JPWO2013084862A1 - Active material for positive electrode, method for producing the same, and lithium ion secondary battery - Google Patents

Active material for positive electrode, method for producing the same, and lithium ion secondary battery Download PDF

Info

Publication number
JPWO2013084862A1
JPWO2013084862A1 JP2013548237A JP2013548237A JPWO2013084862A1 JP WO2013084862 A1 JPWO2013084862 A1 JP WO2013084862A1 JP 2013548237 A JP2013548237 A JP 2013548237A JP 2013548237 A JP2013548237 A JP 2013548237A JP WO2013084862 A1 JPWO2013084862 A1 JP WO2013084862A1
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013548237A
Other languages
Japanese (ja)
Inventor
宮山 勝
勝 宮山
祐二 野口
祐二 野口
中村 聡
中村  聡
佐知子 柳原
佐知子 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2013548237A priority Critical patent/JPWO2013084862A1/en
Publication of JPWO2013084862A1 publication Critical patent/JPWO2013084862A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

低コスト及び安全性を図りつつ、従来よりも充放電速度が速く、かつ大きな充放電容量を得ることができる正極用活物質、その製造方法及びリチウムイオン二次電池を提案する。本発明の正極用活物質では、ケイ酸鉄リチウム、ケイ酸マンガンリチウム、及びこれらを含む固溶体のうちいずれか一種に、銅、バナジウム、及びチタンのうち少なくともいずれか1種を含む構成とした。これにより、この正極用活物質では、希少元素であるCoやNiを用いていないことから低コスト及び安全性を図れ、これに加えて、従来よりも電子伝導度を向上させることができるので、速い充放電速度において体積当たりの放電容量、又は重量当たりの放電容量を増加させることができ、かくして従来よりも充放電速度が速く、かつ大きな充放電容量を得ることができる。The present invention proposes an active material for a positive electrode, a method for producing the same, and a lithium ion secondary battery capable of obtaining a large charge / discharge capacity at a higher charge / discharge rate than before, while achieving low cost and safety. In the active material for positive electrodes of the present invention, any one of lithium iron silicate, lithium manganese silicate, and a solid solution containing these is included in at least one of copper, vanadium, and titanium. Thereby, in this positive electrode active material, since it is not using rare elements Co and Ni, low cost and safety can be achieved, and in addition to this, since the electron conductivity can be improved than before, The discharge capacity per volume or the discharge capacity per weight can be increased at a high charge / discharge rate, and thus the charge / discharge rate is faster than before and a large charge / discharge capacity can be obtained.

Description

本発明は、正極用活物質、その製造方法及びリチウムイオン二次電池に関し、リチウムイオンをイオン導電媒体として用いるリチウムイオン二次電池に適用して好適なものである。   The present invention relates to a positive electrode active material, a method for producing the same, and a lithium ion secondary battery, and is suitable for application to a lithium ion secondary battery using lithium ions as an ion conductive medium.

近年、リチウムイオン二次電池は、体積当たりの容量及び重量当たりの容量が大きいという特徴を有しており、携帯電話や、ノート型パーソナルコンピュータ、電気自動車等の電源として広く用いられている。ここで、リチウムイオン二次電池とは、正極及び負極にリチウムイオンの吸蔵放出が可能な活物質(正極用活物質、負極用活物質)をそれぞれ有し、電解質内をリチウムイオンが移動することによって動作する電池である。負極用活物質としては、炭素材料等のようにリチウムイオンを吸蔵放出できる材料のほか、Liや、Al、Si等のLiと合金を形成する金属材料を使用することもできる。   In recent years, lithium ion secondary batteries have a feature of large capacity per volume and large capacity per weight, and are widely used as power sources for mobile phones, notebook personal computers, electric vehicles, and the like. Here, the lithium ion secondary battery has an active material (positive electrode active material, negative electrode active material) capable of occluding and releasing lithium ions in the positive electrode and the negative electrode, respectively, and lithium ions move in the electrolyte. It is a battery that operates by. As the negative electrode active material, in addition to a material capable of occluding and releasing lithium ions, such as a carbon material, a metal material that forms an alloy with Li, such as Li, Al, or Si can also be used.

一方、リチウムイオン二次電池の正極用活物質としては、LiCoOや、LiNiO、LiNi1/3Co1/3Mn1/3等の層状構造化合物が使用されてきた。そして、従来、これら正極用活物質では、その材料として、希少元素であるCoやNiを使用しているために製造コストが高くなってしまうという問題があった。On the other hand, a layered structure compound such as LiCoO 2 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 or the like has been used as the positive electrode active material of the lithium ion secondary battery. Conventionally, these positive electrode active materials have a problem that the manufacturing cost is increased because Co or Ni, which are rare elements, are used as the material.

また、これらの材料を用いた正極用活物質は、過充電や短絡により大電流が流れると、急速に温度上昇し、さらに酸素を放出する。可燃性の有機溶媒であるリチウムイオン二次電池の電解質では、この温度上昇と酸素供給により発火し、爆発的に燃焼してしまう虞がある。このため、これら材料からなる正極用活物質を用いたリチウムイオン二次電池では、保護回路や短絡防止策を組み込んだ素子を設けて市販されることが多い。   Moreover, when a large current flows due to overcharge or short circuit, the positive electrode active material using these materials rapidly rises in temperature and further releases oxygen. An electrolyte of a lithium ion secondary battery, which is a flammable organic solvent, may ignite due to this temperature rise and oxygen supply, and may burn explosively. For this reason, lithium ion secondary batteries using positive electrode active materials made of these materials are often marketed with elements incorporating protection circuits and short circuit prevention measures.

しかしながら、これらの正極用活物質を使用する限りは、保護回路等を設けても本質的な危険は回避することができず、何らかの原因で事故が発生してしまう虞もある。そこで、近年では、これら上述した問題点を解決すべく、リチウムイオン二次電池の正極用活物質として、CoやNiのような希少元素を使用することなく、また過熱しても酸素を放出しないLiFePOや、Li2FeSiO等のように正極用活物質が開発されている(例えば、特許文献1参照)。However, as long as these positive electrode active materials are used, even if a protective circuit or the like is provided, the essential danger cannot be avoided, and an accident may occur for some reason. Therefore, in recent years, in order to solve the above-mentioned problems, oxygen is not released even when overheating without using a rare element such as Co or Ni as a positive electrode active material of a lithium ion secondary battery. Active materials for positive electrodes such as LiFePO 4 and Li 2 FeSiO 4 have been developed (see, for example, Patent Document 1).

特許第3484003号公報Japanese Patent No. 3484003

しかしながら、例えばLiFePOや、Li2FeSiOからなる正極用活物質では、電子伝導度が低く、速い充放電速度においては、体積当たりの放電容量、又は重量当たりの放電容量が小さいことから、大充放電容量の要請に応えることができないという問題があった。However, an active material for a positive electrode made of, for example, LiFePO 4 or Li 2 FeSiO 4 has a low electron conductivity, and at a high charge / discharge rate, the discharge capacity per volume or the discharge capacity per weight is small. There was a problem that it was not possible to meet the demand for charge / discharge capacity.

そこで、本発明は以上の点を考慮してなされたもので、低コスト及び安全性を図りつつ、従来よりも充放電速度が速く、かつ大きな充放電容量を得ることができる正極用活物質、その製造方法及びリチウムイオン二次電池を提案することを目的とする。   Therefore, the present invention was made in consideration of the above points, and while achieving low cost and safety, the active material for a positive electrode capable of obtaining a large charge / discharge capacity at a higher charge / discharge rate than before, It aims at proposing the manufacturing method and a lithium ion secondary battery.

かかる課題を解決するため本発明の請求項1は、ケイ酸鉄リチウム、ケイ酸マンガンリチウム、及びこれらを含む固溶体(結晶構造はそのままで、その中のある原子が別の原子に置き換わっているものをいい、例えば、ケイ酸鉄マンガンリチウム等を含むものである)のうちいずれか1種に、銅、バナジウム、及びチタンのうち少なくともいずれか1種を含むことを特徴とする正極用活物質である。   In order to solve such a problem, claim 1 of the present invention provides lithium iron silicate, lithium manganese silicate, and a solid solution containing them (the crystal structure remains as it is, in which one atom is replaced with another atom) For example, including lithium iron manganese silicate), and at least one of copper, vanadium, and titanium.

また、請求項4は、Cu、V、及びTiのうち少なくともいずれか1種を含む第1溶液と、Fe及びMnのうち少なくともいずれか1種を含む第2溶液と、ケイ酸懸濁液又はオルトケイ酸テトラアルキル(Si(OR)、Rはアルキル基)のいずれかとを、水酸化リチウム溶液と混合して原料液を生成する溶液生成ステップと、低酸素雰囲気下で前記原料液を水熱処理し、ケイ酸鉄リチウム、ケイ酸マンガンリチウム、及びこれらを含む固溶体のうちいずれか一種に、銅、バナジウム、及びチタンのうち少なくともいずれか1種を含んだ正極用活物質を生成する処理ステップとを備えることを特徴とする正極用活物質製造方法である。Further, the present invention provides a first solution containing at least one of Cu, V, and Ti, a second solution containing at least one of Fe and Mn, and a silicic acid suspension or A solution generation step of mixing any of tetraalkyl orthosilicate (Si (OR) 4 , R is an alkyl group) with a lithium hydroxide solution to generate a raw material liquid, and hydrothermally treating the raw material liquid in a low oxygen atmosphere And a treatment step of generating a positive electrode active material containing at least one of copper, vanadium, and titanium in any one of lithium iron silicate, lithium manganese silicate, and a solid solution containing these, and A method for producing a positive electrode active material, comprising:

本発明の請求項1によれば、希少元素であるCoやNiを用いていないことから低コスト及び安全性を図れ、これに加えて、従来よりも電子伝導度を向上させることができるので、速い充放電速度において体積当たりの放電容量、又は重量当たりの放電容量を増加させることができ、かくして従来よりも充放電速度が速く、かつ大きな充放電容量を得ることができる正極用活物質及びリチウムイオン二次電池を提案できる。   According to claim 1 of the present invention, since the rare elements Co and Ni are not used, low cost and safety can be achieved, and in addition to this, since the electron conductivity can be improved as compared with the prior art, Active material for positive electrode and lithium capable of increasing discharge capacity per volume or discharge capacity per weight at a high charge / discharge rate, thus providing a higher charge / discharge capacity and a higher charge / discharge capacity than conventional ones An ion secondary battery can be proposed.

また、請求項4によれば、低コスト及び安全性を維持しつつ、従来よりも充放電速度が速く、かつ大きな充放電容量を得ることができる正極用活物質を製造できる。   According to the fourth aspect of the present invention, it is possible to manufacture an active material for a positive electrode capable of obtaining a large charge / discharge capacity at a higher charge / discharge rate than the conventional one while maintaining low cost and safety.

エネルギーバンドを示す概略図である。It is the schematic which shows an energy band. 実施例2にCu含有量を増加させていったときの格子定数の変化の様子と、比較例2の格子定数とを示すグラフである。It is a graph which shows the mode of the change of the lattice constant when increasing Cu content to Example 2, and the lattice constant of the comparative example 2. FIG. 実施例1及び比較例1を用いた充放電特性試験により得られた充放電曲線を示すグラフである。It is a graph which shows the charging / discharging curve obtained by the charging / discharging characteristic test using Example 1 and Comparative Example 1. FIG. 実施例2、実施例3及び比較例2を用いた充放電特性試験により得られた放電曲線を示すグラフである。It is a graph which shows the discharge curve obtained by the charging / discharging characteristic test using Example 2, Example 3, and Comparative Example 2. FIG. 実施例4を用いた充放電特性試験により得られた放電曲線を示すグラフである。6 is a graph showing a discharge curve obtained by a charge / discharge characteristic test using Example 4. FIG.

以下図面に基づいて本発明の実施の形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明による正極用活物質は、鉄及びマンガンのうち少なくともいずれか1種を含むリチウムケイ酸塩に、銅(Cu)、バナジウム(V)及びチタン(Ti)のうち少なくともいずれか1種を含んだ構成を有しており、リチウムイオン二次電池の正極に用いられることにより、当該リチウムイオン二次電池の大容量化と高速充放電動作を実現し得る。なお、本発明におけるリチウムイオン二次電池は、例えば負極用活物質が炭素材料等である等、正極用活物質以外の構成については一般的なリチウムイオン二次電池の構成と同じであることから、ここではリチウムイオン二次電池の全体説明は省略し、正極用活物質についてのみ着目して、以下説明する。   The positive electrode active material according to the present invention includes at least one of copper (Cu), vanadium (V), and titanium (Ti) in a lithium silicate containing at least one of iron and manganese. By using the positive electrode of the lithium ion secondary battery, the capacity of the lithium ion secondary battery and the high-speed charge / discharge operation can be realized. The lithium ion secondary battery in the present invention has the same configuration as that of a general lithium ion secondary battery except for the positive electrode active material, for example, the negative electrode active material is a carbon material or the like. Here, the entire description of the lithium ion secondary battery is omitted, and only the active material for the positive electrode will be described below.

実際上、本発明の正極用活物質は、Cu、V及びTiのうち少なくともいずれか1種を含んだ所定化学組成のリチウムケイ酸塩とすることにより、電子伝導度を向上させ得る。ここでは、先ず初めに、リチウムケイ酸塩の電子伝導度の向上を目的として、各種遷移金属を添加物としてそれぞれ含むリチウムケイ酸塩について、精密な電子状態計算を行った。この電子状態計算では、オンサイト電子相関を厳密に取り入れた局所スピン密度近似法を採用した。これらケイ酸マンガンリチウム(以下、Mn系とも呼ぶ)で得られた計算結果を表1に示す。なお、この電子状態計算ではフェルミ準位を0[eV]としている。   In practice, the positive electrode active material of the present invention can improve the electronic conductivity by using a lithium silicate having a predetermined chemical composition containing at least one of Cu, V and Ti. Here, first, for the purpose of improving the electronic conductivity of the lithium silicate, a precise electronic state calculation was carried out for the lithium silicate containing various transition metals as additives. In this electronic state calculation, the local spin density approximation method which adopted on-site electron correlation strictly was adopted. Table 1 shows the calculation results obtained with these lithium manganese silicate (hereinafter also referred to as Mn-based). In this electronic state calculation, the Fermi level is 0 [eV].

Figure 2013084862
Figure 2013084862

ここで、Mn系のエネルギーバンドについては、図1に示すように、価電子帯及び伝導帯間の禁制帯の幅Egが3.7[eV](価電子帯上端Evが0[eV]、伝導帯下端Ecが3.7[eV])となった。表1からCuをMn系に添加した場合は、価電子帯上端Ev近傍の0[eV]から1[eV]付近に、空の欠陥準位をもつ。従って、CuをMn系における添加物とした場合には、電子の詰まっているMn系の価電子帯の電子が、Cuの空の欠陥準位に移ることから、価電子帯に正孔が生じ、電子正孔(正孔)の伝導による電子伝導度の増大が期待される。   Here, for the Mn-based energy band, as shown in FIG. 1, the forbidden band width Eg between the valence band and the conduction band is 3.7 [eV] (the valence band upper end Ev is 0 [eV], the conduction band). The lower end Ec was 3.7 [eV]). From Table 1, when Cu is added to the Mn system, it has an empty defect level in the vicinity of 0 [eV] to 1 [eV] in the vicinity of the valence band upper end Ev. Therefore, when Cu is used as an additive in the Mn system, electrons in the valence band of the Mn system that are clogged with electrons move to an empty defect level of Cu, and holes are generated in the valence band. An increase in electron conductivity due to conduction of electron holes (holes) is expected.

一方、表1からTi、V、及びCrをMn系に添加した場合は、伝導帯下端Ec近傍の3.0[eV]から4.0[eV]付近に、電子に占有された欠陥準位をもつ。従って、これらTi、V、及びCrをMn系における添加物とした場合には、添加物の欠陥準位にある電子が、電子の詰まっていないMn系の伝導帯に移ることから、自由電子の伝導による電子伝導度の増大が期待される。しかしながら、表1にあるCoやNiは、伝導帯下端Ec近傍の3.0[eV]から4.0[eV]付近に、空の欠陥準位をもっていることから、Ti、V、及びCrのような自由電子の伝導による電子伝導度の増大は期待できない。   On the other hand, when Ti, V, and Cr are added to the Mn system from Table 1, there are defect levels occupied by electrons in the vicinity of 3.0 [eV] to 4.0 [eV] near the lower end Ec of the conduction band. Therefore, when these Ti, V, and Cr are used as additives in the Mn system, electrons in the defect level of the additive move to a Mn-based conduction band in which electrons are not clogged. An increase in electronic conductivity due to conduction is expected. However, Co and Ni in Table 1 have free defect levels in the vicinity of 3.0 [eV] to 4.0 [eV] in the vicinity of the conduction band lower end Ec, so that free electrons such as Ti, V, and Cr are used. The increase in electron conductivity due to conduction cannot be expected.

このことからMn系では、エネルギーバンドの価電子帯及び伝導帯と、各添加物の欠陥準位の電子状態とを照らし合わせると、電子伝導度の増大に有効な添加物としてTi、V、Cr、及びCuが有効であることが明らかになった。   Therefore, in the Mn system, when the valence band and conduction band of the energy band are compared with the electronic state of the defect level of each additive, Ti, V, and Cr are effective additives for increasing the electron conductivity. And Cu were found to be effective.

次に、欠陥準位から見て電子伝導度の増大に有効であったTi、V、Cr、及びCuの4つの添加物について、実際、それぞれMn系に添加して各添加物をMn系に含ませることができるか否かについて確認した。その結果、Ti、V、及びCuの3つの添加物については、いずれもマンガンと置換した構造体となり得、Mn系に含ませることができた。しかしながら、Crについては、マンガンと置換せず、Mn系と分離した構造体となってしまい、Mn系に含ませることができなかった。従って、Mn系の電子伝導度を向上し得る添加物としては、Cu、V及びTiのうち少なくともいずれか1種が好ましいことが確認できた。   Next, four additives of Ti, V, Cr, and Cu that were effective in increasing the electron conductivity when viewed from the defect level were actually added to the Mn system, and each additive was converted to the Mn system. It was confirmed whether it could be included. As a result, the three additives of Ti, V, and Cu could all be replaced with manganese and included in the Mn system. However, Cr was not substituted with manganese, but became a structure separated from Mn, and could not be included in Mn. Accordingly, it was confirmed that at least one of Cu, V and Ti is preferable as an additive capable of improving the Mn-based electron conductivity.

次に、ケイ酸鉄リチウム(以下、Fe系とも呼ぶ)についても、上述したMn系と同様に、オンサイト電子相関を厳密に取り入れた局所スピン密度近似法を採用して、電子状態計算を行った。その結果、Fe系では下記の表2に示すような計算結果が得られた。   Next, for lithium iron silicate (hereinafter also referred to as Fe system), as in the case of Mn system described above, an electronic state calculation is performed by adopting a local spin density approximation method that strictly incorporates on-site electron correlation. It was. As a result, the calculation results shown in Table 2 below were obtained for the Fe system.

Figure 2013084862
Figure 2013084862

Fe系では、価電子帯及び伝導体間の禁制帯(図1)の幅Egが3.2[eV](価電子帯上端Evが0[eV]、伝導帯下端Ecが3.2[eV])となった。そして、このFe系の価電子帯及び伝導帯と、各添加物の欠陥準位の電子状態とを照らし合わせ、上述したMn系と同様の考え方から電子伝導度の増大に有効となる添加物を確認したところ、Fe系でも、Ti、V、Cr、及びCuが電子伝導度の増大に有効であることが確認できた。   In the Fe system, the width Eg of the forbidden band between the valence band and the conductor (FIG. 1) is 3.2 [eV] (the valence band upper end Ev is 0 [eV] and the conduction band lower end Ec is 3.2 [eV]). It was. Then, the Fe-based valence band and conduction band are compared with the electronic states of the defect levels of each additive, and an additive that is effective in increasing the electron conductivity from the same concept as the Mn system described above. As a result of confirmation, it was confirmed that Ti, V, Cr, and Cu are effective in increasing the electron conductivity even in the Fe system.

次に、欠陥準位から見て電子伝導度の増大に有効であったTi、V、Cr、及びCuの4つの添加物について、実際、それぞれFe系に添加して、各添加物をFe系に含ませることができるか否かについて確認した。その結果、Ti、V、及びCuの3つの添加物については、いずれも鉄と置換した構造体となり得、Fe系に含ませることができた。しかしながら、Crは、鉄と置換せず、Fe系と分離した構造体となってしまい、Fe系に含ませることができなかった。従って、Fe系の電子伝導度を向上し得る添加物としては、Cu、V及びTiのうち少なくともいずれか1種が好ましいことが確認できた。   Next, four additives of Ti, V, Cr, and Cu that were effective in increasing the electron conductivity as viewed from the defect level were actually added to the Fe system, and each additive was added to the Fe system. It was confirmed whether or not it can be included. As a result, all of the three additives of Ti, V, and Cu could be replaced with iron and included in the Fe system. However, Cr did not replace iron, but became a structure separated from the Fe system, and could not be included in the Fe system. Accordingly, it was confirmed that at least one of Cu, V and Ti is preferable as an additive capable of improving the Fe-based electronic conductivity.

因みに、従来、Mn系やFe系のリチウムケイ酸塩は、一般的に、電子伝導度が低く、構造内からリチウムイオンを高速に出し入れすることができず、これを正極用活物質として使用しても、高速充放電が可能な大容量リチウムイオン二次電池を実現することは困難であった。   Incidentally, conventionally, Mn-based and Fe-based lithium silicates generally have low electronic conductivity, and lithium ions cannot be taken in and out of the structure at high speed, and this is used as a positive electrode active material. However, it has been difficult to realize a large-capacity lithium ion secondary battery capable of high-speed charge / discharge.

これに対して本発明の正極用活物質では、Mn系及び又はFe系のリチウムケイ酸塩に、Cu、V、及びTiのうち少なくともいずれか1種を含ませることにより、新たな電子伝導準位が形成され、電子伝導度を高くできる。従って、本発明による正極用活物質を用いたリチウムイオン二次電池では、電子の授受に応答するリチウムイオンの正極用活物質からの挿入脱離速度が高くなり、高速で充放電が大容量まで可能なリチウムイオン二次電池を実現し得る。なお、ここで、Mn系及び又はFe系のリチウムケイ酸塩とは、ケイ酸鉄リチウム、又はケイ酸マンガンリチウムのいずれか一方の他、これらケイ酸鉄リチウム及びケイ酸マンガンリチウムの固溶体も含むものである。   On the other hand, in the positive electrode active material of the present invention, by adding at least one of Cu, V, and Ti to the Mn-based and / or Fe-based lithium silicate, a new electron conduction level is obtained. As a result, the electron conductivity can be increased. Therefore, in the lithium ion secondary battery using the positive electrode active material according to the present invention, the insertion / desorption rate of the lithium ion from the positive electrode active material responding to the transfer of electrons is increased, and the charge / discharge can be performed at a high speed up to a large capacity. A possible lithium ion secondary battery can be realized. Here, the Mn-based and / or Fe-based lithium silicate includes a solid solution of lithium iron silicate and lithium manganese silicate in addition to either lithium iron silicate or lithium manganese silicate. It is a waste.

また、正極用活物質は、Cu、V、及びTiのうち少なくともいずれか1種や、Mn系及び又はFe系の各リチウムケイ酸塩を構成材料として用い、従来のようなCoやNiを全く使用していないことから、従来、リチウムイオン二次電池の正極用活物質として多用されているLiCoOや、LiNiO、LiNi1/3Co1/3Mn1/3等の層状構造化合物とは異なり、仮に過充電や短絡等の異常状態になっても、発熱して酸素を供給することがない。そのため本発明の正極用活物質は、可燃性有機物の電解質に着火し、爆発を招くような虞がなく、従来に比して格段的に安全性を向上し得る。Further, the positive electrode active material uses at least one of Cu, V, and Ti, and Mn-based and / or Fe-based lithium silicate as a constituent material, and uses conventional Co and Ni at all. Since it is not used, a layered structure compound such as LiCoO 2 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 or the like, which has been widely used as an active material for positive electrodes of lithium ion secondary batteries. In contrast, even if an abnormal state such as overcharge or short circuit occurs, it does not generate heat and supply oxygen. Therefore, the positive electrode active material of the present invention can ignite the flammable organic electrolyte and cause no explosion, and can significantly improve safety compared to the prior art.

また、本発明の正極用活物質は、Cu、V、及びTiのうち少なくともいずれか1種や、Mn系及び又はFe系の各リチウムケイ酸塩を構成材料として用いていることから、従来、リチウムイオン二次電池用の活物質として多用されるLiCoO、LiNiO、LiNi1/3Co1/3Mn1/3等の層状構造化合物とは異なり、希少で高価なCoやNiを含まないので、その分だけ安価なリチウムイオン二次電池を提供することができる。Moreover, since the positive electrode active material of the present invention uses at least one of Cu, V, and Ti, and Mn-based and / or Fe-based lithium silicates as constituent materials, Unlike layered structure compounds such as LiCoO 2 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 and the like that are frequently used as active materials for lithium ion secondary batteries, rare and expensive Co and Ni are used. Since it is not included, a cheaper lithium ion secondary battery can be provided.

実際上、本発明による正極用活物質では、構成材料として添加したCu、V及びTiの合計(Cu、V、及びTiのうちいずれか1種だけが添加された場合には、その1種の添加物)と、Fe系の鉄、及びMn系のマンガンの合計(Fe系及びMn系のうちいずれか1種から構成されている場合には、その1種の鉄又はマンガン)との原子比率が、0.005:1.0から0.333:1.0であることが好ましい。正極用活物質は、このような原子比率に調整することとで、電子伝導度を従来よりも一段と向上し得る。   Actually, in the positive electrode active material according to the present invention, the total of Cu, V, and Ti added as constituent materials (when only one of Cu, V, and Ti is added, Additive) and the total of Fe-based iron and Mn-based manganese (if composed of either one of Fe-based and Mn-based, one atomic or iron) atomic ratio However, it is preferable that it is 0.005: 1.0 to 0.333: 1.0. By adjusting the positive electrode active material to such an atomic ratio, the electron conductivity can be further improved than before.

また、具体的に、本発明による正極用活物質は、化学式がLiSiO(Aは、Cu、V、及びTiのうち少なくとも1種以上を含む遷移金属イオン、Dは、Fe及び又はMn、xは、0≦x≦2.5、yは、0.005≦y≦0.25、zは0.75≦z≦1.0)の化学式で表すことができる。なお、リチウムイオン二次電池では、充電時に正極用活物質からリチウムイオンが放出し、その一方、放電時に正極用活物質にてリチウムイオンが吸蔵される。このことから、正極用活物質を表す上記化学式では、充電時に、Liが存在しないASiO(すなわち、0=x)となり得、放電時に、LiSiO(すなわち、0<x≦2.5)となり得る。Further, specifically, the positive electrode active material according to the present invention has a chemical formula of Li x A y D z SiO 4 (A is a transition metal ion including at least one of Cu, V, and Ti, and D is Fe and / or Mn, x can be represented by a chemical formula of 0 ≦ x ≦ 2.5, y is 0.005 ≦ y ≦ 0.25, and z is 0.75 ≦ z ≦ 1.0). In the lithium ion secondary battery, lithium ions are released from the positive electrode active material during charging, and on the other hand, lithium ions are occluded in the positive electrode active material during discharging. From this, the chemical formula representing the positive electrode active material can be A y D z SiO 4 (ie, 0 = x) in which Li is not present during charging, and Li x A y D z SiO 4 (ie, during discharging) 0 <x ≦ 2.5).

ここで、実際上、上記化学式のDがFeの場合には、Aの比率yは0.005≦y≦0.05が望ましく、Fe系の正極用活物質について電子伝導度を一段と向上し得る。一方、上記化学式のDがMnの場合では、AがCuのとき0.05≦y≦0.20が望ましく、AがV又はTiのとき0.01≦y≦0.05が望ましく、Mn系の正極用活物質について電子伝導度を一段と向上し得る。   Here, in practice, when D in the above chemical formula is Fe, the ratio y of A is preferably 0.005 ≦ y ≦ 0.05, and the electronic conductivity of the Fe-based positive electrode active material can be further improved. . On the other hand, when D in the chemical formula is Mn, 0.05 ≦ y ≦ 0.20 is desirable when A is Cu, and 0.01 ≦ y ≦ 0.05 is desirable when A is V or Ti. The electron conductivity can be further improved for the positive electrode active material.

このような本発明による正極用活物質は、以下の手順により生成できる。ここではその一例として、先ず初めに、Cu、V、及びTiのうち少なくともいずれか1種を含む第1溶液と、Fe及びMnのうち少なくともいずれか1種を含む第2溶液とを用意する。なお、第1溶液としては、Cu、V、及びTiのうち少なくともいずれか1種を含む硝酸溶液か、或いは、Cu、V、及びTiのうち少なくともいずれか1種を含むクエン酸溶液のいずれかが好ましい。第2溶液としては、Fe及びMnのうち少なくともいずれか1種を含む塩化物溶液か、或いは、Fe及びMnのうち少なくともいずれか1種を含む硫酸溶液のいずれかが好ましい。   Such a positive electrode active material according to the present invention can be produced by the following procedure. Here, as an example, first, a first solution containing at least one of Cu, V, and Ti and a second solution containing at least one of Fe and Mn are prepared. The first solution is either a nitric acid solution containing at least one of Cu, V, and Ti, or a citric acid solution containing at least one of Cu, V, and Ti. Is preferred. The second solution is preferably either a chloride solution containing at least one of Fe and Mn or a sulfuric acid solution containing at least one of Fe and Mn.

また、これとは別に、ケイ酸懸濁液又はオルトケイ酸テトラアルキルのいずれか1種を用意する。そして、これら第1溶液と、第2溶液と、ケイ酸懸濁液又はテトラアルコキシシランのいずれかとを、水酸化リチウム溶液と混合して原料液を生成する。因みに、ここでオルトケイ酸テトラアルキルとしては、テトラメトキシシラン(Si(OCH3)4)や、テトラエトキシシラン(Si(OCH2CH3)4)、テトラプロポキシシラン(Si(OCH2CH2CH3)4)、テトラブトキシシラン(Si(OCH2CH2CH2CH3)4)等、その他種々のSi(OR)(ここで、Rは、Cn2n+1のアルキル基(好ましくはnが1〜6のいずれか))で表されるオルトケイ酸テトラアルキルを適用してもよい。Separately from this, either one of silicic acid suspension or tetraalkyl orthosilicate is prepared. Then, the first solution, the second solution, and either silicic acid suspension or tetraalkoxysilane are mixed with the lithium hydroxide solution to produce a raw material solution. Incidentally, here, tetraalkylsilane (Si (OCH 3 ) 4 ), tetraethoxysilane (Si (OCH 2 CH 3 ) 4 ), tetrapropoxysilane (Si (OCH 2 CH 2 CH 3) 4 ), tetrabutoxysilane (Si (OCH 2 CH 2 CH 2 CH 3 ) 4 ) and other various Si (OR) 4 (where R is a C n H 2n + 1 alkyl group (preferably n is A tetraalkyl orthosilicate represented by any one of 1 to 6)) may be applied.

次いで、圧力容器内に原料液を入れ、当該圧力容器内を低酸素雰囲気下として当該原料液を加熱する水熱処理を行う。このような水熱処理によって原料液から、ケイ酸鉄リチウム、ケイ酸マンガンリチウム、及びこれらを含む固溶体のうちいずれか一種に、銅、バナジウム、及びチタンのうち少なくともいずれか1種を含んだ本発明の正極用活物質を生成し得る。   Next, the raw material liquid is placed in the pressure vessel, and hydrothermal treatment is performed to heat the raw material solution with the inside of the pressure vessel in a low oxygen atmosphere. The present invention which contains at least any one of copper, vanadium, and titanium in any one of lithium iron silicate, lithium manganese silicate, and a solid solution containing these from a raw material liquid by such hydrothermal treatment. The positive electrode active material can be produced.

ここで、水熱処理は、酸素濃度が大気中よりも格段的に低い低酸素雰囲気下で原料液を加熱するものであり、これにより原料液を加熱する際、当該原料液中の元素と酸素との反応を抑制し、原料液から本発明による組成を有した正極用活物質を生成し得るものである。なお、このような低酸素雰囲気の達成には、例えば、水素ガスを0.1[MPa]以上の圧力で圧力容器内に充填した状態で、100[℃]以上の温度に加熱することが望ましい。   Here, the hydrothermal treatment is to heat the raw material liquid in a low oxygen atmosphere in which the oxygen concentration is much lower than that in the air. When the raw material liquid is heated by this, the elements and oxygen in the raw material liquid are heated. The positive electrode active material having the composition according to the present invention can be generated from the raw material liquid. In order to achieve such a low oxygen atmosphere, for example, it is desirable to heat to a temperature of 100 [° C.] or higher in a state where hydrogen gas is filled in a pressure vessel at a pressure of 0.1 [MPa] or higher.

ところで、このような正極用活物質では、リチウムケイ酸塩に鉄及び又はマンガンが含まれているが、例えばLiFeSiOのケイ酸鉄リチウムを正極用活物質として用いた際、充電によりLiの脱離と、Fe2+からFe3+への酸化とが生じ、一方、放電によりLiの挿入と、Fe3+からFe2+への還元とが生じる。ここで、製造時に、正極用活物質中にFe3+が生成されている場合には、Liの脱離が抑制されるため、充電が十分に進まず、その結果、放電容量が小さくなってしまう。By the way, in such a positive electrode active material, iron and / or manganese are contained in the lithium silicate. For example, when lithium iron silicate of Li 2 FeSiO 4 is used as the positive electrode active material, Li is charged by charging. + and desorption occurs and the oxidation of Fe 2+ to Fe 3+, whereas, insertion and Li + by the discharge, and reduction of Fe 3+ to Fe 2+ occurs. Here, when Fe 3+ is generated in the positive electrode active material at the time of manufacturing, since desorption of Li + is suppressed, charging does not proceed sufficiently, and as a result, the discharge capacity is reduced. End up.

そこで、本発明による正極用活物質では、製造時に、水素ガス等を圧力容器内に導入して低酸素雰囲気下で原料液を加熱する水熱処理を行うようにしたことにより、製造時の正極用活物質中にFe2+やMn2+を確実に生成し、充放電容量の低減を回避し得るようになされている。Therefore, in the positive electrode active material according to the present invention, hydrogen gas or the like is introduced into the pressure vessel at the time of manufacture, and hydrothermal heat treatment is performed to heat the raw material liquid in a low oxygen atmosphere. Fe 2+ and Mn 2+ are reliably generated in the active material, and reduction of charge / discharge capacity can be avoided.

以上の構成において、本発明による正極用活物質では、ケイ酸鉄リチウム、ケイ酸マンガンリチウム、及びこれらを含む固溶体のうちいずれか一種に、銅、バナジウム、及びチタンのうち少なくともいずれか1種を含む構成とした。これにより、この正極用活物質では、希少元素であるCoやNiを用いていないことから低コスト及び安全性を図れ、これに加えて、従来よりも電子伝導度を向上させることができるので、速い充放電速度において体積当たりの放電容量、又は重量当たりの放電容量を増加させることができ、かくして従来よりも充放電速度が速く、かつ大きな充放電容量を得ることができる。   In the above configuration, in the positive electrode active material according to the present invention, at least one of copper, vanadium, and titanium is added to any one of lithium iron silicate, lithium manganese silicate, and a solid solution containing these. The configuration included. Thereby, in this positive electrode active material, since it is not using rare elements Co and Ni, low cost and safety can be achieved, and in addition to this, since the electron conductivity can be improved than before, The discharge capacity per volume or the discharge capacity per weight can be increased at a high charge / discharge rate, and thus the charge / discharge rate is faster than before and a large charge / discharge capacity can be obtained.

なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能であり、上述した本発明による正極用活物質を製造できれば、例えば水熱処理時の低酸素雰囲気について種々の条件を適用してもよい。   The present invention is not limited to the present embodiment, and various modifications can be made within the scope of the present invention. If the above-described positive electrode active material according to the present invention can be manufactured, for example, hydrothermal treatment Various conditions may be applied to the occasional low oxygen atmosphere.

以上に述べた本発明の正極用活物質の実施例を以下に説明する。なお,本発明は、以下の実施例に限定されるものではない。   Examples of the positive electrode active material of the present invention described above will be described below. In addition, this invention is not limited to a following example.

(1)実施例1〜4及び比較例1,2の正極用活物質の合成
(1−1)銅を含むケイ酸鉄リチウムからなる正極用活物質の合成例(実施例1)
先ず初めに、密閉容器中で、Arガス置換した純水10[ml]中に、水酸化リチウム一水和物0.4320[g]を加えて撹拌溶解し、水酸化リチウム水溶液を得た。また、これとは別に、密閉容器中で、Arガス置換した純水5[mL]中に、塩化鉄(II)四水和物0.5009[g]を加えて撹拌溶解し、塩化鉄(II)水溶液(第2溶液)を得た。さらに、これとは別に、密閉容器中で、減圧沸騰後Arガス置換したエタノール5[mL]中に、クエン酸銅2.5水和物0.0093[g]を添加して撹拌し、クエン酸銅溶液(第1溶液)を得た。さらに、このクエン酸銅水溶液に、テトラエトキシシラン(オルトケイ酸テトラエチル)0.600[mL]を添加して撹拌し、これを塩化鉄(II)水溶液に加え撹拌混合して混合溶液を得た。さらに、この混合溶液に水酸化リチウム水溶液を滴下して撹拌混合し、最終的な原料液を得た。
(1) Synthesis of active materials for positive electrodes of Examples 1 to 4 and Comparative Examples 1 and 2 (1-1) Synthetic example of active materials for positive electrodes made of lithium iron silicate containing copper (Example 1)
First, in a sealed container, 0.4320 [g] of lithium hydroxide monohydrate was added and dissolved in 10 [ml] of pure water substituted with Ar gas to obtain an aqueous lithium hydroxide solution. Separately, 0.5009 [g] of iron (II) chloride tetrahydrate was added to 5 [mL] of pure water substituted with Ar gas in a sealed container, and dissolved by stirring to obtain iron (II) chloride. An aqueous solution (second solution) was obtained. Separately, in a sealed container, 0.0093 [g] of copper citrate 2.5 hydrate was added to ethanol 5 [mL] that had been boiled under reduced pressure and then purged with Ar gas, and stirred to obtain a copper citrate solution ( A first solution was obtained. Furthermore, tetraethoxysilane (tetraethyl orthosilicate) 0.600 [mL] was added to this copper citrate aqueous solution and stirred, and this was added to the aqueous iron (II) chloride solution and stirred to obtain a mixed solution. Furthermore, a lithium hydroxide aqueous solution was dropped into the mixed solution and mixed with stirring to obtain a final raw material liquid.

次いで、この原料液を圧力容器に入れて、225[℃]で24時間加熱し、低酸素雰囲気下で水熱処理を行った。具体的に、この水熱処理では、ロータリー型真空ポンプで圧力容器を脱気後に、水素ガスを室温で全圧が0.99[MPa]となるように加えた。次いで、水熱処理後に遠心分離により固液分離を行い、固体成分のみを回収した。そして、この固体成分に純水を加えて洗浄した後、遠心分離により固体成分のみを得た。得られた固体成分は室温で減圧乾燥した後に、乳鉢により粉砕し、銅と鉄を含むリチウムケイ酸塩からなる実施例1の正極用活物質を得た。   Next, this raw material liquid was put in a pressure vessel, heated at 225 [° C.] for 24 hours, and hydrothermally treated in a low oxygen atmosphere. Specifically, in this hydrothermal treatment, after degassing the pressure vessel with a rotary vacuum pump, hydrogen gas was added at room temperature so that the total pressure was 0.99 [MPa]. Next, solid-liquid separation was performed by centrifugal separation after hydrothermal treatment, and only the solid component was recovered. And after adding pure water to this solid component and washing | cleaning, only the solid component was obtained by centrifugation. The obtained solid component was dried under reduced pressure at room temperature, and then pulverized with a mortar to obtain an active material for positive electrode of Example 1 made of lithium silicate containing copper and iron.

(1−2)銅を含まないケイ酸鉄リチウムからなる正極用活物質の合成例(比較例1)
先ず初めに、密閉容器中で、Arガス置換した純水10[mL]中に、水酸化リチウム一水和物0.42[g]を加え撹拌溶解し、水酸化リチウム水溶液を得た。また、これとは別に、密閉容器中で、Arガス置換した純水5[mL]中に、硫酸鉄七水和物0.695[g]を加え撹拌溶解し、硫酸鉄(II)水溶液を得た。次に、密閉容器中で、Arガス置換したシリカゾル0.75[mL]を硫酸鉄(II)水溶液に添加し撹拌し、さらにこれに水酸化リチウム水溶液を滴下し撹拌混合し、最終的な原料液を得た。
(1-2) Synthesis example of active material for positive electrode made of lithium iron silicate containing no copper (Comparative Example 1)
First, in a sealed container, 0.42 [g] of lithium hydroxide monohydrate was added to 10 [mL] of pure water substituted with Ar gas and dissolved by stirring to obtain an aqueous lithium hydroxide solution. Separately, 0.695 [g] of iron sulfate heptahydrate was added to 5 [mL] of pure water substituted with Ar gas in an airtight container and dissolved by stirring to obtain an iron (II) sulfate aqueous solution. . Next, Ar gas-substituted silica sol 0.75 [mL] is added to an iron (II) sulfate aqueous solution in an airtight container and stirred. Further, an aqueous lithium hydroxide solution is added dropwise thereto and mixed with stirring to obtain a final raw material solution. Obtained.

次いで、この原料液を圧力容器に入れて、325[℃]で2時間加熱し、低酸素雰囲気下で水熱処理を行った。ここでもこの水熱処理では、ロータリー型真空ポンプで圧力容器を脱気後に、水素ガスを室温で全圧が0.99[MPa]となるように加えた。次いで、この水熱処理後に、遠心分離により固液分離を行い固体成分のみを回収した。固体成分は純水を加えて洗浄した後、遠心分離により固体成分のみを得た。得られた固体成分を室温で減圧乾燥した後に乳鉢により粉砕し、ケイ酸鉄リチウムからなる比較例1の正極用活物質を得た。   Next, this raw material liquid was put in a pressure vessel, heated at 325 [° C.] for 2 hours, and hydrothermally treated in a low oxygen atmosphere. Again, in this hydrothermal treatment, after degassing the pressure vessel with a rotary vacuum pump, hydrogen gas was added at room temperature so that the total pressure was 0.99 [MPa]. Next, after this hydrothermal treatment, solid-liquid separation was performed by centrifugation to recover only the solid components. The solid component was washed by adding pure water, and then only the solid component was obtained by centrifugation. The obtained solid component was dried under reduced pressure at room temperature and pulverized with a mortar to obtain a positive electrode active material of Comparative Example 1 made of lithium iron silicate.

(1−3)銅を含むケイ酸マンガンリチウムからなる正極用活物質の合成例(実施例2)
先ず初めに、密閉容器中で、Arガス置換した純水10[mL]中に、水酸化リチウム一水和物0.431[g]を加えて撹拌溶解し、水酸化リチウム水溶液を得た。また、これとは別に、密閉容器中で、Arガス置換した純水5[mL]中に、塩化マンガン(II)四水和物0.499[g]を加えて撹拌溶解し、塩化マンガン(II)水溶液(第2溶液)を得た。次いで、密閉容器中で、減圧沸騰後Arガス置換したエタノール5[mL]中に、クエン酸銅2.5水和物0.0093[g]を添加し撹拌した後(クエン酸銅溶液(第1溶液))、これにテトラメトキシシラン(オルトケイ酸テトラエチル)0.600[mL]を添加し撹拌して、さらにこれに塩化マンガン(II)水溶液を加えて混合溶液を得た。最後に、この混合溶液に水酸化リチウム水溶液を滴下して撹拌混合し、最終的な原料液を得た。
(1-3) Synthesis example of positive electrode active material comprising lithium manganese silicate containing copper (Example 2)
First, in a sealed container, 0.431 [g] of lithium hydroxide monohydrate was added and dissolved in 10 [mL] of pure water substituted with Ar gas to obtain an aqueous lithium hydroxide solution. Separately, in a sealed container, 0.499 [g] of manganese (II) chloride tetrahydrate was added to 5 [mL] of pure water substituted with Ar gas, and dissolved by stirring to obtain manganese (II) chloride. An aqueous solution (second solution) was obtained. Subsequently, after adding 0.0093 [g] of copper citrate 2.5 hydrate to ethanol 5 [mL] in which the Ar gas was substituted after boiling under reduced pressure in a closed container, the mixture was stirred (copper citrate solution (first solution)). To this, tetramethoxysilane (tetraethyl orthosilicate) 0.600 [mL] was added and stirred, and further a manganese (II) chloride aqueous solution was added thereto to obtain a mixed solution. Finally, a lithium hydroxide aqueous solution was dropped into the mixed solution and mixed by stirring to obtain a final raw material liquid.

次いで、この原料液を圧力容器に入れて225[℃]で24時間加熱し、低酸素雰囲気下で水熱処理を行った。ここで、この水熱処理では、ロータリー型真空ポンプで圧力容器を脱気後に、水素ガスを室温で全圧が0.99[MPa]となるように加えた。次いで、この水熱処理後に、遠心分離により固液分離を行い固体成分のみを回収した。固体成分は純水を加えて洗浄した後、遠心分離により固体成分のみを得た。得られた固体成分は室温で減圧乾燥した後に乳鉢により粉砕し、銅を含むケイ酸マンガンリチウムからなる実施例2の正極用活物質を得た。   Next, this raw material liquid was put in a pressure vessel and heated at 225 [° C.] for 24 hours, and hydrothermally treated in a low oxygen atmosphere. Here, in this hydrothermal treatment, after degassing the pressure vessel with a rotary vacuum pump, hydrogen gas was added so that the total pressure was 0.99 [MPa] at room temperature. Next, after this hydrothermal treatment, solid-liquid separation was performed by centrifugation to recover only the solid components. The solid component was washed by adding pure water, and then only the solid component was obtained by centrifugation. The obtained solid component was dried under reduced pressure at room temperature and then pulverized with a mortar to obtain an active material for positive electrode of Example 2 made of lithium manganese silicate containing copper.

(1−4)銅を含むケイ酸マンガンリチウムからなる正極用活物質の合成例(実施例3)
先ず初めに、密閉容器中で、Arガス置換した純水10[mL]中に、水酸化リチウム一水和物0.431[g]を加えて撹拌溶解し、水酸化リチウム水溶液を得た。また、これとは別に、密閉容器中で、Arガス置換した純水5[mL]中に、塩化マンガン(II)四水和物0.499[g]を加えて撹拌溶解し、塩化マンガン(II)水溶液(第2溶液)を得た。そして、密閉容器中で、減圧沸騰後Arガス置換したエタノール5[mL]中に、クエン酸銅2.5水和物0.0093[g]を添加し撹拌した後(クエン酸銅溶液(第1溶液))、これにテトラメトキシシラン(オルトケイ酸テトラエチル)0.600[mL]を添加し撹拌し、さらに塩化マンガン(II)水溶液を加えて混合溶液を得た。そして、この混合溶液に水酸化リチウム水溶液を滴下して撹拌混合し、原料液を得た。
(1-4) Synthesis example of active material for positive electrode made of lithium manganese silicate containing copper (Example 3)
First, in a sealed container, 0.431 [g] of lithium hydroxide monohydrate was added and dissolved in 10 [mL] of pure water substituted with Ar gas to obtain an aqueous lithium hydroxide solution. Separately, in a sealed container, 0.499 [g] of manganese (II) chloride tetrahydrate was added to 5 [mL] of pure water substituted with Ar gas, and dissolved by stirring to obtain manganese (II) chloride. An aqueous solution (second solution) was obtained. Then, after adding 0.0093 [g] of copper citrate hemihydrate to ethanol 5 [mL] after boiling under reduced pressure and replacing with Ar gas in a sealed container (copper citrate solution (first solution)) To this, tetramethoxysilane (tetraethyl orthosilicate) 0.600 [mL] was added and stirred, and further an aqueous manganese (II) chloride solution was added to obtain a mixed solution. And lithium hydroxide aqueous solution was dripped at this mixed solution, and it stirred and mixed, and obtained the raw material liquid.

次いで、この原料液を圧力容器に入れて225[℃]で24時間加熱し、低酸素雰囲気下で水熱処理を行った。ここで、この水熱処理では、ロータリー型真空ポンプで圧力容器を脱気後に、水素ガスを室温で全圧が0.99[MPa]となるように加えた。次いで、この水熱処理後に遠心分離により固液分離を行い、固体成分のみを回収した。固体成分は純水を加えて洗浄した後、遠心分離により固体成分のみを得た。得られた固体成分は室温で減圧乾燥した後に乳鉢により粉砕した。   Next, this raw material liquid was put in a pressure vessel and heated at 225 [° C.] for 24 hours, and hydrothermally treated in a low oxygen atmosphere. Here, in this hydrothermal treatment, after degassing the pressure vessel with a rotary vacuum pump, hydrogen gas was added so that the total pressure was 0.99 [MPa] at room temperature. Subsequently, after this hydrothermal treatment, solid-liquid separation was performed by centrifugation, and only the solid component was recovered. The solid component was washed by adding pure water, and then only the solid component was obtained by centrifugation. The obtained solid component was dried under reduced pressure at room temperature and pulverized with a mortar.

さらにここでは、得られた粉末とスクロースを等量、さらに純水20[mL]を秤量し、遊星ボールミリングを回転数100[rpm]で1時間粉砕処理を行った。そして、この水熱処理済溶液とボールを、ろ過にて分離し、水熱処理済溶液を予備凍結機にて凍結する。次いで、凍結された水熱処理済溶液を、凍結乾燥機にて一晩乾燥する。得られた乾燥粉末を、アルミナ製のボートにのせ管状炉中央部に挿入し、炉を密閉した後、炉を700[℃]で12時間加熱しAr雰囲気下で熱処理を行った。   Further, here, an equal amount of the obtained powder and sucrose, 20 [mL] of pure water were weighed, and planetary ball milling was pulverized for 1 hour at a rotational speed of 100 [rpm]. Then, the hydrothermally treated solution and the ball are separated by filtration, and the hydrothermally treated solution is frozen in a preliminary freezer. The frozen hydrothermally treated solution is then dried overnight in a freeze dryer. The obtained dry powder was placed on an alumina boat and inserted into the center of the tubular furnace. After the furnace was sealed, the furnace was heated at 700 [° C.] for 12 hours and heat-treated in an Ar atmosphere.

次いで、この熱処理後に取り出した粉末を乳鉢により粉砕し、これにより、銅を含むケイ酸マンガンリチウムからなる実施例3の正極用活物質を得た。なお、このようにスクロースを混合して熱処理することにより、正極用活物質の表面に導電性のカーボンがコーティングされ、粒子内部の電子伝導を有効に活用することができる。   Subsequently, the powder taken out after the heat treatment was pulverized with a mortar, thereby obtaining the positive electrode active material of Example 3 made of lithium manganese silicate containing copper. In addition, by mixing and heat-treating sucrose in this manner, the surface of the positive electrode active material is coated with conductive carbon, and the electron conduction inside the particles can be effectively utilized.

(1−5)銅を含まないケイ酸マンガンリチウムからなる正極用活物質の合成例(比較例2)
先ず初めに、密閉容器中でArガス置換した純水10[mL]中に、水酸化リチウム一水和物0.431[g]を加え撹拌溶解し、水酸化リチウム水溶液を得た。また、これとは別に、密閉容器中でArガス置換した純水5[mL]中に、塩化マンガン(II)四水和物0.509[g]を加え撹拌溶解し、塩化マンガン(II)水溶液を得た。次いで、密閉容器中で減圧沸騰後Arガス置換したエタノール5[mL]中に、テトラメトキシシラン(オルトケイ酸テトラエチル)0.600[mL]を添加し撹拌した後、これに塩化マンガン(II)水溶液を加えて混合溶液を得た。次いで、この混合溶液に水酸化リチウム水溶液を滴下し撹拌混合し原料液を得た。
(1-5) Synthesis example of active material for positive electrode made of lithium manganese silicate not containing copper (Comparative Example 2)
First, 0.431 [g] of lithium hydroxide monohydrate was added to 10 [mL] of pure water substituted with Ar gas in a sealed container, and dissolved by stirring to obtain an aqueous lithium hydroxide solution. Separately, 0.509 [g] of manganese (II) chloride tetrahydrate was added to 5 [mL] of pure water substituted with Ar gas in a sealed container, dissolved by stirring, and a manganese (II) chloride aqueous solution was added. Obtained. Next, 0.6000 [mL] of tetramethoxysilane (tetraethyl orthosilicate) was added to ethanol 5 [mL] that had been boiled under reduced pressure in an airtight container and purged with Ar gas, and then an aqueous manganese (II) chloride solution was added thereto. To obtain a mixed solution. Next, an aqueous lithium hydroxide solution was added dropwise to the mixed solution and mixed by stirring to obtain a raw material liquid.

次いで、原料液を圧力容器に入れて325[℃]で2時間加熱し、低酸素雰囲気下で水熱処理を行った。ここで、この水熱処理では、ロータリー型真空ポンプで圧力容器を脱気後に、水素ガスを室温で全圧が0.99[MPa]となるように加えた。次いで、この水熱処理後に遠心分離により固液分離を行い固体成分のみを回収した。固体成分は純水を加えて洗浄し、洗浄後遠心分離により固体成分のみを得た。得られた固体成分は室温で減圧乾燥した後に乳鉢により粉砕し、ケイ酸マンガンリチウムからなる比較例2の正極用活物質を得た。   Next, the raw material liquid was put in a pressure vessel and heated at 325 [° C.] for 2 hours, and hydrothermal treatment was performed in a low oxygen atmosphere. Here, in this hydrothermal treatment, after degassing the pressure vessel with a rotary vacuum pump, hydrogen gas was added so that the total pressure was 0.99 [MPa] at room temperature. Next, after this hydrothermal treatment, solid-liquid separation was performed by centrifugation to recover only the solid components. The solid component was washed by adding pure water, and only the solid component was obtained by centrifugation after washing. The obtained solid component was dried under reduced pressure at room temperature and pulverized with a mortar to obtain a positive electrode active material of Comparative Example 2 made of lithium manganese silicate.

(1−6)チタンを含むケイ酸(鉄・マンガン)リチウムからなる正極用活物質の合成例(実施例4)
先ず初めに、密閉容器中でArガス置換した純水10[mL]中に水酸化リチウム一水和物0.431[g]を加え撹拌溶解し、水酸化リチウム水溶液を得た。また、これとは別に、密閉容器中でArガス置換した純水4[mL]中に、塩化鉄(II)四水和物0.250[g]と塩化マンガン(II)四水和物0.249[g]を溶解した水溶液(第2溶液)と、純水1[mL]中にTAS-FINE(水溶性Ti粉末)0.0123[g]を溶解した水溶液(第1溶液)を加え撹拌し、塩化鉄(II)+塩化マンガン(II)+Ti水溶液を得た。次いで、密閉容器中で減圧沸騰後Arガス置換したエタノール5[mL]中に、テトラメトキシシラン(オルトケイ酸テトラエチル)0.600[mL]を添加し撹拌した後、これに塩化鉄(II)+塩化マンガン(II)+Ti水溶液を加えて混合溶液を得た。次いで、この混合溶液に水酸化リチウム水溶液を滴下し撹拌混合し原料液を得た。
(1-6) Synthesis Example of Active Material for Positive Electrode Consisting of Titanium-Containing Lithium Silicate (Iron / Manganese) (Example 4)
First, 0.431 [g] of lithium hydroxide monohydrate was added to 10 [mL] of pure water purged with Ar gas in a sealed container and dissolved by stirring to obtain an aqueous lithium hydroxide solution. Separately, in pure water [mL] substituted with Ar gas in a sealed container, iron (II) chloride tetrahydrate 0.250 [g] and manganese chloride (II) tetrahydrate 0.249 [g] An aqueous solution (second solution) in which TAS-FINE (water-soluble Ti powder) 0.0123 [g] is dissolved in 1 [mL] pure water is added and stirred, and iron chloride ( II) + manganese chloride (II) + Ti aqueous solution was obtained. Next, tetramethoxysilane (tetraethyl orthosilicate) 0.600 [mL] was added to ethanol 5 [mL] which was boiled under reduced pressure in an airtight container and purged with Ar gas, and stirred, and then iron (II) chloride + manganese chloride was added thereto. (II) + Ti aqueous solution was added to obtain a mixed solution. Next, an aqueous lithium hydroxide solution was added dropwise to the mixed solution and mixed by stirring to obtain a raw material liquid.

次いで、原料液を圧力容器に入れて225[℃]で24時間加熱し低酸素雰囲気下で水熱処理を行った。ここで、この水熱処理では、ロータリー型真空ポンプで圧力容器を脱気後に、水素ガスを室温で全圧が0.99[MPa]となるように加えた。次いで、この水熱処理後に遠心分離により固液分離を行い固体成分のみを回収した。固体成分は純水を加えて洗浄し、洗浄後遠心分離により固体成分のみを得た。得られた固体成分は室温で減圧乾燥した後に乳鉢により粉砕しチタンを含むケイ酸鉄マンガンリチウムからなる正極用活物質を得た。   Next, the raw material liquid was put in a pressure vessel and heated at 225 [° C.] for 24 hours to perform hydrothermal treatment in a low oxygen atmosphere. Here, in this hydrothermal treatment, after degassing the pressure vessel with a rotary vacuum pump, hydrogen gas was added at room temperature so that the total pressure was 0.99 [MPa]. Next, after this hydrothermal treatment, solid-liquid separation was performed by centrifugation to recover only the solid components. The solid component was washed by adding pure water, and only the solid component was obtained by centrifugation after washing. The obtained solid component was dried under reduced pressure at room temperature and then pulverized with a mortar to obtain a positive electrode active material composed of lithium iron manganese silicate containing titanium.

(2)評価結果
(2−1)実施例1〜4の組成について
上述した「(1)実施例1〜4及び比較例1,2の正極用活物質の合成」にて得られた正極用活物質の組成を、誘導結合プラズマ発光分析により調べたところ、電子伝導性の向上のために添加した元素(実施例1〜3の場合は銅、実施例4の場合はチタン)が含まれていることが確認できた。但し、正極用活物質中の銅の原子比率は、製造原料中の銅の原子比率よりも低く、例えば実施例2の場合、Cu:Mn:Siの原子比率は、製造原料中では0.15:0.85:1.00であったが、最終的に得られた正極用活物質中では0.016:0.95:1.00であった。
(2) Evaluation Results (2-1) About Compositions of Examples 1 to 4 For the positive electrode obtained in “(1) Synthesis of active materials for positive electrodes of Examples 1 to 4 and Comparative Examples 1 and 2” described above. When the composition of the active material was examined by inductively coupled plasma optical emission spectrometry, the element added for improving the electron conductivity (copper in Examples 1 to 3 and titanium in Example 4) was included. It was confirmed that However, the atomic ratio of copper in the positive electrode active material is lower than the atomic ratio of copper in the manufacturing raw material. For example, in Example 2, the atomic ratio of Cu: Mn: Si is 0.15 in the manufacturing raw material. Was 0.85: 1.00, but was 0.016: 0.95: 1.00 in the finally obtained positive electrode active material.

また、実施例4の場合、正極用活物質中のチタンの原子比率は、製造原料中のチタンの原子比率とほぼ同程度を得た。製造原料中のTi:Fe:Mnは0.02:0.49:0.49であり、最終的に得られた正極用活物質中では0.017:0.49:0.47であった。   In Example 4, the atomic ratio of titanium in the positive electrode active material was approximately the same as the atomic ratio of titanium in the manufacturing raw material. Ti: Fe: Mn in the manufacturing raw material was 0.02: 0.49: 0.49, and was 0.017: 0.49: 0.47 in the positive electrode active material finally obtained. .

(2−2)実施例1及び比較例1の格子定数について
表3は実施例1の正極用活物質と、比較例1の正極用活物質の格子定数を、X線回折分析によって調べた結果を示す。なお、実施例1及び比較例1ともに、ケイ酸鉄リチウム以外のX線回折ピークは見られないことから、異なる構造の副成分がない単相となっており、同じ結晶構造を有していることが確認できた。また、表3に示すように、実施例1の正極用活物質及び比較例1の正極用活物質の両者の格子定数a,b,cは、全て統計学的に有意に異なっており、実施例1の正極用活物質が銅を含んでいることを示している。
(2-2) About the lattice constants of Example 1 and Comparative Example 1 Table 3 shows the results of examining the lattice constants of the positive electrode active material of Example 1 and the positive electrode active material of Comparative Example 1 by X-ray diffraction analysis. Indicates. In addition, since X-ray diffraction peaks other than lithium iron silicate are not observed in both Example 1 and Comparative Example 1, it is a single phase having no subcomponents of different structures and has the same crystal structure. I was able to confirm. Further, as shown in Table 3, the lattice constants a, b, and c of both the positive electrode active material of Example 1 and the positive electrode active material of Comparative Example 1 are all statistically significantly different from each other. It shows that the positive electrode active material of Example 1 contains copper.

Figure 2013084862
Figure 2013084862

因みに、この実施例1の正極用活物質は、銅を含むLiCu0.02Fe0.98SiOであり、一方、比較例1の正極用活物質は、銅を含まないLiFeSiOであった。Incidentally, the positive electrode active material of Example 1 is Li 2 Cu 0.02 Fe 0.98 SiO 4 containing copper, while the positive electrode active material of Comparative Example 1 is Li 2 FeSiO not containing copper. 4 .

次に、実施例2のLiCuMnSiOで表される正極用活物質について、銅の添加量(Cuドープ量)を増加させていったときの格子定数と、銅を含まない比較例2の正極用活物質の格子定数とをX線回折分析によって調べたところ、図2に示すような結果が得られた((図2では、実施例2を■で表記し、比較例2を□で表記)。なお、実施例2のCu含有量が異なる各正極用活物質と、比較例2の正極用活物質は、ケイ酸マンガンリチウム以外のX線回折ピークが見られないことから、異なる構造の副成分がない単相となっていることが確認できた。図2に示す結果から、格子定数a,b,cはCu含有量の増加とともに減少することが確認できた。このような格子定数の減少は、CuがMnよりもイオン半径が小さいため、CuがMnを置換していることを示している。Next, with respect to the positive electrode active material represented by Li 2 Cu y Mn z SiO 4 of Example 2, the lattice constant when copper addition amount (Cu doping amount) is increased and copper is not included. When the lattice constant of the positive electrode active material of Comparative Example 2 was examined by X-ray diffraction analysis, the results shown in FIG. 2 were obtained ((In FIG. 2, Example 2 is represented by ■, Comparative Example 2 represents each of the positive electrode active materials having different Cu contents in Example 2 and the positive electrode active material in Comparative Example 2 with no X-ray diffraction peaks other than lithium manganese silicate. From the results shown in Fig. 2, it was confirmed that the lattice constants a, b, and c decreased as the Cu content increased. Such a decrease in lattice constant is because Cu has a smaller ionic radius than Mn. u have shown that you are replacing the Mn.

(2−3)充放電特性試験
次に、上述した実施例1〜4及び比較例1及び2の各正極用活物質10.0[mg]に、それぞれアセチレンブラック10.0[mg]とポリテトラフルオロエチレン1.0[mg]とを添加して、めのう乳鉢で混合して複数の混合物を作製した。次いで、この各混合物をNiメッシュにそれぞれ圧着させ、これを作用極(正極)とした。なお、対極(負極)及び参照極には、金属リチウムをNiメッシュに圧着したものを使用した。電解質には1M過塩素酸リチウム/炭酸プロピレン溶液を用いた。
(2-3) Charge / Discharge Characteristic Test Next, each of the positive electrode active materials 10.0 [mg] of Examples 1 to 4 and Comparative Examples 1 and 2 described above was substituted with acetylene black 10.0 [mg] and polytetrafluoroethylene 1.0, respectively. [Mg] was added and mixed in an agate mortar to prepare a plurality of mixtures. Subsequently, each mixture was pressure-bonded to a Ni mesh, and this was used as a working electrode (positive electrode). For the counter electrode (negative electrode) and the reference electrode, metal lithium bonded to Ni mesh was used. As the electrolyte, a 1M lithium perchlorate / propylene carbonate solution was used.

これら作用極、対極、参照極及び電解質を用い、各作用極にそれぞれ異なる種類の正極用活物質を設けた複数種類の三電極セルを作製した。そして、各三電極セルを用いて、電位範囲1.5−4.3[V]、電流密度10[mA/g]〜100[mA/g]での定電流放電特性試験を、60[℃]で行った。実施例1の正極用活物質を用いた三電極セルと、比較例1の正極用活物質を用いた三電極セルについて、それぞれ充放電特性試験を行ったところ、図3に示すような充放電特性が得られた。   Using these working electrode, counter electrode, reference electrode, and electrolyte, a plurality of types of three-electrode cells were prepared in which different types of positive electrode active materials were provided on each working electrode. Then, using each three-electrode cell, a constant current discharge characteristic test was performed at 60 [° C.] in a potential range of 1.5 to 4.3 [V] and a current density of 10 [mA / g] to 100 [mA / g]. . When the charge / discharge characteristic test was performed on the three-electrode cell using the positive electrode active material of Example 1 and the three-electrode cell using the positive electrode active material of Comparative Example 1, the charge / discharge as shown in FIG. Characteristics were obtained.

図3は、横軸が放電電流値と放電時間の積である正極(作用極)の容量を示し、一方、縦軸が作用極の電位を示す。そして、図3では、電流密度10[mA/g]にて測定した実施例1の正極用活物質の充放電曲線を実線で示し、同じく電流密度10[mA/g]にて測定した比較例1の正極用活物質の充放電曲線を破線で示している。図3に示すように、銅を添加した実施例1の正極用活物質は、重量当たりの放電容量が173[mAh/g]となった。一方、銅を添加してない比較例1の正極用活物質は、重量当たりの放電容量が123[mAh/g]となった。このように本発明による実施例1の正極用活物質では、比較例1の正極用活物質に比べて、重量当たりの放電容量が向上していることが確認できた。また、本発明による実施例1の正極用活物質では、比較例1の正極用活物質に比べて、重量当たりの充電容量も向上していることが確認できた。   In FIG. 3, the horizontal axis represents the capacity of the positive electrode (working electrode), which is the product of the discharge current value and the discharge time, while the vertical axis represents the potential of the working electrode. And in FIG. 3, the charging / discharging curve of the active material for positive electrodes of Example 1 measured by the current density of 10 [mA / g] is shown by the solid line, and the comparative example similarly measured by the current density of 10 [mA / g] The charge / discharge curve of the positive electrode active material 1 is shown by a broken line. As shown in FIG. 3, the positive electrode active material of Example 1 to which copper was added had a discharge capacity per weight of 173 [mAh / g]. On the other hand, the positive electrode active material of Comparative Example 1 to which copper was not added had a discharge capacity per weight of 123 [mAh / g]. Thus, in the positive electrode active material of Example 1 according to the present invention, it was confirmed that the discharge capacity per weight was improved as compared with the positive electrode active material of Comparative Example 1. In addition, it was confirmed that the positive electrode active material of Example 1 according to the present invention also improved the charge capacity per weight as compared with the positive electrode active material of Comparative Example 1.

次に、実施例2及び3の各正極用活物質と、比較例2の正極用活物質の組成を調べたところ、実施例2及び3の各正極用活物質は、銅を含んだLiCu0.016Mn0.95SiOであり、比較例2の正極用活物質は、銅を含まないLiMnSiOであった。そして、これら実施例2及び3の各正極用活物質をそれぞれ用いた三電極セルと、比較例2の正極用活物質を用いた三電極セルについて、それぞれ充放電特性試験を行い、放電特性について調べたところ、図4に示すような放電特性が得られた。Next, when the composition of each positive electrode active material of Examples 2 and 3 and the composition of the positive electrode active material of Comparative Example 2 was examined, each of the positive electrode active materials of Examples 2 and 3 was Li 2 containing copper. It was Cu 0.016 Mn 0.95 SiO 4 , and the positive electrode active material of Comparative Example 2 was Li 2 MnSiO 4 not containing copper. And about the three-electrode cell which each used the active material for positive electrodes of each of these Examples 2 and 3, and the three-electrode cell which used the active material for positive electrodes of the comparative example 2, respectively, a charging / discharging characteristic test was each performed, and about discharge characteristics As a result of the examination, the discharge characteristics as shown in FIG.

図4では、電流密度10[mA/g]にて測定した実施例2及び3の各正極用活物質の放電曲線を実線及び一点鎖線で示し、同じく電流密度10[mA/g]にて測定した比較例2の正極用活物質の放電曲線を破線で示している。図4に示す結果から、銅を添加した実施例2の各正極用活物質は、重量当たりの放電容量が132[mAh/g]となり、同じく銅を添加した実施例3の各正極用活物質は、重量当たりの放電容量が233[mAh/g]となった。一方、銅を添加していない比較例2の正極用活物質は、重量当たりの放電容量が50[mAh/g]となった。このように本発明による実施例2及び3の各正極用活物質では、比較例2の正極用活物質に比べて、重量当たりの放電容量が向上していることが確認できた。   In FIG. 4, the discharge curves of the positive electrode active materials of Examples 2 and 3 measured at a current density of 10 [mA / g] are indicated by solid lines and alternate long and short dash lines, and are also measured at a current density of 10 [mA / g]. The discharge curve of the positive electrode active material of Comparative Example 2 is shown by a broken line. From the results shown in FIG. 4, each positive electrode active material of Example 2 to which copper was added had a discharge capacity of 132 [mAh / g] per weight, and each positive electrode active material of Example 3 to which copper was also added. The discharge capacity per weight was 233 [mAh / g]. On the other hand, the positive electrode active material of Comparative Example 2 to which copper was not added had a discharge capacity per weight of 50 [mAh / g]. As described above, it was confirmed that each positive electrode active material of Examples 2 and 3 according to the present invention had an improved discharge capacity per weight as compared with the positive electrode active material of Comparative Example 2.

以上の結果から、正極用活物質では、ケイ酸鉄リチウム又はケイ酸マンガンリチウムに、銅を添加した構成とすることにより、希少元素であるCoやNiを用いることなく低コスト及び安全性を維持しつつ、正極用活物質の体積当たりの放電容量、又は重量当たりの放電容量を向上し得る。   From the above results, in the positive electrode active material, low cost and safety can be maintained without using rare elements such as Co and Ni by adding copper to lithium iron silicate or lithium manganese silicate. However, the discharge capacity per volume of the positive electrode active material or the discharge capacity per weight can be improved.

また、実施例4の正極用活物質について組成を調べたところ、この実施例4はチタンを含んだLiTi0.017Fe0.49Mn0.47SiOであった。そして、この実施例4の正極用活物質を用いた三電極セルについて充放電特性試験を行い、放電特性について調べたところ、図5に示すような放電特性が得られた。このように本発明による実施例4の正極用活物質では、比較例2の正極用活物質に比べて、重量当たりの放電容量が向上していることが確認できた。以上の結果から、正極用活物質では、ケイ酸鉄マンガンリチウムに、チタンを添加した構成とすることにより、希少元素であるCoやNiを用いることなく低コスト及び安全性を維持しつつ、正極用活物質の体積当たりの放電容量、又は重量当たりの放電容量を向上し得ることが確認できた。We also examined the composition for the positive electrode active material of Example 4, this Example 4 was Li 2 Ti 0.017 Fe 0.49 Mn 0.47 SiO 4 containing titanium. And when the charge / discharge characteristic test was done about the three electrode cell using the active material for positive electrodes of this Example 4 and the discharge characteristic was investigated, the discharge characteristic as shown in FIG. 5 was obtained. Thus, in the positive electrode active material of Example 4 according to the present invention, it was confirmed that the discharge capacity per weight was improved as compared with the positive electrode active material of Comparative Example 2. From the above results, in the positive electrode active material, a structure in which titanium is added to lithium iron manganese silicate allows the positive electrode to maintain low cost and safety without using rare elements such as Co and Ni. It was confirmed that the discharge capacity per volume or the discharge capacity per weight of the active material can be improved.

因みに、これらの実施例では、ケイ酸鉄リチウム又はケイ酸マンガンリチウムに銅を添加した正極用活物質や、ケイ酸鉄マンガンリチウムにチタンを添加した正極用活物質についての充放電特性試験を説明したが、ケイ酸鉄リチウム又はケイ酸マンガンリチウムにバナジウム又はチタンを添加した正極用活物質や、ケイ酸鉄マンガンリチウムに銅又はバナジウムを添加した正極用活物質についても、上述と同様の充放電特性試験を行っている。その結果、銅、バナジウム又はチタンを添加したいずれの正極用活物質についても、上述した実施例と同様に、正極用活物質の体積当たりの放電容量、又は重量当たりの放電容量が向上することが確認できている。
By the way, in these examples, the charge / discharge characteristic test is explained for the positive electrode active material in which copper is added to lithium iron silicate or lithium manganese silicate, and the positive electrode active material in which titanium is added to lithium manganese manganese silicate. However, the same charge and discharge as described above is also applied to the positive electrode active material in which vanadium or titanium is added to lithium iron silicate or lithium manganese silicate, and the positive electrode active material in which copper or vanadium is added to lithium iron manganese silicate. A characteristic test is conducted. As a result, for any positive electrode active material to which copper, vanadium or titanium is added, the discharge capacity per volume or the discharge capacity per weight of the positive electrode active material can be improved, as in the above-described examples. Confirmed.

Claims (6)

ケイ酸鉄リチウム、ケイ酸マンガンリチウム、及びこれらを含む固溶体のうちいずれか一種に、銅、バナジウム、及びチタンのうち少なくともいずれか1種を含む
ことを特徴とする正極用活物質。
A positive electrode active material, wherein at least one of copper, vanadium, and titanium is contained in any one of lithium iron silicate, lithium manganese silicate, and a solid solution containing these.
前記銅、前記バナジウム、及び前記チタンの合計と、
前記ケイ酸鉄リチウムの鉄、及び前記ケイ酸マンガンリチウムのマンガンの合計との原子比率が、0.005:1.0から0.333:1.0である
ことを特徴とする請求項1記載の正極用活物質。
A total of the copper, the vanadium, and the titanium;
The atomic ratio of the iron of the lithium iron silicate and the total manganese of the lithium manganese silicate is 0.005: 1.0 to 0.333: 1.0. Active material for positive electrode.
化学式がLiSiO(Aは、Cu、V、及びTiのうち少なくとも1種以上を含む遷移金属イオン、Dは、Fe及び又はMn、xは、0≦x≦2.5、yは、0.005≦y≦0.25、zは、0.75≦z≦1.0)であるリチウムケイ酸塩からなる
ことを特徴とする請求項1記載の正極用活物質。
The chemical formula is Li x A y D z SiO 4 (A is a transition metal ion containing at least one of Cu, V, and Ti, D is Fe and / or Mn, x is 0 ≦ x ≦ 2.5 The positive electrode active material according to claim 1, wherein y is made of lithium silicate wherein 0.005 ≦ y ≦ 0.25 and z is 0.75 ≦ z ≦ 1.0.
Cu、V、及びTiのうち少なくともいずれか1種を含む第1溶液と、Fe及びMnのうち少なくともいずれか1種を含む第2溶液と、ケイ酸懸濁液又はオルトケイ酸テトラアルキル(Si(OR)、Rはアルキル基)のいずれかとを、水酸化リチウム溶液と混合して原料液を生成する溶液生成ステップと、
低酸素雰囲気下で前記原料液を水熱処理し、ケイ酸鉄リチウム、ケイ酸マンガンリチウム、及びこれらを含む固溶体のうちいずれか一種に、銅、バナジウム、及びチタンのうち少なくともいずれか1種を含んだ正極用活物質を生成する処理ステップと
を備えることを特徴とする正極用活物質製造方法。
A first solution containing at least one of Cu, V, and Ti; a second solution containing at least one of Fe and Mn; and a silicic acid suspension or a tetraalkyl orthosilicate (Si ( OR) 4 , R is an alkyl group) and a lithium hydroxide solution to produce a raw material solution;
The raw material liquid is hydrothermally treated in a low oxygen atmosphere, and any one of lithium iron silicate, lithium manganese silicate, and a solid solution containing these includes at least one of copper, vanadium, and titanium. And a processing step of producing a positive electrode active material. A method for producing a positive electrode active material.
前記第1溶液は、硝酸溶液、及びクエン酸溶液のうち少なくともいずれか1種を含み、
前記第2溶液は、塩化物溶液、及び硫酸溶液のうち少なくともいずれか1種を含む
ことを特徴とする請求項4記載の正極用活物質製造方法。
The first solution includes at least one of a nitric acid solution and a citric acid solution,
The positive electrode active material manufacturing method according to claim 4, wherein the second solution includes at least one of a chloride solution and a sulfuric acid solution.
請求項1から請求項3のいずれか1項記載の正極用活物質を用いた正極を備える
ことを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising a positive electrode using the positive electrode active material according to any one of claims 1 to 3.
JP2013548237A 2011-12-07 2012-12-04 Active material for positive electrode, method for producing the same, and lithium ion secondary battery Pending JPWO2013084862A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548237A JPWO2013084862A1 (en) 2011-12-07 2012-12-04 Active material for positive electrode, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011268268 2011-12-07
JP2011268268 2011-12-07
JP2013548237A JPWO2013084862A1 (en) 2011-12-07 2012-12-04 Active material for positive electrode, method for producing the same, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPWO2013084862A1 true JPWO2013084862A1 (en) 2015-04-27

Family

ID=48574229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013548237A Pending JPWO2013084862A1 (en) 2011-12-07 2012-12-04 Active material for positive electrode, method for producing the same, and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JPWO2013084862A1 (en)
WO (1) WO2013084862A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6126033B2 (en) * 2014-03-26 2017-05-10 太平洋セメント株式会社 Method for producing olivine-type silicate compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266882A (en) * 1999-05-10 2001-09-28 Hydro Quebec New lithium insertion electrode material based on orthosilicate derivatives
JP2007335325A (en) * 2006-06-16 2007-12-27 Kyushu Univ Cathode active material for nonaqueous electrolyte secondary battery and battery
WO2010089931A1 (en) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 Method for producing lithium silicate compound
JP2011116646A (en) * 2010-12-28 2011-06-16 Sumitomo Osaka Cement Co Ltd High-crystallinity anatase-type titanium oxide ultrafine particle dispersion with controlled particle shape
JP2011181331A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Cathode active material substance, cathode, secondary battery and manufacturing methods for same positive electrode active material, positive electrode, secondary battery and manufacturing methods for them
JP2011187173A (en) * 2010-03-04 2011-09-22 Toyota Central R&D Labs Inc Active material for nonaqueous secondary battery and nonaqueous secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115697B2 (en) * 2007-05-22 2013-01-09 Necエナジーデバイス株式会社 Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5482115B2 (en) * 2009-11-05 2014-04-23 株式会社豊田中央研究所 Non-aqueous secondary battery active material and non-aqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266882A (en) * 1999-05-10 2001-09-28 Hydro Quebec New lithium insertion electrode material based on orthosilicate derivatives
JP2007335325A (en) * 2006-06-16 2007-12-27 Kyushu Univ Cathode active material for nonaqueous electrolyte secondary battery and battery
WO2010089931A1 (en) * 2009-02-04 2010-08-12 独立行政法人産業技術総合研究所 Method for producing lithium silicate compound
JP2011181331A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Cathode active material substance, cathode, secondary battery and manufacturing methods for same positive electrode active material, positive electrode, secondary battery and manufacturing methods for them
JP2011187173A (en) * 2010-03-04 2011-09-22 Toyota Central R&D Labs Inc Active material for nonaqueous secondary battery and nonaqueous secondary battery
JP2011116646A (en) * 2010-12-28 2011-06-16 Sumitomo Osaka Cement Co Ltd High-crystallinity anatase-type titanium oxide ultrafine particle dispersion with controlled particle shape

Also Published As

Publication number Publication date
WO2013084862A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
Deng et al. Layered P2‐type K0. 65Fe0. 5Mn0. 5O2 microspheres as superior cathode for high‐energy potassium‐ion batteries
Su et al. Ultrathin Layered Hydroxide Cobalt Acetate Nanoplates Face‐to‐Face Anchored to Graphene Nanosheets for High‐Efficiency Lithium Storage
Bie et al. Li 2 O 2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries
Fang et al. Graphene-oxide-coated LiNi 0.5 Mn 1.5 O 4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life
JP6369958B2 (en) Silicon-based powder and electrode containing the same
JP2019108264A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
RU2551849C2 (en) Lithium batteries, containing lithium-carrying iron phosphate and carbon
JP6544579B2 (en) Method for producing lithium tungstate, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using lithium tungstate
JP6357193B2 (en) Polyanionic positive electrode active material and method for producing the same
JPWO2019176895A1 (en) Sulfide-based solid electrolyte particles
Shao et al. A Redox Couple Strategy Enables Long‐Cycling Li‐and Mn‐Rich Layered Oxide Cathodes by Suppressing Oxygen Release
JP6042511B2 (en) Positive electrode active material for secondary battery and method for producing the same
Khollari et al. Elevated-temperature behaviour of LiNi0. 5Co0. 2Mn0. 3O2 cathode modified with rGO-SiO2 composite coating
Lv et al. B2O3/LiBO2 dual-modification layer stabilized Ni-rich cathode for lithium-ion battery
JP6042514B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2014179176A (en) Electrode material and process of manufacturing the same
Lee et al. Facile conversion of waste glass into Li storage materials
Yu et al. Enhanced rate performance and high current cycle stability of LiNi0. 8Co0. 1Mn0. 1O2 by sodium doping
JP6153198B2 (en) All solid state secondary battery
KR101345625B1 (en) ANODE ACTIVE MATERIALS USING SiO2 AND MINERALS CONTAINING SiO2 FOR LITHIUM SECONDARY BATTERIES AND PREPARATION METHOD OF THE SAME
Cao et al. Size effect on the electrochemical reaction path and performance of nano size phosphorus rich skutterudite nickle phosphide
Zhang et al. Activated nanolithia as an effective prelithiation additive for lithium-ion batteries
JP2010238603A (en) Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery
WO2022260072A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2013084862A1 (en) Positive electrode active material, production method therefor, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170207