JPWO2013084345A1 - 画像取得装置および画像取得装置の調整方法 - Google Patents

画像取得装置および画像取得装置の調整方法 Download PDF

Info

Publication number
JPWO2013084345A1
JPWO2013084345A1 JP2013548030A JP2013548030A JPWO2013084345A1 JP WO2013084345 A1 JPWO2013084345 A1 JP WO2013084345A1 JP 2013548030 A JP2013548030 A JP 2013548030A JP 2013548030 A JP2013548030 A JP 2013548030A JP WO2013084345 A1 JPWO2013084345 A1 JP WO2013084345A1
Authority
JP
Japan
Prior art keywords
stage
information
test object
image acquisition
acquisition apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013548030A
Other languages
English (en)
Inventor
縄田 亮
亮 縄田
須藤 裕次
裕次 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013548030A priority Critical patent/JPWO2013084345A1/ja
Publication of JPWO2013084345A1 publication Critical patent/JPWO2013084345A1/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

本発明は、広視野かつ高解像度の対物光学系を有する画像取得装置において、試料の表面形状にうねりがある場合でも、デフォーカスによるボケを抑制して良好なデジタル画像を取得することを目的とする。
上記目的を達成するための、本発明の一側面としての画像取得装置は、被検物を保持する被検物ステージと、前記被検物の表面形状情報を取得する計測部と、前記被検物を結像する対物光学系と該対物光学系により結像された前記被検物を撮像する撮像素子とを含む顕微鏡部と、を備えており、前記計測部において、前記被検物ステージの第1ステージ傾き情報を取得し、前記顕微鏡部において、前記表面形状情報と前記第1ステージ傾き情報との関係に基づき前記被検物ステージの姿勢を調整することを特徴とする。

Description

本発明は、被検物の位置や姿勢を調整可能な機構を有する画像取得装置に関する。
病理学の分野等で、画像取得装置を用いて試料を含む被検物(プレパラート)を撮像することによりデジタル画像を取得し、そのデジタル画像を高解像度で表示装置に表示する画像取得システムが注目されている。画像取得装置では被検物を高解像度で高速に撮像することが求められており、そのためには、被検物のなるべく広い領域を高解像度で一度に撮像する必要がある。そこで、広視野かつ高解像度の対物レンズを用い、その視野内に撮像素子群を配置することにより、一度に複数の画像を撮像する顕微鏡が提案されている(特許文献1)。
しかし、画像取得装置において、組立時および設置時の誤差や温度変化に伴う構造材料の熱膨張などが生じることにより、各部材の位置が設計値に対して変動してしまう場合がある。また、対物レンズの解像度を高くすると焦点深度が浅くなってしまうため、対物レンズおよび撮像素子を含む顕微鏡部に対して被検物が傾いている場合、被検物の撮像領域内で部分的に焦点が合わなくなってしまう。よって、画像取得装置においては、フォーカスの調整をするために、顕微鏡部に対する被検物の姿勢を適切に管理する必要がある。ここで、ラインセンサまたはスライドグラスの姿勢を調整することで、ラインセンサの受光部とスライドグラスの面とを平行状態に保つことが可能な顕微鏡装置が提案されている(特許文献2)。
特開2009−003016号公報 特開2010−101959号公報
一般的な病理診断においては、観察対象の試料を含むプレパラートを被検物としているが、そのプレパラートの作成時にカバーグラスおよび試料が変形してしまう場合がある。試料の表面にうねりが生じて、試料の撮像領域の一部が対物レンズの焦点深度内に入りきらなくなった場合、取得画像においてデフォーカスによるボケが生じてしまう。したがって、設置誤差や温度変化等に伴う各部材の位置変動だけではなく、試料の表面形状(うねり)を考慮してプレパラートの姿勢を調整する必要がある。しかし、特許文献2に記載の方法では、スライドグラス上に配置された検出点の結像状態から検出したラインセンサの姿勢情報を基に調整を行っているため、試料の表面形状を考慮してプレパラートの調整を行うことはできない。
そこで、本発明は、広視野かつ高解像度の対物光学系を有する画像取得装置において、試料の表面形状にうねりがある場合でも、デフォーカスによるボケを抑制して良好なデジタル画像を取得することを目的とする。
上記目的を達成するための、本発明の一側面としての画像取得装置は、被検物を保持する被検物ステージと、前記被検物の表面形状情報を取得する計測部と、前記被検物を結像する対物光学系と該対物光学系により結像された前記被検物を撮像する撮像素子とを含む顕微鏡部と、を備えており、前記計測部において、前記被検物ステージの第1ステージ傾き情報を取得し、前記顕微鏡部において、前記表面形状情報と前記第1ステージ傾き情報との関係に基づき前記被検物ステージの姿勢を調整することを特徴とする。
本発明の更なる目的またはその他の特徴は、以下、添付の図面を参照して説明される好ましい実施例等によって明らかにされる。
本発明によれば、広視野かつ高解像度の対物光学系を有する画像取得装置において、試料の表面形状にうねりがある場合でも、デフォーカスによるボケを抑制して良好なデジタル画像を取得することができる。
本発明の実施形態に係る画像取得装置1000の概略図。 本発明の実施形態に係るプレパラート30の概略図。 本発明の実施形態に係る撮像ユニット50の概略図。 本発明の実施例1に係る演算処理部4による傾き情報計測を説明する図。 本発明の実施例1に係る被検物ステージ20の調整方法の概要図。 本発明の実施例1に係る第2計測手段900の校正方法を説明する図。 本発明の実施例1に係る第1計測手段600の校正方法を説明する図。 本発明の実施例2に係る顕微鏡部1および予備計測部2の配置を示す図。 本発明の実施例2に係る被検物ステージ20の調整方法の概要図。 本発明の実施例2に係る基準プレパラート31の概略図。 本発明の実施例2に係る校正値Z0の取得方法を説明する図。 本発明の実施例2に係るフォーカスの調整方法を説明する図。 本発明の実施例2に係るプレパラート30の撮像領域における断面図。 本発明の実施例2に係るプレパラート30の撮像領域における断面図。
以下、本発明の好ましい実施の形態について図面を用いて説明する。
図1は、本実施形態に係る画像取得システム1000の概略図である。画像取得システム1000は、被検物の画像を取得する画像取得装置100と、取得画像を表示する画像表示部5と、を備えている。また、画像取得装置100は、顕微鏡部1と、予備計測部2と、広範囲撮影部3と、演算処理部4と、被検物ステージ20と、搬入搬出装置200とを有する。
本実施形態においては、図2に示すようなプレパラート30を観察対象の被検物としている。プレパラート30は、スライドグラス303上に配置された試料302(組織切片等の生体サンプルなど)が、カバーグラス301および接着剤304で密封された構成となっている。スライドグラス303上には、例えばスライドグラス303の識別番号およびカバーグラス301の厚さなど、プレパラート30(試料302)を管理するのに必要な情報が記録されたラベル333が貼付されていてもよい。
以下、画像取得装置100においてプレパラート30の画像を取得する手順を説明する。
まず、搬入搬出装置200において、ストッカー201に格納されているプレパラート30を、不図示の搬送手段によって広範囲撮影部3の広範囲撮像台83に搬出する。そして、広範囲撮影部3では、演算処理部4により送られる計測指令82に応じて、広範囲撮像カメラ80によりプレパラート30を撮像する。この広範囲撮影部3における計測により、予備計測部2での計測や顕微鏡部1での画像取得に先立って、プレパラート30のうち試料302が存在する領域(試料領域)を事前に把握することができる。なお、広範囲撮像カメラ80は、少なくともプレパラート30におけるカバーグラス301の全域を撮像できるものとする。
次に、交換ハンド300によって、プレパラート30を予備計測部2に位置する被検物ステージ20に載置する。予備計測部2では、表面形状計測器90によってプレパラート30の表面形状を計測する。表面形状計測器90としては、シャックハルトマンセンサ、干渉計、ラインセンサなどを用いることができる。なお、広範囲撮影部3で取得した試料領域情報81に基づき、演算処理部4が表面形状計測器90に対して計測指令92を送ることにより、プレパラート30上の試料領域の表面形状を効率的に計測することができる。
ここで、被検物ステージ20は、プレパラート30を保持したまま移動可能に構成されており、演算処理部4による駆動指令22に応じて、予備計測部2と顕微鏡部1との間を移動することができる。被検物ステージ20は、プレパラート30をXY方向に駆動するXYステージ23と、プレパラート30をZ、θx、θy方向に駆動するZチルトステージ24とを含む。ここで、Z方向は対物光学系40の光軸方向、XY方向はその光軸に垂直な方向、θx方向はX軸周りの回転方向、θy方向はY軸周りの回転方向、に夫々相当する。このXYステージ23およびZチルトステージ24によって、プレパラート30の位置や姿勢を調整可能となる。
被検物ステージ20においてプレパラート30を保持する手段としては、板バネ、真空吸着、静電吸着などが挙げられる。例えば板バネを用いる場合は、プレパラート30の非撮像領域をZ方向から押さえるか、あるいはプレパラート30の側面をXY方向から押さえる方法が考えられる。真空吸着または静電吸着を用いる場合は、プレパラート30の非撮像領域をプレパラート30の裏面から吸着する方法が考えられる。これらの保持手段により、予備計測部2と顕微鏡部1との間を移動する際にも、被検物ステージ20はプレパラート30の保持状態を一定に保つことができる。なお、XYステージ23およびZチルトステージ24には、顕微鏡部1における照明ユニット10からの光を通過させてプレパラート30を照明するための開口が設けられている。
そして、演算処理部4の駆動指令22によって、プレパラート30を保持する被検物ステージ20は、予備計測部2から顕微鏡部1に移動する。顕微鏡部1では、照明ユニット10によってプレパラート30を照明し、対物光学系40を介してプレパラート30からの光束を撮像ユニット50上に結像することにより、プレパラート30を撮像する。この時、広範囲撮影部3および予備計測部2の夫々により取得した試料領域情報81および表面形状情報91に基づき、演算処理部4が撮像ユニット50に対して撮像指令52を送ることによって、試料302の大きさや形状に応じた撮像を行うことができる。そして、顕微鏡部1において取得した撮像情報51を、演算処理部4において処理することにより、プレパラート30の画像を得ることができ、その画像を必要に応じて画像表示部5に表示することができる。
なお、撮像ユニット50は、図3に示すように、少なくとも一つの撮像素子501を備えており、撮像素子501の数や配置は試料302の大きさや形状に応じて適宜決定することができる。また、各撮像素子501に駆動機構502を設けることにより、夫々の位置や姿勢を変更可能な構成としてもよい。この場合、各撮像素子501の位置および姿勢の制御は、予備計測部2で取得したプレパラート30の表面形状情報91に基づいて行うことができる。
以上、本実施形態に係る画像取得システム1000の概略構成について説明した。次に、被検物ステージ20の調整方法について、各実施例で詳細に説明する。
本実施例では、顕微鏡部1においてフォーカスの調整を行うために、各部材の位置変動や、プレパラート30のカバーグラス301の表面形状に応じて、被検物ステージ20におけるZチルトステージ24の姿勢を調整する場合を考える。これは、対物光学系40を拡大系であるとした場合、カバーグラス301の表面形状に応じてフォーカスを合わせる際に、撮像素子501を駆動するよりも、被検物ステージ20を駆動して調整した方が、駆動ストロークが少なくて済むからである。
そこで、本実施例に係る画像取得装置100には、顕微鏡部1および予備計測部2の夫々に、Zチルトステージ24の傾き情報を計測するための第1計測手段600および第2計測手段900を設けている。この構成により、予備計測部2においてカバーグラス301の表面の近似平面Dおよびその傾き情報を求め、顕微鏡部1において近似平面Dが対物光学系40の光軸に対して垂直になるように、Zチルトステージ24を調整する。よって、設置誤差や温度変化等に伴う各部材の位置変動だけでなく、カバーグラス301の表面形状に応じてフォーカスの調整を行うことができる。
図4は、本実施例に係る演算処理部4による傾き情報計測を説明するための、画像取得装置100の要部概略図である。図4に示すように、本実施例に係る予備計測部2は、表面形状計測器90に対するZチルトステージ24の傾き情報を計測するための、第2計測手段900を備えている。本実施例においては、第2計測手段900として3個の第2距離センサ901a〜901cを設けている(図4では、そのうちの2つのみを図示している)。また、演算処理部4は、第1演算器401〜第6演算器406を有しており、夫々が後述する各種の演算処理を行う。なお、表面形状計測器90、対物光学系40および撮像ユニット50は、設置誤差や温度変化等に伴い、設計値に対する位置変動が生じているものとする。具体的には、表面形状計測器90の計測基準面Aおよび対物光学系40の撮像基準面Bの夫々が、設計位置に対してある角度で傾いているとしている。本実施例に係る計測基準面Aは、表面形状計測器90の光軸に対して垂直な平面を想定しているが、計測基準面Aを光軸に対して所定の角度を持つように設定してもよい。また、撮像基準面Bは、対物光学系40を組み立てる際に基準として用いた面であり、対物光学系40の光軸に対して垂直な面であると想定しているため、対物光学系40の姿勢の基準面として用いることができる。以下、具体的な被検物ステージ20の調整方法について、図5に示すフローチャートを用いて詳細に説明する。
まず、予備計測部2における傾き情報計測方法について説明する。ここでは、Zチルトステージ24の上面(または、それに対して平行な平面)であるステージ基準面Cに対するカバーグラス301の表面の近似平面Dの第2被検物傾き情報(傾き情報γ)を取得する場合を考える。
初めに、XYステージ23によってプレパラート30を予備計測部2に配置する(S1001)。そして、予備計測部2における表面形状計測器90によって、カバーグラス301の表面の表面形状情報91を取得する(S1002)。また、予備計測部2では、第2距離センサ901a〜901cの夫々によって、Zチルトステージ24のステージ基準面Cまでの距離情報902a〜902cを取得する(S1003)。さらに、第5演算器405において、第2距離センサ901a〜901cの夫々の位置関係および距離情報902a〜902cより、計測基準面Aに対するステージ基準面Cの第1ステージ傾き情報(傾き情報α)を演算する(S1004)。なお、傾き情報αは、X軸周りの角度αxと、Y軸周りの角度αyとを含んでいる(図4では角度αxを示している)。
次に、第1演算器401において、カバーグラス301の表面の近似平面Dと、表面形状計測器90の計測基準面Aに対する近似平面Dの第1被検物傾き情報(傾き情報β)と、表面形状情報93と、を演算する(S1005)。近似平面Dは、ステップS1002で取得した表面形状情報91から、最小二乗法近似などを用いて演算することができる。なお、傾き情報βは、X軸周りの角度βxと、Y軸周りの角度βyとを含んでいる。また、表面形状情報93は、表面形状計測器90の表面形状情報91から傾き情報βを差し引くことで取得され、撮像素子501を調整する際に用いられる(詳細は後述)。
ここで、ステップS1005で取得した傾き情報βには傾き情報αが含まれているので、第2演算器402により傾き情報βから傾き情報αを差し引き、ステージ基準面Cに対する近似平面Dの第2被検物傾き情報(傾き情報γ)を演算する(S1006)。なお、傾き情報γは、X軸周りの角度γxと、Y軸周りの角度γyとを含んでいる。以上の各ステップにより、Zチルトステージ24のステージ基準面Cに対するカバーグラス301の表面の近似平面Dの傾き情報γを取得ることができる。
なお、傾き情報γ(傾き情報αおよび傾き情報β)の正確な値を取得するためには、表面形状計測器90および第2計測手段900を事前に校正しておくことが望ましい。そこで、図6に示すように、表面形状計測器90および第2距離センサ901a〜901cによって、校正原器700における共通の平面までの距離を計測し、夫々の計測値が等しくなるように、どちらか一方あるいは両方の値にオフセット値を設定すればよい。
次に、顕微鏡部1における傾き情報計測方法および被検物ステージ20の調整方法について説明する。
まず、XYステージ23によって、プレパラート30を予備計測部2から顕微鏡部1へ移動する(S1007)。図4に示すように、本実施例に係る顕微鏡部1は、対物光学系40に対するZチルトステージ24の傾き情報を計測するための第1計測手段600を備えている。なお、本実施例においては、第1計測手段600として3個の第1距離センサ601a〜601cを設けている(図4では、そのうちの2つのみを図示している)。
そして、第1距離センサ601a〜601cにより、Zチルトステージ24のステージ基準面Cに対する距離情報602a〜602cを取得する(S1008)。また、第4演算器404において、第1距離センサ601a〜601cの夫々の位置関係および距離情報602a〜602cより、撮像基準面Bに対するステージ基準面Cの第2ステージ傾き情報(傾き情報θ)を演算する(S1009)。なお、傾き情報θは、X軸周りの角度θxと、Y軸周りの角度θyを含んでいる。
ここで、図4に示すように、Zチルトステージ24は顕微鏡部1において、第1制御系701によりフィードバック制御されている。そして、第1制御系701では、近似平面Dの傾き情報γをステージ基準面Cの傾き情報θの目標値として用いており、第3演算器403において、傾き情報θを傾き情報γと等しくするための駆動指令21を演算する(S1010)。この駆動指令21を、Zチルトステージ24の駆動手段(不図示)に対して与えることにより、近似平面Dが、対物光学系40の撮像基準面Bに対して平行(対物光学系40の光軸に対して垂直)となるように位置決めされる(S1011)。
なお、傾き情報θの正確な値を取得するためには、第1計測手段600を事前に校正しておくことが望ましい。そこで、図7に示すように、精度が保証された校正治具800を対物光学系40の撮像基準面Bに付き当てる。そして、3個の第1距離センサ601a〜601cの距離情報602a〜602cが、事前に計測しておいた校正治具800の高さLと同じ値を出力するように、距離情報602a〜602cにオフセット値を加える。これにより、3個の第1距離センサ601a〜601cは、対物光学系40の撮像基準面Bからの絶対距離を計測できるように校正される。
以上、Zチルトステージ24を調整することにより、カバーグラス301の表面の近似平面Dを対物光学系40の光軸に対して垂直に位置決めすることができる。すなわち、各部材の設置誤差や温度変化等に伴う各部材の位置変動だけでなく、カバーグラス301の表面形状に応じて、顕微鏡部1におけるフォーカスの調整を行うことができる。これにより、デフォーカスによるボケを抑制することができ、良好なデジタル画像を取得することができる。
実施例1では、被検物ステージ20におけるZチルトステージ24の姿勢を調整することによって、プレパラート30におけるカバーグラス301の表面の近似平面Dを、対物光学系40の撮像基準面Bに対して平行となるように位置決めした。ここで、より高精度なフォーカス位置調整を行う必要がある場合や、プレパラート30におけるカバーグラス301の厚さを考慮した場合は、被検物ステージ20の姿勢に加えZ方向およびXY方向の位置調整を行うことが好ましい。そこで、本実施例では、プレパラート30の厚さに応じて、対物光学系40とプレパラート30の撮像対象面との距離を制御し、プレパラート30の撮像対象面をベストフォーカス位置に位置決めする。
具体的には、実施例1で対物光学系40に取り付けた3個の第1距離センサ601a〜601cのうちの一つ(601a)をフォーカス調整用センサとして用い、プレパラート30のフォーカス位置調整を行う。このフォーカス位置調整を行ってから、実施例1と同様の方法で被検物ステージ20を調整することによって、より高精度なフォーカス位置調整を行うことができる。なお、本実施例において、実施例1と同一または同等の構成部分については同一の符号を付し、その説明を簡略もしくは省略する。
本実施形態に係る画像取得装置100では、予備計測部2でプレパラート30の計測などを行なってから、被検物ステージ20によりプレパラート30を顕微鏡部1まで移動し、その画像を取得するという動作を行う。そのため、効率よくフォーカス位置調整を行うためには、被検物ステージ20の移動経路上(表面形状計測器90と対物光学系40との間)に第1距離センサ601aを配置することが望ましい。そこで、本実施例に係る第1距離センサ601aは、図8に示す+Z方向から見て、表面形状計測器90の中心(光軸)と対物光学系40の中心(光軸)とを結ぶ直線E上に配置されているとする。このような構成により、被検物ステージ20の移動距離を最短にすることができ、画像取得装置100の全体のスループットを向上させることができる。
なお、第1距離センサ601aの位置が直線EからX方向に大きく外れた場合、X方向に大きな可動範囲を持ったXYステージ23が必要になる。よって、XYステージ23のX方向の可動範囲を増やさず、かつスループットを落とさないようにするために、直線Eから第1距離センサ601aまでの距離を、XYステージ23のX方向の可動範囲の半分以下にすることが望ましい。例えば、プレパラート30において、長い辺がJIS規格の76mmであるスライドグラスを使用する場合、そのスライドグラスの全面の画像を取得するためには、XYステージ23のX方向の可動範囲は76mmあればよい。すなわち、直線Eを基準とした場合、XYステージ23の可動範囲は、+X方向および−X方向の夫々が76mmの半分の38mmあれば十分となる。よって、この場合、表面形状計測器90の中心と対物光学系40の中心を結ぶ直線Eから第1距離センサ601aまでの水平方向の距離を、38mm以下の、プレパラート30の撮像領域に応じた値に設定することが望ましい。
以下、本実施例における画像取得装置100のフォーカスの調整方法について、図9に示すフローチャートを用いて詳細に説明する。
カバーグラス301の厚さを考慮してプレパラート30のフォーカス位置調整を行うためには、設置誤差や温度変化等による各部材の位置変動による影響を予め校正しておくことが望ましい。そこで、本実施例では、図10に示すような基準プレパラート31を用いて、Zチルトステージ24のZ方向の位置の校正値を取得し、その校正値に基づいてプレパラート30のフォーカス位置調整を行う。なお、基準プレパラート31の表面はうねりの影響が無くなるように研磨されており、対物光学系40の合焦状態を確認できるように、例えば図10で示した格子模様などが描画されていることが望ましい。また、ここでは、各部材の位置変動の有無にかかわらず、Zチルトステージ24が駆動する方向をZ方向と呼ぶこととする。
まず、図11Aを参照して、基準プレパラート31を用いて校正値Z0を取得するステップ(S2000)を説明する。
初めに、基準プレパラート31をZチルトステージ24に設置し、実施例1と同様の調整方法によってZチルトステージ24の姿勢を調整する。すなわち、予備計測部2において取得した基準プレパラート31の傾き情報γに基づいて、基準プレパラート31の近似平面Dが対物光学系40の撮像基準面Bに対して平行になるように、Zチルトステージ24の位置決めを行う。図11Aの左図は、顕微鏡部1において、基準プレパラート31の近似平面D(不図示)が対物光学系40の撮像基準面Bに対して平行になるように位置決めされた状態を示している。
なお、基準プレパラート31の表面が平坦であり、うねりによる影響を無視できる程度の平面度を有する場合は、近似平面Dを演算する必要はなく、基準プレパラート31の表面そのものを近似平面Dと置き換えて考えることができる。さらに、基準プレパラート31の表面が平坦で、かつステージ基準面Cと平行であるとみなせる場合は、予備計測部2にて基準プレパラート31の傾き情報γを取得する必要はない。その場合は、顕微鏡部1において、Zチルトステージ24のステージ基準面Cが対物光学系40の撮像基準面Bに対して平行となるように調整すればよい。
次に、Zチルトステージ24をZ方向に駆動して画像取得を複数回行い、取得した画像から基準プレパラート31のベストフォーカス位置を求める。そして、図11Aの中央図に示すように、基準プレパラート31の撮像領域がベストフォーカス位置に一致するように、Zチルトステージ24を位置決めする。
さらに、基準プレパラート31の姿勢およびZ方向の位置を変化させずにXYステージ23のみを駆動して、基準プレパラート31の撮像領域内の中心点Pがフォーカス調整用センサとしての第1距離センサ601aの計測位置となるように位置決めする。そして、図11Aの右図に示すように、第1距離センサ601aにより中心点Pまでの距離を計測し、この値を校正値Z0として記憶する。なお、実施例1と同様に、対物光学系40の撮像基準面Bからの絶対距離を計測するように第1距離センサ601aを校正しておいてもよい。その場合、校正値Z0の値は、対物光学系40の撮像基準面Bから、ベストフォーカス位置における基準プレパラート31の中心点Pまでの距離となる。以上のように、ステップS2000で校正値Z0を取得した後、観察対象のプレパラート30をZチルトステージ24に設置し、実施例1と同様に傾き情報γを演算する(S2001〜S2006)。
次に、図11Bを参照して、プレパラート30の表面をベストフォーカス位置に位置決めする方法を説明する。
まず、プレパラート30をZチルトステージ24に設置し、図11Bの左図に示すように、プレパラート30表面の撮像領域内の中心点P´が、第1距離センサ601aの計測位置になるように、XYステージ23を位置決めする(S2007)。さらに、図11Bの中央図で示すように、第1距離センサ601aにより計測した中心点P´までの距離Zが、予め取得しておいた校正値Z0と等しくなるように、Zチルトステージ24を位置決めする。最後に、図11Bの右図に示すように、XYステージ23を駆動してプレパラート30を撮像位置に移動することにより、中心点P´を対物光学系40のベストフォーカス位置に位置決めすることができる。
本実施例のように、プレパラート30を被検物とする場合、その撮像領域において観察対象となる撮像対象面は、図12Aに示すような試料302の表面(カバーグラス301の下面)となる。ところが、第1距離センサ601aが計測する距離Z1は、カバーグラス301の上面までの距離である。よって、撮像対象面内の点P1をベストフォーカス位置に位置決めするためには、カバーグラス301の厚さtを考慮してZチルトステージ24の調整を行う必要がある。そこで、ステップS2007でXYステージ23を移動した後に、第1距離センサ601aによってカバーグラス301の上面の点P2(点P1の直上)までの距離Z1を計測する(S2008)。そして、Z1+t=Z0となるようにZチルトステージ24を駆動し、プレパラート30を位置決めする(S2009)。その後、XYステージ23を駆動して、プレパラート30を撮像位置に移動することにより、撮像対象面内の点P1を対物光学系40のベストフォーカス位置に位置決めすることができる(S2010)。
ここで、撮像対象面内の点P1のXY方向の位置を決定する方法について説明する。図12Bに示すように、プレパラート30の撮像対象面はカバーグラス301の下面に密着しているので、この撮像対象面の形状はカバーグラス301の下面の形状と同様であると考えられる。そこで、本実施例では、カバーグラス301の表面形状に基づいて撮像対象面内の点P1の位置を決定する。まず、実施例1と同様に、ステップS2005で第1演算器401によってカバーグラス301の近似平面Dを演算する際に、図12Bに示すような、カバーグラス301の上面と近似平面Dとの交点P3を演算しておく。そして、撮像対象面の形状がカバーグラス301の表面形状と同様であると考えられることから、交点P3のXY方向の位置を点P1のXY方向の位置として取得する。以上の処理により、撮像対象面内の点P1の位置が決定される。なお、点P1が撮像対象面の中心からずれている場合は、そのずれ量に応じて、第1距離センサ601aの計測位置から対物光学系40の下の撮像位置にプレパラート30を移動する際の、XYステージ23の駆動量を調整することが望ましい。
本実施例では、上述した方法で撮像対象面内の点P1を対物光学系40のベストフォーカス位置に位置決めした後に、さらにカバーグラス301の表面の近似平面Dが対物光学系40の撮像基準面Bに対して平行(光軸に対して垂直)になるように位置決めする。すなわち、実施例1におけるステップS1008およびS1009と同様の方法で、対物光学系40の撮像基準面Bに対する、Zチルトステージ24のステージ基準面Cの傾き情報θを演算する(S2011およびS2012)。ここで、顕微鏡部1におけるZチルトステージ24の姿勢の調整を行う際に、位置決めされた撮像対象面内の点P1が、ベストフォーカス位置からずれないようにすることが望ましい。そのため、第3演算器403において、撮像対象面内の点P1がベストフォーカス位置を維持したままZチルトステージ24の位置を制御するように、第1距離センサ601a〜601cの距離情報602a〜602cに応じて駆動指令21を演算する(S2013)。そして、傾き情報θが傾き情報γと等しくなるように、駆動指令21に応じてZチルトステージ24の位置を制御する(S2014)。
以上、被検物ステージ20の調整により、カバーグラス301の表面の近似平面Dを対物光学系40の光軸に対して垂直に位置決めし、かつプレパラート30の撮像対象面内の点P1を対物光学系40のベストフォーカス位置に位置決めすることができる。すなわち、設置誤差や温度変化等に伴う各部材の位置変動や、カバーグラス301の表面形状に応じて、顕微鏡部1におけるフォーカスの調整を行うことができる。これにより、デフォーカスによるボケを抑制することができ、良好なデジタル画像を取得することができる。
その他の実施例
以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形および変更が可能である。
例えば、実施例1および2において、被検物ステージ20の調整のみによってフォーカスの調整を行っているが、カバーグラス301の細かいうねりに対しては、さらに撮像ユニット50における撮像素子501を駆動してフォーカスの調整を行ってもよい。この場合、図5のステップS1005または図9のステップS2005において取得した表面形状情報93に基づいて、第6演算器406により駆動指令53を演算する(S1012または2015)。そして、各撮像素子501に対して駆動指令53を与え、その駆動指令53に応じて駆動機構502を駆動することにより、カバーグラス301の表面形状に応じて各撮像素子501を位置決めすることができる(S1013または2016)。このように、被検物ステージ20および撮像素子501を調整することにより、プレパラート30の撮像領域の全域でフォーカスの合った画像を取得することができる。
また、いずれの実施例においても、第2計測手段900として第2距離センサ901a〜901cを、第1計測手段600として第1距離センサ601a〜601cを設けているが、夫々の計測手段はこの構成に限らない。すなわち、計測手段の計測情報によって上述した夫々の傾き情報を取得できればよいので、各距離センサの数を3個に限る必要はなく、また、計測手段として距離センサ以外のセンサを用いてもよい。
なお、実施例1では、対物光学系40の撮像基準面Bに対するZチルトステージ24の基準平面Cの傾き情報θの目標値として傾き情報γを用いているが、カバーグラス表面の形状に応じてより適切な目標値を設定してもよい。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
100 画像取得装置
1 顕微鏡部
2 予備計測部
4 演算処理部
20 被検物ステージ
30 被検物
40 対物光学系
91 表面形状情報
501 撮像素子

Claims (15)

  1. 被検物を保持する被検物ステージと、
    前記被検物の表面形状情報を取得する計測部と、
    前記被検物を結像する対物光学系と該対物光学系により結像された前記被検物を撮像する撮像素子とを含む顕微鏡部と、
    を備える画像取得装置であって、
    前記計測部において、前記被検物ステージの第1ステージ傾き情報を取得し、
    前記顕微鏡部において、前記表面形状情報と前記第1ステージ傾き情報との関係に基づき前記被検物ステージの姿勢を調整する
    ことを特徴とする画像取得装置。
  2. 前記表面形状情報に基づいて前記被検物の表面の近似平面を演算する演算処理部を備え、
    前記顕微鏡部において、前記近似平面および前記第1ステージ傾き情報との関係に基づき、前記近似平面が前記対物光学系の光軸に対して垂直になるように前記被検物ステージの姿勢を調整することを特徴とする請求項1に記載の画像取得装置。
  3. 前記演算処理部は、
    前記表面形状情報に基づいて前記近似平面の第1被検物傾き情報を演算する処理と、
    前記第1ステージ傾き情報および前記第1被検物傾き情報に基づいて前記近似平面の第2被検物傾き情報を演算する処理と、
    前記顕微鏡部における前記被検物ステージの第2ステージ傾き情報が前記第2被検物傾き情報と等しくなるように、前記被検物ステージの姿勢を調整するための駆動指令を演算する処理と、
    を行うことを特徴とする請求項2に記載の画像取得装置。
  4. 前記第1被検物傾き情報は、前記計測部の計測基準面に対する前記近似平面の傾き情報であり、前記第2被検物傾き情報は、前記被検物ステージに対する前記近似平面の傾き情報であって、
    前記第1ステージ傾き情報は、前記計測基準面に対する前記被検物ステージの傾き情報であり、前記第2ステージ傾き情報は、前記対物光学系の光軸に垂直な撮像基準面に対する前記被検物ステージの傾き情報である
    ことを特徴とする請求項3に記載の画像取得装置。
  5. 前記顕微鏡部は、前記被検物ステージの上面までの距離を計測する第1距離センサを有しており、該第1距離センサは、前記撮像基準面からの距離を計測するようにオフセットが与えられていることを特徴とする請求項4に記載の画像取得装置。
  6. 前記第1距離センサを複数備えており、該複数の第1距離センサのうちの1つは、前記対物光学系と前記計測部との間に配置されるフォーカス調整用センサであることを特徴とする請求項5に記載の画像取得装置。
  7. 前記被検物は、カバーグラスと該カバーグラスに接する試料とを含み、
    前記フォーカス調整用センサは、前記撮像基準面から、前記カバーグラスの表面と前記近似平面との交点までの距離情報を計測し、
    該距離情報と前記カバーグラスの厚さとの和が、前記撮像基準面から前記対物光学系のベストフォーカス位置までの距離と等しくなるように、前記被検物ステージの位置を調整することを特徴とする請求項6に記載の画像取得装置。
  8. 前記対物光学系の光軸と前記計測部の光軸とを結ぶ直線と、前記フォーカス調整用センサが配置される位置と、の水平方向の距離は、該直線に垂直な方向における前記被検物ステージの可動範囲の半分以下であることを特徴とする請求項6または7に記載の画像取得装置。
  9. 前記計測部は、前記表面形状情報を取得する表面形状計測器と、前記被検物ステージの上面までの距離を計測する第2距離センサと、を有しており、該表面形状計測器および該第2距離センサは、夫々が共通の平面を計測するようにオフセットが与えられていることを特徴とする請求項1乃至8のいずれか1項記載の画像取得装置。
  10. 前記顕微鏡部は、前記撮像素子の位置および姿勢の少なくとも一方を変更可能な駆動機構を有することを特徴とする請求項1乃至9のいずれか1項に記載の画像取得装置。
  11. 前記顕微鏡部は、前記撮像素子を複数有することを特徴とする請求項1乃至10のいずれか1項に記載の画像取得装置。
  12. 被検物を被検物ステージの上面に配置する工程と、
    計測部において、前記被検物の表面形状情報と、前記被検物ステージの第1ステージ傾き情報と、を取得する工程と、
    顕微鏡部において、前記表面形状情報と前記第1ステージ傾き情報との関係に基づき前記被検物ステージの姿勢を調整する被検物ステージ調整工程と、
    を有することを特徴とする画像取得装置の調整方法。
  13. 前記表面形状情報に基づいて前記被検物の表面の近似平面を演算するステップと、前記被検物ステージに対する前記近似平面の第2被検物傾き情報を取得するステップと、を含む傾き情報計測工程を有しており、
    前記被検物ステージ調整工程は、前記顕微鏡部の光軸に垂直な撮像基準面に対する前記被検物ステージの第2ステージ傾き情報が前記第2被検物傾き情報と等しくなるように、前記被検物ステージの姿勢を調整する工程であることを特徴とする請求項12に記載の画像取得装置の調整方法。
  14. 前記傾き情報計測工程は、
    前記計測部の計測基準面に対する前記近似平面の第1被検物傾き情報を取得するステップと、
    前記第1ステージ傾き情報および前記第1被検物傾き情報に基づいて前記第2被検物傾き情報を取得するステップと、
    を含むことを特徴とする請求項13に記載の画像取得装置の調整方法。
  15. 前記撮像基準面から、前記被検物に含まれるカバーグラスの表面と前記近似平面との交点までの距離情報を計測し、該距離情報と該カバーグラスの厚さとの和が、前記撮像基準面から前記顕微鏡部のベストフォーカス位置までの距離と等しくなるように、前記被検物ステージの位置を調整する工程を有することを特徴とする請求項13または14に記載の画像取得装置の調整方法。
JP2013548030A 2011-12-09 2011-12-09 画像取得装置および画像取得装置の調整方法 Pending JPWO2013084345A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548030A JPWO2013084345A1 (ja) 2011-12-09 2011-12-09 画像取得装置および画像取得装置の調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013548030A JPWO2013084345A1 (ja) 2011-12-09 2011-12-09 画像取得装置および画像取得装置の調整方法

Publications (1)

Publication Number Publication Date
JPWO2013084345A1 true JPWO2013084345A1 (ja) 2015-04-27

Family

ID=53013511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013548030A Pending JPWO2013084345A1 (ja) 2011-12-09 2011-12-09 画像取得装置および画像取得装置の調整方法

Country Status (1)

Country Link
JP (1) JPWO2013084345A1 (ja)

Similar Documents

Publication Publication Date Title
WO2013084345A1 (ja) 画像取得装置および画像取得装置の調整方法
JP6042564B2 (ja) 基板をアライメントする装置及び方法
US7196300B2 (en) Dynamic focusing method and apparatus
US20080021665A1 (en) Focusing method and apparatus
WO2006098443A1 (ja) 顕微鏡画像撮像装置
US8810799B2 (en) Height-measuring method and height-measuring device
US20160033753A1 (en) Image acquiring apparatus
US11774706B2 (en) Method for determining a deviation on a displacement path of an optical zoom lens and method for correction and image recording device
KR20140078621A (ko) 기판의 형상 변화 측정 방법
US20120314050A1 (en) Imaging apparatus and control method therefor
JPWO2013084345A1 (ja) 画像取得装置および画像取得装置の調整方法
JP2006325100A (ja) デジタルカメラの調整方法及び、その調整装置
JP6464021B2 (ja) 測定装置
JP2010266750A (ja) 観察装置および観察システム
JP2014013308A (ja) 画像取得装置及び画像取得方法
WO2013051147A1 (ja) 画像取得装置の調整方法、画像取得装置および画像取得装置の製造方法
JP4981272B2 (ja) 動的な焦点合わせ方法および装置
NL2028376B1 (en) Method of and arrangement for verifying an alignment of an infinity-corrected objective.
US8964290B2 (en) Microscope
JP5217327B2 (ja) 角度計測方法および角度計測装置
JP7198731B2 (ja) 撮像装置、及びフォーカス調整方法
JP2012093116A (ja) レンズ検査装置及びチャート板
JPWO2013051147A1 (ja) 画像取得装置の調整方法、画像取得装置および画像取得装置の製造方法
JP2013130687A (ja) 撮像装置
TWI422896B (zh) 動態對焦方法及設備