JP2009260110A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2009260110A
JP2009260110A JP2008108648A JP2008108648A JP2009260110A JP 2009260110 A JP2009260110 A JP 2009260110A JP 2008108648 A JP2008108648 A JP 2008108648A JP 2008108648 A JP2008108648 A JP 2008108648A JP 2009260110 A JP2009260110 A JP 2009260110A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
anode
metal piece
anode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008108648A
Other languages
Japanese (ja)
Inventor
Tadamasa Asami
忠昌 朝見
Yuichi Maruko
雄一 丸子
Toshihisa Nagasawa
寿久 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008108648A priority Critical patent/JP2009260110A/en
Publication of JP2009260110A publication Critical patent/JP2009260110A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor having stable connectivity small in dispersion even if output of laser light is restrained when a positive electrode body end and a positive electrode metal piece of the solid electrolytic capacitor are melted by using a laser welding method. <P>SOLUTION: The solid electrolytic capacitor has recessed shapes in laser light irradiation regions 12 of the positive electrode body ends 2a and the positive electrode metal pieces 6 of a solid electrolytic capacitor element before laser welding. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電子基板上に実装されることが可能な固体電解コンデンサに関するものである。   The present invention relates to a solid electrolytic capacitor that can be mounted on an electronic substrate.

従来、この種のコンデンサとしては3端子伝送線路素子タイプと呼ばれている特許文献1に記載されたものが知られている。また、この単体素子を積層し並列接続して静電容量を高めた固体電解コンデンサも開発されている(例えば特許文献2)。以下、従来の技術について図面を参照しながら説明する。   Conventionally, as this type of capacitor, a capacitor described in Patent Document 1 called a three-terminal transmission line element type is known. A solid electrolytic capacitor in which the single elements are stacked and connected in parallel to increase the capacitance has also been developed (for example, Patent Document 2). Hereinafter, a conventional technique will be described with reference to the drawings.

図4は従来の固体電解コンデンサに用いる固体電解コンデンサ素子を説明する図であり、図4(a)は斜視図、図4(b)は平面図である。又、図5は従来の固体電解コンデンサ素子を示す断面図であり、図5(a)は図4(b)のA−Aで切断した断面図、図5(b)は図4(b)のB−Bで切断した断面図である。図4及び図5に示すように従来の固体電解コンデンサ素子100は、弁作用金属の陽極体2の表面に誘電体皮膜1を形成して、陽極体2の中央部に、固体電解質3を形成し、さらにその上にグラファイト4、銀ペースト5を順次形成する。固体電解質およびグラファイトおよび銀ペーストを併せて陰極層110とする。弁作用金属の陽極体2の陽極体端部2aに平板上の陽極金属片6を接続し固体電解コンデンサ素子100とする。   4A and 4B are diagrams for explaining a solid electrolytic capacitor element used in a conventional solid electrolytic capacitor. FIG. 4A is a perspective view and FIG. 4B is a plan view. 5 is a cross-sectional view showing a conventional solid electrolytic capacitor element. FIG. 5 (a) is a cross-sectional view taken along line AA of FIG. 4 (b), and FIG. 5 (b) is FIG. 4 (b). It is sectional drawing cut | disconnected by BB. As shown in FIGS. 4 and 5, the conventional solid electrolytic capacitor element 100 has a dielectric film 1 formed on the surface of a valve metal anode body 2 and a solid electrolyte 3 formed in the center of the anode body 2. Further, graphite 4 and silver paste 5 are sequentially formed thereon. The solid electrolyte, graphite, and silver paste are combined to form the cathode layer 110. The anode metal piece 6 on the flat plate is connected to the anode body end portion 2 a of the valve action metal anode body 2 to obtain the solid electrolytic capacitor element 100.

図6は従来の固体電解コンデンサ素子積層体を説明する図であり、図6(a)はレーザ溶接前の斜視図、図6(b)はレーザ溶接後の斜視図である。前記固体電解コンデンサ素子100同士を導電性樹脂7で接続し、固体電解コンデンサ素子積層体200を形成する。   6A and 6B are diagrams for explaining a conventional solid electrolytic capacitor element laminate, in which FIG. 6A is a perspective view before laser welding, and FIG. 6B is a perspective view after laser welding. The solid electrolytic capacitor elements 100 are connected by a conductive resin 7 to form a solid electrolytic capacitor element laminate 200.

その後、レーザ溶接法を用いてレーザ光を陽極体2と陽極金属片6に照射して溶融部8を形成し固体電解コンデンサ素子積層体200とする。   Thereafter, the laser beam is used to irradiate the anode body 2 and the anode metal piece 6 with laser light to form the melted portion 8 to obtain a solid electrolytic capacitor element laminate 200.

図7は固体電解コンデンサを説明する断面図である。陽極外部端子9と陰極外部端子10の隙間を埋めるとともに機械的に連結する底面部を有し、前記平面に対して直交する側壁を有するモールド樹脂ケース11を用いて、その内側に露出した陽極外部端子9の表面および陰極外部端子10の表面に、前記固体電解コンデンサ素子積層体200の陽極金属片6および陽極体と陽極金属片の溶融部8、最下部の固体電解コンデンサ素子の陰極層110をそれぞれ導電性樹脂7により接続し、前記側壁に箱型の外装ケース13を被らせて固体電解コンデンサ素子積層体を封入することで固体電解コンデンサ300を得ている。   FIG. 7 is a cross-sectional view illustrating a solid electrolytic capacitor. A mold resin case 11 having a bottom surface portion that fills a gap between the anode external terminal 9 and the cathode external terminal 10 and is mechanically connected and has a side wall orthogonal to the plane is exposed to the outside of the anode. On the surface of the terminal 9 and the surface of the cathode external terminal 10, the anode metal piece 6 of the solid electrolytic capacitor element laminate 200, the melting part 8 of the anode body and anode metal piece, and the cathode layer 110 of the lowermost solid electrolytic capacitor element are provided. The solid electrolytic capacitor 300 is obtained by connecting with the conductive resin 7 and covering the side wall with a box-shaped outer case 13 and enclosing the solid electrolytic capacitor element laminate.

しかしながら、図6に示すように、レーザ溶接法を用いて固体電解コンデンサ素子100の陽極体端部2aおよび陽極金属片6を溶融する場合に、レーザ光が陽極体端部2aおよび陽極金属片6に衝突するとレーザ光の一部が散乱する。散乱したレーザ光のエネルギー分は溶接に必要なエネルギーとして寄与できなくなる。したがって溶接に必要なエネルギーよりも高いエネルギーを供給するためレーザ光の出力を高くする必要がある。   However, as shown in FIG. 6, when the anode body end 2a and the anode metal piece 6 of the solid electrolytic capacitor element 100 are melted using a laser welding method, the laser beam is emitted from the anode body end 2a and the anode metal piece 6. A part of the laser light is scattered when it collides with. The energy of the scattered laser light cannot contribute as energy necessary for welding. Therefore, it is necessary to increase the output of the laser beam in order to supply energy higher than that required for welding.

特開2002−313676号公報JP 2002-313676 A 特開2006−128247号公報JP 2006-128247 A

本発明の技術的課題は、レーザ溶接法を用いて固体電解コンデンサ素子における陽極体端部および陽極金属片を溶融する場合に、レーザ光の出力を抑制してもバラツキの少ない安定した接続性を持つ固体電解コンデンサを提供することにある。   The technical problem of the present invention is to provide stable connectivity with little variation even if the output of laser light is suppressed when the anode end and anode metal piece of a solid electrolytic capacitor element are melted by laser welding. The object is to provide a solid electrolytic capacitor.

本発明によれば、板状または箔状の拡面化した弁作用金属を陽極体とし、前記陽極体の中央領域の表面には酸化皮膜からなる誘電体層が形成され、その上に固体電解質層が形成された後、陽極体端部に陽極金属片を接続した固体電解コンデンサ素子を複数枚積層し、前記陽極体端部および前記陽極金属片がレーザ溶接にて接続された固体電解コンデンサにおいて、前記固体電解コンデンサ素子の前記陽極体端部および前記陽極金属片のレーザ光照射領域部に凹部を有することを特徴とする固体電解コンデンサを得ることが出来る。   According to the present invention, a plate-like or foil-like widened valve action metal is used as an anode body, and a dielectric layer made of an oxide film is formed on the surface of the central region of the anode body, on which a solid electrolyte is formed. In the solid electrolytic capacitor in which a plurality of solid electrolytic capacitor elements each having an anode metal piece connected to the end portion of the anode body are laminated after the layer is formed, and the anode body end portion and the anode metal piece are connected by laser welding. In addition, a solid electrolytic capacitor can be obtained in which the anode body end portion of the solid electrolytic capacitor element and the laser beam irradiation region portion of the anode metal piece have recesses.

又、本発明によれば、前記固体電解コンデンサ素子の前記陽極体端部および前記陽極金属片のレーザ光照射領域部の凹部が楔型又は、半円型の形状であることを特徴とする固体電解コンデンサを得ることが出来る。   According to the present invention, the solid electrolytic capacitor element is characterized in that the anode body end portion and the concave portion of the laser light irradiation region portion of the anode metal piece have a wedge shape or a semicircular shape. An electrolytic capacitor can be obtained.

前述したように、レーザ光は、陽極体端部および陽極金属片に照射することにより、その一部は散乱してしまう。本発明においては、陽極体端部および陽極金属片とのレーザ溶接による溶融部に凹部を有することにより、散乱光が飛散しないことから、レーザ光が陽極体端部および陽極金属片に衝突して発生する散乱光を溶接エネルギーとして有効に使用することが出来る。そのため従来よりもレーザ光の出力を減少させても陽極体端部および陽極金属片との溶融部の溶融面積を維持し、バラツキの少ない安定した接続性を持つ固体電解コンデンサを得ることが出来る。又、レーザ光のエネルギー出力を低減させることから、発熱負荷による製品特性の劣化を防止出来る。   As described above, a part of the laser light is scattered by irradiating the end of the anode body and the anode metal piece. In the present invention, since the laser beam collides with the anode body end portion and the anode metal piece because the scattered light is not scattered by having the concave portion in the melted portion by laser welding with the anode body end portion and the anode metal piece. The generated scattered light can be used effectively as welding energy. Therefore, even if the output of the laser beam is reduced as compared with the prior art, it is possible to obtain a solid electrolytic capacitor having a stable connectivity with little variation while maintaining the melted area of the melted portion between the anode body end and the anode metal piece. Further, since the energy output of the laser beam is reduced, it is possible to prevent the deterioration of the product characteristics due to the heat generation load.

以下に、本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施の形態1の固体電解コンデンサに用いる固体電解コンデンサ素子の構造を示す図であり、図1(a)は斜視図、図1(b)は平面図、図2は本発明の実施の形態1の固体電解コンデンサに用いる固体電解コンデンサ素子を示す図であり、図2(a)は図1(b)のA−A線で切断した断面図、図2(b)は図1(b)のB−B線で切断した断面図である。   FIG. 1 is a diagram showing the structure of a solid electrolytic capacitor element used in the solid electrolytic capacitor according to Embodiment 1 of the present invention. FIG. 1 (a) is a perspective view, FIG. 1 (b) is a plan view, and FIG. It is a figure which shows the solid electrolytic capacitor element used for the solid electrolytic capacitor of Embodiment 1 of invention, FIG.2 (a) is sectional drawing cut | disconnected by the AA line of FIG.1 (b), FIG.2 (b) is FIG. It is sectional drawing cut | disconnected by the BB line of FIG.1 (b).

板状または箔状の弁作用金属の表面をエッチング等により多数の空孔を形成して表面積を200倍等に大きくする拡面化を施し、この拡面化した弁作用金属の陽極体2の表面に誘電体皮膜1を形成する。ここで、弁作用金属としては、タンタル、アルミニウム、ニオブ等を用いることができる。次に、この誘電体皮膜1の上に固体電解質3、グラファイト4、銀ペースト5を順次形成する。固体電解質3は導電性高分子が好適である。前記導電性高分子は、ポリピロールやポリチオフェンやポリアニリン等があり、耐熱性に優れるポリチオフェンが最適である。   The surface of the plate-like or foil-like valve action metal is subjected to surface enlargement by forming a large number of pores by etching or the like to increase the surface area by 200 times or the like. Dielectric film 1 is formed on the surface. Here, tantalum, aluminum, niobium, or the like can be used as the valve metal. Next, a solid electrolyte 3, graphite 4, and silver paste 5 are sequentially formed on the dielectric film 1. The solid electrolyte 3 is preferably a conductive polymer. Examples of the conductive polymer include polypyrrole, polythiophene, and polyaniline, and polythiophene having excellent heat resistance is optimal.

固体電解質3およびグラファイト4および銀ペースト5を併せて陰極層110と呼ぶ。陽極体端部2aの一方の表面には陽極金属片6が超音波溶接または抵抗溶接により接続される。陽極金属片6としては、銅、銅系合金等の板材を用いることができるが、電子部品端子材料からなる板材であるならば、これらに限定されるものではない。後述するレーザ溶接法を用いて陽極体端部2aおよび陽極金属片6は接続されるが、溶接時にレーザ光照射領域12は、一部分を凹部の形状を有しているものである。   The solid electrolyte 3, graphite 4 and silver paste 5 are collectively referred to as a cathode layer 110. Anode metal piece 6 is connected to one surface of anode body end 2a by ultrasonic welding or resistance welding. As the anode metal piece 6, a plate material such as copper or a copper-based alloy can be used. However, the anode metal piece 6 is not limited thereto as long as it is a plate material made of an electronic component terminal material. The anode body end 2a and the anode metal piece 6 are connected using a laser welding method described later, but a part of the laser light irradiation region 12 has a concave shape during welding.

図3は本発明の固体電解コンデンサに用いる固体電解コンデンサ素子の積層体を説明する図である。図3(a)はレーザ溶接前の斜視図、図3(b)はレーザ溶接後の斜視図である。レーザ光照射領域12の部分にレーザを照射することにより、陽極体端部2aおよび陽極金属片6に溶融部8が形成される。   FIG. 3 is a diagram illustrating a laminate of solid electrolytic capacitor elements used in the solid electrolytic capacitor of the present invention. FIG. 3A is a perspective view before laser welding, and FIG. 3B is a perspective view after laser welding. By irradiating the laser light irradiation region 12 with a laser, the melted portion 8 is formed in the anode body end 2 a and the anode metal piece 6.

レーザ光照射領域12の陽極体端部と陽極金属片の凹部は端部が広く内側に至るにしたがって次第に狭くなっている形であることが好ましい。これは、レーザ光が照射されるのは内側の狭くなる部分であり、散乱する場合には照射部分がより狭くなることにより、散乱しづらくなり、本発明の効果がより大きくなるためである。   It is preferable that the anode body end portion of the laser light irradiation region 12 and the concave portion of the anode metal piece have a shape in which the end portion is wide and gradually narrows toward the inside. This is because the laser beam is irradiated on the inner narrow part, and when the laser beam is scattered, the irradiated part becomes narrower, so that it becomes difficult to scatter, and the effect of the present invention becomes greater.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
本発明の実施例1については、図1を参照して説明する。アルミニウムからなる拡面化された平板状の弁作用金属の陽極体1の表面に化成処理(印加電圧6V)により誘電体皮膜1を形成した後、酸化剤溶液であるp−トルエンスルホン酸鉄塩及びモノマー溶液である3,4エチレンジオキシチオフェンを交互に複数回浸漬させ、前記誘電体皮膜の上に固体電解質3を形成する。さらにその上にグラファイト4、銀ペースト5を順次形成し陰極層110とする。
(Example 1)
A first embodiment of the present invention will be described with reference to FIG. After forming the dielectric film 1 by chemical conversion treatment (applied voltage: 6V) on the surface of the flat plate-like valve metal anode body 1 made of aluminum, p-toluenesulfonic acid iron salt which is an oxidant solution Then, 3,4 ethylenedioxythiophene, which is a monomer solution, is alternately immersed a plurality of times to form the solid electrolyte 3 on the dielectric film. Further thereon, graphite 4 and silver paste 5 are sequentially formed to form a cathode layer 110.

弁作用金属の陽極体2(横15mm×縦7mm×厚さ0.06mm)の陽極体端部2aに銅からなる平板状の陽極金属片6(横0.8mm×縦7mm×厚さ0.15mm)を接続し固体電解コンデンサ素子100とする。   A plate-like anode metal piece 6 (width 0.8 mm × length 7 mm × thickness 0. 0 mm) made of copper at the anode body end 2a of the valve action metal anode body 2 (width 15 mm × length 7 mm × thickness 0.06 mm). 15 mm) is connected to form a solid electrolytic capacitor element 100.

次に本発明の実施例1の固体電解コンデンサに用いる固体電解コンデンサ素子積層体について図3を参照しながら説明する。   Next, a solid electrolytic capacitor element laminate used for the solid electrolytic capacitor of Example 1 of the present invention will be described with reference to FIG.

固体電解コンデンサ素子100を3個について導電性樹脂7により接続した後、レーザ光照射領域12に楔形の凹部(底辺0.3mm・高さ0.25mmの二等辺三角形)を有した固体電解コンデンサ素子積層体200を作製する。その後、レーザ光照射領域12に出力45Jのレーザ光を陽極体端部2aおよび陽極金属片6の楔形の凹部に照射して溶融部8を形成する。溶融部8は弁作用金属と銅との合金を形成し、レーザ光の出力は従来よりも10%抑制可能であった。   After three solid electrolytic capacitor elements 100 are connected by the conductive resin 7, the solid electrolytic capacitor element having a wedge-shaped recess (an isosceles triangle having a base of 0.3 mm and a height of 0.25 mm) in the laser light irradiation region 12 The laminated body 200 is produced. Thereafter, the laser light irradiation region 12 is irradiated with laser light having an output of 45 J to the anode body end portion 2 a and the wedge-shaped concave portion of the anode metal piece 6 to form the melted portion 8. The melted part 8 formed an alloy of valve action metal and copper, and the output of the laser beam could be suppressed by 10% compared to the conventional case.

図7の固体電解コンデンサを説明する断面図を参照して説明する。陽極外部端子9と陰極外部端子10の隙間を埋めるとともに機械的に連結する底面部を有し、平面に対して直交する側壁を有するモールド樹脂ケース11を用いて、その内側に露出した陽極外部端子9表面および陰極外部端子10表面に、固体電解コンデンサ素子積層体200の陽極金属片6および陽極体2と陽極金属片6の溶融部8、最下部の固体電解コンデンサ素子の陰極層110をそれぞれ導電ペースト7により接続した後、側壁に箱型の外装ケース13を被らせて固体電解コンデンサ素子を封入することで固体電解コンデンサ300を得た。   The solid electrolytic capacitor shown in FIG. 7 will be described with reference to a cross-sectional view. An anode external terminal exposed to the inside using a mold resin case 11 having a bottom face portion that fills a gap between the anode external terminal 9 and the cathode external terminal 10 and is mechanically connected, and has a side wall perpendicular to the plane. 9 and the cathode external terminal 10 are respectively electrically conductive with the anode metal piece 6 of the solid electrolytic capacitor element laminate 200, the molten portion 8 of the anode body 2 and the anode metal piece 6, and the cathode layer 110 of the lowermost solid electrolytic capacitor element. After connecting with the paste 7, a solid electrolytic capacitor 300 was obtained by covering the side wall with a box-shaped outer case 13 and enclosing the solid electrolytic capacitor element.

(実施例2)
以下、本発明の実施例2について図面を参照しながら説明する。図8は実施例2の固体電解コンデンサに用いる固体電解コンデンサ素子の陽極体端部と陽極金属片の形状を説明する図であり、図8(a)は斜視図、図8(b)は平面図である。レーザ光照射領域12は、半径0.25mmの半円型の凹部形状であること以外は、前述した実施例1と同一である。
(Example 2)
Embodiment 2 of the present invention will be described below with reference to the drawings. 8A and 8B are views for explaining the shape of the anode body end portion and anode metal piece of the solid electrolytic capacitor element used in the solid electrolytic capacitor of Example 2, FIG. 8A is a perspective view, and FIG. 8B is a plan view. FIG. The laser light irradiation region 12 is the same as that of the first embodiment described above except that the laser light irradiation region 12 has a semicircular concave shape with a radius of 0.25 mm.

次に実施例2における固体電解コンデンサ素子積層体200について図9を参照しながら説明する。図9は実施例2における固体電解コンデンサ素子積層体を説明する図であり、図9(a)はレーザ溶接前の斜視図、図9(b)はレーザ溶接後の斜視図である。積層された固体電解コンデンサ素子積層体200の陰極層110同士を導電性樹脂7により接続した後、レーザ光を陽極体端部2aおよび陽極金属片6のレーザ光照射領域12に照射して溶融部8を形成する。溶融部8は弁作用金属と銅との合金を形成する。レーザ光の出力は従来よりも8%抑制可能であった。   Next, the solid electrolytic capacitor element multilayer body 200 in Example 2 will be described with reference to FIG. 9A and 9B are diagrams illustrating a solid electrolytic capacitor element laminate in Example 2. FIG. 9A is a perspective view before laser welding, and FIG. 9B is a perspective view after laser welding. After the cathode layers 110 of the laminated solid electrolytic capacitor element laminate 200 are connected by the conductive resin 7, the laser beam is irradiated to the anode end 2 a and the laser beam irradiation region 12 of the anode metal piece 6 to melt the melted portion. 8 is formed. The melting part 8 forms an alloy of valve action metal and copper. The output of the laser beam can be suppressed by 8% compared to the conventional case.

(比較例1)
固体電解コンデンサに用いる固体電解コンデンサ素子の陽極体端部2aと陽極金属片6のレーザ光照射領域12の一部分に凹部の形状を有していないこと以外は実施例1と同様に固体電解コンデンサを作製した。
(Comparative Example 1)
A solid electrolytic capacitor was used in the same manner as in Example 1 except that the anode body end 2a of the solid electrolytic capacitor element used for the solid electrolytic capacitor and a part of the laser light irradiation region 12 of the anode metal piece 6 did not have a concave shape. Produced.

(比較例2)
レーザ光を陽極体端部2aおよび陽極金属片6のレーザ光照射領域12に照射して溶融部8を形成する際のレーザ出力が比較例1の1.2倍であること以外は比較例1と同様に固体電解コンデンサを作製した。
(Comparative Example 2)
Comparative Example 1 except that the laser output when forming the melted part 8 by irradiating the laser beam to the laser beam irradiation region 12 of the anode body end 2a and the anode metal piece 6 is 1.2 times that of Comparative Example 1. A solid electrolytic capacitor was produced in the same manner as described above.

次に、表1にはレーザ出力による溶接強度及び漏れ電流値の100個の平均値を示す。   Next, Table 1 shows 100 average values of welding strength and leakage current value by laser output.

Figure 2009260110
Figure 2009260110

表1からも、本発明の実施例1及び2はレーザ出力を抑制させても溶接強度が比較例と同等となっている。比較例よりもレーザ出力を高くすると(比較例×1.2)、溶接強度は高くなるが、漏れ電流値が大きくなり、前述したように発熱負荷による製品特性の劣化と言った弊害が生じてしまう。このことから、本発明はレーザ出力を抑制しても安定した溶接性を得る発明であると言える。   Also from Table 1, Examples 1 and 2 of the present invention have a welding strength equivalent to that of the comparative example even if the laser output is suppressed. When the laser output is made higher than that of the comparative example (comparative example × 1.2), the welding strength is increased, but the leakage current value is increased, and as described above, the product characteristics are deteriorated due to the heat generation load. End up. From this, it can be said that the present invention is an invention for obtaining stable weldability even when the laser output is suppressed.

本特許にかかる固体電解コンデンサおよび製造方法は、電子機器、電気機器に用いられるコンデンサに適用される。また、固体電解コンデンサおよび製造方法をもちいた伝送線路素子、電子機器、特にデカップリング回路に適用される。   The solid electrolytic capacitor and the manufacturing method according to this patent are applied to capacitors used in electronic equipment and electrical equipment. Further, the present invention is applied to a transmission line element and an electronic device, particularly a decoupling circuit using a solid electrolytic capacitor and a manufacturing method.

本発明の実施の形態1の固体電解コンデンサに用いる固体電解コンデンサ素子の構造を示す図、図1(a)は斜視図、図1(b)は平面図。The figure which shows the structure of the solid electrolytic capacitor element used for the solid electrolytic capacitor of Embodiment 1 of this invention, Fig.1 (a) is a perspective view, FIG.1 (b) is a top view. 本発明の実施の形態1の固体電解コンデンサに用いる固体電解コンデンサ素子を示す図、図2(a)は図1(b)のA−Aで切断した断面図、図2(b)は図1(b)のB−Bで切断した断面図。The figure which shows the solid electrolytic capacitor element used for the solid electrolytic capacitor of Embodiment 1 of this invention, FIG.2 (a) is sectional drawing cut | disconnected by AA of FIG.1 (b), FIG.2 (b) is FIG. Sectional drawing cut | disconnected by BB of (b). 本発明の固体電解コンデンサに用いる固体電解コンデンサ素子の積層体を説明する図、図3(a)はレーザ溶接前の斜視図。図3(b)はレーザ溶接後の斜視図。The figure explaining the laminated body of the solid electrolytic capacitor element used for the solid electrolytic capacitor of this invention, Fig.3 (a) is a perspective view before laser welding. FIG. 3B is a perspective view after laser welding. 従来の固体電解コンデンサに用いる固体電解コンデンサ素子を説明する図、図4(a)は斜視図、図4(b)は平面図。The figure explaining the solid electrolytic capacitor element used for the conventional solid electrolytic capacitor, Fig.4 (a) is a perspective view, FIG.4 (b) is a top view. 従来の固体電解コンデンサ素子を示す断面図、図5(a)は図4(b)のA−Aで切断した断面図、図5(b)は図4(b)のB−Bで切断した断面図。Sectional drawing which shows the conventional solid electrolytic capacitor element, FIG.5 (a) is sectional drawing cut | disconnected by AA of FIG.4 (b), FIG.5 (b) was cut | disconnected by BB of FIG.4 (b). Sectional drawing. 従来の固体電解コンデンサ素子積層体を説明する図、図6(a)はレーザ溶接前の斜視図、図6(b)はレーザ溶接後の斜視図。The figure explaining the conventional solid electrolytic capacitor element laminated body, Fig.6 (a) is a perspective view before laser welding, FIG.6 (b) is a perspective view after laser welding. 固体電解コンデンサを説明する断面図。Sectional drawing explaining a solid electrolytic capacitor. 実施例2の固体電解コンデンサに用いる固体電解コンデンサ素子の陽極体端部と陽極金属片の形状を説明する図、図8(a)は斜視図、図8(b)は平面図。The figure explaining the shape of the anode body edge part and anode metal piece of a solid electrolytic capacitor element used for the solid electrolytic capacitor of Example 2, Fig.8 (a) is a perspective view, FIG.8 (b) is a top view. 実施例2における固体電解コンデンサ素子積層体を説明する図、図9(a)はレーザ溶接前の斜視図。図9(b)はレーザ溶接後の斜視図。The figure explaining the solid electrolytic capacitor element laminated body in Example 2, Fig.9 (a) is a perspective view before laser welding. FIG. 9B is a perspective view after laser welding.

符号の説明Explanation of symbols

1 誘電体皮膜
2 陽極体
2a 陽極体端部
3 固体電解質
4 グラファイト
5 銀ペースト
6 陽極金属片
7 導電性樹脂
8 溶融部
9 陽極外部端子
10 陰極外部端子
11 モールド樹脂ケース
12 レーザ光照射領域
13 外装ケース
100 固体電解コンデンサ素子
110 陰極層
200 固体電解コンデンサ素子積層体
300 固体電解コンデンサ
DESCRIPTION OF SYMBOLS 1 Dielectric film 2 Anode body 2a Anode body edge part 3 Solid electrolyte 4 Graphite 5 Silver paste 6 Anode metal piece 7 Conductive resin 8 Melting part 9 Anode external terminal 10 Cathode external terminal 11 Mold resin case 12 Laser light irradiation area 13 Exterior Case 100 Solid electrolytic capacitor element 110 Cathode layer 200 Solid electrolytic capacitor element laminate 300 Solid electrolytic capacitor

Claims (2)

板状または箔状の拡面化した弁作用金属を陽極体とし、前記陽極体の中央領域の表面には酸化皮膜からなる誘電体層が形成され、その上に固体電解質層が形成された後、陽極体端部に陽極金属片を接続した固体電解コンデンサ素子を複数枚積層し、前記陽極体端部および前記陽極金属片がレーザ溶接にて接続された固体電解コンデンサにおいて、前記固体電解コンデンサ素子の前記陽極体端部および前記陽極金属片のレーザ光照射領域部に凹部を有することを特徴とする固体電解コンデンサ。   After a plate-like or foil-like expanded valve metal is used as an anode body, a dielectric layer made of an oxide film is formed on the surface of the central region of the anode body, and a solid electrolyte layer is formed thereon A solid electrolytic capacitor in which a plurality of solid electrolytic capacitor elements each having an anode metal piece connected to an anode body end portion are stacked, and the anode body end portion and the anode metal piece are connected by laser welding. A solid electrolytic capacitor characterized in that the anode body end portion and the laser beam irradiation region portion of the anode metal piece have recesses. 前記固体電解コンデンサ素子の前記陽極体端部および前記陽極金属片のレーザ光照射領域部の凹部が楔型又は、半円型の形状であることを特徴とする請求項1に記載の固体電解コンデンサ。   2. The solid electrolytic capacitor according to claim 1, wherein the anode body end portion of the solid electrolytic capacitor element and the concave portion of the laser light irradiation region portion of the anode metal piece have a wedge shape or a semicircular shape. .
JP2008108648A 2008-04-18 2008-04-18 Solid electrolytic capacitor Pending JP2009260110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108648A JP2009260110A (en) 2008-04-18 2008-04-18 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108648A JP2009260110A (en) 2008-04-18 2008-04-18 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2009260110A true JP2009260110A (en) 2009-11-05

Family

ID=41387151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108648A Pending JP2009260110A (en) 2008-04-18 2008-04-18 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2009260110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641150B2 (en) * 2011-09-26 2014-12-17 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090893A (en) * 1998-09-17 2000-03-31 Japan Storage Battery Co Ltd Battery and manufacture thereof
JP2000176664A (en) * 1998-10-06 2000-06-27 Nissan Motor Co Ltd Laser beam welding method for aluminum alloy member
JP2002313676A (en) * 2001-04-09 2002-10-25 Nec Tokin Corp Surface mount capacitor
JP2006128247A (en) * 2004-10-27 2006-05-18 Nec Tokin Corp Surface-mounted capacitor and its manufacturing method
JP2006324521A (en) * 2005-05-19 2006-11-30 Tdk Corp Solid electrolytic capacitor and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090893A (en) * 1998-09-17 2000-03-31 Japan Storage Battery Co Ltd Battery and manufacture thereof
JP2000176664A (en) * 1998-10-06 2000-06-27 Nissan Motor Co Ltd Laser beam welding method for aluminum alloy member
JP2002313676A (en) * 2001-04-09 2002-10-25 Nec Tokin Corp Surface mount capacitor
JP2006128247A (en) * 2004-10-27 2006-05-18 Nec Tokin Corp Surface-mounted capacitor and its manufacturing method
JP2006324521A (en) * 2005-05-19 2006-11-30 Tdk Corp Solid electrolytic capacitor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641150B2 (en) * 2011-09-26 2014-12-17 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5132374B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5466722B2 (en) Solid electrolytic capacitor
JP4662368B2 (en) Manufacturing method of solid electrolytic capacitor
TWI466155B (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP4660544B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP2011228518A (en) Solid electrolytic capacitor and method for producing the same
JP2008078312A (en) Solid electrolytic capacitor
JP2008283094A (en) Solid electrolytic capacitor
JP2008270464A (en) Solid-state electrolytic capacitor
JP2009260110A (en) Solid electrolytic capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009054681A (en) Surface-mounted capacitor, and manufacturing method thereof
JP5035999B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4756649B2 (en) Surface mount thin capacitors
WO2017163571A1 (en) Electrolytic capacitor
JP2005236171A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010182745A (en) Method of manufacturing solid electrolytic capacitor
JP5190947B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5546919B2 (en) Solid electrolytic capacitor
JP2005051051A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010147274A (en) Solid electrolytic capacitor
JP5258071B2 (en) Solid electrolytic capacitor
JP5770444B2 (en) Solid electrolytic capacitor
JP2008177236A (en) Surface mount multilayer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Effective date: 20120328

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

A02 Decision of refusal

Effective date: 20120606

Free format text: JAPANESE INTERMEDIATE CODE: A02