JPWO2013128951A1 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JPWO2013128951A1
JPWO2013128951A1 JP2014502056A JP2014502056A JPWO2013128951A1 JP WO2013128951 A1 JPWO2013128951 A1 JP WO2013128951A1 JP 2014502056 A JP2014502056 A JP 2014502056A JP 2014502056 A JP2014502056 A JP 2014502056A JP WO2013128951 A1 JPWO2013128951 A1 JP WO2013128951A1
Authority
JP
Japan
Prior art keywords
cathode
solid electrolytic
electrolytic capacitor
conducting material
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014502056A
Other languages
Japanese (ja)
Other versions
JP5954404B2 (en
Inventor
俊輔 北村
俊輔 北村
彰夫 勝部
彰夫 勝部
康一 神凉
康一 神凉
裕二 木村
裕二 木村
達弥 水嶋
達弥 水嶋
北村 誠
誠 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2013128951A1 publication Critical patent/JPWO2013128951A1/en
Application granted granted Critical
Publication of JP5954404B2 publication Critical patent/JP5954404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/26Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

弁作用金属基体(1)の表面に誘電体層(2)、導電性高分子層(3)、カーボン層(陰極下地層)(4)、銀電極層(陰極最外層)(5)がそれぞれこの順に形成された複数のコンデンサ素子(11)を有し、複数のコンデンサ素子(11)が積層された状態で、弁作用金属基体(1)に導通する陽極導通材(70)および銀電極層(陰極最外層)(5)に導通する陰極導通材(80)を備える。陰極導通材(80)はコンデンサ素子(11)の積層体の端面が当接する当接部に切欠部(81C)を有し、切欠部(81C)に、複数のコンデンサ素子(11)同士を電気的に接続する導電部材(8)が設けられている。これにより、コンデンサ素子の積層体に加わる応力を抑制する。A dielectric layer (2), a conductive polymer layer (3), a carbon layer (cathode underlayer) (4), and a silver electrode layer (cathode outermost layer) (5) are formed on the surface of the valve metal substrate (1). An anode conducting material (70) and a silver electrode layer having a plurality of capacitor elements (11) formed in this order and conducting to the valve metal substrate (1) in a state where the plurality of capacitor elements (11) are laminated. (Cathode outermost layer) A cathode conducting material (80) conducting to (5) is provided. The cathode conductive material (80) has a notch (81C) at the abutting portion where the end face of the multilayer body of the capacitor element (11) abuts, and the plurality of capacitor elements (11) are electrically connected to the notch (81C). A conductive member (8) is provided for connection. Thereby, the stress added to the laminated body of a capacitor element is suppressed.

Description

本発明は、チップ型の固体電解コンデンサおよびその製造方法に関するものである。   The present invention relates to a chip-type solid electrolytic capacitor and a method for manufacturing the same.

チップ型の固体電解コンデンサとして、例えば特許文献1に示されたようなタイプのものが知られている。   As a chip-type solid electrolytic capacitor, for example, the type shown in Patent Document 1 is known.

図6は特許文献1で開示された固体電解コンデンサの主要部の分解斜視図である。図6において、各コンデンサ素子20の陽極部22は弁作用金属基体であるアルミニウムで形成されていて、その表面がエッチングにより粗面化(拡面化)されている。この粗面化された弁作用金属基体に化成処理(陽極酸化)によって誘電体層が形成されている。そして、複数枚のコンデンサ素子20の集合体を陰極接続部材40および陽極接続部材30に接合することにより、回路基板等への表面実装が可能な固体電解コンデンサが構成される。   FIG. 6 is an exploded perspective view of the main part of the solid electrolytic capacitor disclosed in Patent Document 1. In FIG. 6, the anode portion 22 of each capacitor element 20 is formed of aluminum which is a valve action metal substrate, and its surface is roughened (enlarged) by etching. A dielectric layer is formed on the roughened valve metal substrate by chemical conversion treatment (anodic oxidation). A solid electrolytic capacitor that can be surface-mounted on a circuit board or the like is configured by joining an assembly of a plurality of capacitor elements 20 to the cathode connection member 40 and the anode connection member 30.

前記陰極接続部材40は支持部42および支持部42から立ち上がる陰極当接部44を含む形状であり、陰極部24は陰極接続部材40に電気的に接続される。また、陽極接続部材30は、スリット36が形成された陽極当接部34および支持部32を含む形状であり、陽極当接部34における陽極部22が当接された側と反対側から、積層体60のコンデンサ素子20の積層方向に交差する方向に、スリット間部38にレーザースポット38aが照射されて電気的に接続される。   The cathode connection member 40 has a shape including a support portion 42 and a cathode contact portion 44 rising from the support portion 42, and the cathode portion 24 is electrically connected to the cathode connection member 40. Further, the anode connecting member 30 has a shape including an anode contact portion 34 in which a slit 36 is formed and a support portion 32, and is laminated from the opposite side of the anode contact portion 34 to the side where the anode portion 22 is contacted. The laser spot 38 a is irradiated to the slit portion 38 in a direction crossing the stacking direction of the capacitor elements 20 of the body 60 to be electrically connected.

特開平2007−258214号公報Japanese Patent Laid-Open No. 2007-258214

一般に、表面実装用のチップ型固体電解コンデンサは外装樹脂で外装される。図6に示した例では、陰極接続部材40に積層体60を載置し、陽極接続部材30を接続した後、樹脂モールドされる。   Generally, a chip-type solid electrolytic capacitor for surface mounting is packaged with an exterior resin. In the example shown in FIG. 6, the laminate 60 is placed on the cathode connection member 40, and after the anode connection member 30 is connected, resin molding is performed.

ところが、図6に示したように、断面L字型の陰極接続部材40を備えた従来の固体電解コンデンサにおいては、積層体60の端面の全体が陰極接続部材40の当接部44で覆われているので、外装樹脂からの応力が問題となる。すなわち、その固体電解コンデンサをプリント配線基板に実装する際の熱などによる拡張収縮に起因して、陰極接続部材40の当接部44と積層体60との接合部に応力が掛かる。また、外装樹脂のモールド時にも陰極接続部材40の当接部44と積層体60との接合部に応力が掛かる。これらの応力によって、積層体を構成するコンデンサ素子20同士が剥離するという不具合が生じるおそれがある。   However, as shown in FIG. 6, in the conventional solid electrolytic capacitor including the cathode connection member 40 having an L-shaped cross section, the entire end surface of the multilayer body 60 is covered with the contact portion 44 of the cathode connection member 40. Therefore, the stress from the exterior resin becomes a problem. That is, stress is applied to the joint portion between the contact portion 44 of the cathode connection member 40 and the laminate 60 due to expansion and contraction due to heat or the like when the solid electrolytic capacitor is mounted on the printed wiring board. In addition, stress is applied to the joint portion between the contact portion 44 of the cathode connection member 40 and the laminate 60 also when molding the exterior resin. These stresses may cause a problem that the capacitor elements 20 constituting the laminate are separated from each other.

本発明は上記問題を課題と捉え、コンデンサ素子の積層体に加わる応力を抑制してコンデンサ素子同士の剥離などの不具合を解消した固体電解コンデンサを提供することを目的としている。   An object of the present invention is to provide a solid electrolytic capacitor in which the above-mentioned problem is regarded as a problem, and the stress applied to the laminated body of capacitor elements is suppressed to eliminate problems such as separation of capacitor elements.

(1)本発明の固体電解コンデンサは、
弁作用金属基体の表面に誘電体層、導電性高分子層、陰極層のそれぞれが設けられたコンデンサ素子が複数積層された積層体を有し、
前記弁作用金属基体に導通する陽極導通材および前記陰極層に導通する陰極導通材を備え、
少なくとも前記積層体が外装樹脂で被覆された固体電解コンデンサにおいて、
少なくとも前記陰極導通材は、前記陰極層が当接する当接部に切欠部を有し、
前記切欠部に、前記積層体を構成する前記複数のコンデンサ素子同士を電気的に接続する導電部材が設けられていることを特徴としている。
(1) The solid electrolytic capacitor of the present invention is
A multilayer body in which a plurality of capacitor elements each provided with a dielectric layer, a conductive polymer layer, and a cathode layer are laminated on the surface of the valve metal base;
An anode conducting material conducting to the valve metal substrate and a cathode conducting material conducting to the cathode layer,
In a solid electrolytic capacitor in which at least the laminate is coated with an exterior resin,
At least the cathode conducting material has a notch in a contact portion with which the cathode layer contacts,
A conductive member for electrically connecting the plurality of capacitor elements constituting the multilayer body is provided in the cutout portion.

(2)例えば、前記導電部材は導電性ペーストである。これにより、前記切欠部が陰極導通材に形成されていて、コンデンサ素子の陰極部同士を、または陰極部を、陰極導通材を介して電気的に接続する際にレーザースポット溶接を行わなくてもよいので、導電性高分子層の熱変性が避けられる。 (2) For example, the conductive member is a conductive paste. Thus, the notch portion is formed in the cathode conductive material, and laser spot welding is not performed when the cathode portions of the capacitor elements or the cathode portions are electrically connected via the cathode conductive material. As a result, thermal denaturation of the conductive polymer layer can be avoided.

(3)前記導電部材は前記陰極導通材に重なっていないことが好ましい。このことにより、陰極当接部の外側に被覆される外装樹脂の厚みが薄くなることがなく、外形寸法を大きくすることなく所定の強度が確保できる。 (3) It is preferable that the conductive member does not overlap the cathode conductive material. Thereby, the thickness of the exterior resin coated on the outside of the cathode contact portion is not reduced, and a predetermined strength can be ensured without increasing the external dimensions.

(4)前記切欠部は前記陰極導通材または前記陽極導通材の一部を折り曲げた部分であることが好ましい。この構造によれば、折り曲げた部分を外部端子として利用でき、切欠部の形成と外部端子との形成を同時に行える。 (4) It is preferable that the said notch is the part which bent a part of said cathode conduction | electrical_connection material or the said anode conduction | electrical_connection material. According to this structure, the bent portion can be used as an external terminal, and the formation of the notch and the formation of the external terminal can be performed simultaneously.

(5)本発明の固体電解コンデンサの製造方法は、
弁作用金属基体の表面に誘電体層、導電性高分子層、陰極層のそれぞれが設けられたコンデンサ素子が複数積層された積層体を有し、
前記弁作用金属基体に導通する陽極導通材および前記陰極層に導通する陰極導通材を備え、
少なくとも前記積層体が外装樹脂で被覆された固体電解コンデンサの製造方法であって、
前記陰極導通材は、前記コンデンサ素子の積層体の端面が近接する部分に切欠部を有し、
前記陰極導通材に前記複数のコンデンサ素子を直接積層搭載する工程と、
前記陰極導通材に搭載された前記コンデンサ素子の積層体の端面に導電部材を塗布する工程と、
を備えたことを特徴とする。
(5) The method for producing the solid electrolytic capacitor of the present invention comprises:
A multilayer body in which a plurality of capacitor elements each provided with a dielectric layer, a conductive polymer layer, and a cathode layer are laminated on the surface of the valve metal base;
An anode conducting material conducting to the valve metal substrate and a cathode conducting material conducting to the cathode layer,
A method for producing a solid electrolytic capacitor in which at least the laminate is coated with an exterior resin,
The cathode conducting material has a notch in a portion where end faces of the capacitor element laminate are close to each other,
Directly stacking and mounting the plurality of capacitor elements on the cathode conducting material;
Applying a conductive member to an end face of the capacitor element laminate mounted on the cathode conducting material;
It is provided with.

上記製造方法によれば、1つの搭載機を用いてコンデンサ素子を陰極導通材に直接積層搭載することで、製造機械および工数を削減でき、低コスト化が図れる。   According to the manufacturing method described above, by directly stacking and mounting the capacitor element on the cathode conductive material using one mounting machine, it is possible to reduce manufacturing machines and man-hours and reduce costs.

(6)前記導電性ペーストはジェットディスペンサーにより射出されたものであることが好ましい。ジェットディスペンサーによる射出塗布であれば、塗布位置の精度が高く、必要最低限の領域に導電性ペーストを塗布できる。 (6) The conductive paste is preferably ejected by a jet dispenser. In the case of injection coating using a jet dispenser, the accuracy of the coating position is high, and the conductive paste can be applied to the minimum necessary area.

(7)前記切欠部は前記陽極導通材に形成されていて、前記コンデンサ素子の陽極部を、陽極導通材を介して電気的に接続する前記接続部材はレーザースポットの溶接痕であることが好ましい。陽極導通材に対してはレーザースポット溶接することで、加工時間を短縮化できる。 (7) It is preferable that the notch is formed in the anode conducting material, and the connecting member that electrically connects the anode part of the capacitor element via the anode conducting material is a welding spot of a laser spot. . Processing time can be shortened by laser spot welding the anode conductive material.

少なくとも陰極導通材はコンデンサ素子の積層体の端面の全面を覆っていないため、積層体の端面に掛かる外装樹脂からの応力が緩和され、積層体を構成するコンデンサ素子同士が剥離するという不具合を防止できる。   Since at least the cathode conductive material does not cover the entire end face of the multilayer body of capacitor elements, the stress from the exterior resin applied to the end face of the multilayer body is relieved, and the capacitor elements constituting the multilayer body are prevented from peeling off. it can.

図1は固体電解コンデンサの陰極導通材80、陽極導通材70および外装樹脂50の形状を示す斜視図である。FIG. 1 is a perspective view showing shapes of a cathode conducting material 80, an anode conducting material 70, and an exterior resin 50 of a solid electrolytic capacitor. 図2(A)は固体電解コンデンサ101の断面図、図2(B)は陰極当接部81側から見た側面図である。2A is a cross-sectional view of the solid electrolytic capacitor 101, and FIG. 2B is a side view as viewed from the cathode contact portion 81 side. 図3の(1)〜(5)は固体電解コンデンサの製造工程を示す図である。(1) to (5) in FIG. 3 are diagrams showing a manufacturing process of the solid electrolytic capacitor. 図4の(1)〜(6)はコンデンサ素子11の製造方法の例を示す図である。(1) to (6) in FIG. 4 are diagrams illustrating an example of a method for manufacturing the capacitor element 11. 図5の(1)〜(5)は複数のコンデンサ素子11を組み立てて最終的な固体電解コンデンサを構成するまでの製造工程を示す図である。(1) to (5) in FIG. 5 are diagrams showing manufacturing steps from assembling a plurality of capacitor elements 11 to forming a final solid electrolytic capacitor. 図6は特許文献1に開示された固体電解コンデンサの主要部の分解斜視図である。FIG. 6 is an exploded perspective view of the main part of the solid electrolytic capacitor disclosed in Patent Document 1.

本発明の実施の形態である固体電解コンデンサについて各図を順に参照しながら説明する。   A solid electrolytic capacitor according to an embodiment of the present invention will be described with reference to the drawings in order.

図1は固体電解コンデンサの陰極導通材80、陽極導通材70および外装樹脂50の形状を示す斜視図である。但し、後に示すコンデンサ素子は図1では図示していない。また、陰極外部端子部82および陽極外部端子部72は、外装樹脂50の外面に沿って折り曲げる前の状態を示している。   FIG. 1 is a perspective view showing shapes of a cathode conducting material 80, an anode conducting material 70, and an exterior resin 50 of a solid electrolytic capacitor. However, the capacitor element shown later is not shown in FIG. Moreover, the cathode external terminal portion 82 and the anode external terminal portion 72 show a state before being bent along the outer surface of the exterior resin 50.

陰極導通材80は、陰極当接部81、陰極外部端子部82および陰極支持部83で構成されている。また、陽極導通材70は、陽極当接部71および陽極外部端子部72で構成されている。陰極当接部81には3つの切欠部81Cが形成されている。これらの切欠部81Cのうちの中央の切欠部は、陰極当接部81から陰極外部端子部82の一部として折り曲げた部分である。同様に、陽極当接部71には3つの切欠部71Cが形成されている。これらの切欠部71Cのうち中央の切欠部は、陽極当接部71から陽極外部端子部72の一部として折り曲げた部分である。   The cathode conducting material 80 includes a cathode contact portion 81, a cathode external terminal portion 82, and a cathode support portion 83. The anode conducting material 70 includes an anode contact portion 71 and an anode external terminal portion 72. The cathode contact portion 81 is formed with three notches 81C. Of these notches 81 </ b> C, the center notch is a portion bent from the cathode contact portion 81 as a part of the cathode external terminal portion 82. Similarly, three cutouts 71 </ b> C are formed in the anode contact portion 71. Of these cutouts 71 </ b> C, the central cutout is a portion bent from the anode contact portion 71 as a part of the anode external terminal portion 72.

図2(A)は固体電解コンデンサ101の断面図、図2(B)は陰極当接部81側から見た側面図である。但し、図2(B)において外装樹脂はその外形線のみ表している。   2A is a cross-sectional view of the solid electrolytic capacitor 101, and FIG. 2B is a side view as viewed from the cathode contact portion 81 side. However, in FIG. 2B, the exterior resin represents only its outline.

図2(A)、図2(B)に示す例では、陰極支持部83に3つのコンデンサ素子11を積層している。   In the example shown in FIGS. 2A and 2B, three capacitor elements 11 are stacked on the cathode support portion 83.

各コンデンサ素子11は、弁作用金属基体1の表面に誘電体層2、導電性高分子層3、カーボン層(陰極下地層)4、銀電極層(陰極最外層)5のそれぞれがこの順に形成されることによって構成されている。弁作用金属基体1が陽極であり、銀電極層5が陰極の最外層である。陰極支持部83とコンデンサ素子11との間、および各コンデンサ素子同士は素子接合材9を介して接合されている。   Each capacitor element 11 has a dielectric layer 2, a conductive polymer layer 3, a carbon layer (cathode underlayer) 4, and a silver electrode layer (cathode outermost layer) 5 formed in this order on the surface of the valve metal base 1. It is configured by being. The valve metal base 1 is the anode, and the silver electrode layer 5 is the outermost layer of the cathode. The cathode support portion 83 and the capacitor element 11, and the capacitor elements are bonded to each other via an element bonding material 9.

また、各コンデンサ素子11の、誘電体層2が被覆された弁作用金属基体1の突出部にはスペーサ6が設けられている。   In addition, a spacer 6 is provided on the protruding portion of the valve metal base 1 covered with the dielectric layer 2 of each capacitor element 11.

図2(B)に示すように、陰極当接部81の切欠部81Cに、コンデンサ素子11の銀電極層同士を接続する導電部材8が設けられている。   As shown in FIG. 2B, the conductive member 8 that connects the silver electrode layers of the capacitor element 11 is provided in the cutout portion 81 </ b> C of the cathode contact portion 81.

図3は固体電解コンデンサの製造工程を示す図である。図3の左側の図は左側面図、右側の図は正面図である。先ず、図3において(1)(2)で示すように、陰極支持部83上に素子接合材9を塗布し、1つのコンデンサ素子11を載置する。その際、コンデンサ素子11の端部を陰極当接部81に当接させることで位置合わせを行う。但し、必ずしも当接させなくてもよい。同様に、(3)(4)で示すように、素子接合材9の塗布およびコンデンサ素子11の載置を順次繰り返して、複数のコンデンサ素子11を陰極支持部83上に積層する。この素子接合材9は導電性または絶縁性の接合材であり、例えば銀ペーストや樹脂ペーストである。   FIG. 3 is a diagram illustrating a manufacturing process of a solid electrolytic capacitor. 3 is a left side view and the right side view is a front view. First, as shown by (1) and (2) in FIG. 3, the element bonding material 9 is applied on the cathode support portion 83, and one capacitor element 11 is placed. At that time, alignment is performed by bringing the end of the capacitor element 11 into contact with the cathode contact portion 81. However, it is not always necessary to make it contact. Similarly, as shown in (3) and (4), the application of the element bonding material 9 and the placement of the capacitor element 11 are sequentially repeated to stack a plurality of capacitor elements 11 on the cathode support portion 83. The element bonding material 9 is a conductive or insulating bonding material, such as a silver paste or a resin paste.

その後、(5)に示すように、導電部材8となる銀ペーストをジェットディスペンサーのノズルヘッドから射出させて、コンデンサ素子11の積層体に付着させ、その乾燥によって導電部材(銀電極)8を形成する。この導電部材8は積層された複数のコンデンサ素子11の銀電極層5同士を電気的に接続する。ここで、銀ペーストの着弾位置は陰極当接部81には重ならないようにすることが好ましい。そのため、陰極当接部81の外側に被覆される外装樹脂の厚みが薄くなることがなく、外形寸法を大きくすることなく所定の強度が確保できる。   Thereafter, as shown in (5), the silver paste to be the conductive member 8 is ejected from the nozzle head of the jet dispenser and adhered to the laminated body of the capacitor elements 11, and the conductive member (silver electrode) 8 is formed by drying. To do. The conductive member 8 electrically connects the silver electrode layers 5 of the plurality of stacked capacitor elements 11. Here, it is preferable that the landing position of the silver paste does not overlap the cathode contact portion 81. Therefore, the thickness of the exterior resin coated on the outside of the cathode contact portion 81 is not reduced, and a predetermined strength can be ensured without increasing the external dimensions.

素子接合材9が絶縁性である場合には、全てのコンデンサ素子の銀電極層5が陰極当接部81に当接していればよい。この場合でも、導電部材8が陰極当接部81に重なっていなくても電気的導通は確保できる。   When the element bonding material 9 is insulative, the silver electrode layers 5 of all the capacitor elements may be in contact with the cathode contact portion 81. Even in this case, electrical conduction can be ensured even if the conductive member 8 does not overlap the cathode contact portion 81.

陽極導通材70は、陰極導通材80とともに治具に固定されていて、図3の(5)で示した次の工程で、陽極当接部71をコンデンサ素子11の弁作用金属基体の端部にレーザースポット溶接する。なお、導電性高分子層3(図2参照)は熱変性を避ける必要上、銀電極層5同士は、熱を伴わない方法で接合することが望ましい。   The anode conducting material 70 is fixed to the jig together with the cathode conducting material 80. In the next step shown in FIG. 3 (5), the anode contact portion 71 is used as the end of the valve metal substrate of the capacitor element 11. Laser spot welding. The conductive polymer layer 3 (see FIG. 2) needs to avoid heat denaturation, and it is desirable that the silver electrode layers 5 are joined together by a method that does not involve heat.

次に、コンデンサ素子11の製造方法の例を示す。図4の(1)〜(6)は各工程での様子を示す図である。各工程の内容は次のとおりである。   Next, an example of a method for manufacturing the capacitor element 11 is shown. (1)-(6) of FIG. 4 is a figure which shows the mode in each process. The contents of each process are as follows.

(1)Al基材である弁作用金属基体1の表面に酸化アルミニウム(Al2O3:誘電体)膜である誘電体層2が形成された、例えば厚みが100μmのAl箔12を用意する。このAl箔12はエッチングにより表面が多孔質化されたものであり、多孔質内の表面に数nm〜十数nmオーダーの酸化アルミニウム膜が形成されている。なお、図4においては、図の明瞭化のために誘電体層(酸化アルミニウム膜)2の膜厚を弁作用金属基体(Al基材)1と同程度に描いているが、実際には、弁作用金属基体(Al基材)1の厚みは誘電体層(酸化アルミニウム膜)2の厚みより充分に大きい。(1) An Al foil 12 having a thickness of, for example, 100 μm is prepared in which a dielectric layer 2 that is an aluminum oxide (Al 2 O 3 : dielectric) film is formed on the surface of a valve action metal substrate 1 that is an Al base. . The Al foil 12 has a surface made porous by etching, and an aluminum oxide film of the order of several nm to several tens of nm is formed on the surface inside the porous film. In FIG. 4, the thickness of the dielectric layer (aluminum oxide film) 2 is drawn to the same extent as the valve action metal substrate (Al substrate) 1 for the sake of clarity. The thickness of the valve action metal substrate (Al substrate) 1 is sufficiently larger than the thickness of the dielectric layer (aluminum oxide film) 2.

(2)Al箔12の表面に金属のスペーサ6を溶接または貼付する。 (2) A metal spacer 6 is welded or pasted on the surface of the Al foil 12.

(3)素子形状となるように、櫛歯状に打ち抜く(押し抜く)。 (3) Punching into a comb-like shape (punching out) so as to obtain an element shape.

(4)Al箔12と対極13とをアジピン酸アンモニウム水溶液L1に浸漬し、Al箔12を陽極、対極13を陰極とし、3.5Vの電圧を印加する。すなわち陽極酸化により、Al箔12の切断面を含むAl箔12表面に酸化アルミニウム膜を形成する。 (4) The Al foil 12 and the counter electrode 13 are immersed in the ammonium adipate aqueous solution L1, and the voltage of 3.5 V is applied using the Al foil 12 as an anode and the counter electrode 13 as a cathode. That is, an aluminum oxide film is formed on the surface of the Al foil 12 including the cut surface of the Al foil 12 by anodic oxidation.

(5)Al箔12を導電性高分子の原料溶液L2に浸漬し、導電性高分子膜を形成する。例えば、Al箔12を、3,4-エチレンジオキシチオフェンを含むイソプロパノール溶液に浸漬した後に、過硫酸アンモニウムとアントラキノン-2-スルホン酸ナトリウムの混合溶液に浸漬する操作を20回繰り返す。 (5) The Al foil 12 is immersed in the conductive polymer raw material solution L2 to form a conductive polymer film. For example, after immersing the Al foil 12 in an isopropanol solution containing 3,4-ethylenedioxythiophene, the operation of immersing in the mixed solution of ammonium persulfate and sodium anthraquinone-2-sulfonate is repeated 20 times.

(6)Al箔12をカーボンペーストCPに浸漬し、乾燥させて厚さ3μmのカーボン層を形成した後、銀ペースト槽に浸漬し、乾燥させて、厚さ20μmの銀電極層を形成する。なお、カーボン層と銀電極層はスクリーン印刷法やスプレー塗布法で形成してもよい。 (6) After the Al foil 12 is immersed in the carbon paste CP and dried to form a carbon layer having a thickness of 3 μm, it is immersed in a silver paste tank and dried to form a silver electrode layer having a thickness of 20 μm. The carbon layer and the silver electrode layer may be formed by a screen printing method or a spray coating method.

その後、以上の工程で製造したコンデンサ素子11を陰極支持部83に直接搭載して、複数のコンデンサ素子11を陰極支持部83上に積層する。このことにより、1台の搭載機で組立が可能となる。すなわち、従来の組立工程のように、コンデンサ素子を治具等に一旦積層してから、その積層状態のコンデンサ素子を陰極支持部83に搭載するといった工法では2台の搭載機が必要であるが、この実施形態によれば、1台の搭載機で組み立てることができ、コンデンサ素子の積層体の移し替えが不要であるので、低コスト化が図れる。   Thereafter, the capacitor element 11 manufactured through the above steps is directly mounted on the cathode support portion 83, and a plurality of capacitor elements 11 are stacked on the cathode support portion 83. As a result, the assembly can be performed by one mounting machine. That is, as in the conventional assembly process, in the construction method in which the capacitor elements are once stacked on a jig or the like and then the stacked capacitor elements are mounted on the cathode support portion 83, two mounting machines are required. According to this embodiment, it is possible to assemble with a single mounting machine, and it is not necessary to transfer the laminated body of capacitor elements, so that the cost can be reduced.

次に、複数のコンデンサ素子11を組み立てて最終的な固体電解コンデンサを製造する方法の例を示す。図5の(1)〜(6)は各工程での様子を示す図である。各工程の内容は次のとおりである。ここで、(2)〜(4)の工程の詳細については図3に示したとおりである。   Next, an example of a method for producing a final solid electrolytic capacitor by assembling a plurality of capacitor elements 11 will be described. (1)-(6) of FIG. 5 is a figure which shows the mode in each process. The contents of each process are as follows. Here, the details of the steps (2) to (4) are as shown in FIG.

(1)図4の(6)の工程の後、レーザーや回転刃などでコンデンサ素子を切り出す。 (1) After the step (6) in FIG. 4, the capacitor element is cut out with a laser or a rotary blade.

(2)陰極導通材80に素子接合材9を介しながらコンデンサ素子11を積層する。 (2) The capacitor element 11 is laminated on the cathode conducting material 80 with the element bonding material 9 interposed therebetween.

(3)コンデンサ素子11の積層体の陰極側端面に導電部材8を塗布する。 (3) The conductive member 8 is applied to the cathode side end face of the multilayer body of the capacitor element 11.

(4)陽極導通材70にレーザー光を照射して、陽極当接部71をコンデンサ素子11の弁作用金属基体の端部にレーザースポット溶接する。 (4) The anode conductive member 70 is irradiated with laser light, and the anode contact portion 71 is laser spot welded to the end portion of the valve metal substrate of the capacitor element 11.

(5)外装樹脂50で封止する。露出した陰極外部端子部82および陽極外部端子部72は外装樹脂50の表面に沿って折り曲げる。 (5) Seal with exterior resin 50. The exposed cathode external terminal portion 82 and anode external terminal portion 72 are bent along the surface of the exterior resin 50.

なお、本発明は当然ながら以上に示した実施形態に限定されるものではなく、様々な態様を採ることができる。例えば陰極切欠部81Cは3箇所に設ける形状に限らず、中央に1箇所だけ設けた形状や、左右に2箇所だけ設けた形状であってもよい。また、陰極切欠部81Cは陰極支持部83から垂直に延びた形状であるものに限らず、傾斜していてもよいし、外周から切り込んだ形状に限らず、開口形状であってもよい。   Of course, the present invention is not limited to the above-described embodiments, and can take various forms. For example, the cathode notch portion 81C is not limited to the shape provided at three locations, and may be a shape provided at one location in the center or a shape provided at only two locations on the left and right. Further, the cathode notch 81C is not limited to a shape extending vertically from the cathode support portion 83, but may be inclined, not limited to a shape cut from the outer periphery, and may be an opening shape.

また、コンデンサ素子の積層数は3つに限らず必要な容量に応じて増減してもよい。   Further, the number of capacitor elements stacked is not limited to three, and may be increased or decreased according to the required capacity.

また、陰極外部端子部82は陰極当接部81や陰極支持部83とは別体に形成して、溶接するようにしてもよい。   Further, the cathode external terminal portion 82 may be formed separately from the cathode contact portion 81 and the cathode support portion 83 and welded.

CP…カーボンペースト
L1…アジピン酸アンモニウム水溶液
L2…導電性高分子の原料溶液の原料溶液
1…弁作用金属基体
2…誘電体層
3…導電性高分子層
5…銀電極層
6…スペーサ
8…導電部材
9…素子接合材
11…コンデンサ素子
12…Al箔
13…対極
50…外装樹脂
60…積層体
70…陽極導通材
71…陽極当接部
71C…切欠部
72…陽極外部端子部
80…陰極導通材
81…陰極当接部
81C…陰極切欠部
81C…切欠部
82…陰極外部端子部
83…陰極支持部
101…固体電解コンデンサ
CP ... carbon paste L1 ... ammonium adipate aqueous solution L2 ... raw material solution 1 of conductive polymer raw material solution ... valve metal substrate 2 ... dielectric layer 3 ... conductive polymer layer 5 ... silver electrode layer 6 ... spacer 8 ... Conductive member 9 ... Element bonding material 11 ... Capacitor element 12 ... Al foil 13 ... Counter electrode 50 ... Exterior resin 60 ... Laminate 70 ... Anode conducting material 71 ... Anode contact portion 71C ... Notch portion 72 ... Anode external terminal portion 80 ... Cathode Conductive material 81 ... cathode contact part 81C ... cathode notch part 81C ... notch part 82 ... cathode external terminal part 83 ... cathode support part 101 ... solid electrolytic capacitor

Claims (8)

弁作用金属基体の表面に誘電体層、導電性高分子層、陰極層のそれぞれが設けられたコンデンサ素子が複数積層された積層体を有し、
前記弁作用金属基体に導通する陽極導通材および前記陰極層に導通する陰極導通材を備え、
少なくとも前記積層体が外装樹脂で被覆された固体電解コンデンサにおいて、
少なくとも前記陰極導通材は、前記陰極層が当接する当接部に切欠部を有し、
前記切欠部に、前記積層体を構成する前記複数のコンデンサ素子同士を電気的に接続する導電部材が設けられている固体電解コンデンサ。
A multilayer body in which a plurality of capacitor elements each provided with a dielectric layer, a conductive polymer layer, and a cathode layer are laminated on the surface of the valve metal base;
An anode conducting material conducting to the valve metal substrate and a cathode conducting material conducting to the cathode layer,
In a solid electrolytic capacitor in which at least the laminate is coated with an exterior resin,
At least the cathode conducting material has a notch in a contact portion with which the cathode layer contacts,
A solid electrolytic capacitor in which a conductive member that electrically connects the plurality of capacitor elements constituting the multilayer body is provided in the notch.
前記コンデンサ素子は矩形板形状、積層体は直方体形状であり、前記積層体の端面は前記陰極導通材に当接している、請求項1に記載の固体電解コンデンサ。   2. The solid electrolytic capacitor according to claim 1, wherein the capacitor element has a rectangular plate shape, the laminated body has a rectangular parallelepiped shape, and an end surface of the laminated body is in contact with the cathode conductive material. 前記導電部材は導電性ペーストによるものである、請求項1または2に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the conductive member is made of a conductive paste. 前記導電部材は前記陰極導通材に重なっていない、請求項1〜3のいずれかに記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the conductive member does not overlap the cathode conductive material. 前記切欠部は前記陰極導通材または前記陽極導通材の一部を折り曲げた部分である、請求項1〜4のいずれかに記載の固体電解コンデンサ。   5. The solid electrolytic capacitor according to claim 1, wherein the notch is a portion obtained by bending a part of the cathode conducting material or the anode conducting material. 弁作用金属基体の表面に誘電体層、導電性高分子層、陰極層のそれぞれが設けられたコンデンサ素子が複数積層された積層体を有し、
前記弁作用金属基体に導通する陽極導通材および前記陰極層に導通する陰極導通材を備え、
少なくとも前記積層体が外装樹脂で被覆された固体電解コンデンサの製造方法であって、
前記陰極導通材は、前記コンデンサ素子の積層体の端面が近接する部分に切欠部を有し、
前記陰極導通材に前記複数のコンデンサ素子を直接積層搭載する工程と、
前記陰極導通材に搭載された前記コンデンサ素子の積層体の端面に導電部材を塗布する工程と、
を備えたことを特徴とする固体電解コンデンサの製造方法。
A multilayer body in which a plurality of capacitor elements each provided with a dielectric layer, a conductive polymer layer, and a cathode layer are laminated on the surface of the valve metal base;
An anode conducting material conducting to the valve metal substrate and a cathode conducting material conducting to the cathode layer,
A method for producing a solid electrolytic capacitor in which at least the laminate is coated with an exterior resin,
The cathode conducting material has a notch in a portion where end faces of the capacitor element laminate are close to each other,
Directly stacking and mounting the plurality of capacitor elements on the cathode conducting material;
Applying a conductive member to an end face of the capacitor element laminate mounted on the cathode conducting material;
A method for producing a solid electrolytic capacitor, comprising:
前記導電部材は導電性ペーストであり、この導電性ペーストはジェットディスペンサーにより射出される、請求項6に記載の固体電解コンデンサの製造方法。   The method for manufacturing a solid electrolytic capacitor according to claim 6, wherein the conductive member is a conductive paste, and the conductive paste is injected by a jet dispenser. 前記切欠部は前記陽極導通材に形成され、前記コンデンサ素子の陽極部はレーザースポット溶接により前記陽極導通材に接続される、請求項6または7に記載の固体電解コンデンサの製造方法。   The method for manufacturing a solid electrolytic capacitor according to claim 6 or 7, wherein the notch is formed in the anode conductive material, and the anode portion of the capacitor element is connected to the anode conductive material by laser spot welding.
JP2014502056A 2012-02-29 2013-01-09 Solid electrolytic capacitor Active JP5954404B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012043065 2012-02-29
JP2012043065 2012-02-29
PCT/JP2013/050155 WO2013128951A1 (en) 2012-02-29 2013-01-09 Solid-state electrolytic capacitor and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2013128951A1 true JPWO2013128951A1 (en) 2015-07-30
JP5954404B2 JP5954404B2 (en) 2016-07-20

Family

ID=49082161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014502056A Active JP5954404B2 (en) 2012-02-29 2013-01-09 Solid electrolytic capacitor

Country Status (3)

Country Link
JP (1) JP5954404B2 (en)
CN (1) CN104137204B (en)
WO (1) WO2013128951A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6724881B2 (en) * 2017-10-20 2020-07-15 株式会社村田製作所 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150814A (en) * 1985-12-25 1987-07-04 松下電器産業株式会社 Chip shape solid state electrolytic capacitor
JPH0722282A (en) * 1993-06-22 1995-01-24 Nec Corp Chip solid electrolytic capacitor
JP2006270014A (en) * 2004-10-15 2006-10-05 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method, and digital signal processing board using the same
JP2008091389A (en) * 2006-09-29 2008-04-17 Showa Denko Kk Lead frame member for solid electrolytic capacitor
JP2010080645A (en) * 2008-09-25 2010-04-08 Tdk Corp Solid electrolytic capacitor and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454916B2 (en) * 2002-07-22 2010-04-21 Necトーキン株式会社 Solid electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150814A (en) * 1985-12-25 1987-07-04 松下電器産業株式会社 Chip shape solid state electrolytic capacitor
JPH0722282A (en) * 1993-06-22 1995-01-24 Nec Corp Chip solid electrolytic capacitor
JP2006270014A (en) * 2004-10-15 2006-10-05 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method, and digital signal processing board using the same
JP2008091389A (en) * 2006-09-29 2008-04-17 Showa Denko Kk Lead frame member for solid electrolytic capacitor
JP2010080645A (en) * 2008-09-25 2010-04-08 Tdk Corp Solid electrolytic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
WO2013128951A1 (en) 2013-09-06
CN104137204B (en) 2017-06-09
JP5954404B2 (en) 2016-07-20
CN104137204A (en) 2014-11-05

Similar Documents

Publication Publication Date Title
US7206193B2 (en) Surface-mount capacitor and method of producing the same
US9007743B2 (en) Solid electrolytic capacitor
JP6286673B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20230062760A1 (en) Electrolytic capacitor and method for producing same
JP5920361B2 (en) Solid electrolytic capacitor and manufacturing method thereof
WO2012144316A1 (en) Solid-state electrolyte capacitor manufacturing method and solid-state electrolyte capacitor
JP4962368B2 (en) Tantalum capacitor and method for manufacturing tantalum capacitor
JP2006190929A (en) Solid electrolytic capacitor and its manufacturing method
JP5954404B2 (en) Solid electrolytic capacitor
JP2006190925A (en) Solid electrolytic capacitor and its manufacturing method
JP5247495B2 (en) Solid electrolytic capacitor
JP2008021774A (en) Chip-type solid electrolytic capacitor, and manufacturing method thereof
JP2003243257A (en) Solid electrolytic capacitor
JPH01171223A (en) Manufacture of laminated solid electrolytic capacitor
JP4466094B2 (en) Electrolytic capacitor manufacturing method
JPH01278011A (en) Layer-built solid electrolytic capacitor
JP2012182291A (en) Solid electrolytic capacitor
JP5035999B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH1167603A (en) Solid electrolytic capacitor
JPH0693421B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001244146A (en) Solid electrolytic capacitor
JP4287680B2 (en) Capacitor element, solid electrolytic capacitor and manufacturing method thereof
JP2004281715A (en) Chip-like solid electrolytic capacitor
JP5371865B2 (en) 3-terminal capacitor
JP2003045754A (en) Solid electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5954404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150