms, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′- Biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride Products, diphenylsulfonetetracarboxylic dianhydride, p-terphenyltetracarboxylic dianhydride, m-terphenyltetracarboxylic dianhydride, etc. .

使用可能な他のジアミン成分としては、例えば、trans−1,4−シクロヘキサンジアミン(CHDA)、cis−1,4−シクロヘキサンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1.3−アダマンタンジアミン、1,3−ビス(4−アミノフェニル)アダマンタン、1,3−シクロヘキサンジアミンなどの脂環式ジアミン、1,6−ヘキサメチレンジアミン、1,10−デカメチレンジアミン等の脂肪族ジアミン、9,9−ビス(4−アミノフェニル)フルオレン(BAFL)、9.9−ビス[(4−アミノフェノキシ)フェニル]フルオレンなどのフルオレン骨格を含むジアミン、4,4’−ジアミノジフェニルスルフィド、2,2’−ジアミノジフェニルスルフィドなどの硫黄原子を含有するジアミン、4,4−(ジメチルシラジイル)ジアミノベンゼンなどのケイ素原子を含有するジアミンや、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、2,4−トルエンジアミン、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、ビス(4−アミノ−3−カルボキシフェニル)メタン、2,4−ジアミノトルエンなどが挙げられる。   Examples of other diamine components that can be used include trans-1,4-cyclohexanediamine (CHDA), cis-1,4-cyclohexanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis ( Aminomethyl) cyclohexane, 1.3-adamantanediamine, 1,3-bis (4-aminophenyl) adamantane, alicyclic diamines such as 1,3-cyclohexanediamine, 1,6-hexamethylenediamine, 1,10- Aliphatic diamines such as decamethylenediamine, diamines containing a fluorene skeleton such as 9,9-bis (4-aminophenyl) fluorene (BAFL), 9.9-bis [(4-aminophenoxy) phenyl] fluorene, 4, 4'-diaminodiphenyl sulfide, 2,2'-diaminodiphenyl sulfide Diamines containing sulfur atoms such as diamines, diamines containing silicon atoms such as 4,4- (dimethylsiladiyl) diaminobenzene, p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 3 , 4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 2,4-toluenediamine, 3,3′-dihydroxy-4,4′-diaminobiphenyl, bis (4-amino-3-carboxyphenyl) methane, 2,4-diaminotoluene and the like can be mentioned.

本発明のポリアミック酸は、テトラカルボン酸成分とジアミン成分とを溶媒中で反応させることによって、ポリアミック酸溶液(またはポリアミック酸溶液組成物)として得ることができる。   The polyamic acid of the present invention can be obtained as a polyamic acid solution (or a polyamic acid solution composition) by reacting a tetracarboxylic acid component and a diamine component in a solvent.

この反応は、テトラカルボン酸成分とジアミン成分とを略等モル用い、イミド化反応を抑制するために、例えば100℃以下、好ましくは80℃以下の比較的低温で行なわれる。限定するものではないが、通常、反応温度は25℃〜100℃、好ましくは40℃〜80℃、より好ましくは50℃〜80℃であり、反応時間は0.1〜24時間程度、好ましくは2〜12時間程度であることが好ましい。反応温度及び反応時間を前記範囲内とすることによって、効率よく高分子量のポリアミック酸の溶液組成物を得ることができる。なお、反応は、空気雰囲気下でも行うことができるが、通常は不活性ガス雰囲気下、好ましくは窒素ガス雰囲気下で好適に行われる。   This reaction is carried out at a relatively low temperature of, for example, 100 ° C. or less, preferably 80 ° C. or less, in order to suppress the imidization reaction using approximately equimolar amounts of the tetracarboxylic acid component and the diamine component. Although it does not limit, reaction temperature is 25 to 100 degreeC normally, Preferably it is 40 to 80 degreeC, More preferably, it is 50 to 80 degreeC, Reaction time is about 0.1 to 24 hours, Preferably It is preferably about 2 to 12 hours. By setting the reaction temperature and reaction time within the above ranges, a high molecular weight polyamic acid solution composition can be efficiently obtained. The reaction can be carried out in an air atmosphere, but usually it is suitably carried out in an inert gas atmosphere, preferably in a nitrogen gas atmosphere.

また、テトラカルボン酸成分とジアミン成分のモル比[テトラカルボン酸成分/ジアミン成分]は、好ましくは0.90〜1.10程度、より好ましくは0.95〜1.05程度である。   The molar ratio of the tetracarboxylic acid component to the diamine component [tetracarboxylic acid component / diamine component] is preferably about 0.90 to 1.10, more preferably about 0.95 to 1.05.

ポリアミック酸を調製する際に使用する溶媒としては、特に限定されないが、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−ビニル−2−ピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが挙げられる。さらに、その他の一般的な有機溶剤、例えば、メタノール、エタノールなどのアルコール系溶媒や、フェノール、o−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、N−メチルカプロラクタム、ヘキサメチルホスホロトリアミド、ビス(2−メトキシエチル)エーテル、1,2−ビス(2−メトキシエトキシ)エタン、ビス[2−(2−メトキシエトキシ)エチル]エーテル、1,4−ジオキサン、ジメチルスルホキシド、ジメチルスルホン、ジフェニルエーテル、ジフェニルスルホン、テトラメチル尿素、アニソール、ターペン、ミネラルスピリット、石油ナフサ系溶媒、生分解性の乳酸メチル、乳酸エチル、乳酸ブチルなども使用できる。使用する有機溶剤は、1種類であっても、2種類以上であってもよい。   Although it does not specifically limit as a solvent used when preparing a polyamic acid, For example, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N Amide solvents such as ethyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone, etc. Cyclic ester solvents, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, phenol solvents such as 4-chlorophenol, acetophenone, 1, 3-Dimethyl-2-imidazo Jin Won, sulfolane, and dimethyl sulfoxide. Furthermore, other common organic solvents such as alcohol solvents such as methanol and ethanol, phenol, o-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl Cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, tetrahydrofuran, dimethoxyethane, diethoxyethane, dibutyl ether, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, Toluene, chlorobenzene, N-methylcaprolactam, hexamethylphosphorotriamide, bis ( -Methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethyl] ether, 1,4-dioxane, dimethyl sulfoxide, dimethyl sulfone, diphenyl ether, diphenyl sulfone, Tetramethylurea, anisole, terpenes, mineral spirits, petroleum naphtha solvents, biodegradable methyl lactate, ethyl lactate, butyl lactate and the like can also be used. The organic solvent to be used may be one type or two or more types.

本発明のポリアミック酸溶液組成物は、少なくとも本発明のポリアミック酸と溶媒とを含む。溶媒としては、ポリアミック酸が溶解すればよく、特に限定されないが、ポリアミック酸を調製する際に使用する溶媒と同じものを挙げることができる。溶媒は2種以上の混合物であってもよい。   The polyamic acid solution composition of the present invention contains at least the polyamic acid of the present invention and a solvent. The solvent is not particularly limited as long as the polyamic acid is dissolved, and examples thereof include the same solvents as those used for preparing the polyamic acid. The solvent may be a mixture of two or more.

本発明のポリアミック酸溶液組成物は、さらに、シリカを、テトラカルボン酸成分とジアミン成分の合計量100質量部に対して1〜100質量部、好ましくは5〜90質量部、より好ましくは10〜90質量部の量で含む。ある実施態様においては、ポリアミック酸溶液組成物は、さらに、シリカを、テトラカルボン酸成分とジアミン成分の合計量100質量部に対して5〜70質量部の量で含むことが好ましい。この範囲の量でシリカを添加することによって、ポリアミック酸溶液組成物から得られるポリイミドの高い透明性を維持しつつ、高温での線膨張係数(例えば300〜400℃の線膨張係数)を低下させることができる。また、シリカの添加量により、得られるポリイミドの、特に高温での線膨張係数を制御することが可能である。   In the polyamic acid solution composition of the present invention, the silica is further added in an amount of 1 to 100 parts by weight, preferably 5 to 90 parts by weight, more preferably 10 to 10 parts by weight based on 100 parts by weight of the total amount of the tetracarboxylic acid component and the diamine component. Included in an amount of 90 parts by weight. In a certain embodiment, it is preferable that a polyamic acid solution composition further contains a silica in the quantity of 5-70 mass parts with respect to 100 mass parts of total amounts of a tetracarboxylic-acid component and a diamine component. By adding silica in an amount in this range, the linear expansion coefficient at a high temperature (for example, a linear expansion coefficient at 300 to 400 ° C.) is reduced while maintaining high transparency of the polyimide obtained from the polyamic acid solution composition. be able to. Moreover, it is possible to control the linear expansion coefficient of the obtained polyimide at a particularly high temperature, depending on the amount of silica added.

本発明において用いるシリカは、得られるポリイミドの透明性およびシリカの分散性の観点から、動的光散乱法で測定した粒子径が200nm以下、より好ましくは1〜60nm、特に好ましくは1〜50nm、さらに好ましくは10〜30nmのものであることが好ましい。   The silica used in the present invention has a particle size measured by a dynamic light scattering method of 200 nm or less, more preferably 1 to 60 nm, particularly preferably 1 to 50 nm, from the viewpoint of transparency of the resulting polyimide and dispersibility of silica. More preferably, it is 10 to 30 nm.

本発明のポリアミック酸溶液組成物は、テトラカルボン酸成分とジアミン成分とを溶媒中で反応させてポリアミック酸溶液(またはポリアミック酸溶液組成物)を得た後、これにシリカを、シリカの量がテトラカルボン酸成分とジアミン成分の合計量100質量部に対して1〜100質量部の量になるように、添加することで製造することができる。   In the polyamic acid solution composition of the present invention, a tetracarboxylic acid component and a diamine component are reacted in a solvent to obtain a polyamic acid solution (or a polyamic acid solution composition), and then silica is added thereto. It can manufacture by adding so that it may become the quantity of 1-100 mass parts with respect to 100 mass parts of total amounts of a tetracarboxylic-acid component and a diamine component.

本発明においては、得られるポリイミドの分子量の観点から、テトラカルボン酸成分とジアミン成分とを溶媒中で反応させて得られるポリアミック酸溶液に、有機溶媒にコロイダルシリカを分散させてなるコロイド溶液を添加し、混合することでポリアミック酸溶液組成物を製造することが好ましい。   In the present invention, from the viewpoint of the molecular weight of the resulting polyimide, a colloidal solution obtained by dispersing colloidal silica in an organic solvent is added to a polyamic acid solution obtained by reacting a tetracarboxylic acid component and a diamine component in a solvent. And it is preferable to produce a polyamic acid solution composition by mixing.

コロイダルシリカの溶媒としては、特に限定されないが、例えば、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、プロピレングリコールモノメチルエーテルアセテート(PMA)、エチレングリコールモノ−n−プロピルエーテル(NPC)、エチレングリコール(EG)、イソプロパノール(IPA)、メタノール、メチルエチルケトン、メチルイソブチルケトン、キシレン、n−ブタノール、プロピレングリコールモノメチルエーテルなどが挙げられる。コロイダルシリカの溶媒は、所望の物性が得られるように、ポリアミック酸溶液の溶媒に応じて選択することが好ましく、通常、ポリアミック酸溶液との相溶性が高い溶媒であることが好ましい。溶媒の選択によって、得られるポリイミドの透明性および/または線膨張係数が変わることがある。   Although it does not specifically limit as a solvent of colloidal silica, For example, N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), propylene glycol monomethyl ether acetate (PMA), ethylene glycol mono-n-propyl Examples include ether (NPC), ethylene glycol (EG), isopropanol (IPA), methanol, methyl ethyl ketone, methyl isobutyl ketone, xylene, n-butanol, and propylene glycol monomethyl ether. The solvent of colloidal silica is preferably selected according to the solvent of the polyamic acid solution so that desired physical properties can be obtained, and is usually preferably a solvent having high compatibility with the polyamic acid solution. Depending on the choice of solvent, the transparency and / or linear expansion coefficient of the resulting polyimide may change.

なお、使用する有機溶媒は、1種類であっても、2種類以上であってもよい。   In addition, the organic solvent to be used may be one type or two or more types.

添加するコロイダルシリカの溶液は、コロイダルシリカの含有量が、特に限定されるものではないが、好ましくは5〜50質量%、より好ましくは10〜40質量%、特に好ましくは15〜30質量%であることが好適である。   The colloidal silica solution to be added is not particularly limited in the content of the colloidal silica, but is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and particularly preferably 15 to 30% by mass. Preferably it is.

本発明のポリアミック酸溶液組成物は、必要に応じて、他の添加成分、例えば、シリカ以外のフィラーなどを添加することもできる。得られるポリイミドの透明性およびフィラーの分散性の観点から、添加するフィラーは、粒子径が200nm以下、より好ましくは50nm以下であることが好ましい。例えば、酸化チタン、酸化ジルコニウムなどの各種無機フィラーを用いることができる。   The polyamic acid solution composition of the present invention can also contain other additive components, for example, fillers other than silica, if necessary. From the viewpoint of transparency of the obtained polyimide and dispersibility of the filler, the filler to be added preferably has a particle size of 200 nm or less, more preferably 50 nm or less. For example, various inorganic fillers such as titanium oxide and zirconium oxide can be used.

本発明において、ポリイミド前駆体(ポリアミック酸)の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN−メチル−2−ピロリドン溶液における対数粘度が0.2dL/g以上、好ましくは0.4dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。   In the present invention, the logarithmic viscosity of the polyimide precursor (polyamic acid) is not particularly limited, but the logarithmic viscosity in an N-methyl-2-pyrrolidone solution having a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g or more. , Preferably 0.4 dL / g or more. When the logarithmic viscosity is 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, and the mechanical strength and heat resistance of the resulting polyimide are excellent.

本発明のポリアミック酸溶液組成物は、ポリアミック酸に起因する固形分濃度が、特に限定されるものではないが、ポリイミド前駆体と溶媒との合計量に対して、好ましくは5質量%〜45質量%、より好ましくは7質量%〜40質量%、さらに好ましくは9質量%〜30質量%であることが好適である。固形分濃度が5質量%より低いと生産性、及び使用時の取り扱いが悪くなることがあり、45質量%より高いと溶液の流動性がなくなることがある。   In the polyamic acid solution composition of the present invention, the solid content concentration resulting from the polyamic acid is not particularly limited, but is preferably 5% by mass to 45% by mass with respect to the total amount of the polyimide precursor and the solvent. %, More preferably 7% by mass to 40% by mass, and still more preferably 9% by mass to 30% by mass. When the solid content concentration is lower than 5% by mass, productivity and handling during use may be deteriorated, and when it is higher than 45% by mass, the fluidity of the solution may be lost.

また、本発明のポリアミック酸溶液組成物の30℃における溶液粘度は、特に限定されないが、好ましくは1000Pa・sec以下、より好ましくは0.1〜500Pa・sec、さらに好ましくは0.1〜300Pa・sec、特に好ましくは0.1〜200Pa・secであることが取り扱い上好適である。溶液粘度が1000Pa・secを超えると、流動性がなくなり、金属やガラスなどへの均一な塗布が困難となることがあり、また、0.1Pa・secよりも低いと、金属やガラスなどへの塗布時にたれやハジキなどが生じることがあり、また高い特性のポリイミド、或いはポリイミドフレキシブルデバイス用基板等を得ることが難しくなることがある。   The solution viscosity at 30 ° C. of the polyamic acid solution composition of the present invention is not particularly limited, but is preferably 1000 Pa · sec or less, more preferably 0.1 to 500 Pa · sec, and still more preferably 0.1 to 300 Pa · sec. sec, particularly preferably 0.1 to 200 Pa · sec is suitable for handling. If the solution viscosity exceeds 1000 Pa · sec, the fluidity may be lost, and uniform application to metal or glass may be difficult, and if it is lower than 0.1 Pa · sec, the solution may be applied to metal or glass. Sagging or repelling may occur at the time of application, and it may be difficult to obtain a polyimide with high characteristics or a substrate for a polyimide flexible device.

前述の通り、本発明のポリアミック酸溶液組成物は、透明性に優れ、線膨張係数、特に高温での線膨張係数が比較的低く制御されたポリイミドを得ることができるものである。   As described above, the polyamic acid solution composition of the present invention is excellent in transparency, and can obtain a polyimide whose linear expansion coefficient, in particular, the linear expansion coefficient at a high temperature is controlled to be relatively low.

本発明のポリアミック酸溶液組成物は、例えば、加熱処理によって溶媒を除去するとともにイミド化(脱水閉環)することによって好適にポリイミドを得ることができる。加熱処理条件は、特に限定されないが、50℃〜150℃、150℃〜250℃の温度範囲で乾燥した後、更に300℃〜400℃、好ましくは350℃〜400℃の温度で加熱処理することが好ましい。   The polyamic acid solution composition of the present invention can suitably obtain a polyimide by, for example, removing the solvent by heat treatment and imidizing (dehydrating ring closure). The heat treatment conditions are not particularly limited, but after drying in a temperature range of 50 ° C to 150 ° C and 150 ° C to 250 ° C, heat treatment is further performed at a temperature of 300 ° C to 400 ° C, preferably 350 ° C to 400 ° C. Is preferred.

この加熱処理は、常圧下で好適に行うこともできるが、溶媒を効率よく除去するために減圧下で行ってもよい。また、初期段階で減圧下、比較的低温で加熱処理して脱泡処理してもよい。いきなり加熱処理温度を高くすると、発泡などの不具合が生じて良好な特性を有するポリイミドを得ることができないことがある。   This heat treatment can be suitably performed under normal pressure, but may be performed under reduced pressure in order to efficiently remove the solvent. Further, defoaming may be performed by heat treatment at a relatively low temperature under reduced pressure in the initial stage. If the heat treatment temperature is suddenly increased, problems such as foaming may occur and polyimide having good characteristics may not be obtained.

また、イミド化反応は、ポリイミド前駆体であるポリアミック酸をピリジン、トリエチルアミンなどの触媒存在下にて脱水試薬と化学反応させることによっても行うことができる。   The imidation reaction can also be performed by chemically reacting a polyamic acid, which is a polyimide precursor, with a dehydrating reagent in the presence of a catalyst such as pyridine or triethylamine.

なお、イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。   In addition, the method of imidation is not specifically limited, The well-known thermal imidation or chemical imidation method can be applied suitably.

本発明のポリアミック酸溶液組成物から得られるポリイミドは高い透明性を有する。本発明によれば、例えば、膜厚10μmのフィルムにしたとき、波長400nmの光透過率が70%以上、さらには75%以上、さらには80%以上であるポリイミドを得ることができる。   The polyimide obtained from the polyamic acid solution composition of the present invention has high transparency. According to the present invention, for example, when a film having a film thickness of 10 μm is used, a polyimide having a light transmittance at a wavelength of 400 nm of 70% or more, further 75% or more, and further 80% or more can be obtained.

本発明のポリアミック酸溶液組成物から得られるポリイミドは、特に200℃を超える高温の線膨張係数が比較的低く制御されており、本発明によれば、例えば、300〜400℃の線膨張係数が350ppm/℃以下、さらには250ppm/℃以下、さらには10〜200ppm/℃であるポリイミドを得ることができる。   The polyimide obtained from the polyamic acid solution composition of the present invention is controlled to have a relatively low linear expansion coefficient particularly at a high temperature exceeding 200 ° C. According to the present invention, for example, a linear expansion coefficient of 300 to 400 ° C. A polyimide having a concentration of 350 ppm / ° C. or lower, further 250 ppm / ° C. or lower, or 10 to 200 ppm / ° C. can be obtained.

本発明によれば、膜厚10μmのフィルムでの波長400nmの光透過率が70%以上であり、且つ、300〜400℃の線膨張係数が350ppm/℃以下、さらには250ppm/℃以下であるポリイミドを得ることができる。このような透明性に優れ、同時に、特に高温での線膨張係数が低く制御されたポリイミドを得ることができるポリアミック酸溶液組成物は従来にはなかったものである。   According to the present invention, the light transmittance at a wavelength of 400 nm in a film having a thickness of 10 μm is 70% or more, and the linear expansion coefficient at 300 to 400 ° C. is 350 ppm / ° C. or less, and further 250 ppm / ° C. or less. A polyimide can be obtained. There has never been a polyamic acid solution composition that is excellent in transparency and at the same time can obtain a polyimide whose linear expansion coefficient at a high temperature is controlled to be low.

なお、本発明のポリイミドからなるフィルムの厚みは、用途に応じて適宜選択でき、好ましくは1μm〜100μm程度、さらに好ましくは1μm〜50μm程度である。   In addition, the thickness of the film made of the polyimide of the present invention can be appropriately selected according to the use, and is preferably about 1 μm to 100 μm, more preferably about 1 μm to 50 μm.

本発明のポリアミック酸溶液組成物から得られるポリイミドは高い透明性を有しているので、透明性が要求される電気装置、電子装置、光学装置に好適に用いることができ、例えば、液晶ディスプレイ、ELディスプレイ、電子ペーパー等の表示装置、タッチパネルや、太陽電池、LED照明装置の基板、又は保護膜などとして好適に用いることができる。特に、例えば液晶ディスプレイ、有機ELディスプレイ、電子ペーパー等の表示デバイス、薄膜太陽電池の受光素子等の受光デバイスなどのフレキシブルデバイスの基板として好適に用いることができる。   Since the polyimide obtained from the polyamic acid solution composition of the present invention has high transparency, it can be suitably used for electrical devices, electronic devices, and optical devices that require transparency, such as liquid crystal displays, It can be suitably used as a display device such as an EL display or electronic paper, a touch panel, a solar cell, a substrate of an LED lighting device, or a protective film. In particular, it can be suitably used as a substrate for flexible devices such as display devices such as liquid crystal displays, organic EL displays and electronic paper, and light receiving devices such as light receiving elements of thin film solar cells.

なお、本発明のポリアミック酸溶液組成物は、得られるポリイミドの用途に応じて、他の添加成分を含有していてもよい。   In addition, the polyamic acid solution composition of the present invention may contain other additive components depending on the use of the obtained polyimide.

本発明のポリアミック酸溶液組成物は、フレキシブルデバイス基板用のポリイミド前駆体組成物として特に好適に用いることができる。   The polyamic acid solution composition of the present invention can be particularly suitably used as a polyimide precursor composition for a flexible device substrate.

本発明のフレキシブルデバイスの製造方法においては、ポリアミック酸溶液組成物を、基材の表面に塗布或いは吹き付けしてポリアミック酸溶液組成物層からなる塗膜を形成し、そのポリアミック酸溶液組成物を加熱処理してポリイミドフレキシブルデバイス用基板を得る。   In the method for producing a flexible device of the present invention, a polyamic acid solution composition is applied or sprayed onto the surface of a substrate to form a coating film comprising a polyamic acid solution composition layer, and the polyamic acid solution composition is heated. The substrate for polyimide flexible device is obtained by processing.

本発明において、ポリアミック酸溶液組成物は、加熱処理によって溶媒を除去するとともにイミド化(脱水閉環)することによって好適にポリイミドフレキシブルデバイス用基板を得ることができる。加熱処理条件は、特に限定されないが、50℃〜150℃、150℃〜250℃の温度範囲で乾燥した後、更に300℃〜400℃、好ましくは350℃〜400℃の温度で加熱処理することが好ましい。   In the present invention, the polyamic acid solution composition can suitably obtain a substrate for a polyimide flexible device by removing the solvent by heat treatment and imidizing (dehydrating ring closure). The heat treatment conditions are not particularly limited, but after drying in a temperature range of 50 ° C to 150 ° C and 150 ° C to 250 ° C, heat treatment is further performed at a temperature of 300 ° C to 400 ° C, preferably 350 ° C to 400 ° C. Is preferred.

この加熱処理は、常圧下で好適に行うこともできるが、溶媒を効率よく除去するために減圧下で行ってもよい。また、初期段階で減圧下、比較的低温で加熱処理して脱泡処理してもよい。いきなり加熱処理温度を高くすると、発泡などの不具合が生じて良好なフレキシブルデバイス用基板を得ることができないことがある。   This heat treatment can be suitably performed under normal pressure, but may be performed under reduced pressure in order to efficiently remove the solvent. Further, defoaming may be performed by heat treatment at a relatively low temperature under reduced pressure in the initial stage. If the heat treatment temperature is suddenly increased, defects such as foaming may occur and a good flexible device substrate may not be obtained.

本発明のフレキシブルデバイスの製造方法においては、ポリイミド前駆体組成物(ポリアミック酸溶液組成物)を支持体であるキャリア基板上に塗布し、加熱処理して固体状のポリイミド樹脂膜を形成し、このポリイミド樹脂膜上に回路を形成した後、回路が表面に形成されたポリイミド樹脂膜をキャリア基板から剥離する。   In the method for producing a flexible device of the present invention, a polyimide precursor composition (polyamic acid solution composition) is applied onto a carrier substrate as a support, and heat-treated to form a solid polyimide resin film. After the circuit is formed on the polyimide resin film, the polyimide resin film having the circuit formed on the surface is peeled from the carrier substrate.

ポリアミック酸溶液組成物の塗布は、キャリア基板(支持体)上に均一な厚みの塗膜を形成できる方法であれば、いずれも適用できる。例として、ダイコーティングやスピンコーティング、スクリーン印刷による塗布が可能である。   The polyamic acid solution composition can be applied by any method that can form a coating film having a uniform thickness on a carrier substrate (support). For example, application by die coating, spin coating, or screen printing is possible.

キャリア基板上にポリアミック酸溶液組成物からなる塗膜を形成し、比較的低温で加熱処理して溶媒除去を行って自己支持性膜(皮膜の流動が発生しない状態、溶媒の除去と共に重合及び一部イミド化反応が進んでいる)を形成し、次いで自己支持性膜をそのままの状態、或いは必要に応じて基材から剥がした状態で加熱処理して脱水・イミド化する方法によってフレキシブルデバイス用基板を好適に得ることができる。ここで用いた「溶媒除去」或いは「脱水・イミド化」は、当該工程で、それぞれ溶媒除去のみ或いは脱水・イミド化のみが進行することを意味しない。溶媒除去工程でも相当程度の脱水・イミド化は進行するし、脱水・イミド化工程でも残存溶媒の除去が進行する。   A coating film made of the polyamic acid solution composition is formed on the carrier substrate, and the solvent is removed by heat treatment at a relatively low temperature to remove the self-supporting film (the state in which the film does not flow, polymerization and The substrate for flexible devices is formed by the method of dehydration and imidization by heat treatment in the state where the self-supporting film is left as it is or after being peeled off from the base material if necessary. Can be suitably obtained. As used herein, “solvent removal” or “dehydration / imidization” does not mean that only solvent removal or only dehydration / imidation proceeds in the step. A considerable degree of dehydration and imidization also proceeds in the solvent removal step, and removal of the residual solvent proceeds in the dehydration and imidization step.

本発明のポリアミック酸溶液組成物は、得られるポリイミドフレキシブルデバイス用基板の用途に応じて、他の添加成分を含有していてもよい。また、得られるポリイミドフレキシブルデバイス用基板は、さらに他の樹脂層を積層したものであってもよい。   The polyamic acid solution composition of the present invention may contain other additive components depending on the application of the polyimide flexible device substrate to be obtained. Moreover, the polyimide flexible device board | substrate obtained may laminate | stack another resin layer further.

本発明のフレキシブルデバイスの製造方法において、ポリイミド樹脂膜の厚さは、1〜20μmであることが望ましい。厚さが1μm未満である場合、ポリイミド樹脂膜が十分な耐性を保持できず、フレキシブルデバイス基板として使用したとき応力に耐えきれず破壊されることがある。また、ポリイミド樹脂膜の厚さが20μmを超えて厚くなると、フレキシブルデバイスの薄型化が困難となってしまう。フレキシブルデバイスとして十分な耐性を保持しながら、より薄膜化するには、ポリイミド樹脂膜の厚さは、2〜10μmであることがより望ましい。   In the method for manufacturing a flexible device of the present invention, the polyimide resin film preferably has a thickness of 1 to 20 μm. When the thickness is less than 1 μm, the polyimide resin film cannot maintain sufficient resistance, and when used as a flexible device substrate, it may not withstand stress and may be destroyed. On the other hand, when the thickness of the polyimide resin film exceeds 20 μm, it is difficult to reduce the thickness of the flexible device. In order to reduce the film thickness while maintaining sufficient resistance as a flexible device, the thickness of the polyimide resin film is more preferably 2 to 10 μm.

本発明のフレキシブルデバイスの製造方法においては、以上のようにして形成したポリイミド樹脂膜の上に、表示デバイス又は受光デバイスに必要な回路を形成する。この工程はデバイスの種類により異なる。例えば、TFT液晶ディスプレイデバイスを製造する場合には、ポリイミド樹脂膜の上に、例えばアモルファスシリコンのTFTを形成する。TFTは、ゲート金属層、窒化ケイ素ゲート誘電体層、ITI画素電極を含む。この上に、さらに液晶ディスプレイに必要な構造を、公知の方法によって形成することも出来る。本発明において得られるポリイミド樹脂膜は耐熱性、靱性等各種特性に優れるので、回路等を形成する手法は特に制限されない。   In the method for producing a flexible device of the present invention, a circuit necessary for a display device or a light receiving device is formed on the polyimide resin film formed as described above. This process varies depending on the type of device. For example, when manufacturing a TFT liquid crystal display device, an amorphous silicon TFT, for example, is formed on a polyimide resin film. The TFT includes a gate metal layer, a silicon nitride gate dielectric layer, and an ITI pixel electrode. Further, a structure necessary for a liquid crystal display can be formed by a known method. Since the polyimide resin film obtained in the present invention is excellent in various properties such as heat resistance and toughness, the method for forming a circuit or the like is not particularly limited.

以上のようにして回路等を表面に形成したポリイミド樹脂膜をキャリア基板から剥離する。剥離方法に特に制限はなく、例えばキャリア基板側からレーザー等を照射することで剥離を行うことができる。本発明により得られるポリイミド樹脂膜は、高い可とう性、靭性を有するので、キャリア基板(支持体)と単に物理的に剥離することも可能である。   The polyimide resin film having the circuit and the like formed on the surface as described above is peeled off from the carrier substrate. There is no restriction | limiting in particular in the peeling method, For example, it can peel by irradiating a laser etc. from the carrier substrate side. Since the polyimide resin film obtained by the present invention has high flexibility and toughness, it can be physically peeled off from the carrier substrate (support).

本発明におけるフレキシブルデバイスとしては、液晶ディスプレイ、有機ELディスプレイ、電子ペーパーといった表示デバイス、太陽電池、CMOSなどの受光デバイスを挙げることが出来る。本発明は、特に、薄型化かつフレキシブル性を付与したいデバイスへの適用に好適である。   Examples of the flexible device in the present invention include display devices such as liquid crystal displays, organic EL displays, and electronic paper, and light receiving devices such as solar cells and CMOS. The present invention is particularly suitable for application to a device that is desired to be thin and flexible.

以下、実施例を用いて本発明をさらに詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.

以下の例で使用した化合物の略号は以下のとおりである。
6FDA:2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物
2,2’−TFMB:2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル
6FAP:2,2’−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン
Abbreviations of the compounds used in the following examples are as follows.
6FDA: 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride 2,2′-TFMB: 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl 6FAP: 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane

以下の例で用いた特性の測定方法を以下に示す。   A method for measuring the characteristics used in the following examples is shown below.

(固形分濃度)
ポリアミック酸溶液の固形分濃度は、ポリアミック酸溶液を350℃で30分間乾燥し、乾燥前の重量Wと乾燥後の重量Wとから次式によって求めた値である。
(Solid content concentration)
The solid content concentration of the polyamic acid solution is a value obtained by drying the polyamic acid solution at 350 ° C. for 30 minutes and obtaining the weight W 1 before drying and the weight W 2 after drying by the following formula.

固形分濃度(重量%)=(W/W)×100Solid content concentration (% by weight) = (W 2 / W 1 ) × 100

(対数粘度)
試料溶液を、固形分濃度に基づいて濃度が0.5g/dl(溶媒:N−メチル−2−ピロリドン)になるように希釈した。この希釈液を、30℃にて、キャノンフェンスケNo.100を用いて流下時間(T1)を測定した。対数粘度は、ブランクの水の流下時間(T0)を用いて、次式から算出した。
(Logarithmic viscosity)
The sample solution was diluted to a concentration of 0.5 g / dl (solvent: N-methyl-2-pyrrolidone) based on the solid content concentration. This diluted solution was added to Cannon Fenceke No. The flow-down time (T 1 ) was measured using 100. The logarithmic viscosity was calculated from the following equation using the flow time (T 0 ) of blank water.

対数粘度={ln(T1/T0)}/0.5Logarithmic viscosity = {ln (T 1 / T 0 )} / 0.5

(線膨張係数(CTE))
膜厚10μmのポリイミド膜を幅4mmの短冊状に切り取って試験片とし、TMA/SS6100(エスアイアイ・テクノロジー社製)を用い、チャック間長15mm、荷重2g、昇温速度20℃/minで400℃まで昇温した。得られたTMA曲線から、50℃から200℃、300℃から400℃までの線膨張係数を求めた。
(Linear expansion coefficient (CTE))
A polyimide film having a thickness of 10 μm is cut into a strip shape having a width of 4 mm to obtain a test piece, and a TMA / SS6100 (manufactured by SII Technology Co., Ltd.) is used, the length between chucks is 15 mm, the load is 2 g, and the heating rate is 20 ° C./min. The temperature was raised to ° C. From the obtained TMA curve, linear expansion coefficients from 50 ° C. to 200 ° C. and from 300 ° C. to 400 ° C. were obtained.

(光透過率)
分光光度計U−2910(日立ハイテク製)を用いて、ポリイミド膜の波長400nmにおける透過率を測定した。そして、ランバード・ベール(Lambert−Beer Law)を用いて膜厚10μmにおける透過率を算出した。
(Light transmittance)
The transmittance of the polyimide film at a wavelength of 400 nm was measured using a spectrophotometer U-2910 (manufactured by Hitachi High-Tech). Then, the transmittance at a film thickness of 10 μm was calculated using a Lambert-Beer Law.

〔参考例1〕
攪拌機、窒素ガス導入・排出管を備えた内容積500mlのガラス製の反応容器に、溶媒としてN−メチル−2−ピロリドン440gを加え、2,2’−TFMBを25.12g(0.0785モル)と、6FDAを34.88g(0.0785モル)を加え、50℃で撹拌して、固形分濃度11.43%、対数粘度0.60のポリアミック酸溶液を得た。
[Reference Example 1]
440 g of N-methyl-2-pyrrolidone was added as a solvent to a glass reaction vessel having an internal volume of 500 ml equipped with a stirrer and a nitrogen gas introduction / discharge tube, and 25.12 g (0.0785 mol) of 2,2′-TFMB was added as a solvent. ) And 34.88 g (0.0785 mol) of 6FDA were added and stirred at 50 ° C. to obtain a polyamic acid solution having a solid content concentration of 11.43% and a logarithmic viscosity of 0.60.

〔比較例1〕
参考例1で得られたポリアミック酸溶液を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表1に示す。
[Comparative Example 1]
The polyamic acid solution obtained in Reference Example 1 was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, and 200 ° C. for 30 minutes. Then, heat treatment was performed at 400 ° C. for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 1.

〔実施例1〕
参考例1で得られたポリアミック酸溶液に、N,N−ジメチルアセトアミドにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、DMAc−ST;シリカ粒子固形分濃度:20wt%;シリカの粒子径:10〜20nm)を6g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して2質量部である。
[Example 1]
Colloidal solution in which colloidal silica is dispersed in N, N-dimethylacetamide in the polyamic acid solution obtained in Reference Example 1 (manufactured by Nissan Chemical Industries, Ltd., DMAc-ST; silica particle solid content concentration: 20 wt%; silica Particle diameter: 10 to 20 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 2 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表1に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 1.

〔実施例2〕
参考例1で得られたポリアミック酸溶液に、N,N−ジメチルアセトアミドにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、DMAc−ST)を15g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して5質量部である。
[Example 2]
To the polyamic acid solution obtained in Reference Example 1, 15 g of a colloidal solution (manufactured by Nissan Chemical Industries, Ltd., DMAc-ST) in which colloidal silica is dispersed in N, N-dimethylacetamide is added and stirred. A solution composition was obtained. The addition amount of silica is 5 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表1に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 1.

〔実施例3〕
参考例1で得られたポリアミック酸溶液に、N,N−ジメチルアセトアミドにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、DMAc−ST)を60g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して20質量部である。
Example 3
To the polyamic acid solution obtained in Reference Example 1, 60 g of a colloidal solution in which colloidal silica is dispersed in N, N-dimethylacetamide (manufactured by Nissan Chemical Industries, Ltd., DMAc-ST) is added and stirred, and the polyamic acid is stirred. A solution composition was obtained. The addition amount of silica is 20 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表1に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 1.

〔実施例4〕
参考例1で得られたポリアミック酸溶液に、N,N−ジメチルアセトアミドにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、DMAc−ST)を120g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して40質量部である。
Example 4
To the polyamic acid solution obtained in Reference Example 1, 120 g of a colloidal solution in which colloidal silica is dispersed in N, N-dimethylacetamide (manufactured by Nissan Chemical Industries, Ltd., DMAc-ST) is added and stirred, and the polyamic acid is stirred. A solution composition was obtained. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表1に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 1.

〔実施例5〕
参考例1で得られたポリアミック酸溶液に、プロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST;シリカ粒子固形分濃度:30wt%;シリカの粒子径:10〜20nm)を40g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して20質量部である。
Example 5
Colloidal solution obtained by dispersing colloidal silica in propylene glycol monomethyl ether acetate in the polyamic acid solution obtained in Reference Example 1 (manufactured by Nissan Chemical Industries, Ltd., PMA-ST; silica particle solid content concentration: 30 wt%; silica 40 g (particle diameter: 10 to 20 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 20 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表2に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 2.

〔実施例6〕
参考例1で得られたポリアミック酸溶液に、プロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST)を80g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して40質量部である。
Example 6
To the polyamic acid solution obtained in Reference Example 1, 80 g of a colloidal solution in which colloidal silica is dispersed in propylene glycol monomethyl ether acetate (manufactured by Nissan Chemical Industries, Ltd., PMA-ST) is added and stirred, and the polyamic acid solution is stirred. A composition was obtained. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表2に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 2.

〔実施例7〕
参考例1で得られたポリアミック酸溶液に、プロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST)を120g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して60質量部である。
Example 7
To the polyamic acid solution obtained in Reference Example 1, 120 g of a colloidal solution (PMA-ST, manufactured by Nissan Chemical Industries, Ltd.) in which colloidal silica is dispersed in propylene glycol monomethyl ether acetate was added and stirred, and the polyamic acid solution was stirred. A composition was obtained. The addition amount of silica is 60 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表2に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 2.

〔実施例8〕
参考例1で得られたポリアミック酸溶液に、エチレングリコールモノ−n−プロピルエーテルにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、NPC−ST−30;シリカ粒子固形分濃度:30wt%;シリカの粒子径:10〜20nm)を80g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して40質量部である。
Example 8
Colloidal solution in which colloidal silica is dispersed in ethylene glycol mono-n-propyl ether in the polyamic acid solution obtained in Reference Example 1 (manufactured by Nissan Chemical Industries, Ltd., NPC-ST-30; solid content concentration of silica particles: 30 wt%; silica particle size: 10 to 20 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表2に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 2.

〔実施例9〕
参考例1で得られたポリアミック酸溶液に、エチレングリコールモノ−n−プロピルエーテルにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、NPC−ST−30)を120g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して60質量部である。
Example 9
To the polyamic acid solution obtained in Reference Example 1, 120 g of a colloidal solution in which colloidal silica is dispersed in ethylene glycol mono-n-propyl ether (NPC-ST-30, manufactured by Nissan Chemical Industries, Ltd.) is added and stirred. Thus, a polyamic acid solution composition was obtained. The addition amount of silica is 60 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表2に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 2.

〔実施例10〕
参考例1で得られたポリアミック酸溶液に、エチレングリコールにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、EG−ST;シリカ粒子固形分濃度:20wt%;シリカの粒子径:10〜20nm)を120g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して40質量部である。
Example 10
Colloidal solution in which colloidal silica is dispersed in ethylene glycol in the polyamic acid solution obtained in Reference Example 1 (manufactured by Nissan Chemical Industries, Ltd., EG-ST; silica particle solid content concentration: 20 wt%; silica particle diameter: 10 to 20 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表2に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 2.

〔実施例11〕
参考例1で得られたポリアミック酸溶液に、エチレングリコールにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、EG−ST)を180g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して60質量部である。
Example 11
To the polyamic acid solution obtained in Reference Example 1, 180 g of a colloidal solution in which colloidal silica is dispersed in ethylene glycol (manufactured by Nissan Chemical Industries, Ltd., EG-ST) is added and stirred to obtain a polyamic acid solution composition. Obtained. The addition amount of silica is 60 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表2に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 2.

〔実施例12〕
参考例1で得られたポリアミック酸溶液に、イソプロパノールにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、IPA−ST;シリカ粒子固形分濃度:30wt%;シリカの粒子径:10〜20nm)を80g添加して攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+2,2’−TFMB)100質量部に対して40質量部である。
Example 12
Colloidal solution in which colloidal silica is dispersed in isopropanol in the polyamic acid solution obtained in Reference Example 1 (Nissan Chemical Industries, Ltd., IPA-ST; silica particle solid content concentration: 30 wt%; silica particle size: 10 80 g) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 2,2′-TFMB).

このポリアミック酸溶液組成物を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上に厚さが10μmのポリイミド膜を形成した。
そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表2に示す。
This polyamic acid solution composition was applied to a glass plate of a substrate by a bar coater, and the coating film was heated to 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. For 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate.
And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 2.

〔参考例2〕
攪拌機、窒素ガス導入・排出管を備えた内容積500mlのガラス製の反応容器に、溶媒としてN−メチル−2−ピロリドン440gを加え、6FAPを27.11g(0.0740モル)と、6FDAを32.89g(0.0740モル)を加え、50℃で攪拌して、固形分濃度11.47%、対数粘度0.19のポリアミック酸溶液を得た。
[Reference Example 2]
440 g of N-methyl-2-pyrrolidone was added as a solvent to a glass reaction vessel having an internal volume of 500 ml equipped with a stirrer and a nitrogen gas introduction / discharge pipe, and 27.11 g (0.0740 mol) of 6FAP and 6FDA were added. 32.89 g (0.0740 mol) was added and stirred at 50 ° C. to obtain a polyamic acid solution having a solid content of 11.47% and a logarithmic viscosity of 0.19.

〔比較例2〕
参考例2で得られたポリアミック酸溶液を、基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表3に示す。
[Comparative Example 2]
The polyamic acid solution obtained in Reference Example 2 was applied onto a base glass plate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, and 200 ° C. for 30 minutes. Then, heat treatment was performed at 400 ° C. for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 3.

〔実施例13〕
参考例2で得られたポリアミック酸溶液に、プロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を80g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP)100質量部に対して40質量部である。
Example 13
Colloidal solution in which colloidal silica is dispersed in propylene glycol monomethyl ether acetate in the polyamic acid solution obtained in Reference Example 2 (manufactured by Nissan Chemical Industries, Ltd., PMA-ST; silica particle solid content concentration: 30 wt%; silica particles) 80 g (diameter 10-15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表3に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 3.

〔実施例14〕
参考例2で得られたポリアミック酸溶液に、プロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を160g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP)100質量部に対して80質量部である。
Example 14
Colloidal solution in which colloidal silica is dispersed in propylene glycol monomethyl ether acetate in the polyamic acid solution obtained in Reference Example 2 (manufactured by Nissan Chemical Industries, Ltd., PMA-ST; silica particle solid content concentration: 30 wt%; silica particles) 160 g (diameter 10-15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 80 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表3に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 3.

〔実施例15〕
参考例2で得られたポリアミック酸溶液に、メチルエチルケトンにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、MEK−ST−40;シリカ粒子固形分濃度:40wt%;シリカ粒子径10〜15nm;表面改質無し)を80g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP)100質量部に対して40質量部である。
Example 15
Colloidal solution prepared by dispersing colloidal silica in methyl ethyl ketone in the polyamic acid solution obtained in Reference Example 2 (manufactured by Nissan Chemical Industries, Ltd., MEK-ST-40; silica particle solid content concentration: 40 wt%; silica particle diameter 10 ˜15 nm (no surface modification) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表3に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 3.

〔実施例16〕
参考例2で得られたポリアミック酸溶液に、メチルエチルケトンにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、MEK−AC−2101;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm;表面改質有り)を80g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP)100質量部に対して40質量部である。
Example 16
Colloidal solution in which colloidal silica is dispersed in methyl ethyl ketone in the polyamic acid solution obtained in Reference Example 2 (manufactured by Nissan Chemical Industries, Ltd., MEK-AC-2101; solid content concentration of silica particles: 30 wt%; silica particle diameter of 10 ˜15 nm (with surface modification) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表3に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 3.

〔実施例17〕
参考例2で得られたポリアミック酸溶液に、エチレングリコールモノ−n−プロピルエーテルにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、NPC−ST−30;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を80g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP)100質量部に対して40質量部である。
Example 17
Colloidal solution in which colloidal silica is dispersed in ethylene glycol mono-n-propyl ether in the polyamic acid solution obtained in Reference Example 2 (manufactured by Nissan Chemical Industries, Ltd., NPC-ST-30; solid content concentration of silica particles: 30 wt%; silica particle diameter 10-15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表3に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 3.

〔実施例18〕
参考例2で得られたポリアミック酸溶液に、イソプロパノールにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、IPA−ST−30;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を80g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP)100質量部に対して40質量部である。
Example 18
Colloidal solution in which colloidal silica is dispersed in isopropanol in the polyamic acid solution obtained in Reference Example 2 (Nissan Chemical Industries, Ltd., IPA-ST-30; silica particle solid content concentration: 30 wt%; silica particle diameter 10 ˜15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表4に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 4.

〔実施例19〕
参考例2で得られたポリアミック酸溶液に、イソプロパノールにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、IPA−ST−S;シリカ粒子固形分濃度:25wt%;シリカ粒子径8〜10nm)を96g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP)100質量部に対して40質量部である。
Example 19
Colloidal solution in which colloidal silica is dispersed in isopropanol in the polyamic acid solution obtained in Reference Example 2 (IPA-ST-S, manufactured by Nissan Chemical Industries, Ltd .; silica particle solid content concentration: 25 wt%; silica particle diameter 8 -10 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表4に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 4.

〔実施例20〕
参考例2で得られたポリアミック酸溶液に、イソプロパノールにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、IPA−ST−S;シリカ粒子固形分濃度:15wt%;シリカ粒子径9〜15nm)を160g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP)100質量部に対して40質量部である。
Example 20
Colloidal solution in which colloidal silica is dispersed in isopropanol in the polyamic acid solution obtained in Reference Example 2 (IPA-ST-S, manufactured by Nissan Chemical Industries, Ltd .; silica particle solid content concentration: 15 wt%; silica particle diameter 9 ˜15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表4に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 4.

〔実施例21〕
参考例2で得られたポリアミック酸溶液に、エチレングリコールにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、EG−ST;シリカ粒子固形分濃度:20wt%;シリカ粒子径10〜15nm)を120g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP)100質量部に対して40質量部である。
Example 21
Colloidal solution in which colloidal silica is dispersed in ethylene glycol in the polyamic acid solution obtained in Reference Example 2 (manufactured by Nissan Chemical Industries, Ltd., EG-ST; silica particle solid content concentration: 20 wt%; silica particle diameter of 10 15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表4に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 4.

〔比較例3〕
参考例1で得られたポリアミック酸溶液に、参考例2で得られたポリアミック酸溶液を214g加えて攪拌し、ポリアミック酸溶液組成物を得た。このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表5に示す。
[Comparative Example 3]
To the polyamic acid solution obtained in Reference Example 1, 214 g of the polyamic acid solution obtained in Reference Example 2 was added and stirred to obtain a polyamic acid solution composition. This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 5.

〔実施例22〕
参考例1で得られたポリアミック酸溶液に、参考例2で得られたポリアミック酸溶液を214gおよびプロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を114g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP+2,2’−TFMB)100質量部に対して40質量部である。
[Example 22]
Colloidal solution obtained by dispersing colloidal silica in 214 g of the polyamic acid solution obtained in Reference Example 2 and propylene glycol monomethyl ether acetate in the polyamic acid solution obtained in Reference Example 1 (manufactured by Nissan Chemical Industries, Ltd., PMA- ST; Silica particle solid content concentration: 30 wt%; silica particle diameter of 10 to 15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP + 2,2′-TFMB).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表5に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 5.

〔実施例23〕
参考例1で得られたポリアミック酸溶液に、参考例2で得られたポリアミック酸溶液を214gおよびプロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を228g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP+2,2’−TFMB)100質量部に対して80質量部である。
Example 23
Colloidal solution obtained by dispersing colloidal silica in 214 g of the polyamic acid solution obtained in Reference Example 2 and propylene glycol monomethyl ether acetate in the polyamic acid solution obtained in Reference Example 1 (manufactured by Nissan Chemical Industries, Ltd., PMA- ST: Silica particle solid content concentration: 30 wt%; silica particle diameter of 10-15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 80 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP + 2,2′-TFMB).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表5に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 5.

〔実施例24〕
参考例1で得られたポリアミック酸溶液に、参考例2で得られたポリアミック酸溶液を500gおよびプロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を160g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP+2,2’−TFMB)100質量部に対して40質量部である。
Example 24
Colloidal solution obtained by dispersing colloidal silica in 500 g of the polyamic acid solution obtained in Reference Example 2 and propylene glycol monomethyl ether acetate in the polyamic acid solution obtained in Reference Example 1 (manufactured by Nissan Chemical Industries, Ltd., PMA- ST: Silica particle solid concentration: 30 wt%; silica particle diameter of 10-15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP + 2,2′-TFMB).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表5に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 5.

〔実施例25〕
参考例1で得られたポリアミック酸溶液に、参考例2で得られたポリアミック酸溶液を500gおよびプロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を320g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP+2,2’−TFMB)100質量部に対して80質量部である。
Example 25
Colloidal solution obtained by dispersing colloidal silica in 500 g of the polyamic acid solution obtained in Reference Example 2 and propylene glycol monomethyl ether acetate in the polyamic acid solution obtained in Reference Example 1 (manufactured by Nissan Chemical Industries, Ltd., PMA- ST: Silica particle solid concentration: 30 wt%; silica particle diameter of 10-15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 80 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP + 2,2′-TFMB).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表5に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 5.

〔実施例26〕
参考例2で得られたポリアミック酸溶液に、参考例1で得られたポリアミック酸溶液を214gおよびプロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を114g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP+2,2’−TFMB)100質量部に対して40質量部である。
Example 26
Colloidal solution obtained by dispersing colloidal silica in 214 g of the polyamic acid solution obtained in Reference Example 1 and propylene glycol monomethyl ether acetate in the polyamic acid solution obtained in Reference Example 2 (PMA-, manufactured by Nissan Chemical Industries, Ltd.) ST; Silica particle solid content concentration: 30 wt%; silica particle diameter of 10 to 15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP + 2,2′-TFMB).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表5に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 5.

〔実施例27〕
参考例2で得られたポリアミック酸溶液に、参考例1で得られたポリアミック酸溶液を56gおよびプロピレングリコールモノメチルエーテルアセテートにコロイダルシリカを分散させてなるコロイド溶液(日産化学工業株式会社製、PMA−ST;シリカ粒子固形分濃度:30wt%;シリカ粒子径10〜15nm)を89g加えて攪拌し、ポリアミック酸溶液組成物を得た。シリカの添加量はモノマー成分(6FDA+6FAP+2,2’−TFMB)100質量部に対して40質量部である。
Example 27
Colloidal solution obtained by dispersing colloidal silica in 56 g of the polyamic acid solution obtained in Reference Example 1 and propylene glycol monomethyl ether acetate in the polyamic acid solution obtained in Reference Example 2 (manufactured by Nissan Chemical Industries, Ltd., PMA- ST; Silica particle solid content concentration: 30 wt%; silica particle diameter of 10-15 nm) was added and stirred to obtain a polyamic acid solution composition. The addition amount of silica is 40 parts by mass with respect to 100 parts by mass of the monomer component (6FDA + 6FAP + 2,2′-TFMB).

このポリアミック酸溶液組成物を基材のガラス板上にバーコーターによって塗布し、その塗膜を、120℃にて60分間、150℃にて30分間、200℃にて30分間、400℃にて1分間加熱処理し、ガラス板上の厚さが10μmのポリイミド膜を形成した。そして、ガラス板からポリイミド膜を剥離し、このポリイミド膜の線膨張係数および光透過率を測定した。その結果を表5に示す。   This polyamic acid solution composition was applied onto a glass plate as a substrate by a bar coater, and the coating film was applied at 120 ° C. for 60 minutes, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 400 ° C. A heat treatment was performed for 1 minute to form a polyimide film having a thickness of 10 μm on the glass plate. And the polyimide film was peeled from the glass plate, and the linear expansion coefficient and light transmittance of this polyimide film were measured. The results are shown in Table 5.

Figure 2013161970
Figure 2013161970

Figure 2013161970
Figure 2013161970

Figure 2013161970
Figure 2013161970

Figure 2013161970
Figure 2013161970

Figure 2013161970
Figure 2013161970

本発明によって、透明性に優れ、線膨張係数、特に高温での線膨張係数が比較的低く制御されたポリイミドを得ることができるポリアミック酸溶液組成物を提供することができる。   According to the present invention, it is possible to provide a polyamic acid solution composition capable of obtaining a polyimide having excellent transparency and a linear expansion coefficient, particularly a linear expansion coefficient controlled at a relatively high temperature.

本発明のポリアミック酸溶液組成物を加熱処理して得られるポリイミドは、高い透明性を有し、線膨張係数、特に高温での線膨張係数が比較的低いために、電気装置、電子装置、光学装置等に好適に用いることができ、例えば、液晶ディスプレイ、ELディスプレイ、電子ペーパー等の表示装置、タッチパネルや、太陽電池、LED照明装置の基板、又は保護膜などとして好適に用いることができる。特に、例えば液晶ディスプレイ、有機ELディスプレイ、電子ペーパー等の表示デバイス、薄膜太陽電池の受光素子等の受光デバイスなどのフレキシブルデバイスの基板として好適に用いることができる。
The polyimide obtained by heat-treating the polyamic acid solution composition of the present invention has high transparency and has a relatively low linear expansion coefficient, particularly a linear expansion coefficient at high temperatures, so that it can be used in electrical, electronic and optical devices. For example, it can be suitably used as a display device such as a liquid crystal display, EL display, or electronic paper, a touch panel, a solar cell, a substrate of an LED lighting device, or a protective film. In particular, it can be suitably used as a substrate for flexible devices such as display devices such as liquid crystal displays, organic EL displays and electronic paper, and light receiving devices such as light receiving elements of thin film solar cells.

Claims (11)

フッ素原子を含有するテトラカルボン酸二無水物を50モル%以上の量で含むテトラカルボン酸成分と、フッ素原子を含有するジアミンを50モル%以上の量で含むジアミン成分とを溶媒中で反応させて得られるポリアミック酸溶液に、シリカの量がテトラカルボン酸成分とジアミン成分の合計量100質量部に対して1〜100質量部の量になるように、有機溶媒にコロイダルシリカを分散させてなるコロイド溶液を添加してなるポリアミック酸溶液組成物。   A tetracarboxylic acid component containing a fluorine atom-containing tetracarboxylic dianhydride in an amount of 50 mol% or more and a diamine component containing a fluorine atom-containing diamine in an amount of 50 mol% or more are reacted in a solvent. Colloidal silica is dispersed in an organic solvent so that the amount of silica is 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the tetracarboxylic acid component and the diamine component. A polyamic acid solution composition obtained by adding a colloidal solution. 添加されるシリカの量が、テトラカルボン酸成分とジアミン成分の合計量100質量部に対して、5〜70質量部の量であることを特徴とする請求項1に記載のポリアミック酸溶液組成物。   The polyamic acid solution composition according to claim 1, wherein the amount of silica added is 5 to 70 parts by mass with respect to 100 parts by mass of the total amount of the tetracarboxylic acid component and the diamine component. . 前記シリカの粒子径が、1〜60nmであることを特徴とする請求項1〜2のいずれかに記載のポリアミック酸溶液組成物。   3. The polyamic acid solution composition according to claim 1, wherein the silica has a particle diameter of 1 to 60 nm. ポリアミック酸溶液組成物を加熱処理して得られるポリイミドが、膜厚10μmのフィルムでの波長400nmの光透過率が70%以上であり、且つ、300〜400℃の線膨張係数が350ppm/℃以下であることを特徴とする請求項1〜3のいずれかに記載のポリアミック酸溶液組成物。   The polyimide obtained by heat-treating the polyamic acid solution composition has a light transmittance at a wavelength of 400 nm of a film having a thickness of 10 μm of 70% or more, and a linear expansion coefficient of 300 to 400 ° C. is 350 ppm / ° C. or less. The polyamic acid solution composition according to claim 1, wherein the composition is a polyamic acid solution composition. ポリアミック酸溶液組成物を加熱処理して得られるポリイミドが、300〜400℃の線膨張係数が250ppm/℃以下であることを特徴とする請求項4に記載のポリアミック酸溶液組成物。   The polyamic acid solution composition according to claim 4, wherein the polyimide obtained by heat-treating the polyamic acid solution composition has a linear expansion coefficient of 300 to 400 ° C. of 250 ppm / ° C. or less. 前記フッ素原子を含有するテトラカルボン酸二無水物が、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物であり、
前記フッ素原子を含有するジアミンが、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、及び/又は2,2’−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパンであることを特徴とする請求項1〜5のいずれかに記載のポリアミック酸溶液組成物。
The tetracarboxylic dianhydride containing the fluorine atom is 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride,
The diamine containing a fluorine atom is 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl and / or 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoro. It is a propane, The polyamic acid solution composition in any one of Claims 1-5 characterized by the above-mentioned.
請求項1〜6のいずれかに記載のポリアミック酸溶液組成物を製造する方法であって、
フッ素原子を含有するテトラカルボン酸二無水物を50モル%以上の量で含むテトラカルボン酸成分と、フッ素原子を含有するジアミンを50モル%以上の量で含むジアミン成分とを溶媒中で反応させてポリアミック酸溶液を製造する工程と、
得られたポリアミック酸溶液に、シリカの量がテトラカルボン酸成分とジアミン成分の合計量100質量部に対して1〜100質量部の量になるように、有機溶媒にコロイダルシリカを分散させてなるコロイド溶液を添加し、混合する工程と
を有するポリアミック酸溶液組成物の製造方法。
A method for producing the polyamic acid solution composition according to any one of claims 1 to 6,
A tetracarboxylic acid component containing a fluorine atom-containing tetracarboxylic dianhydride in an amount of 50 mol% or more and a diamine component containing a fluorine atom-containing diamine in an amount of 50 mol% or more are reacted in a solvent. Producing a polyamic acid solution,
In the obtained polyamic acid solution, colloidal silica is dispersed in an organic solvent so that the amount of silica is 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the tetracarboxylic acid component and the diamine component. A method for producing a polyamic acid solution composition comprising the steps of adding and mixing a colloidal solution.
請求項1〜6のいずれかに記載のポリアミック酸溶液組成物を加熱処理して得られるポリイミド。   The polyimide obtained by heat-processing the polyamic acid solution composition in any one of Claims 1-6. 請求項8に記載のポリイミドを含む電気装置、電子装置、光学装置、表示装置、タッチパネル、太陽電池、又はLED照明装置。   An electric device, an electronic device, an optical device, a display device, a touch panel, a solar cell, or an LED lighting device including the polyimide according to claim 8. 表示デバイス又は受光デバイスであるフレキシブルデバイスの製造方法であって、
請求項1〜6のいずれかに記載のポリアミック酸溶液組成物をキャリア基板上に塗布し、加熱処理して固体状のポリイミド樹脂膜を形成する工程、前記ポリイミド樹脂膜上に回路を形成する工程、及び、前記回路が表面に形成されたポリイミド樹脂膜を前記キャリア基板から剥離する工程を含むことを特徴とするフレキシブルデバイスの製造方法。
A method of manufacturing a flexible device which is a display device or a light receiving device,
A step of applying the polyamic acid solution composition according to any one of claims 1 to 6 on a carrier substrate and heat-treating it to form a solid polyimide resin film, a step of forming a circuit on the polyimide resin film And the manufacturing method of the flexible device characterized by including the process of peeling the polyimide resin film in which the said circuit was formed in the surface from the said carrier substrate.
請求項10に記載のフレキシブルデバイスの製造方法により製造された表示デバイス又は受光デバイスであるフレキシブルデバイス。   A flexible device which is a display device or a light receiving device manufactured by the method for manufacturing a flexible device according to claim 10.
JP2014512696A 2012-04-27 2013-04-25 Polyamic acid solution composition and polyimide Active JP6086118B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012103920 2012-04-27
JP2012103920 2012-04-27
PCT/JP2013/062301 WO2013161970A1 (en) 2012-04-27 2013-04-25 Polyamic acid solution composition and polyimide

Publications (2)

Publication Number Publication Date
JPWO2013161970A1 true JPWO2013161970A1 (en) 2015-12-24
JP6086118B2 JP6086118B2 (en) 2017-03-01

Family

ID=49483269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014512696A Active JP6086118B2 (en) 2012-04-27 2013-04-25 Polyamic acid solution composition and polyimide

Country Status (5)

Country Link
JP (1) JP6086118B2 (en)
KR (2) KR102059703B1 (en)
CN (1) CN104245845B (en)
TW (1) TWI567108B (en)
WO (1) WO2013161970A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732406B2 (en) * 2014-03-12 2020-07-29 日鉄ケミカル&マテリアル株式会社 Display device, manufacturing method thereof, and polyimide film for display device
KR102345844B1 (en) * 2014-03-31 2021-12-31 닛산 가가쿠 가부시키가이샤 Method for producing resin thin film, and composition for forming resin thin film
KR102410985B1 (en) 2014-10-20 2022-06-21 삼성디스플레이 주식회사 Transparent display devices and methods of manufacturing the same
WO2016147958A1 (en) * 2015-03-13 2016-09-22 旭化成株式会社 Polyimide precursor resin composition
JP2016204569A (en) * 2015-04-27 2016-12-08 宇部興産株式会社 Polyamic acid solution composition and polyimide film
JP6905213B2 (en) * 2016-01-08 2021-07-21 日産化学株式会社 Composition for forming flexible device substrates
KR102281093B1 (en) * 2016-06-24 2021-07-22 코오롱인더스트리 주식회사 Polyamic acid rasin, polyimide films, and display device comprising thereof
JP2019052287A (en) * 2017-09-15 2019-04-04 住友化学株式会社 Transparent film base material for touch sensor panel and touch sensor panel using the same
KR102430152B1 (en) * 2017-12-08 2022-08-08 주식회사 두산 Polyamic acid solution, transparent polyimide film and transparent substrate using the same
JP7217220B2 (en) * 2018-12-28 2023-02-02 日鉄ケミカル&マテリアル株式会社 Polyimide precursor composition, polyimide film and flexible device produced therefrom, method for producing polyimide film
KR102293269B1 (en) * 2019-03-12 2021-08-24 한국자동차연구원 Manufacturing method of polyimide composite film having low dielectric loss and flexible circuit board using them
CN112126090B (en) * 2019-06-25 2023-06-13 爱思开迈克沃有限公司 Polyamide-imide film and method for producing the same
RU2753691C1 (en) * 2020-12-16 2021-08-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Optically transparent adamantane-containing polyimides and copolyimides based on 5.5'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)bis(2-benzofuran-1,3-dione) having low dielectric constant
WO2022239494A1 (en) 2021-05-12 2022-11-17 東洋紡株式会社 Method of producing resin film, and uncut film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030972A (en) * 2008-07-31 2010-02-12 Nissan Chem Ind Ltd Alicyclic tetracarboxylic acid dianhydride, method for producing the same and polyimide
JP2010513591A (en) * 2006-12-15 2010-04-30 コーロン インダストリーズ,インコーポレイテッド Polyimide resin, liquid crystal alignment film and polyimide film using the same
JP2010235641A (en) * 2009-03-30 2010-10-21 Sony Chemical & Information Device Corp Polyamic acid solution, polyimide, and optical device
JP2010280807A (en) * 2009-06-04 2010-12-16 Nitto Denko Corp Composition for polyimide resin

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058535A (en) * 1998-06-03 2000-02-25 Toray Ind Inc Manufacture of semiconductor element
KR100330595B1 (en) * 1999-04-19 2002-03-29 윤종용 Optical waveguide
US7718042B2 (en) * 2004-03-12 2010-05-18 Oc Oerlikon Balzers Ag Method for manufacturing sputter-coated substrates, magnetron source and sputtering chamber with such source
JP2005306940A (en) * 2004-04-19 2005-11-04 Kaneka Corp Polyimide film
JP2006124685A (en) * 2004-09-29 2006-05-18 Ube Ind Ltd Polyimide film for cof (chip-on-film), and laminate
TW200626364A (en) * 2004-09-29 2006-08-01 Ube Industries Polyimide film and polyimide composite sheet
JP2006312680A (en) 2005-05-09 2006-11-16 Tokyo Institute Of Technology Polymer-inorganic hybrid optical material
JP2007246772A (en) * 2006-03-17 2007-09-27 Nagoya Industrial Science Research Inst Multibranched polyimide-based hybrid material
WO2007108432A1 (en) * 2006-03-20 2007-09-27 Mitsui Chemicals, Inc. Optical film and method for producing same
US20070290379A1 (en) * 2006-06-15 2007-12-20 Dueber Thomas E Hydrophobic compositions for electronic applications
CN100498386C (en) * 2006-11-24 2009-06-10 财团法人工业技术研究院 Transparent substrate with optical compensation function and its LCD device
CN102086303A (en) * 2009-12-03 2011-06-08 财团法人工业技术研究院 Polyamic acid resin composite and polyimide film and laminated material prepared from same
JP5443311B2 (en) * 2010-09-14 2014-03-19 株式会社カネカ Polyimide precursor, polyimide resin and use thereof
US8288471B2 (en) * 2010-10-18 2012-10-16 Taimide Technology, Inc. White polyimide film and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513591A (en) * 2006-12-15 2010-04-30 コーロン インダストリーズ,インコーポレイテッド Polyimide resin, liquid crystal alignment film and polyimide film using the same
JP2010030972A (en) * 2008-07-31 2010-02-12 Nissan Chem Ind Ltd Alicyclic tetracarboxylic acid dianhydride, method for producing the same and polyimide
JP2010235641A (en) * 2009-03-30 2010-10-21 Sony Chemical & Information Device Corp Polyamic acid solution, polyimide, and optical device
JP2010280807A (en) * 2009-06-04 2010-12-16 Nitto Denko Corp Composition for polyimide resin

Also Published As

Publication number Publication date
WO2013161970A1 (en) 2013-10-31
JP6086118B2 (en) 2017-03-01
KR20150003355A (en) 2015-01-08
KR102145141B1 (en) 2020-08-14
KR20190116568A (en) 2019-10-14
CN104245845B (en) 2017-06-06
TW201348298A (en) 2013-12-01
KR102059703B1 (en) 2019-12-26
CN104245845A (en) 2014-12-24
TWI567108B (en) 2017-01-21

Similar Documents

Publication Publication Date Title
JP6086118B2 (en) Polyamic acid solution composition and polyimide
JP7152381B2 (en) Resin precursor, resin composition containing the same, polyimide resin film, resin film, and method for producing the same
CN107429057B (en) Polyimide precursor resin composition
TWI695855B (en) Polyimide precursor, resin composition and resin film manufacturing method
WO2013154141A1 (en) Poly(amic acid) solution composition, and polyimide
TW202014449A (en) Polyimide precursor resin composition resin film and method of producing resin film
JPWO2019131894A1 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
JP2015129201A (en) Polyamic acid solution composition and polyimide
KR20230066346A (en) Polymer composition, varnish, and polyimide film
JP7069478B2 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
JP2014173028A (en) Polyamic acid solution composition and polyimide laminate
JP2020164704A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for manufacturing polyimide film
KR20230066345A (en) Polymer composition, varnish, and polyimide film
JP6638744B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JPWO2020067558A5 (en)
WO2024024901A1 (en) Polyimide precursor composition, polyimide film, and polyimide film/substrate layered-product
WO2022025144A1 (en) Polyimide resin, polyamide acid, varnish, and polyimide film
CN114466902A (en) Polyimide resin composition, polyimide varnish, and polyimide film
CN115551949A (en) Polyimide precursor composition and polyimide film/substrate laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6086118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250