JP5035999B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP5035999B2
JP5035999B2 JP2008167299A JP2008167299A JP5035999B2 JP 5035999 B2 JP5035999 B2 JP 5035999B2 JP 2008167299 A JP2008167299 A JP 2008167299A JP 2008167299 A JP2008167299 A JP 2008167299A JP 5035999 B2 JP5035999 B2 JP 5035999B2
Authority
JP
Japan
Prior art keywords
anode
electrolytic capacitor
solid electrolytic
cathode
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008167299A
Other languages
Japanese (ja)
Other versions
JP2010010350A (en
Inventor
健二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008167299A priority Critical patent/JP5035999B2/en
Publication of JP2010010350A publication Critical patent/JP2010010350A/en
Application granted granted Critical
Publication of JP5035999B2 publication Critical patent/JP5035999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は電源ライン用の表面実装型の固体電解コンデンサ及びその製造方法に関し、特にCPUに接続され安定化電源のためのデカップリング回路用として好適な固体電解コンデンサ及びその製造方法に関する。   The present invention relates to a surface mount type solid electrolytic capacitor for a power supply line and a manufacturing method thereof, and more particularly to a solid electrolytic capacitor connected to a CPU and suitable for a decoupling circuit for a stabilized power supply and a manufacturing method thereof.

図3は従来の固体電解コンデンサを表す図であり、図3(a)はその全体を示す断面図、図3(b)はその固体電解コンデンサ素子の断面図である。   3A and 3B are views showing a conventional solid electrolytic capacitor, FIG. 3A is a sectional view showing the whole, and FIG. 3B is a sectional view of the solid electrolytic capacitor element.

従来、固体電解コンデンサ素子は、図3(b)に示すように、箔状又は板状の弁作用金属の陽極体15が拡面化され、その上に誘電体皮膜16が形成され、陽極体端部11を絶縁樹脂13にて分離され、中央部の誘電体皮膜16上に導電性高分子層17からなる固体電解質層を形成し、その後、グラファイト4、銀ペースト5を塗布して陰極部を形成して作製される。   Conventionally, as shown in FIG. 3B, a solid electrolytic capacitor element has a foil-like or plate-like valve-acting metal anode body 15 having an enlarged surface, on which a dielectric film 16 is formed. The end portion 11 is separated by an insulating resin 13, and a solid electrolyte layer composed of a conductive polymer layer 17 is formed on the dielectric film 16 in the central portion. Thereafter, the graphite 4 and the silver paste 5 are applied to the cathode portion. Is formed.

次に、図3(a)に示すように、個々の固体電解コンデンサ素子の陽極体端部11には銅又は銅合金の金属帯板片14が溶接されて陽極部となり、、それらが積層され(図3(a)は図3(b)の矩形板状の固体電解コンデンサ素子が3層に積層された形態である)、固体電解コンデンサ素子積層体200が形成される。このとき、陽極部は抵抗溶接及びレーザ溶接を用いて接続し、陰極部12は導電性ペースト25を用いて接続する。その固体電解コンデンサ素子積層体200がリードフレームから形成された陽極端子20及び陰極端子21を底面部に有する箱形のモールド成形された樹脂ケース22の内部に配設され、陽極端子20の上面と、下端の陽極体端部11に溶接された金属帯板片14の下面とが導電性ペースト25で接続され、下端の陰極部12と、陰極端子21とが導電性ペースト25で接続されている。ここで、陽極端子20と陰極端子21は平板状であり、基板実装面と同一平面状に形成されている。モールド成形された樹脂ケース22は陽極端子20と陰極端子21の隙間を埋めると共に両端子を機械的に連結し、さらに固体電解コンデンサ素子の周囲に側壁を有するようにインサートモールドにより形成されている。上記側壁に箱型の蓋23を被せ固体電解コンデンサ素子積層体200を封入することで固体電解コンデンサ100を得ている(例えば特許文献1参照)。   Next, as shown in FIG. 3A, a metal strip 14 of copper or copper alloy is welded to the anode body end portion 11 of each solid electrolytic capacitor element to form an anode portion, and these are laminated. 3A is a form in which the rectangular plate-shaped solid electrolytic capacitor elements of FIG. 3B are stacked in three layers, and a solid electrolytic capacitor element laminate 200 is formed. At this time, the anode part is connected using resistance welding and laser welding, and the cathode part 12 is connected using the conductive paste 25. The solid electrolytic capacitor element laminate 200 is disposed inside a box-shaped molded resin case 22 having an anode terminal 20 and a cathode terminal 21 formed from a lead frame on the bottom surface, and an upper surface of the anode terminal 20. The lower surface of the metal strip 14 welded to the anode body end portion 11 at the lower end is connected with the conductive paste 25, and the cathode portion 12 at the lower end and the cathode terminal 21 are connected with the conductive paste 25. . Here, the anode terminal 20 and the cathode terminal 21 have a flat plate shape and are formed in the same plane as the substrate mounting surface. The molded resin case 22 is formed by insert molding so as to fill a gap between the anode terminal 20 and the cathode terminal 21 and mechanically connect both terminals, and to have a side wall around the solid electrolytic capacitor element. A solid electrolytic capacitor 100 is obtained by covering the side wall with a box-shaped lid 23 and enclosing the solid electrolytic capacitor element laminate 200 (see, for example, Patent Document 1).

固体電解コンデンサの外形形状となるモールド成形された樹脂ケース22を長さ方向に小型化する場合、金属帯板片14を短くする方法、もしくは、容量出現部である陰極部12を短くする方法、又は、絶縁樹脂13の幅を短くする方法がある。   When the molded resin case 22 that is the outer shape of the solid electrolytic capacitor is miniaturized in the length direction, a method of shortening the metal strip 14 or a method of shortening the cathode portion 12 that is a capacity appearance portion, Alternatively, there is a method of shortening the width of the insulating resin 13.

しかしながら、金属帯板片14を短くする方法の場合は、陽極端子20と金属帯板片14を導電性ペースト25で接続する際に接続面積が小さくなり接続強度が低くなる欠点が生じる。   However, in the case of the method of shortening the metal strip piece 14, there is a disadvantage that the connection area is reduced and the connection strength is lowered when the anode terminal 20 and the metal strip piece 14 are connected by the conductive paste 25.

また、容量出現部である陰極部12を短くする方法があるが、容量が減少してしまい本質を失うことになり、あるいは、絶縁樹脂13の幅を短くする方法は、導電性高分子層17を形成した際に絶縁樹脂13の幅が短いために導電性高分子層が陽極側に侵入してショートになる可能性がある。   In addition, there is a method of shortening the cathode portion 12 which is a capacity appearing portion. However, the capacity is reduced and the essence is lost, or the method of shortening the width of the insulating resin 13 is used as the conductive polymer layer 17. When the insulating resin 13 is formed, the width of the insulating resin 13 is short, so that the conductive polymer layer may enter the anode side and cause a short circuit.

特開2006−128247号公報JP 2006-128247 A

本発明の課題は、容量を減少させることなく、外形を小型化できる固体電解コンデンサおよびその製造方法を提供することにある。   An object of the present invention is to provide a solid electrolytic capacitor and a method for manufacturing the same that can reduce the outer shape without reducing the capacitance.

本発明によれば、端部に陽極部を有し中央部に陰極部を有する板状の固体電解コンデンサ素子又は前記固体電解コンデンサ素子を積層してなる固体電解コンデンサ素子積層体と、前記陽極部に接続された陽極端子と、前記陰極部に接続された陰極端子とを備える固体電解コンデンサにおいて、前記陽極部は金属帯板片が接続された陽極体端部が折り返された構造であることを特徴とする固体電解コンデンサを得ることができる。   According to the present invention, a plate-shaped solid electrolytic capacitor element having an anode portion at an end portion and a cathode portion at a central portion or a solid electrolytic capacitor element laminate formed by laminating the solid electrolytic capacitor element, and the anode portion In a solid electrolytic capacitor comprising an anode terminal connected to the cathode part and a cathode terminal connected to the cathode part, the anode part has a structure in which the end of the anode body to which the metal strip piece is connected is folded. A characteristic solid electrolytic capacitor can be obtained.

また、前記陽極端子と前記陰極端子は平板状であり、基板実装面となる同一平面上に形成され、前記陽極端子と前記陰極端子の間隙を埋めると共に機械的に連結する底面部を有し、前記平面に対し直交する側壁を有する樹脂ケースが形成され、前記樹脂ケースの内側底面には前記陽極端子及び陰極端子が露出して、前記固体電解コンデンサ素子または前記固体電解コンデンサ素子積層体の陽極部および陰極部に接続されたことを特徴とする固体電解コンデンサを得ることができる。   In addition, the anode terminal and the cathode terminal are plate-like, formed on the same plane as the substrate mounting surface, and has a bottom surface portion that fills the gap between the anode terminal and the cathode terminal and mechanically connects them, A resin case having a side wall orthogonal to the plane is formed, and the anode terminal and the cathode terminal are exposed on the inner bottom surface of the resin case, and the anode part of the solid electrolytic capacitor element or the solid electrolytic capacitor element laminate A solid electrolytic capacitor characterized by being connected to the cathode portion can be obtained.

また、本発明によれば、拡面化した弁作用金属の板または箔からなる陽極体に誘電体皮膜を形成した後、陽極体端部を絶縁樹脂により分離して陽極部を設けると共に中央部の誘電体皮膜上に固体電解質層及び導電性物質層を形成して陰極部を設ける工程と、陽極体端部に金属帯板片を接続する工程と、前記金属帯板片が接続された陽極体端部を折り返して固体電解コンデンサ素子を作製する工程と前記金属帯板片に陽極端子を接続する工程と、前記陰極部に陰極端子を接続する工程とを含むことを特徴とする固体電解コンデンサの製造方法を得ることができる。   Further, according to the present invention, after forming a dielectric film on an anode body made of an enlarged valve action metal plate or foil, the anode body end portion is separated by an insulating resin to provide an anode portion and a central portion Forming a solid electrolyte layer and a conductive material layer on the dielectric film and providing a cathode portion; connecting a metal strip piece to an end of the anode body; and an anode to which the metal strip piece is connected A solid electrolytic capacitor comprising: a step of producing a solid electrolytic capacitor element by folding a body end portion; a step of connecting an anode terminal to the metal strip; and a step of connecting a cathode terminal to the cathode portion. The manufacturing method can be obtained.

また、本発明によれば、拡面化した弁作用金属の板または箔からなる陽極体に誘電体皮膜を形成した後、陽極体端部を絶縁樹脂により分離して陽極部を設けると共に中央部の誘電体皮膜上に固体電解質層及び導電性物質層を形成して陰極部を設ける工程と、陽極体端部に金属帯板片を接続する工程と、前記金属帯板片が接続された陽極体端部を折り返して固体電解コンデンサ素子を作製する工程と、前記固体電解コンデンサ素子を積層して陽極部同士、陰極部同士をそれぞれ接続して固体電解コンデンサ素子積層体を作製する工程と前記陽極部の金属帯板片に陽極端子を接続する工程と、前記陰極部に陰極端子を接続する工程とを含むことを特徴とする固体電解コンデンサの製造方法を得ることができる。   Further, according to the present invention, after forming a dielectric film on an anode body made of an enlarged valve action metal plate or foil, the anode body end portion is separated by an insulating resin to provide an anode portion and a central portion Forming a solid electrolyte layer and a conductive material layer on the dielectric film and providing a cathode portion; connecting a metal strip piece to an end of the anode body; and an anode to which the metal strip piece is connected A step of producing a solid electrolytic capacitor element by folding the body end, a step of producing a solid electrolytic capacitor element laminate by laminating the solid electrolytic capacitor elements and connecting anode portions and cathode portions to each other, and the anode A solid electrolytic capacitor manufacturing method comprising a step of connecting an anode terminal to a metal strip piece of the portion and a step of connecting a cathode terminal to the cathode portion.

さらに、陽極端子と陰極端子を同一平面となる底面に配置しインサートモールド法により底面部と側壁部を有する樹脂ケースを形成する工程と、前記固体電解コンデンサ素子または前記固体電解コンデンサ素子積層体の前記陽極部の金属帯板片に前記陽極端子を接続する工程と、前記陰極部に前記陰極端子を接続する工程と、前記樹脂ケースの上側を覆う蓋を前記樹脂ケースに接続する工程とを含むとよい。   Furthermore, the step of arranging the anode terminal and the cathode terminal on the bottom surface on the same plane and forming a resin case having a bottom surface portion and a side wall portion by an insert molding method, and the solid electrolytic capacitor element or the solid electrolytic capacitor element laminated body Including a step of connecting the anode terminal to the metal strip piece of the anode portion, a step of connecting the cathode terminal to the cathode portion, and a step of connecting a lid covering the upper side of the resin case to the resin case. Good.

本発明によって、金属帯板片を接続した陽極体端部を折り返して陽極部とし、それを陽極端子と接続することにより、陽極体と陽極端子との接続面積、および、容量を維持しながらモールド成形された樹脂ケースの小型化が可能になる。即ち本発明によれば、接続の信頼性に優れ、小型化した固体電解コンデンサ及びその製造方法を提供することができる。   According to the present invention, the end of the anode body to which the metal strip pieces are connected is folded back to form an anode part, which is connected to the anode terminal, thereby maintaining the connection area and capacity between the anode body and the anode terminal and maintaining the capacity. The molded resin case can be reduced in size. That is, according to the present invention, it is possible to provide a solid electrolytic capacitor that is excellent in connection reliability and reduced in size and a method for manufacturing the same.

以下、図面を参照して本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態の固体電解コンデンサを表す断面図である。Al、Ti、Ta、Nbのいずれかを含む弁作用金属をエッチング等により拡面化した陽極体の表面に電気化学的方法等により誘電体皮膜を形成する。次に、陽極体端部を絶縁樹脂13により分離して、陽極部となる部分を設けると共に中央部の前記誘電体皮膜の表面に導電性高分子層からなる固体電解質層を形成し、その後、順次グラファイト層、銀ペースト層を形成して陰極部12とする。次に、陽極体端部に金属帯板片14を抵抗溶接等により接続した後、陽極体端部を折り返して折り返された陽極体端部と金属帯板片14からなる陽極部として、固体電解コンデンサ素子を作製する。必要により固体電解コンデンサ素子を積層して、それぞれの陽極部同士をレーザ溶接等により接続し、それぞれの陰極部同士は導電性ペースト25により接続し固体電解コンデンサ素子積層体200を作製した後、固体電解コンデンサ素子または固体電解コンデンサ素子積層体200を、陽極端子20及び陰極端子21を有する樹脂ケース22内に配置し、陽極部の金属帯板片14と陽極端子20、陰極部12と陰極端子21をそれぞれ導電性ペースト25で接続し蓋23で覆って固体電解コンデンサ100とする。   FIG. 1 is a cross-sectional view showing a solid electrolytic capacitor according to an embodiment of the present invention. A dielectric film is formed by an electrochemical method or the like on the surface of the anode body obtained by expanding the valve action metal containing any of Al, Ti, Ta, and Nb by etching or the like. Next, the anode body end portion is separated by the insulating resin 13 to provide a portion to be the anode portion and form a solid electrolyte layer made of a conductive polymer layer on the surface of the dielectric film at the center portion, A graphite layer and a silver paste layer are sequentially formed to form the cathode portion 12. Next, after connecting the metal strip piece 14 to the end portion of the anode body by resistance welding or the like, the anode body end portion is folded back, and the anode portion including the folded anode body end portion and the metal strip piece 14 is used as solid electrolysis. A capacitor element is produced. If necessary, the solid electrolytic capacitor elements are stacked, the anode portions are connected to each other by laser welding or the like, the cathode portions are connected to each other by the conductive paste 25, and the solid electrolytic capacitor element laminate 200 is manufactured. An electrolytic capacitor element or a solid electrolytic capacitor element laminate 200 is placed in a resin case 22 having an anode terminal 20 and a cathode terminal 21, and a metal strip 14 and an anode terminal 20, and a cathode part 12 and a cathode terminal 21 in the anode part. Are connected with a conductive paste 25 and covered with a lid 23 to form a solid electrolytic capacitor 100.

次に、本発明の固体電解コンデンサに用いる固体電解コンデンサ素子について説明する。図2は、本発明の実施の形態の固体電解コンデンサに用いる固体電解コンデンサ素子の製造工程を説明する図であり、図2(a)は陽極体端部に金属帯板片が超音波溶接された断面図を示し、図2(b)は絶縁樹脂の一部をレーザ光で除去した断面図を示し、図2(c)は第一の折り曲げ後の断面図を示し、図2(d)は第二の折り曲げ後の断面図を示す。   Next, the solid electrolytic capacitor element used for the solid electrolytic capacitor of the present invention will be described. FIG. 2 is a diagram for explaining a manufacturing process of a solid electrolytic capacitor element used in the solid electrolytic capacitor according to the embodiment of the present invention. FIG. 2 (a) is a diagram in which a metal strip is ultrasonically welded to the end of the anode body. 2 (b) shows a cross-sectional view in which a part of the insulating resin is removed by laser light, FIG. 2 (c) shows a cross-sectional view after the first bending, and FIG. 2 (d) Shows a cross-sectional view after the second bending.

本発明の固体電解コンデンサに用いる固体電解コンデンサ素子の製造工程は、先ず、図2(a)に示すように陽極体端部11に銅または銅合金等からなる金属帯板片14を超音波溶接等により接続する。その後、図2(b)に示すように陽極体端部側の絶縁樹脂の一部をレーザ加工により除去し、絶縁樹脂除去部13aとする。その後、図2(c)に示すように陽極体本体に略直角に陽極体端部に第一の折り曲げ加工を施した後、図2(d)に示すようにさらに略直角に第二の折り曲げ加工を施すことにより、金属帯板片14を絶縁樹脂除去部13aに配置する。ここで言うレーザ加工とは、YAGレーザ等の固体レーザ、炭酸ガスレーザ、エキシマレーザ等の加工用の高出力レーザを照射して樹脂を気化(いわゆるアブレーション)させる方法である。   The manufacturing process of the solid electrolytic capacitor element used for the solid electrolytic capacitor of the present invention is as follows. First, as shown in FIG. 2 (a), a metal strip 14 made of copper or a copper alloy or the like is ultrasonically welded to the anode body end portion 11. Connect by etc. Thereafter, as shown in FIG. 2B, a part of the insulating resin on the anode body end side is removed by laser processing to form an insulating resin removing portion 13a. Thereafter, as shown in FIG. 2 (c), the anode body is subjected to a first bending process at a substantially right angle at the end of the anode body, and then a second bending is performed at a substantially right angle as shown in FIG. 2 (d). By performing the processing, the metal strip piece 14 is disposed in the insulating resin removing portion 13a. The laser processing referred to here is a method in which a resin is vaporized (so-called ablation) by irradiation with a solid-state laser such as a YAG laser, a high-power laser for processing such as a carbon dioxide laser, or an excimer laser.

金属帯板片14の陽極体端部11への接続は金属帯板片14の全面が陽極体端部11と接続されるのが、接続強度、電気抵抗から好ましい。そのため溶接の発熱による弊害を避けるため陰極部から離間させて接続している。陽極体端部側の絶縁樹脂をレーザ加工により除去することにより、陽極体端部を折り返したときに180度折り返しができるようになる。また、レーザ加工においては陰極部への影響を少なくするため出力を調整することができる。絶縁樹脂は陰極部を形成する際に陽極部との分離のため所定のスペースが必要となるものであるが、陰極部の形成後は除去することができる。折り曲げ加工は2段階に分けた例を示したが、一度に折り返すこともできる。また折り返し部の長さは金属帯板片の長さより長く、1.5倍以内であると小型化の点から好ましい。   As for the connection of the metal strip piece 14 to the anode body end portion 11, it is preferable from the connection strength and electrical resistance that the entire surface of the metal strip plate piece 14 is connected to the anode body end portion 11. Therefore, in order to avoid the harmful effects caused by the heat generated by welding, the connection is made away from the cathode portion. By removing the insulating resin on the anode body end side by laser processing, the anode body end part can be folded back 180 degrees. In laser processing, the output can be adjusted to reduce the influence on the cathode portion. The insulating resin requires a predetermined space for separation from the anode part when forming the cathode part, but can be removed after the cathode part is formed. Although the example in which the bending process is divided into two stages is shown, it can be folded at a time. The length of the folded portion is longer than the length of the metal strip and is preferably within 1.5 times from the viewpoint of miniaturization.

次に、図2(d)に示す陽極体端部11には、銅又は銅合金の金属帯板片14が溶接され折り返されて陽極部とされた固体電解コンデンサ素子10を単体で、或いはそれらを積層して、固体電解コンデンサ素子積層体を形成して樹脂ケースに配置する。固体電解コンデンサ素子積層体の形成においては、図1に示すように、陽極部は抵抗溶接またはレーザ溶接を用いて陽極体と金属帯板片を接続し、陰極部12は導電性ペースト25を用いて接続する。積層体の陽極部同士の抵抗溶接またはレーザ溶接による接続はスポットでの接続で充分であるため、金属帯板片上での接続による陰極部への影響は少なくなる。   Next, at the end 11 of the anode body shown in FIG. 2 (d), a solid electrolytic capacitor element 10 made of a copper or copper alloy metal strip 14 welded and folded to form an anode is used alone or as such. Are laminated to form a solid electrolytic capacitor element laminated body and placed in a resin case. In the formation of the solid electrolytic capacitor element laminate, as shown in FIG. 1, the anode portion is connected to the anode strip and the metal strip using resistance welding or laser welding, and the cathode portion 12 is made of a conductive paste 25. Connect. Since connection by resistance welding or laser welding between the anode portions of the laminated body is sufficient by spot connection, the influence on the cathode portion due to connection on the metal strip piece is reduced.

次に、図1に示すように、固体電解コンデンサ素子積層体200がリードフレームから形成された陽極端子20及び陰極端子21を底面部に有する箱形のモールド成形された樹脂ケース22の内部に配設され、陽極端子20の上面と、下端の陽極体端部11に溶接された金属帯板片14の下面とが導電性ペースト25で接続され、最下部の陰極部12と、陰極端子21とが導電性ペースト25で接続されている。ここで、陽極端子20と陰極端子21は平板状であり、基板実装面と同一平面状に形成されている。モールド成形された樹脂ケース22は陽極端子20と陰極端子21の隙間を埋めると共に両端子を機械的に連結し、さらに固体電解コンデンサ素子の周囲に壁側を有するようにインサートモールドにより形成されている。上記壁側に箱型の蓋23を被らせ固体電解コンデンサ積層体200を封入することで固体電解コンデンサ100を得る。   Next, as shown in FIG. 1, the solid electrolytic capacitor element laminate 200 is arranged inside a box-shaped molded resin case 22 having an anode terminal 20 and a cathode terminal 21 formed from a lead frame on the bottom surface. The upper surface of the anode terminal 20 and the lower surface of the metal strip piece 14 welded to the anode body end portion 11 at the lower end are connected by the conductive paste 25, and the lowermost cathode portion 12, the cathode terminal 21, Are connected by a conductive paste 25. Here, the anode terminal 20 and the cathode terminal 21 have a flat plate shape and are formed in the same plane as the substrate mounting surface. The molded resin case 22 is formed by insert molding so as to fill the gap between the anode terminal 20 and the cathode terminal 21 and to mechanically connect both terminals, and to have a wall side around the solid electrolytic capacitor element. . The solid electrolytic capacitor 100 is obtained by covering the wall side with a box-shaped lid 23 and enclosing the solid electrolytic capacitor laminate 200.

このような構成により、陽極体端部11を折り返して絶縁樹脂13の除去前の位置に金属帯板片14が配置されることから、陽極体端部11に位置していた陽極部の空間24を短くできるためモールド外装の樹脂ケース22の小型化を図ることができる。   With such a configuration, the metal strip 14 is disposed at a position before the insulating resin 13 is removed by folding back the anode body end portion 11, so that the space 24 of the anode portion located at the anode body end portion 11. Therefore, it is possible to reduce the size of the resin case 22 of the mold exterior.

以下、本発明における実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例による固体電解コンデンサは、長方形の平板上の固体電解コンデンサであり、3端子伝送線路素子タイプと呼ばれている。図1及び図2に示すように、エッチングにより表面積が100倍に拡大された、すなわち拡面化された厚さ100μmの平板状のAlからなる弁作用金属の陽極体15の表面に、リン酸水溶液中で6V印加により陽極酸化膜として誘電体皮膜16を形成し、前記誘電体皮膜16を形成した陽極体15を長さ10mm、幅5mmの寸法に打ち抜いた。   A solid electrolytic capacitor according to an embodiment of the present invention is a solid electrolytic capacitor on a rectangular flat plate, and is called a three-terminal transmission line element type. As shown in FIGS. 1 and 2, phosphoric acid is formed on the surface of the anode body 15 of the valve action metal made of Al having a surface area of 100 μm, which has been enlarged by etching, that is, having a thickness of 100 μm. A dielectric film 16 was formed as an anodic oxide film by applying 6 V in an aqueous solution, and the anode body 15 on which the dielectric film 16 was formed was punched into dimensions of 10 mm in length and 5 mm in width.

エポキシ樹脂を使用した絶縁樹脂13を形成して、陽極部と陰極部を分離した後、p−トルエンスルホン酸第二鉄の酸化剤液及び3、4−エチレンジオキシチオフェンのモノマー液に交互に複数回浸漬させ、導電性高分子層17を形成して、その後、順次グラファイト層4、銀ペースト5を形成して陰極層12として固体電解コンデンサ素子10を作製した。   After forming the insulating resin 13 using an epoxy resin and separating the anode portion and the cathode portion, the oxidizer solution of ferric p-toluenesulfonate and the monomer solution of 3,4-ethylenedioxythiophene are alternately used. The conductive polymer layer 17 was formed by dipping a plurality of times, and then the graphite layer 4 and the silver paste 5 were sequentially formed to produce the solid electrolytic capacitor element 10 as the cathode layer 12.

その後、図2(a)に示すように、前記固体電解コンデンサ素子の陽極体端部11に銅を材質とした金属帯板片14(横0.8mm×縦7mm×厚さ0.1mm)と超音波溶接した。   Thereafter, as shown in FIG. 2A, a metal strip 14 (width 0.8 mm × length 7 mm × thickness 0.1 mm) made of copper at the anode body end 11 of the solid electrolytic capacitor element; Ultrasonic welding.

その後、出力50Jの強度でレーザ加工により絶縁樹脂13の一部を除去した後、陽極体端部11を図2に示す順序で折り返す。折り返した後は金属帯板片14と陽極端子20が対向するように適宜に折り返し寸法を調整する。   Thereafter, a part of the insulating resin 13 is removed by laser processing at an intensity of 50 J, and then the anode body end portion 11 is folded back in the order shown in FIG. After the folding, the folding dimension is appropriately adjusted so that the metal strip piece 14 and the anode terminal 20 face each other.

陽極体端部11を折り返した後、図1に示すように、モールド成形された樹脂ケース22に装入するために、陽極体端部11に接続した金属帯板片14と陽極端子20下面に導電性ペースト25を介して陽極端子20と接続し、陰極部12は導電性ペースト25を介して陰極端子21に接続される。その後、上記壁側に箱型の蓋23を被せて固体電解コンデンサ積層体200を封入することで固体電解コンデンサ100を得た。又、本発明によりモールド成形された樹脂ケースをほぼ10%小型化することができた。   After the anode body end portion 11 is folded, as shown in FIG. 1, the metal strip 14 connected to the anode body end portion 11 and the lower surface of the anode terminal 20 are inserted into the molded resin case 22. The cathode portion 12 is connected to the cathode terminal 21 via the conductive paste 25, and the cathode portion 12 is connected to the cathode terminal 21 via the conductive paste 25. Then, the solid electrolytic capacitor 100 was obtained by covering the wall side with a box-shaped lid 23 and enclosing the solid electrolytic capacitor laminate 200. Further, the resin case molded by the present invention can be reduced in size by about 10%.

本発明にかかる固体電解コンデンサおよび製造方法は、電子機器、電気機器に用いられるコンデンサに適用される。また、固体電解コンデンサおよび製造方法を用いた伝送線路素子、電子機器、特にデカップリング回路に適用される。   The solid electrolytic capacitor and the manufacturing method according to the present invention are applied to capacitors used in electronic equipment and electrical equipment. Further, the present invention is applied to a transmission line element using a solid electrolytic capacitor and a manufacturing method, an electronic device, particularly a decoupling circuit.

本発明の実施の形態の固体電解コンデンサを表す断面図。Sectional drawing showing the solid electrolytic capacitor of embodiment of this invention. 本発明の実施の形態の固体電解コンデンサに用いる固体電解コンデンサ素子の製造工程を説明する図、図2(a)は陽極体端部に金属帯板片が超音波溶接された断面図、図2(b)は絶縁樹脂の一部をレーザ光で除去した断面図、図2(c)は第一の折り曲げ後の断面図、図2(d)は第二の折り曲げ後の断面図。The figure explaining the manufacturing process of the solid electrolytic capacitor element used for the solid electrolytic capacitor of embodiment of this invention, Fig.2 (a) is sectional drawing by which the metal strip piece was ultrasonically welded to the anode body edge part, FIG. FIG. 2B is a cross-sectional view after removing a part of the insulating resin with a laser beam, FIG. 2C is a cross-sectional view after the first bending, and FIG. 2D is a cross-sectional view after the second bending. 従来の固体電解コンデンサを表す図、図3(a)はその全体を示す断面図、図3(b)はその固体電解コンデンサ素子の断面図。The figure showing the conventional solid electrolytic capacitor, FIG.3 (a) is sectional drawing which shows the whole, FIG.3 (b) is sectional drawing of the solid electrolytic capacitor element.

符号の説明Explanation of symbols

4 グラファイト層
5 銀ペースト
10 固体電解コンデンサ素子
11 陽極体端部
12 陰極部
13 絶縁樹脂
13a 絶縁樹脂除去部
14 金属帯板片
15 陽極体
16 誘電体皮膜
17 導電性高分子層
20 陽極端子
21 陰極端子
22 樹脂ケース
23 蓋
24 陽極部の空間
25 導電性ペースト
100 固体電解コンデンサ
200 固体電解コンデンサ素子積層体
4 Graphite layer 5 Silver paste 10 Solid electrolytic capacitor element 11 Anode body end portion 12 Cathode portion 13 Insulating resin 13a Insulating resin removing portion 14 Metal strip 15 Anode body 16 Dielectric film 17 Conductive polymer layer
20 Anode terminal 21 Cathode terminal 22 Resin case 23 Lid 24 Anode space 25 Conductive paste 100 Solid electrolytic capacitor 200 Solid electrolytic capacitor element laminate

Claims (5)

端部に陽極部を有し中央部に陰極部を有する板状の固体電解コンデンサ素子又は前記固体電解コンデンサ素子を積層してなる固体電解コンデンサ素子積層体と、前記陽極部に接続された陽極端子と、前記陰極部に接続された陰極端子とを備える固体電解コンデンサにおいて、前記陽極部は金属帯板片が接続された陽極体端部が折り返された構造であることを特徴とする固体電解コンデンサ。   A plate-like solid electrolytic capacitor element having an anode part at the end and a cathode part at the center or a solid electrolytic capacitor element laminate formed by laminating the solid electrolytic capacitor element, and an anode terminal connected to the anode part And a cathode terminal connected to the cathode portion, wherein the anode portion has a structure in which an end portion of an anode body to which a metal strip piece is connected is folded. . 前記陽極端子と前記陰極端子は平板状であり、基板実装面となる同一平面上に形成され、前記陽極端子と前記陰極端子の間隙を埋めると共に機械的に連結する底面部を有し、前記平面に対し直交する側壁を有する樹脂ケースが形成され、前記樹脂ケースの内側底面には前記陽極端子及び陰極端子が露出して、前記固体電解コンデンサ素子または前記固体電解コンデンサ素子積層体の陽極部および陰極部に接続されたことを特徴とする請求項1に記載の固体電解コンデンサ。   The anode terminal and the cathode terminal have a flat plate shape, are formed on the same plane as a substrate mounting surface, and have a bottom surface portion that fills a gap between the anode terminal and the cathode terminal and mechanically connects the plane. A resin case having a side wall orthogonal to the resin case, the anode terminal and the cathode terminal are exposed on the inner bottom surface of the resin case, and the anode and cathode of the solid electrolytic capacitor element or the solid electrolytic capacitor element laminate The solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is connected to a portion. 拡面化した弁作用金属の板または箔からなる陽極体に誘電体皮膜を形成した後、陽極体端部を絶縁樹脂により分離して陽極部を設けると共に中央部の誘電体皮膜上に固体電解質層及び導電性物質層を形成して陰極部を設ける工程と、陽極体端部に金属帯板片を接続する工程と、前記金属帯板片が接続された陽極体端部を折り返して固体電解コンデンサ素子を作製する工程と前記金属帯板片に陽極端子を接続する工程と、前記陰極部に陰極端子を接続する工程とを含むことを特徴とする固体電解コンデンサの製造方法。   After forming a dielectric film on the anode body composed of a plate or foil of a valve metal that has been enlarged, the end of the anode body is separated by an insulating resin to provide an anode portion, and a solid electrolyte is formed on the dielectric film in the center. A step of forming a layer and a conductive material layer to provide a cathode portion, a step of connecting a metal strip piece to the end portion of the anode body, and a solid electrolysis by folding back the end portion of the anode body to which the metal strip piece piece is connected. A method for producing a solid electrolytic capacitor, comprising: a step of producing a capacitor element; a step of connecting an anode terminal to the metal strip piece; and a step of connecting a cathode terminal to the cathode portion. 拡面化した弁作用金属の板または箔からなる陽極体に誘電体皮膜を形成した後、陽極体端部を絶縁樹脂により分離して陽極部を設けると共に中央部の誘電体皮膜上に固体電解質層及び導電性物質層を形成して陰極部を設ける工程と、陽極体端部に金属帯板片を接続する工程と、前記金属帯板片が接続された陽極体端部を折り返して固体電解コンデンサ素子を作製する工程と、前記固体電解コンデンサ素子を積層して陽極部同士、陰極部同士をそれぞれ接続して固体電解コンデンサ素子積層体を作製する工程と前記陽極部の金属帯板片に陽極端子を接続する工程と、前記陰極部に陰極端子を接続する工程とを含むことを特徴とする固体電解コンデンサの製造方法。   After forming a dielectric film on the anode body composed of a plate or foil of a valve metal that has been enlarged, the end of the anode body is separated by an insulating resin to provide an anode portion, and a solid electrolyte is formed on the dielectric film in the center. A step of forming a layer and a conductive material layer to provide a cathode portion, a step of connecting a metal strip piece to the end portion of the anode body, and a solid electrolysis by folding back the end portion of the anode body to which the metal strip piece piece is connected. A step of producing a capacitor element, a step of laminating the solid electrolytic capacitor elements to connect anode portions to each other and a cathode portion to produce a solid electrolytic capacitor element laminate, and an anode on the metal strip of the anode portion A method for manufacturing a solid electrolytic capacitor, comprising: connecting a terminal; and connecting a cathode terminal to the cathode portion. 陽極端子と陰極端子を同一平面となる底面に配置しインサートモールド法により底面部と側壁部を有する樹脂ケースを形成する工程と、前記固体電解コンデンサ素子または前記固体電解コンデンサ素子積層体の前記陽極部の金属帯板片に前記陽極端子を接続する工程と、前記陰極部に前記陰極端子を接続する工程と、前記樹脂ケースの上側を覆う蓋を前記樹脂ケースに接続する工程とを含むことを特徴とする請求項3または4に記載の固体電解コンデンサの製造方法。   A step of disposing an anode terminal and a cathode terminal on a bottom surface on the same plane and forming a resin case having a bottom surface portion and a side wall portion by an insert molding method; and the anode portion of the solid electrolytic capacitor element or the solid electrolytic capacitor element laminate A step of connecting the anode terminal to the metal strip piece, a step of connecting the cathode terminal to the cathode portion, and a step of connecting a lid covering the upper side of the resin case to the resin case. The method for producing a solid electrolytic capacitor according to claim 3 or 4.
JP2008167299A 2008-06-26 2008-06-26 Solid electrolytic capacitor and manufacturing method thereof Active JP5035999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167299A JP5035999B2 (en) 2008-06-26 2008-06-26 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167299A JP5035999B2 (en) 2008-06-26 2008-06-26 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010010350A JP2010010350A (en) 2010-01-14
JP5035999B2 true JP5035999B2 (en) 2012-09-26

Family

ID=41590496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167299A Active JP5035999B2 (en) 2008-06-26 2008-06-26 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5035999B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5770444B2 (en) * 2010-09-24 2015-08-26 Necトーキン株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2010010350A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5132374B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5466722B2 (en) Solid electrolytic capacitor
KR100773198B1 (en) Surface-mount capacitor and method of producing the same
JP2008258602A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4757698B2 (en) Solid electrolytic capacitor
CN103430261A (en) Solid-state electrolyte capacitor manufacturing method and solid-state electrolyte capacitor
JP2005079357A (en) Chip type solid electrolytic capacitor, its manufacturing method, and lead frame used therefor
JP5453174B2 (en) Bottom electrode type solid electrolytic multilayer capacitor and its mounting body
JP2006190929A (en) Solid electrolytic capacitor and its manufacturing method
JP2007142161A (en) Underside-electrode solid electrolytic capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP2009129936A (en) Surface mounting thin-type capacitor and method of manufacturing the same
JP5035999B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006190925A (en) Solid electrolytic capacitor and its manufacturing method
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4352802B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005311216A (en) Solid electrolytic capacitor and its manufacturing method
JP5898927B2 (en) Chip type solid electrolytic capacitor
JP5450001B2 (en) Electrolytic capacitor manufacturing method
JP2010171261A (en) Solid-state electrolytic capacitor
JP4947721B2 (en) Surface mount type electrolytic capacitor
JP2010182745A (en) Method of manufacturing solid electrolytic capacitor
JP5190947B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4766611B2 (en) Surface mount thin capacitor and manufacturing method thereof
JP2009260110A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5035999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250