JPWO2012157627A1 - Curable heat dissipation composition - Google Patents

Curable heat dissipation composition Download PDF

Info

Publication number
JPWO2012157627A1
JPWO2012157627A1 JP2013515156A JP2013515156A JPWO2012157627A1 JP WO2012157627 A1 JPWO2012157627 A1 JP WO2012157627A1 JP 2013515156 A JP2013515156 A JP 2013515156A JP 2013515156 A JP2013515156 A JP 2013515156A JP WO2012157627 A1 JPWO2012157627 A1 JP WO2012157627A1
Authority
JP
Japan
Prior art keywords
inorganic filler
curable heat
compound
filler
carboxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013515156A
Other languages
Japanese (ja)
Inventor
内田 博
博 内田
雄樹 大塚
雄樹 大塚
利彦 小堤
利彦 小堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2012157627A1 publication Critical patent/JPWO2012157627A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本発明は、(A)(a)ポリイソシアネート化合物、(b)ポリカーボネートジオール化合物、(c)カルボキシル基を有するジヒドロキシ化合物を反応させて得られるカルボキシル基を有するウレタン樹脂、(B)エポキシ樹脂及び(C)無機フィラー(但し、硫酸バリウム及び酸化チタンを除く)を含有し、無機フィラー(C)の含有率が50〜96質量%である硬化性放熱組成物に関する。無機フィラー(C)としては扁平状の窒化ホウ素と粒子状のアルミナ、窒化アルミニウムまたは窒化ホウ素を併用することが好ましい。本発明の硬化性放熱樹脂組成物は、高い熱伝導率と柔軟性、金属に対する良好な接着性を合せ持ち、パワー半導体、光半導体を含む半導体素子、半導体装置、回路用金属板、前記金属板からなる回路、回路基板、混成集積回路分野等で極めて有用である。The present invention includes (A) (a) a polyisocyanate compound, (b) a polycarbonate diol compound, (c) a urethane resin having a carboxyl group obtained by reacting a dihydroxy compound having a carboxyl group, (B) an epoxy resin, and ( C) It relates to a curable heat-radiating composition containing an inorganic filler (excluding barium sulfate and titanium oxide), wherein the content of the inorganic filler (C) is 50 to 96% by mass. As the inorganic filler (C), it is preferable to use flat boron nitride and particulate alumina, aluminum nitride or boron nitride in combination. The curable heat-dissipating resin composition of the present invention has high thermal conductivity, flexibility, and good adhesion to metal, and includes a power semiconductor, a semiconductor element including an optical semiconductor, a semiconductor device, a circuit metal plate, and the metal plate. It is extremely useful in the fields of circuits, circuit boards, and hybrid integrated circuits.

Description

本発明は放熱性、応力緩和性、絶縁信頼性に優れるだけではなく、作業時の粘着性、硬化後の接着性にも優れ、放熱電子部品固定に好適な硬化性放熱組成物に関する。   The present invention relates to a curable heat-dissipating composition that is not only excellent in heat dissipation, stress relaxation, and insulation reliability, but also excellent in adhesiveness during work and adhesion after curing, and suitable for fixing heat-dissipating electronic components.

近年、電気、電子部品の小型化、ハイパワー化により、狭いスペースの中で電子部品等から発生する熱を如何に放熱するかが問題になっている。その手段の一つに、電子部品の発熱対象部から放熱部材へ熱を伝導させる絶縁性の接着剤、シートが使用されている。これらの接着剤、シートとしては、熱硬化性樹脂に無機の高放熱フィラーを高充填した組成物が使用されている。しかし電子機器、電子部品からの発熱量は増大する傾向にあり、これらに使用される接着剤、シートにはさらなる熱伝導性の向上が求められている。そのためには無機の高放熱フィラーを今まで以上に樹脂に高充填する必要がある。本用途に使用される樹脂としては、基材との接着性の観点よりエポキシ樹脂が主に使用されてきた(例えば、特開2008−101227号公報(特許文献1)、特開2008−280436号公報(特許文献2)、特開2010−109285号公報(特許文献3))。しかし、エポキシ樹脂は、フィラーの配合量を増やしていくとその表面積が増大するため、フィラー表面への樹脂吸着量が増える。その結果基材への粘着性、硬化後の接着性が大幅に低下する問題がある。さらにフィラーを高充填したエポキシ樹脂組成物は成形性が著しく劣るという問題がある。   In recent years, there has been a problem of how to dissipate heat generated from electronic parts and the like in a narrow space due to downsizing and high power of electric and electronic parts. As one of the means, an insulating adhesive and sheet for conducting heat from the heat generation target part of the electronic component to the heat radiating member are used. As these adhesives and sheets, a composition in which a thermosetting resin is highly filled with an inorganic high heat dissipation filler is used. However, the amount of heat generated from electronic devices and electronic components tends to increase, and further improvements in thermal conductivity are required for adhesives and sheets used in these devices. For this purpose, it is necessary to fill the resin with an inorganic high heat dissipation filler more than ever. As the resin used in this application, an epoxy resin has been mainly used from the viewpoint of adhesiveness to a base material (for example, Japanese Patent Application Laid-Open No. 2008-101227 (Patent Document 1), Japanese Patent Application Laid-Open No. 2008-280436). Gazette (patent document 2), Unexamined-Japanese-Patent No. 2010-109285 (patent document 3)). However, since the surface area of the epoxy resin increases as the blending amount of the filler increases, the amount of the resin adsorbed on the filler surface increases. As a result, there is a problem that the adhesiveness to the substrate and the adhesiveness after curing are significantly reduced. Furthermore, the epoxy resin composition highly filled with the filler has a problem that the moldability is extremely inferior.

特開2008−101227号公報JP 2008-101227 A 特開2008−280436号公報JP 2008-280436 A 特開2010−109285号公報JP 2010-109285 A

本発明は、上記の事情に鑑みて、放熱フィラーを高濃度で充填しても電気、電子部品を固定する際には粘着性を有し、作業性が良く、その後硬化することにより高い接着強度で固定することができる組成物を提供することを目的とする。   In view of the above circumstances, the present invention has adhesiveness when fixing electrical and electronic components even when filled with a high concentration of heat dissipation filler, has good workability, and has high adhesive strength by curing thereafter. The object is to provide a composition which can be fixed with

本発明者らは、鋭意研究を重ねた結果、可撓性、フィラー充填性、加熱時の流動性に優れた特定の構造を有するカルボキシル基を有するウレタン樹脂とエポキシ樹脂を組み合わせた樹脂組成物に、高放熱フィラーを高濃度で充填することにより、放熱性、作業時の粘着性、硬化後の接着性、接着後の長期信頼性に優れた硬化性放熱組成物が得られることを見出し、本発明を完成した。   As a result of intensive research, the present inventors have developed a resin composition that combines a urethane resin having a specific structure with excellent flexibility, filler filling property, and fluidity during heating with an epoxy resin. It is found that by filling a high heat-dissipating filler with a high concentration, a curable heat-dissipating composition excellent in heat dissipation, adhesiveness during work, adhesiveness after curing, and long-term reliability after bonding can be obtained. Completed the invention.

すなわち、本発明は下記の硬化性放熱組成物及び接着剤を提供する。
[1] (A)カルボキシル基を有するウレタン樹脂、(B)エポキシ樹脂及び(C)無機フィラー(但し、硫酸バリウム及び酸化チタンを除く)を含有し、前記無機フィラー(C)の含有率が50〜96質量%であることを特徴とする硬化性放熱組成物。
[2] 前記無機フィラー(C)が、20W/m・K以上の熱伝導率を有する無機フィラーを含有する前項[1]に記載の硬化性放熱組成物。
[3] 前記無機フィラー(C)中に、20W/m・K以上の熱伝導率を有する無機フィラーを少なくとも10質量%含有する前項[2]に記載の硬化性放熱組成物。
[4] カルボキシル基を有するウレタン樹脂(A)が、(a)ポリイソシアネート化合物、(b)ポリカーボネートジオール化合物、(c)カルボキシル基を有するジヒドロキシ化合物、及び必要に応じて(d)モノヒドロキシ化合物を反応させて得られる樹脂である前項[1]〜[3]のいずれか1項に記載の硬化性放熱組成物。
[5] 前記ポリカーボネートジオール化合物(b)の数平均分子量が300〜50000である前項[4]に記載の硬化性放熱組成物。
[6] 前記数平均分子量が300〜50000のポリカーボネートジオール化合物を構成するジオールの少なくとも10モル%以上が、炭素数6〜30の脂環式化合物である前項[5]に記載の硬化性放熱組成物。
[7] ポリイソシアネート化合物(a)の少なくとも10モル%以上が、イソシアネート基部分以外の炭素数が6〜30の脂環式化合物である前項[4]に記載の硬化性放熱組成物。
[8] カルボキシル基を有するウレタン樹脂(A)の数平均分子量が500〜100000であり、酸価が5〜150mgKOH/gである前項[1]〜[4]のいずれか1項に記載の硬化性放熱組成物。
[9] カルボキシル基を有するウレタン樹脂(A)とエポキシ樹脂(B)の質量比が100:10〜100である前項[1]〜[3]のいずれか1項に記載の硬化性放熱組成物。
[10] 前記無機フィラー(C)が、扁平状フィラーと粒子状フィラーの混合物である前項[1]〜[3]のいずれか1項に記載の硬化性放熱組成物。
[11] 扁平状フィラーと粒子状フィラーとの質量比が90:10〜10:90である前項[10]に記載の硬化性放熱組成物。
[12] 前記粒子状フィラーがアルミナ、窒化アルミニウムまたは窒化ホウ素であり、前記扁平状フィラーが窒化ホウ素である前項[10]または[11]に記載の硬化性放熱組成物。
[13] 前項[1]〜[12]のいずれか1項に記載の硬化性放熱組成物からなる接着剤。
That is, this invention provides the following curable thermal radiation composition and adhesive agent.
[1] (A) Urethane resin having a carboxyl group, (B) epoxy resin and (C) inorganic filler (however, excluding barium sulfate and titanium oxide), and the content of the inorganic filler (C) is 50 It is -96 mass%, The curable thermal radiation composition characterized by the above-mentioned.
[2] The curable heat-radiating composition according to [1], wherein the inorganic filler (C) contains an inorganic filler having a thermal conductivity of 20 W / m · K or more.
[3] The curable heat-radiating composition according to [2], wherein the inorganic filler (C) contains at least 10% by mass of an inorganic filler having a thermal conductivity of 20 W / m · K or more.
[4] The urethane resin (A) having a carboxyl group comprises (a) a polyisocyanate compound, (b) a polycarbonate diol compound, (c) a dihydroxy compound having a carboxyl group, and (d) a monohydroxy compound as necessary. The curable heat-dissipating composition according to any one of [1] to [3], which is a resin obtained by reaction.
[5] The curable heat-dissipating composition according to [4], wherein the polycarbonate diol compound (b) has a number average molecular weight of 300 to 50,000.
[6] The curable heat dissipation composition according to [5] above, wherein at least 10 mol% of the diol constituting the polycarbonate diol compound having a number average molecular weight of 300 to 50,000 is an alicyclic compound having 6 to 30 carbon atoms. object.
[7] The curable heat-dissipating composition according to [4], wherein at least 10 mol% of the polyisocyanate compound (a) is an alicyclic compound having 6 to 30 carbon atoms other than the isocyanate group moiety.
[8] The curing according to any one of [1] to [4], wherein the urethane resin (A) having a carboxyl group has a number average molecular weight of 500 to 100,000 and an acid value of 5 to 150 mgKOH / g. Heat dissipation composition.
[9] The curable heat-radiating composition according to any one of [1] to [3], wherein the mass ratio of the urethane resin (A) having a carboxyl group and the epoxy resin (B) is 100: 10 to 100. .
[10] The curable heat-dissipating composition according to any one of [1] to [3], wherein the inorganic filler (C) is a mixture of a flat filler and a particulate filler.
[11] The curable heat-dissipating composition according to [10], wherein the mass ratio of the flat filler to the particulate filler is 90:10 to 10:90.
[12] The curable heat radiation composition according to [10] or [11], wherein the particulate filler is alumina, aluminum nitride, or boron nitride, and the flat filler is boron nitride.
[13] An adhesive comprising the curable heat dissipation composition according to any one of [1] to [12].

本発明の硬化性放熱組成物は、高放熱性と作業時の粘着性、硬化後の接着性、長期信頼性を有する接着剤とすることができ、パワー半導体、光半導体を含む半導体素子、半導体装置、回路用金属板、前記金属板からなる回路、回路基板、混成集積回路分野等の電気部品の固定に使用することができる。   The curable heat-dissipating composition of the present invention can be used as an adhesive having high heat dissipation and adhesiveness during work, adhesiveness after curing, long-term reliability, power semiconductor, semiconductor element including optical semiconductor, semiconductor It can be used for fixing electrical parts in the field of devices, metal plates for circuits, circuits made of the metal plates, circuit boards, hybrid integrated circuits and the like.

本発明に用いる扁平状の無機フィラー(C)の平面図(a)、及びX−X断面図(b)である。It is the top view (a) and XX sectional drawing (b) of the flat inorganic filler (C) used for this invention.

以下、本発明について詳細に説明する。
本発明では、硬化性放熱組成物のマトリックス樹脂として、カルボキシル基を有するウレタン樹脂(A)とエポキシ樹脂(B)とからなる混合樹脂を使用する。
Hereinafter, the present invention will be described in detail.
In the present invention, a mixed resin composed of a urethane resin (A) having a carboxyl group and an epoxy resin (B) is used as the matrix resin of the curable heat radiation composition.

本発明に使用するカルボキシル基を有するウレタン樹脂(A)は、可撓性に優れ、加熱したときの流動性に優れることから、高熱導電性の無機フィラーを高充填しても粘着性を有し、熱硬化時の接着性に優れる。また、柔軟であることから応力緩和性に優れ、耐湿信頼性にも優れ、該樹脂(A)を用いた硬化物は高い長期信頼性を有する。   Since the urethane resin (A) having a carboxyl group used in the present invention is excellent in flexibility and excellent in fluidity when heated, it has adhesiveness even when highly filled with a highly heat-conductive inorganic filler. Excellent adhesion during thermosetting. Moreover, since it is flexible, it has excellent stress relaxation properties and excellent moisture resistance reliability, and a cured product using the resin (A) has high long-term reliability.

本発明で使用するカルボキシル基を有するウレタン樹脂(A)は、(a)ポリイソシアネート化合物、(b)ポリカーボネートジオール化合物、(c)カルボキシル基を有するジヒドロキシ化合物、及び必要に応じて(d)モノヒドロキシ化合物を反応させて得られる。   The urethane resin (A) having a carboxyl group used in the present invention comprises (a) a polyisocyanate compound, (b) a polycarbonate diol compound, (c) a dihydroxy compound having a carboxyl group, and (d) a monohydroxy as required. Obtained by reacting a compound.

ポリイソシアネート化合物(a)の具体例としては、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、イソホロンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、1,3−トリメチレンジイソシアネート、1,4−テトラメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、1,9−ノナメチレンジイソシアネート、1,10−デカメチレンジイソシアネート、1,4−シクロヘキサンジイソシアネート、2,2’−ジエチルエーテルジイソシアネート、ジフェニルメタンジイソシアネート、(o,m,またはp)−キシレンジイソシアネート、メチレンビス(シクロヘキシルイソシアネート)、シクロヘキサン−1,3−ジメチレンジイソシアネート、シクロヘキサン−1,4−ジメチレンジイソシアネート、1,5−ナフタレンジイソシアネート、p−フェニレンジイソシアネート、3,3’−メチレンジトリレン−4,4’−ジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、テトラクロロフェニレンジイソシアネート、ノルボルナンジイソシアネート等のジイソシアネートが挙げられる。これらのジイソシアネートは1種または2種以上を組み合わせて用いることができる。   Specific examples of the polyisocyanate compound (a) include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 1,3-trimethylene diisocyanate, 1,4-tetra Methylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 2, 2'-diethyl ether diisocyanate, diphenylmethane diisocyanate, (o, m, or p) -xylene diisocyanate, methylene bis (cyclohexyl isocyanate), cyclo Xan-1,3-dimethylene diisocyanate, cyclohexane-1,4-dimethylene diisocyanate, 1,5-naphthalene diisocyanate, p-phenylene diisocyanate, 3,3′-methylene ditolylene-4,4′-diisocyanate, 4, Examples of the diisocyanate include 4′-diphenyl ether diisocyanate, tetrachlorophenylene diisocyanate, and norbornane diisocyanate. These diisocyanates can be used alone or in combination of two or more.

また、ゲル化をしない範囲で、トリフェニルメタントリイソシアネートのようなイソシアネート基を3個以上有するポリイソシアネート化合物も少量使用することができる。   In addition, a small amount of a polyisocyanate compound having three or more isocyanate groups such as triphenylmethane triisocyanate can be used as long as it does not gel.

これらの中でも特に、イソシアネート基部分以外の炭素数が6〜30の脂環式化合物を有するポリイソシアネート化合物を用いた場合に、高温高湿時の長期絶縁信頼性について優れた性能が発現する。イソシアネート基部分以外の炭素数が6〜30の脂環式化合物を有するポリイソシアネート化合物としては、例えば、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(シクロヘキシルイソシアネート)、シクロヘキサン−1,3−ジメチレンジイソシアネート、シクロヘキサン−1,4−ジメチレンジイソシアネートが挙げられる。   Among these, in particular, when a polyisocyanate compound having an alicyclic compound having 6 to 30 carbon atoms other than the isocyanate group portion is used, excellent performance is exhibited for long-term insulation reliability at high temperature and high humidity. Examples of the polyisocyanate compound having an alicyclic compound having 6 to 30 carbon atoms other than the isocyanate group portion include cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (cyclohexyl isocyanate), cyclohexane-1,3-dimethylene diisocyanate, cyclohexane- 1,4-dimethylene diisocyanate may be mentioned.

好適な物性を発現するためには、これらのイソシアネート基部分以外の炭素数が6〜30の脂環式化合物を有するポリイソシアネート化合物を全ポリイソシアネート成分の少なくとも10モル%以上、より好ましくは30モル%以上使用することが望ましい。   In order to develop suitable physical properties, the polyisocyanate compound having an alicyclic compound having 6 to 30 carbon atoms other than these isocyanate group portions is at least 10 mol% or more of the total polyisocyanate component, more preferably 30 mol. % Or more is desirable.

ポリカーボネートジオール化合物(b)としては、例えば1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジオール、1,3−シクロヘキサンジオール、トリシクロヘキサンジメタノール、ペンタシクロペンタデカンジメタノール等のジオール成分をカーボネート結合で連結した構造を有するポリカーボネートジオール化合物が好ましい。これらのポリカーボネートジオール化合物は1種または2種以上を組み合わせて用いることができる。   Examples of the polycarbonate diol compound (b) include 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2 -Methyl-1,8-octanediol, 1,9-nonanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, tricyclohexanedi A polycarbonate diol compound having a structure in which diol components such as methanol and pentacyclopentadecanedimethanol are connected by a carbonate bond is preferable. These polycarbonate diol compounds can be used alone or in combination of two or more.

これらの中でも、炭素数が6〜30の脂環式化合物を有するジオールを用いた場合に、特に高温高湿時の長期絶縁信頼性について優れた性能が発現する。炭素数6〜30からなる脂環式化合物を有するジオールとしては、例えば1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジオール、1,3−シクロヘキサンジオール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノールが挙げられる。   Among these, when a diol having an alicyclic compound having 6 to 30 carbon atoms is used, excellent performance is exhibited particularly in terms of long-term insulation reliability at high temperature and high humidity. Examples of the diol having an alicyclic compound having 6 to 30 carbon atoms include 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, and tricyclohexane. Examples include decanedimethanol and pentacyclopentadecanedimethanol.

好適な物性を発現するためには、これらの炭素数が6〜30の脂環式化合物を有するポリカーボネートジオールを全ポリカーボネートジオール成分の少なくとも10モル%以上、より好ましくは30モル%以上使用することが望ましい。   In order to express suitable physical properties, the polycarbonate diol having an alicyclic compound having 6 to 30 carbon atoms may be used at least 10 mol% or more, more preferably 30 mol% or more of the total polycarbonate diol component. desirable.

本発明に使用するポリカーボネートジオール化合物(b)の好ましい数平均分子量は300〜50000である。300未満では高温高湿時の長期絶縁信頼性が低下し、50000を超えるとウレタン樹脂合成が難しくなる。   The preferred number average molecular weight of the polycarbonate diol compound (b) used in the present invention is 300 to 50,000. If it is less than 300, the long-term insulation reliability at high temperature and high humidity decreases, and if it exceeds 50,000, urethane resin synthesis becomes difficult.

カルボキシル基を有するジヒドロキシ化合物(c)としては、例えば2,2−ジメチロールプロピオン酸、2,2−ジメチロールブタン酸、N,N−ビスヒドロキシエチルグリシン、N,N−ビスヒドロキシエチルアラニン等が挙げられ、これらの中でも溶媒への溶解度から、ジメチロールプロピオン酸、ジメチロールブタン酸が特に好ましい。これらのカルボキシル基を有するジヒドロキシ化合物は1種または2種以上を組み合わせて用いることができる。   Examples of the dihydroxy compound (c) having a carboxyl group include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, N, N-bishydroxyethylglycine, N, N-bishydroxyethylalanine and the like. Among these, dimethylolpropionic acid and dimethylolbutanoic acid are particularly preferable from the viewpoint of solubility in a solvent. These dihydroxy compounds having a carboxyl group can be used alone or in combination of two or more.

カルボキシル基を有するウレタン樹脂は、前記(a)、(b)及び(c)の3成分だけでも合成が可能であるが、さらにラジカル重合性や反応性を付与する目的や末端のイソシアネート残基の影響を無くす目的で、モノヒドロキシ化合物(d)を反応させることができる。   The urethane resin having a carboxyl group can be synthesized with only the three components (a), (b) and (c) described above. However, the purpose is to impart radical polymerizability and reactivity, and the terminal isocyanate residue. In order to eliminate the influence, the monohydroxy compound (d) can be reacted.

モノヒドロキシ化合物(d)としては、例えばラジカル重合性二重結合を有する2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、前記各(メタ)アクリレートのカプロラクトンまたは酸化アルキレン付加物、グリセリンジ(メタ)アクリレート、トリメチロールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリルレート、アリルアルコール、アリロキシエタノール等が挙げられ、反応性を付与するモノヒドロキシ化合物としてグリコール酸、ヒドロキシピバリン酸等のカルボン酸を有する化合物が挙げられる。   Examples of the monohydroxy compound (d) include 2-hydroxyethyl (meth) acrylate having a radical polymerizable double bond, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, caprolactone of each of the above (meth) acrylates, or Alkylene oxide adducts, glycerin di (meth) acrylate, trimethylol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, allyl alcohol, Examples thereof include allyloxyethanol, and examples of the monohydroxy compound imparting reactivity include compounds having a carboxylic acid such as glycolic acid and hydroxypivalic acid.

これらのモノヒドロキシ化合物は1種または2種以上を組み合わせて用いることができる。また、これらの中では、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、アリルアルコール、グリコール酸、ヒドロキシピバリン酸が好ましく、2−ヒドロキシエチル(メタ)アクリレートがより好ましい。
また、末端のイソシアネート残基の影響を無くす目的で用いるモノヒドロキシ化合物としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、t−ブタノール、アミルアルコール、ヘキシルアルコール、オクチルアルコール等が挙げられる。
These monohydroxy compounds can be used alone or in combination of two or more. Of these, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, allyl alcohol, glycolic acid, and hydroxypivalic acid are preferred, and 2-hydroxyethyl (meth) acrylate is preferred. Is more preferable.
Monohydroxy compounds used for the purpose of eliminating the influence of terminal isocyanate residues include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, amyl alcohol, and hexyl alcohol. And octyl alcohol.

本発明のカルボキシル基含有ウレタン樹脂の数平均分子量は500〜100000が好ましく、2000〜30000が特に好ましい。ここで、数平均分子量は、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の値である。数平均分子量が500未満では、硬化膜の伸度、可とう性、並びに強度を損なうことがあり、100000を超えると溶媒への溶解性が低くなる上に、溶解しても粘度が高くなりすぎるために、使用面で制約が大きくなる。   The number average molecular weight of the carboxyl group-containing urethane resin of the present invention is preferably from 500 to 100,000, particularly preferably from 2,000 to 30,000. Here, the number average molecular weight is a value in terms of polystyrene measured by gel permeation chromatography. If the number average molecular weight is less than 500, the elongation, flexibility and strength of the cured film may be impaired. If the number average molecular weight exceeds 100,000, the solubility in a solvent will be low, and the viscosity will become too high even if dissolved. For this reason, restrictions in use are increased.

本発明のカルボキシル基含有ウレタン樹脂の酸価は5〜150mgKOH/gが好ましく、特に10〜120mgKOH/gが好ましい。酸価が5mgKOH/g未満ではエポキシ樹脂との反応性が低下し耐熱性を損ねることがあり、150mgKOH/gを超えると硬化膜が硬く脆くなりすぎるという欠点がある。   The acid value of the carboxyl group-containing urethane resin of the present invention is preferably 5 to 150 mgKOH / g, particularly preferably 10 to 120 mgKOH / g. If the acid value is less than 5 mgKOH / g, the reactivity with the epoxy resin may be lowered and the heat resistance may be impaired, and if it exceeds 150 mgKOH / g, the cured film becomes too hard and brittle.

本発明で使用するカルボキシル基を有するウレタン樹脂(A)は、ジブチル錫ジラウリレートのような公知のウレタン化触媒の存在下または非存在下で適切な溶媒を用いて、ポリイソシアネート化合物(a)、ポリカーボネートジオール化合物(b)、カルボキシル基を有するジヒドロキシ化合物(c)、及び必要に応じてモノヒドロキシ化合物(d)を反応させて得られる。
反応様式は特に大きな制限はないが、工業的に実施する上での代表的な例を説明する。
The urethane resin (A) having a carboxyl group used in the present invention is prepared by using a suitable solvent in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate, polyisocyanate compound (a), polycarbonate It is obtained by reacting the diol compound (b), the dihydroxy compound (c) having a carboxyl group, and, if necessary, the monohydroxy compound (d).
The reaction mode is not particularly limited, but representative examples for industrial implementation will be described.

反応に用いる有機溶剤は、イソシアネートとの反応性が低いものであればよく、例えばトルエン、キシレン、エチルベンゼン、ニトロベンゼン、シクロヘキサン、イソホロン、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、酢酸エチル、酢酸n−ブチル、酢酸イソアミル、乳酸エチル、アセトン、メチルエチルケトン、シクロヘキサノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、γ−ブチロラクトン、ジメチルスルホキシド、クロロホルム及び塩化メチレン等が挙げられる。なお、生成するカルボキシル基含有ウレタンの溶解性が低いものは好ましくない。また、放熱性を発現する上で硬化物中に溶剤が残留するのは好ましくなく、その観点から揮発しやすい溶剤が好ましい。これらの中でも特に、トルエン、テトラヒドロフラン、酢酸エチル、アセトン、メチルエチルケトン等の溶媒が好ましい。反応液の濃度としては、カルボキシル基を有するウレタン樹脂濃度は、10〜90質量%が好ましく、40〜80質量%がより好ましい。   The organic solvent used for the reaction is not particularly limited as long as it has a low reactivity with isocyanate. For example, toluene, xylene, ethylbenzene, nitrobenzene, cyclohexane, isophorone, tetrahydrofuran, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol methyl ether acetate, propylene Glycol ethyl ether acetate, dipropylene glycol methyl ether acetate, diethylene glycol ethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, ethyl acetate, n-butyl acetate, isoamyl acetate, ethyl lactate , Acetone, methyl ethyl ketone, cyclohexanone, N, N-dimethyl Le formamide, N, N- dimethylacetamide, N- methylpyrrolidone, .gamma.-butyrolactone, dimethyl sulfoxide, chloroform and methylene chloride. In addition, the thing with low solubility of the carboxyl group-containing urethane to produce | generate is not preferable. In addition, it is not preferable that the solvent remains in the cured product in order to exhibit heat dissipation, and a solvent that easily volatilizes is preferable from that viewpoint. Among these, solvents such as toluene, tetrahydrofuran, ethyl acetate, acetone, and methyl ethyl ketone are particularly preferable. As a density | concentration of a reaction liquid, 10-90 mass% is preferable and, as for the urethane resin density | concentration which has a carboxyl group, 40-80 mass% is more preferable.

原料の仕込みを行う順番については特に制約はないが、一般にはジオール化合物((b)のポリカーボネートジオール化合物と(c)のカルボキシル基を含有するジヒドロキシ化合物)を先に仕込み、溶媒に溶解させた後、20〜150℃、より好ましくは60〜120℃で、(a)のポリイソシアネート化合物を滴下しながら加え、その後、50〜160℃、より好ましくは70〜130℃で反応させる。   Although there is no restriction | limiting in particular about the order which performs preparation of a raw material, Generally, after preparing the diol compound (dihydroxy compound containing the polycarbonate diol compound of (b) and the carboxyl group of (c) first), and making it melt | dissolve in a solvent. The polyisocyanate compound (a) is added dropwise at 20 to 150 ° C., more preferably 60 to 120 ° C., and then reacted at 50 to 160 ° C., more preferably 70 to 130 ° C.

原料の仕込みモル比については、目的の数平均分子量、酸価によって調節することになるが、モノヒドロキシ化合物(d)を導入する場合には末端がイソシアネートになるように(a)のポリイソシアネート化合物をジオール化合物((b)のポリカーボネートジオール化合物+(c)のカルボキシル基を含有するジヒドロキシ化合物)よりも過剰に用いる必要がある。   The feed molar ratio of the raw materials is adjusted by the desired number average molecular weight and acid value. When the monohydroxy compound (d) is introduced, the polyisocyanate compound (a) is such that the terminal is an isocyanate. Must be used in excess of the diol compound (polycarbonate diol compound of (b) + dihydroxy compound containing a carboxyl group of (c)).

ジオール化合物とポリイソシアネート化合物の反応がほぼ終了した時点で、両末端に残存しているイソシアネートと(d)のモノヒドロキシ化合物を反応させるために、20〜150℃、より好ましくは70〜120℃でモノヒドロキシ化合物を滴下し、その後同温度で保持して反応を完結させる。   At the time when the reaction between the diol compound and the polyisocyanate compound is almost completed, the isocyanate remaining at both ends is reacted with the monohydroxy compound of (d) at 20 to 150 ° C., more preferably at 70 to 120 ° C. The monohydroxy compound is added dropwise and then held at the same temperature to complete the reaction.

本発明において、カルボキシル基を有するウレタン樹脂(A)の硬化剤として使用されるエポキシ樹脂(B)は、1分子中に少なくとも平均2個以上のエポキシ基を有するものが好ましい。また、かかるエポキシ樹脂は、例えば、シリコーン骨格、ウレタン骨格、ポリイミド骨格を有するものでもよい。   In the present invention, the epoxy resin (B) used as a curing agent for the urethane resin (A) having a carboxyl group preferably has at least two epoxy groups on average in one molecule. Such an epoxy resin may have, for example, a silicone skeleton, a urethane skeleton, or a polyimide skeleton.

このようなエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、トリメチロールプロパントリグリシジルエーテル、及びペンタエリスリトールポリグリシジルエーテル等のグリシジエルエーテル型エポキシ樹脂、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル、トリグリシジルイソシアヌレート、及びテトラグリシジルジアミノジフェニルメタン等のグリシジルアミン系エポキシ樹脂;並びにエポキシ化ポリブタジエン、及びエポキシ化大豆油等の線状脂肪族エポキシ樹脂等が挙げられる。上記エポキシ樹脂は、単独または2種以上を混合して使用することができる。   Such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, hydrogenated bisphenol A type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, biphenyl type epoxy resins. Glycidier ether type epoxy resins such as biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin, naphthalene aralkyl type epoxy resin, triphenylmethane type epoxy resin, trimethylolpropane triglycidyl ether, and pentaerythritol polyglycidyl ether, hexahydrophthal Acid glycidyl ester, dimer acid glycidyl ester, triglycidyl isocyanurate, and tetraglycidyl diaminodiphenyl Glycidyl amine type epoxy resins such as Tan; and epoxidized polybutadiene, and linear aliphatic epoxy resins such as epoxidized soybean oil. The said epoxy resin can be used individually or in mixture of 2 or more types.

カルボキシル基を有するウレタン樹脂(A)とエポキシ樹脂(B)の質量比は100:10〜100が好ましく、100:20〜80がより好ましい。エポキシ樹脂の比率が10より少ないと十分に硬化反応が進まない。100を超えると成形性が悪化するため無機フィラーを高充填できず、粘着性、硬化後の接着性も低下する。   The mass ratio of the urethane resin (A) having a carboxyl group and the epoxy resin (B) is preferably 100: 10 to 100, and more preferably 100: 20 to 80. When the ratio of the epoxy resin is less than 10, the curing reaction does not proceed sufficiently. If it exceeds 100, the moldability deteriorates, so that the inorganic filler cannot be highly filled, and the tackiness and adhesiveness after curing also deteriorate.

本発明で使用する無機フィラー(C)としては、熱伝導の機能を有するものであれば任意のものを使用できる。但し、硫酸バリウム及び酸化チタンは、本発明で使用する無機フィラー(C)に含まれない。
無機フィラー(C)としては、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム、炭化ケイ素等のセラミックス、ダイヤモンド、黒鉛等の炭素材料、銅、アルミ、鉄、銀等の金属粉を挙げることができる。前記シリカには、例えば高純度の珪石を溶融して製造される溶融シリカ、天然石英を粉砕して製造される結晶性シリカが含まれる。
無機フィラー(C)の形状は、粒子状及び扁平状のいずれでも良く、その混合物でもよい。粒子状のフィラーとしては、例えばアルミナ、窒化アルミニウム、窒化ホウ素(例えば立方晶)、シリカ、ダイヤモンド、金属粉などが挙げられ、扁平状のフィラーとしては窒化ホウ素(例えば六方晶)、黒鉛、金属粉等が挙げられる。
無機フィラー(C)には、熱伝導率が20W/m・K以上の無機フィラーを少なくとも10質量%、好ましくは少なくとも20質量%含有させることができる。これにより熱伝導の機能がより向上する。熱伝導率が20W/m・K以上の無機フィラーとしては、アルミナ、窒化ホウ素、窒化アルミニウム、炭化ケイ素等のセラミックス、ダイヤモンド、黒鉛等の炭素材料、銅、アルミ、鉄、銀等の金属粉が挙げられる。
As an inorganic filler (C) used by this invention, arbitrary things can be used if it has a function of heat conduction. However, barium sulfate and titanium oxide are not included in the inorganic filler (C) used in the present invention.
Examples of the inorganic filler (C) include ceramics such as silica, alumina, boron nitride, aluminum nitride and silicon carbide, carbon materials such as diamond and graphite, and metal powders such as copper, aluminum, iron and silver. Examples of the silica include fused silica produced by melting high-purity silica stone and crystalline silica produced by pulverizing natural quartz.
The shape of the inorganic filler (C) may be either particulate or flat, or a mixture thereof. Examples of the particulate filler include alumina, aluminum nitride, boron nitride (for example, cubic), silica, diamond, and metal powder. Examples of the flat filler include boron nitride (for example, hexagonal), graphite, and metal powder. Etc.
The inorganic filler (C) can contain an inorganic filler having a thermal conductivity of 20 W / m · K or more, at least 10% by mass, preferably at least 20% by mass. Thereby, the function of heat conduction is further improved. Examples of the inorganic filler having a thermal conductivity of 20 W / m · K or more include ceramics such as alumina, boron nitride, aluminum nitride, and silicon carbide, carbon materials such as diamond and graphite, and metal powders such as copper, aluminum, iron, and silver. Can be mentioned.

なお、本発明に使用される無機フィラーの熱伝導率は、ファインセラミックスのレーザフラッシュ法による熱拡散率,比熱,熱伝導率試験法:JISR 1611(2010)に規定される方法で測定される。   The thermal conductivity of the inorganic filler used in the present invention is measured by a method defined in JIS R 1611 (2010), a thermal diffusivity, specific heat, and thermal conductivity test method of fine ceramics by a laser flash method.

無機フィラー(C)は、カルボキシル基を有するウレタン樹脂(A)、エポキシ樹脂(B)及び無機フィラー(C)を含有する組成物において50〜96質量%、より好ましく55〜92質量%配合することにより本発明の目的を達成することができる。50質量%未満では十分な放熱性は発現しない。96質量%を超えると組成物の粘着性、硬化後の接着性等が十分得られない。
また無機フィラー(C)の配合量は、硬化性放熱組成物中における無機フィラーの表面積の総和で表現することもできる。この場合の無機フィラーの表面積の総和は、硬化性放熱組成物100g当たり50〜350m2が好ましく、70〜300m2がより好ましい。50m2未満では十分な放熱性は発現せず、350m2を超えると組成物の粘着性、硬化後の接着性等が十分得られない。
無機フィラーの表面積の総和は、次の方法で求めることができる。すなわち、例えば、比表面積S1のフィラー1のみを硬化性放熱組成物中にP1質量%含有している場合、硬化性放熱組成物100g当たりのフィラーの表面積は(S1×P1)となる。さらに、該硬化性放熱組成物に比表面積S2のフィラー2をP2質量%含んでいる場合は、硬化性放熱組成物100g当たりのフィラーの表面積は(S1×P1+S2×P2)となる。よって、n成分の無機フィラーを含有する硬化性放熱組成物100g当たりの無機フィラーの表面積の総和は以下の一般式で表される。

Figure 2012157627
ここで、無機フィラーの比表面積は、窒素ガス吸着法(BET法)によって実測した値である。BET法は液体窒素温度下で、粉体に単分子の吸着占有面積がわかっている窒素ガスを吸着させることにより比表面積を測定する方法である。The inorganic filler (C) is 50 to 96% by mass, more preferably 55 to 92% by mass in the composition containing the urethane resin (A) having a carboxyl group, the epoxy resin (B) and the inorganic filler (C). Thus, the object of the present invention can be achieved. If it is less than 50% by mass, sufficient heat dissipation is not exhibited. When it exceeds 96 mass%, the tackiness of the composition, the adhesiveness after curing, etc. cannot be sufficiently obtained.
Moreover, the compounding quantity of an inorganic filler (C) can also be expressed by the sum total of the surface area of the inorganic filler in a curable thermal radiation composition. In this case, the total surface area of the inorganic filler is preferably 50 to 350 m 2 and more preferably 70 to 300 m 2 per 100 g of the curable heat radiation composition. When it is less than 50 m 2 , sufficient heat dissipation is not exhibited, and when it exceeds 350 m 2 , the adhesiveness of the composition, the adhesiveness after curing, and the like cannot be sufficiently obtained.
The total surface area of the inorganic filler can be determined by the following method. That is, for example, when only P1 mass% of the filler 1 having a specific surface area S1 is contained in the curable heat-radiating composition, the surface area of the filler per 100 g of the curable heat-radiating composition is (S1 × P1). Furthermore, when the curable heat-radiating composition contains P2% by mass of the filler 2 having a specific surface area S2, the surface area of the filler per 100 g of the curable heat-radiating composition is (S1 × P1 + S2 × P2). Therefore, the sum total of the surface area of the inorganic filler per 100 g of the curable heat-radiating composition containing the n-component inorganic filler is represented by the following general formula.
Figure 2012157627
Here, the specific surface area of the inorganic filler is a value measured by a nitrogen gas adsorption method (BET method). The BET method is a method for measuring the specific surface area by adsorbing nitrogen gas whose adsorption occupying area of a single molecule is known to a powder at a liquid nitrogen temperature.

また、本発明の組成物において、無機フィラー(C)は粒子状のものと扁平状のものを組み合わせて使用することができる。粒子状のものを単独で用いたときに比べて硬化物の熱伝導率を向上させることができ、扁平状のものを単独で用いたときに比べて硬化物の熱伝導率に等方性を付与することができる。
なお、本発明において、扁平状とは、図1に無機フィラー粒子1の平面図(a)、及びX−X断面図(b)を示すように、粒子1の長径Lと厚みtとの比が5:1〜20:1である形態を意味する。その測定は走査型電子顕微鏡により行うことができる。
また、本発明において、粒子状とは、典型的には球状であり、上記の扁平状よりも扁平性が小さい形態を意味する。
Moreover, in the composition of this invention, an inorganic filler (C) can be used combining a particulate thing and a flat thing. The thermal conductivity of the cured product can be improved compared to when the particulate material is used alone, and the thermal conductivity of the cured product is more isotropic than when the flat material is used alone. Can be granted.
In addition, in this invention, flat shape is ratio of the major axis L of particle | grains 1 and thickness t, as shown in the top view (a) and XX sectional drawing (b) of the inorganic filler particle 1 in FIG. Means 5: 1 to 20: 1. The measurement can be performed with a scanning electron microscope.
In the present invention, the particulate form means a form that is typically spherical and has a flatness smaller than that of the flat shape.

扁平状フィラーの代表例である窒化ホウ素(例えば六方晶)や黒鉛は熱伝導率に異方性がある。六方晶窒化ホウ素の熱伝導率は、面方向では約60〜63W/m・K、面方向に対して垂直な方向では面方向の値の数分の1程度であり、面方向の熱伝導率が数倍大きいことが知られている。扁平状フィラーは本発明の組成物を基材に塗布、あるいは圧力をかけてシート化した場合、面方向に平行に配列する性質をもつため、面方向の放熱性に優れる。但し、放熱の機能は、面方向のみならず厚み方向にも必要な場合があるため、ランダムあるいは厚み方向に扁平状フィラーを配列させる必要がある。
本発明の硬化性放熱組成物においては、粒子状フィラーを一定の範囲で配合することにより扁平状フィラーをランダムに配向させて、厚さ方向の熱伝導率を向上させることができる。
Boron nitride (for example, hexagonal crystal) and graphite, which are representative examples of flat fillers, have anisotropy in thermal conductivity. The thermal conductivity of hexagonal boron nitride is about 60 to 63 W / m · K in the plane direction and about a fraction of the value in the plane direction in the direction perpendicular to the plane direction. Is known to be several times larger. When the flat filler is applied to the base material or formed into a sheet by applying pressure, the flat filler has a property of being arranged in parallel to the surface direction, and thus has excellent heat dissipation in the surface direction. However, since the function of heat dissipation may be necessary not only in the surface direction but also in the thickness direction, it is necessary to arrange flat fillers randomly or in the thickness direction.
In the curable heat-radiating composition of the present invention, the flat filler can be randomly oriented by blending the particulate filler in a certain range, and the thermal conductivity in the thickness direction can be improved.

本発明において、扁平状フィラーと粒子状フィラーを混合して使用する場合、その質量比は90:10〜10:90が好ましく、85:15〜15:85がより好ましい。   In this invention, when mixing and using a flat filler and a particulate filler, 90: 10-10: 90 is preferable and the mass ratio has more preferable 85: 15-15: 85.

扁平状フィラーの質量比が10以上であることにより、熱伝導率が良好なものとなり、また粒子状フィラーの質量比が10以上であることにより、厚さ方向の熱伝導率が良好なものとなる。   When the mass ratio of the flat filler is 10 or more, the thermal conductivity is good, and when the mass ratio of the particulate filler is 10 or more, the thermal conductivity in the thickness direction is good. Become.

本発明の硬化性放熱組成物に使用される扁平状フィラーと粒子状フィラーは、成形性、硬化物の平滑性、熱伝導率の観点からそれぞれ好ましい平均粒子径の範囲がある。扁平状フィラーの場合は平均粒子径0.5〜50μmが好ましく、1〜30μmがより好ましい。粒子状フィラーの場合は平均粒子径1〜100μmが好ましく、5〜80μmがより好ましい。同時に使用する扁平状フィラーの平均粒子径は、粒子状フィラーの平均粒子径より小さいほうが扁平状フィラーがランダムに配向し、厚さ方向の熱伝導率の点で有利である。
これらの平均粒子径はレーザー回折・散乱法によって粒度分布を測定することによって得られた値である。具体的には、(株)セイシン企業製・レーザー回折散乱式粒度分布測定器(LMS−2000e)を使用することにより測定することができる。
The flat filler and the particulate filler used in the curable heat dissipation composition of the present invention each have a preferable average particle diameter range from the viewpoints of moldability, smoothness of the cured product, and thermal conductivity. In the case of a flat filler, the average particle size is preferably 0.5 to 50 μm, more preferably 1 to 30 μm. In the case of a particulate filler, the average particle diameter is preferably 1 to 100 μm, more preferably 5 to 80 μm. The average particle diameter of the flat filler used simultaneously is smaller than the average particle diameter of the particulate filler, which is advantageous in terms of thermal conductivity in the thickness direction because the flat filler is randomly oriented.
These average particle diameters are values obtained by measuring the particle size distribution by the laser diffraction / scattering method. Specifically, it can be measured by using a laser diffraction / scattering particle size distribution analyzer (LMS-2000e) manufactured by Seishin Corporation.

本発明の硬化性放熱組成物においては、熱伝導率、電気絶縁性、経済性の観点から扁平状フィラーとしては窒化ホウ素が好ましく、粒子状フィラーとしては、アルミナ、窒化アルミニウム及び窒化ホウ素が好ましい。扁平状フィラーの窒化ホウ素としては、例えば、昭和電工(株)製のUHP−1K(L:t=8:1)が、また粒子状フィラーのアルミナとしては、例えば昭和電工(株)製のCB−A50S(平均粒子径50μm)、粒子状フィラーの窒化アルミニウムとしては(株)トクヤマ製のFAN−f50J(平均粒子径50μm)が好ましく使用できる。   In the curable heat dissipation composition of the present invention, boron nitride is preferable as the flat filler, and alumina, aluminum nitride, and boron nitride are preferable as the particulate filler from the viewpoint of thermal conductivity, electrical insulation, and economy. As the flat nitride boron nitride, for example, UHP-1K (L: t = 8: 1) manufactured by Showa Denko KK, and as the particulate filler alumina, for example, CB manufactured by Showa Denko KK -A50S (average particle diameter of 50 μm), and FAN-f50J (average particle diameter of 50 μm) manufactured by Tokuyama Corporation can be preferably used as the aluminum nitride of the particulate filler.

本発明の硬化性放熱組成物には、硬化性を促進する目的で硬化促進剤を添加することができる。硬化促進剤の具体例としては、3級アミン、イミダゾール化合物、ホスフィン化合物等を挙げられる。   A curing accelerator can be added to the curable heat dissipation composition of the present invention for the purpose of promoting curability. Specific examples of the curing accelerator include tertiary amines, imidazole compounds, phosphine compounds and the like.

3級アミン系化合物の具体例としては、トリエチルアミン、ジメチルシクロヘキシルアミン、N,N−ジメチルピペラジン、ベンジルジメチルアミン、2−(N,N−ジメチルアミノメチル)フェノール、2,4,6−トリス(N,N−ジメチルアミノメチル)フェノール、1,8−ジアザビスシクロ(5.4.0)ウンデセン−1等が挙げられる。   Specific examples of the tertiary amine compound include triethylamine, dimethylcyclohexylamine, N, N-dimethylpiperazine, benzyldimethylamine, 2- (N, N-dimethylaminomethyl) phenol, 2,4,6-tris (N , N-dimethylaminomethyl) phenol, 1,8-diazabiscyclo (5.4.0) undecene-1, and the like.

イミダゾール系化合物の具体例としては、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−メチルイミダゾールトリメリテート、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2−メチルイミダゾール・イソシアヌル酸付加物、2−フェニルイミダゾール・イソシアヌル酸付加物、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン・イソシアヌル酸付加物等が挙げられる。   Specific examples of the imidazole compound include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenyl. Imidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-methylimidazole trimellitate, 1-cyanoethyl-2-undecylimidazolium trimellitate, 2,4-diamino-6- [2′- Methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2-methylimidazole isocyanuric acid With adduct, 2-phenylimidazole and isocyanuric acid Objects, 2,4-diamino-6- [2'-methylimidazolyl- - (1 ')] - ethyl -s- triazine isocyanuric acid adduct, and the like.

ホスフィン化合物の具体例としては、トリフェニルホスフィン、トリトリルホスフィン等が挙げられる。   Specific examples of the phosphine compound include triphenylphosphine and tolylylphosphine.

本発明の硬化性放熱組成物には、樹脂成分への無機フィラーの分散性、基材への密着性を上げる目的でカップリング剤を添加することができる。カップリング剤としては、シラン系、チタネート系、アルミニウム系等を挙げることができる。本発明においてはシラン系カップリング剤を好ましく使用することができ、その好ましい具体例として、γ―アミノプロピルトリメトキシシラン、γ―アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等を挙げることができる。   A coupling agent can be added to the curable heat-radiating composition of the present invention for the purpose of increasing the dispersibility of the inorganic filler in the resin component and the adhesion to the substrate. Examples of coupling agents include silane, titanate, and aluminum. In the present invention, silane coupling agents can be preferably used, and preferred specific examples thereof include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethyl. Methoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri And ethoxysilane.

また、本発明の組成物には粘度、物性、硬化性等を調節する目的で他の重合性官能基を持つモノマー、あるいはオリゴマーを使用することも可能である。具体的には、ラジカル重合性基を持つスチレン、ビニルトルエンなどのスチレン誘導体、メチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール#400ジ(メタ)アクリレート、2,2−ビス(4−(メタ)アクリロキシポリエチルオキシフェニル)プロパン、ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド(PO)変性ビスフェノールAジ(メタ)アクリレート、水素化ビスフェノールAジ(メタ)アクリレート、イソシアヌル酸エチレンオキシド(EO)変性ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、トリメチロールプロパンPO変性トリ(メタ)アクリレートメタクリレートなどの(メタ)アクリル酸エステル、スチレンオキシド、フェニルグリシジルエーテル2−エチルヘキシルグリシジルエーテルなどの単官能エポキシ化合物、アリルエステル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂が挙げられる。   In the composition of the present invention, a monomer or oligomer having another polymerizable functional group can be used for the purpose of adjusting viscosity, physical properties, curability and the like. Specifically, styrene having a radical polymerizable group, styrene derivatives such as vinyl toluene, methyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isoamyl (meth) acrylate, Hexyl (meth) acrylate, 2-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, benzyl ( (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di ( ) Acrylate, ethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol # 400 di (meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethyloxyphenyl) propane Bisphenol A di (meth) acrylate, EO modified bisphenol A di (meth) acrylate, propylene oxide (PO) modified bisphenol A di (meth) acrylate, hydrogenated bisphenol A di (meth) acrylate, isocyanuric acid ethylene oxide (EO) modified Di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO modified tri (meth) acrylate, trimethylolpropane PO modified tri (meth) acrylate (Meth) acrylic acid esters such as methacrylate, styrene oxide, monofunctional epoxy compounds such as phenyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl ester resin, unsaturated polyester resin, vinyl ester resin.

本発明の組成物は、(A)カルボキシル基を有するウレタン樹脂、(B)エポキシ樹脂、(C)無機フィラーに物性を調整するための添加剤を配合してそのまま硬化性放熱組成物として使用することができるが、硬化が進行しない温度で加熱、加圧によりシート状に成形して接着シートとして使用することもできる。またシート状以外の形状に成形しても構わない。成形後は、基材と圧着し、進む温度まで加熱することにより接着させることができる。   The composition of this invention mix | blends the additive for adjusting a physical property to (A) urethane resin which has a carboxyl group, (B) epoxy resin, and (C) inorganic filler, and uses it as a curable heat dissipation composition as it is. However, it can be formed into a sheet by heating and pressing at a temperature at which curing does not proceed and used as an adhesive sheet. Moreover, you may shape | mold into shapes other than a sheet form. After the molding, it can be bonded by being pressure-bonded to the substrate and heated to a proceeding temperature.

本発明の硬化性放熱組成物は、高放熱性と作業時の粘着性、硬化後の接着性、長期信頼性を有する接着剤として、パワー半導体、光半導体を含む半導体素子、半導体装置、回路用金属板、前記金属板からなる回路、回路基板、混成集積回路分野といった電気部品の固定に使用することができる。   The curable heat dissipation composition of the present invention is a power semiconductor, a semiconductor element including an optical semiconductor, a semiconductor device, and a circuit as an adhesive having high heat dissipation and adhesiveness during work, adhesiveness after curing, and long-term reliability. It can be used for fixing electrical components such as metal plates, circuits made of the metal plates, circuit boards, and hybrid integrated circuit fields.

以下に合成例、実施例及び比較例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。
カルボキシル基を有するウレタン樹脂の数平均分子量、酸価、硬化性放熱組成物の熱伝導率、接着強度及び成形硬化板の弾性率は下記の方法により測定(評価)した。
Hereinafter, the present invention will be described with reference to synthesis examples, examples and comparative examples, but the present invention is not limited to these examples.
The number average molecular weight of the urethane resin having a carboxyl group, the acid value, the thermal conductivity of the curable heat-radiating composition, the adhesive strength, and the elastic modulus of the molded and cured plate were measured (evaluated) by the following methods.

数平均分子量:
ゲルパーミエーションクロマトグラフィー(昭和電工(株)製,Shodex(登録商標)GPC SYSTEM−11)を用い、ポリスチレンに換算した値として求めた。
Number average molecular weight:
It calculated | required as a value converted into polystyrene using the gel permeation chromatography (Showa Denko Co., Ltd. product, Shodex (trademark) GPC SYSTEM-11).

酸価:
100ml三角フラスコに試料約0.2g程度を精密天秤にて精秤し、これにエタノール/トルエン=1/2(質量比)の混合溶媒10mlを加えて溶解する。更に、この容器に指示薬としてフェノールフタレインエタノール溶液を1〜3滴添加し、試料が均一になるまで十分に撹拌する。これを、0.1N水酸化カリウム−エタノール溶液で滴定し、指示薬の微紅色が30秒間続いたときを、中和の終点とする。その結果から下記の計算式を用いて得た値を、樹脂の酸価とする。

Figure 2012157627
Acid value:
About 0.2 g of a sample is precisely weighed with a precision balance in a 100 ml Erlenmeyer flask, and 10 ml of a mixed solvent of ethanol / toluene = 1/2 (mass ratio) is added and dissolved therein. Further, 1 to 3 drops of phenolphthalein ethanol solution is added to this container as an indicator, and the mixture is sufficiently stirred until the sample becomes uniform. This is titrated with a 0.1N potassium hydroxide-ethanol solution, and the end point of neutralization is taken when the indicator is slightly red for 30 seconds. The value obtained from the result using the following calculation formula is defined as the acid value of the resin.
Figure 2012157627

硬化性放熱組成物の熱伝導率:
面方向の熱伝導率は、30mm(縦)×28mm(横)×8mm(厚み)の直方体状試験片を用い、TPS−2500(京都電子(株)製)を使用してホットディスク法にて測定した。また、厚み方向の熱伝導率は、温度波熱分析法により、アイフェイズ・モバイル(ai-Phase Mobile)(アイフェイズ社製)を用いて熱拡散率を測定し、別途求めた比熱、及び密度から下記式により求めた。

Figure 2012157627
Thermal conductivity of curable heat dissipation composition:
The thermal conductivity in the plane direction is 30 mm (length) x 28 mm (width) x 8 mm (thickness) using a rectangular parallelepiped test piece, using TPS-2500 (manufactured by Kyoto Electronics Co., Ltd.) and the hot disk method. It was measured. The thermal conductivity in the thickness direction was determined by measuring the thermal diffusivity using ai-Phase Mobile (manufactured by Eye Phase Co., Ltd.) by temperature wave thermal analysis, and obtaining the specific heat and density separately obtained. From the following formula.
Figure 2012157627

接着強度:
銅(日本テストパネル(株)製,C100P・片面#240研磨)の試験片を用い、硬化性放熱組成物をシート状にしたものを上記銅試験片・研磨面に挿み込み、130℃20分の加熱接着を行った後、JIS K6852(1994)に準拠しせん断モードで測定した。なお、試験片の大きさは、幅14mm、厚さ9mm、長さ30mmとし、接着面積は、幅14×長さ25mmとした。
Adhesive strength:
Using a test piece of copper (manufactured by Nippon Test Panel Co., Ltd., C100P / single-sided # 240 polishing), a sheet of the curable heat-dissipating composition was inserted into the copper test piece / polished surface, 130 ° C. 20 After heat-adhering for minutes, the measurement was performed in a shear mode in accordance with JIS K6852 (1994). In addition, the magnitude | size of the test piece was made into width 14mm, thickness 9mm, length 30mm, and the adhesion area was made into width 14x length 25mm.

合成例1:カルボキシル基を有するウレタン樹脂
撹拌装置、温度計、コンデンサを備えた反応容器に、ポリカーボネートジオール化合物としてC−1015N((株)クラレ製ポリカーボネートジオール,原料ジオールモル比 1,9−ノナンジオール:2−メチル−1,8−オクタンジオール=15:85,分子量964)330.2g、カルボキシル基を有するジヒドロキシル化合物として2,2−ジメチロールブタン酸(日本化成(株)製)60.4g、溶媒としてテトラヒドロフラン(関東化学(株)製)571.2gを仕込み、反応液の温度を60℃まで上げて、滴下ロートにより、ポリイソシアネート化合物としてデスモジュール−W(住化バイエルウレタン(株)製)180.4gを30分かけて滴下した。滴下終了後、60℃で更に6時間反応を行い、ほぼイソシアネートが消失したことを確認した後、イソブタノール(和光純薬(株)製)5gを滴下し、更に60℃にて2時間反応を行った。
得られたカルボキシル基を有するウレタン樹脂の数平均分子量は8600、固形分の酸価は39.6mgKOH/gであった。
Synthesis example 1: Urethane resin having a carboxyl group In a reaction vessel equipped with a stirrer, a thermometer, and a condenser, C-1015N (polycarbonate diol manufactured by Kuraray Co., Ltd., raw material diol molar ratio 1,9-nonanediol: 2-methyl-1,8-octanediol = 15: 85, molecular weight 964) 330.2 g, 2,2-dimethylolbutanoic acid (manufactured by Nippon Kasei Co., Ltd.) 60.4 g as a dihydroxyl compound having a carboxyl group, Tetrahydrofuran (manufactured by Kanto Chemical Co., Inc.) 571.2 g was charged as a solvent, the temperature of the reaction solution was raised to 60 ° C., and a desiccant-W (manufactured by Sumika Bayer Urethane Co., Ltd.) as a polyisocyanate compound by a dropping funnel 180.4 g was added dropwise over 30 minutes. After completion of the addition, the reaction was further carried out at 60 ° C. for 6 hours, and after confirming that the isocyanate had almost disappeared, 5 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise, and the reaction was further carried out at 60 ° C. for 2 hours. went.
The number average molecular weight of the obtained urethane resin having a carboxyl group was 8600, and the acid value of the solid content was 39.6 mgKOH / g.

合成例2:カルボキシル基を有するウレタン樹脂
撹拌装置、温度計、コンデンサを備えた反応容器に、ポリカーボネートジオール化合物としてUM−CARB90(宇部興産(株)製,原料ジオールモル比 シクロヘキサンジメタノール:ヘキサンジオール=1:1,分子量891)315.7g、カルボキシル基を有するジヒドロキシル化合物として2,2−ジメチロールブタン酸(日本化成(株)製)58.6g、溶媒としてテトラヒドロフラン(関東化学(株)製)554.7gを仕込み、反応液の温度を60℃まで上げて、滴下ロートにより、ポリイソシアネート化合物としてデスモジュール−W(住化バイエルウレタン(株)製)180.4gを30分かけて滴下した。滴下終了後、60℃で更に6時間反応を行い、ほぼイソシアネートが消失したことを確認した後、イソブタノール(和光純薬(株)製)5gを滴下し、更に60℃にて2時間反応を行った。
得られたカルボキシル基含有ポリウレタンは、数平均分子量は7900、固形分の酸価は40.2mgKOH/gであった。
Synthesis example 2: Urethane resin having a carboxyl group In a reaction vessel equipped with a stirrer, a thermometer, and a condenser, UM-CARB90 (manufactured by Ube Industries, Ltd., raw material diol molar ratio: cyclohexanedimethanol: hexanediol = 1) as a polycarbonate diol compound : 1, molecular weight 891) 315.7 g, 2,2-dimethylolbutanoic acid (manufactured by Nippon Kasei Co., Ltd.) 58.6 g as a dihydroxyl compound having a carboxyl group, tetrahydrofuran (manufactured by Kanto Chemical Co., Ltd.) 554 as a solvent .7 g was charged, the temperature of the reaction solution was raised to 60 ° C., and 180.4 g of Desmodur-W (manufactured by Sumika Bayer Urethane Co., Ltd.) was dropped as a polyisocyanate compound over 30 minutes with a dropping funnel. After completion of the addition, the reaction was further carried out at 60 ° C. for 6 hours, and after confirming that the isocyanate had almost disappeared, 5 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise, and the reaction was further carried out at 60 ° C. for 2 hours. went.
The obtained carboxyl group-containing polyurethane had a number average molecular weight of 7,900 and an acid value of solid content of 40.2 mgKOH / g.

実施例1:
合成例1で得られたカルボキシル基を有するウレタン樹脂(カルボキシル基当量1416)とビスフェノールA型エポキシ樹脂(新日鉄化学(株)製,YD−128:エポキシ当量189)との当量比を1.05:1.0になるように調整したカルボキシル基を有するウレタン・エポキシ樹脂調製物(15質量%)に対して、無機フィラーとして扁平状無機フィラーUHP−1K(昭和電工(株)製・窒化ホウ素 熱伝導率 60W/m・K)を(85質量%,組成物100g中の表面積総和=349m2)配合したのち、自転・公転ミキサー((株)シンキー製,泡取り練り太郎)を用いて混練りし、目的の硬化性放熱樹脂組成物を得た。
この硬化性放熱組成物を熱プレスを用いて130℃20分加熱成形し、シート状にして硬化させた成形硬化板を作製し、この熱伝導率を測定したところ、面方向の熱伝導率は37.4W/m・Kと極めて高い値を示した。
Example 1:
The equivalent ratio of the urethane resin having a carboxyl group (carboxyl group equivalent 1416) obtained in Synthesis Example 1 and the bisphenol A type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YD-128: epoxy equivalent 189) is 1.05: To the urethane / epoxy resin preparation (15% by mass) having a carboxyl group adjusted to 1.0, a flat inorganic filler UHP-1K (manufactured by Showa Denko K.K., boron nitride thermal conductivity as an inorganic filler) 60% w / m · K) (85% by mass, total surface area in 100 g of composition = 349 m 2 ), and then kneaded using a rotating / revolving mixer (Sinky Co., Ltd., Foaming Kneading Taro) The objective curable heat radiating resin composition was obtained.
This curable heat radiating composition was heat-molded at 130 ° C. for 20 minutes using a hot press to produce a molded and cured plate that was cured into a sheet, and when this thermal conductivity was measured, the thermal conductivity in the plane direction was An extremely high value of 37.4 W / m · K was exhibited.

実施例2〜4:
合成例2で得られたカルボキシル基含有ウレタン樹脂(カルボキシル基当量1396)とビスフェノールA型エポキシ樹脂(YD−128,新日鉄化学(株)製,エポキシ当量189)との当量比を1.05:1.0になるように調整したカルボキシル基含有ウレタン・エポキシ樹脂調製物と無機フィラーとの質量%比を表1の通り変えた以外は、実施例1と同様にして実施例2〜4の硬化性放熱樹脂組成物を調製し、成形硬化板を作製した。これらの面方向の熱伝導率測定結果を表1に示す。8W/m・K以上の高い熱伝導率が得られた。
Examples 2-4:
The equivalent ratio of the carboxyl group-containing urethane resin (carboxyl group equivalent 1396) obtained in Synthesis Example 2 and the bisphenol A type epoxy resin (YD-128, manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 189) is 1.05: 1. The curability of Examples 2 to 4 was the same as Example 1 except that the mass% ratio of the carboxyl group-containing urethane / epoxy resin preparation adjusted to 0.0 and the inorganic filler was changed as shown in Table 1. A heat-dissipating resin composition was prepared to produce a molded and cured plate. Table 1 shows the thermal conductivity measurement results in these plane directions. A high thermal conductivity of 8 W / m · K or higher was obtained.

比較例1:
無機フィラー(UHP−1K):カルボキシル基含有ウレタン・エポキシ樹脂調製物の比率を40質量%にした以外は、実施例1と同様の方法で硬化性放熱樹脂組成物を調製し、成形硬化板を作製した。この成形硬化板の熱伝導率を測定したところ、面方向の熱伝導率は、3.6W/m・Kであった。
Comparative Example 1:
Inorganic filler (UHP-1K): A curable heat-dissipating resin composition was prepared in the same manner as in Example 1 except that the ratio of the carboxyl group-containing urethane / epoxy resin preparation was 40% by mass. Produced. When the thermal conductivity of this molded and hardened plate was measured, the thermal conductivity in the surface direction was 3.6 W / m · K.

Figure 2012157627
Figure 2012157627

実施例5〜7:
無機フィラーとして、球状無機フィラーCB−A50S(昭和電工(株)製・アルミナ 熱伝導率 36W/m・K)、粒子状無機フィラーFAN−f50J((株)トクヤマ製・窒化アルミニウム 熱伝導率 200W/m・K)及び扁平状無機フィラーUHP−1K(昭和電工(株)製・窒化ホウ素)を併用し、表2に示した通りの組成とした他は、実施例1と同様にして硬化性放熱組成物を調製し、成形硬化板を作製した。硬化性放熱組成物の各組成比、厚み方向熱伝導率、及び常態接着強度の測定結果を表2に示す。
Examples 5-7:
As the inorganic filler, spherical inorganic filler CB-A50S (manufactured by Showa Denko KK / alumina thermal conductivity 36 W / m · K), particulate inorganic filler FAN-f50J (manufactured by Tokuyama KK / aluminum nitride thermal conductivity 200 W / m · K) and flat inorganic filler UHP-1K (manufactured by Showa Denko KK, boron nitride) were used in the same manner as in Example 1 except that the composition was as shown in Table 2. A composition was prepared and a molded cured plate was produced. Table 2 shows the measurement results of each composition ratio, thickness direction thermal conductivity, and normal state adhesive strength of the curable heat radiation composition.

比較例2:
市販のノボラック型フェノール樹脂BRG−556(昭和電工(株)製,水酸基当量103(JIS K0070に準拠し測定))とビスフェノールA型エポキシ樹脂YD−128(新日鉄化学(株)製,エポキシ当量189)との当量比を1.05:1.0になるように調整したノボラック・エポキシ樹脂調製物:粒子状窒化アルミニウム(FAN−f50J):窒化ホウ素UHP−1Kをそれぞれ、11.7:71.6:16.6(質量%比)とし、実施例1と同様にして硬化性放熱組成物を調製し、成形硬化板を作製した。硬化性放熱組成物の各組成比、厚み方向熱伝導率、及び常態接着強度の測定結果を表2に示す。
この成形硬化板の厚み方向の熱伝導率の値は、6.3W/m・Kと比較的高い値を示したが、接着強度の測定を試みたところ、この樹脂組成物から作製したシートは、柔軟性に乏しく、銅との接着性に劣り接着させることはできなかった。
Comparative Example 2:
Commercially available novolac type phenolic resin BRG-556 (manufactured by Showa Denko KK, hydroxyl equivalent 103 (measured according to JIS K0070)) and bisphenol A type epoxy resin YD-128 (manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 189) Novolak epoxy resin preparation adjusted to an equivalent ratio of 1.05: 1.0: particulate aluminum nitride (FAN-f50J): boron nitride UHP-1K, 11.7: 71.6, respectively : 16.6 (mass% ratio), a curable heat radiation composition was prepared in the same manner as in Example 1, and a molded and cured plate was produced. Table 2 shows the measurement results of each composition ratio, thickness direction thermal conductivity, and normal state adhesive strength of the curable heat radiation composition.
The heat conductivity value in the thickness direction of this molded and hardened plate showed a comparatively high value of 6.3 W / m · K. When an attempt was made to measure the adhesive strength, a sheet made from this resin composition was It was poor in flexibility and poor in adhesion with copper and could not be adhered.

比較例3:
ビスフェノールA型エポキシ樹脂YD−128(新日鉄化学(株)製,エポキシ当量189)100質量部、硬化剤として1−シアノエチル−2− メチルイミダゾール 2.5質量部を添加したエポキシ樹脂調製物:粒子状窒化アルミニウム(FAN−f50J):窒化ホウ素UHP−1Kをそれぞれ、11.7:71.6:16.6(質量%比)とし、実施例1と同様にして硬化性放熱組成物を調製し、成形硬化板を作製した。硬化性放熱組成物の各組成比、厚み方向熱伝導率、及び常態接着強度の測定結果を表2に示す。
Comparative Example 3:
Epoxy resin preparation in which 100 parts by mass of bisphenol A type epoxy resin YD-128 (manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 189) and 2.5 parts by mass of 1-cyanoethyl-2-methylimidazole as a curing agent were added: particulate Aluminum nitride (FAN-f50J): Boron nitride UHP-1K was set to 11.7: 71.6: 16.6 (mass% ratio), respectively, and a curable heat radiation composition was prepared in the same manner as in Example 1. A molded and hardened plate was produced. Table 2 shows the measurement results of each composition ratio, thickness direction thermal conductivity, and normal state adhesive strength of the curable heat radiation composition.

比較例4:
市販のノボラック型フェノール樹脂BRG−556(昭和電工(株)製,水酸基当量103(JIS K0070に準拠し測定))とビスフェノールA型エポキシ樹脂YD−128(新日鉄化学(株)製,エポキシ当量189)との当量比を1.05:1.0になるように調整したノボラック・エポキシ樹脂調製物:粒子状窒化アルミニウム(FAN−f50J):窒化ホウ素(UHP−1K)をそれぞれ、9.1:73.8:17.1(質量%比)とし、実施例1と同様にして硬化性放熱組成物を調製し、成形硬化板を作製した。硬化性放熱組成物の各組成比、厚み方向熱伝導率、及び接着強度の測定結果を表2に示す。
Comparative Example 4:
Commercially available novolac type phenolic resin BRG-556 (manufactured by Showa Denko KK, hydroxyl equivalent 103 (measured according to JIS K0070)) and bisphenol A type epoxy resin YD-128 (manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 189) Novolak epoxy resin preparation adjusted to an equivalent ratio of 1.05: 1.0: particulate aluminum nitride (FAN-f50J): boron nitride (UHP-1K) 9.1: 73, respectively 8: 17.1 (mass% ratio), a curable heat radiation composition was prepared in the same manner as in Example 1, and a molded and cured plate was produced. Table 2 shows the measurement results of each composition ratio, thickness direction thermal conductivity, and adhesive strength of the curable heat radiation composition.

Figure 2012157627
Figure 2012157627

カルボキシル基含有ウレタン樹脂を用いてエポキシと無機フィラーを配合してなる本発明の硬化性放熱樹脂組成物は、高い熱伝導率と柔軟性、金属に対する良好な接着性を合せ持ち、パワー半導体、光半導体を含む半導体素子、半導体装置、回路用金属板、前記金属板からなる回路、回路基板、混成集積回路分野等で極めて有用である。   The curable heat-dissipating resin composition of the present invention, in which an epoxy and an inorganic filler are blended using a carboxyl group-containing urethane resin, has high thermal conductivity, flexibility, and good adhesion to metals. It is extremely useful in the field of semiconductor elements including semiconductors, semiconductor devices, circuit metal plates, circuits made of the metal plates, circuit boards, hybrid integrated circuits, and the like.

1 扁平状の無機フィラー   1 Flat inorganic filler

Claims (13)

(A)カルボキシル基を有するウレタン樹脂、(B)エポキシ樹脂及び(C)無機フィラー(但し、硫酸バリウム及び酸化チタンを除く)を含有し、前記無機フィラー(C)の含有率が50〜96質量%であることを特徴とする硬化性放熱組成物。   (A) A urethane resin having a carboxyl group, (B) an epoxy resin, and (C) an inorganic filler (excluding barium sulfate and titanium oxide), and the content of the inorganic filler (C) is 50 to 96 mass. % Curable heat-dissipating composition. 前記無機フィラー(C)が、20W/m・K以上の熱伝導率を有する無機フィラーを含有する請求項1に記載の硬化性放熱組成物。   The curable heat-radiating composition according to claim 1, wherein the inorganic filler (C) contains an inorganic filler having a thermal conductivity of 20 W / m · K or more. 前記無機フィラー(C)中に、20W/m・K以上の熱伝導率を有する無機フィラーを少なくとも10質量%含有する請求項2に記載の硬化性放熱組成物。   The curable heat-radiating composition according to claim 2, wherein the inorganic filler (C) contains at least 10% by mass of an inorganic filler having a thermal conductivity of 20 W / m · K or more. カルボキシル基を有するウレタン樹脂(A)が、(a)ポリイソシアネート化合物、(b)ポリカーボネートジオール化合物、(c)カルボキシル基を有するジヒドロキシ化合物、及び必要に応じて(d)モノヒドロキシ化合物を反応させて得られる樹脂である請求項1〜3のいずれか1項に記載の硬化性放熱組成物。   The urethane resin (A) having a carboxyl group is reacted with (a) a polyisocyanate compound, (b) a polycarbonate diol compound, (c) a dihydroxy compound having a carboxyl group, and (d) a monohydroxy compound as required. It is resin obtained, The curable thermal radiation composition of any one of Claims 1-3. 前記ポリカーボネートジオール化合物(b)の数平均分子量が300〜50000である請求項4に記載の硬化性放熱組成物。   The curable heat-dissipating composition according to claim 4, wherein the polycarbonate diol compound (b) has a number average molecular weight of 300 to 50,000. 前記数平均分子量が300〜50000のポリカーボネートジオール化合物を構成するジオールの少なくとも10モル%以上が、炭素数6〜30の脂環式化合物である請求項5に記載の硬化性放熱組成物。   The curable heat-dissipating composition according to claim 5, wherein at least 10 mol% of the diol constituting the polycarbonate diol compound having a number average molecular weight of 300 to 50,000 is an alicyclic compound having 6 to 30 carbon atoms. ポリイソシアネート化合物(a)の少なくとも10モル%以上が、イソシアネート基部分以外の炭素数が6〜30の脂環式化合物である請求項4に記載の硬化性放熱組成物。   The curable heat-radiating composition according to claim 4, wherein at least 10 mol% of the polyisocyanate compound (a) is an alicyclic compound having 6 to 30 carbon atoms other than the isocyanate group portion. カルボキシル基を有するウレタン樹脂(A)の数平均分子量が500〜100000であり、酸価が5〜150mgKOH/gである請求項1〜4のいずれか1項に記載の硬化性放熱組成物。   The curable heat-dissipating composition according to any one of claims 1 to 4, wherein the urethane resin (A) having a carboxyl group has a number average molecular weight of 500 to 100,000 and an acid value of 5 to 150 mgKOH / g. カルボキシル基を有するウレタン樹脂(A)とエポキシ樹脂(B)の質量比が100:10〜100である請求項1〜3のいずれか1項に記載の硬化性放熱組成物。   The curable heat-radiating composition according to any one of claims 1 to 3, wherein a mass ratio of the urethane resin (A) having a carboxyl group and the epoxy resin (B) is 100: 10 to 100. 前記無機フィラー(C)が、扁平状フィラーと粒子状フィラーの混合物である請求項1〜3のいずれか1項に記載の硬化性放熱組成物。   The curable heat dissipation composition according to any one of claims 1 to 3, wherein the inorganic filler (C) is a mixture of a flat filler and a particulate filler. 扁平状フィラーと粒子状フィラーとの質量比が90:10〜10:90である請求項10に記載の硬化性放熱組成物。   The curable heat-dissipating composition according to claim 10, wherein the mass ratio of the flat filler to the particulate filler is 90:10 to 10:90. 前記粒子状フィラーがアルミナ、窒化アルミニウムまたは窒化ホウ素であり、前記扁平状フィラーが窒化ホウ素である請求項10または11に記載の硬化性放熱組成物。   The curable heat-dissipating composition according to claim 10 or 11, wherein the particulate filler is alumina, aluminum nitride, or boron nitride, and the flat filler is boron nitride. 請求項1〜12のいずれか1項に記載の硬化性放熱組成物からなる接着剤。   The adhesive agent which consists of a curable thermal radiation composition of any one of Claims 1-12.
JP2013515156A 2011-05-16 2012-05-15 Curable heat dissipation composition Pending JPWO2012157627A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011109302 2011-05-16
JP2011109302 2011-05-16
PCT/JP2012/062367 WO2012157627A1 (en) 2011-05-16 2012-05-15 Curable heat-dissipating composition

Publications (1)

Publication Number Publication Date
JPWO2012157627A1 true JPWO2012157627A1 (en) 2014-07-31

Family

ID=47176944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013515156A Pending JPWO2012157627A1 (en) 2011-05-16 2012-05-15 Curable heat dissipation composition

Country Status (5)

Country Link
JP (1) JPWO2012157627A1 (en)
KR (1) KR101525487B1 (en)
CN (1) CN103562258B (en)
TW (1) TWI534256B (en)
WO (1) WO2012157627A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101613787B1 (en) 2013-06-18 2016-04-19 주식회사 엘지화학 Thermosetting Resin Composition and Method for Preparing the Same
US9346992B2 (en) * 2013-07-31 2016-05-24 E I Du Pont De Nemours And Company Thermally conductive dielectric for thermoformable circuits
US9464214B2 (en) * 2014-02-25 2016-10-11 The Boeing Company Thermally conductive flexible adhesive for aerospace applications
CN107075258B (en) * 2014-10-01 2020-03-06 纳美仕有限公司 Resin composition
KR102431154B1 (en) * 2015-02-09 2022-08-10 가부시키가이샤 아리사와 세이사쿠쇼 Low-dielectric resin composition
KR102116223B1 (en) 2016-05-31 2020-05-28 한국전기연구원 Metal/two-dimensional nanomaterial hybrid heating element and manufacturing method the same
JP6677898B2 (en) * 2015-09-11 2020-04-08 株式会社豊田中央研究所 Resin composite material and method for producing the same
CN106965100A (en) * 2017-04-19 2017-07-21 台山市远鹏研磨科技有限公司 A kind of wet type polishing pad and preparation method thereof
US20210115248A1 (en) * 2017-12-20 2021-04-22 Covestro Deutschland Ag Polycarbonate composition with good flame retardancy
KR102119752B1 (en) * 2018-10-02 2020-06-05 주식회사 이엠따블유 Flexible printed circuit board module and manufacturing method for thereof
JP2020152802A (en) * 2019-03-20 2020-09-24 三菱ケミカル株式会社 Resin composition, coating composition and coated article
JP2021059479A (en) * 2019-10-09 2021-04-15 Dic株式会社 Gas barrier composition, gas barrier material, and laminate
CN113604007B (en) * 2021-08-05 2023-01-10 宁夏清研高分子新材料有限公司 LCPU modified epoxy resin-based heat-conducting composite material and preparation method and application thereof
KR102572190B1 (en) * 2021-09-28 2023-08-29 이기영 Manufacturing method of heat-dissipating resin composite for secondary battery and curing method thereof
CN113861668B (en) * 2021-11-17 2023-02-28 尼伦化学(上海)有限公司 High-refractive-index and high-wear-resistance TPU (thermoplastic polyurethane) particle and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232313A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Thermally conductive resin sheet and power module using the same
JP2006274258A (en) * 2005-03-04 2006-10-12 Showa Denko Kk Thermosetting resin composition
JP2007277540A (en) * 2006-03-17 2007-10-25 Showa Denko Kk Resin composition
WO2009090997A1 (en) * 2008-01-15 2009-07-23 Toyo Ink Manufacturing Co., Ltd. Curable electromagnetic shielding adhesive film, method for producing the same, use of the same, method for producing electromagnetic shielding article, and electromagnetic shielding article
JP2009263590A (en) * 2008-04-30 2009-11-12 Toyo Ink Mfg Co Ltd Polyurethane-polyurea adhesive, curable electromagnetic shielding adhesive film produced by using the same and method for producing the film
JP2010229282A (en) * 2009-03-27 2010-10-14 Toyo Ink Mfg Co Ltd Polyurethane polyurea resin composition, curable adhesive film with electromagnetic wave-shielding property and method of manufacturing the same
WO2010147095A1 (en) * 2009-06-17 2010-12-23 昭和電工株式会社 Discharge-gap-filling composition, and electrostatic discharge-protector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872820B1 (en) * 2004-07-07 2008-09-05 Conception & Dev Michelin Sa ADHESIVE SYSTEM FOR THE DIRECT COLLECTION OF A POLYURETHANE COOKED WITH RAW RUBBER
JP5164090B2 (en) * 2007-02-16 2013-03-13 太陽ホールディングス株式会社 Thermosetting resin composition containing carboxylic group-containing urethane resin and cured product thereof
JP2009001642A (en) * 2007-06-20 2009-01-08 Hitachi Chem Co Ltd Thermosetting resin composition, flexible substrate using the same, and electronic component
JP5043577B2 (en) * 2007-09-27 2012-10-10 太陽ホールディングス株式会社 Thermosetting resin composition and cured product thereof
JP2009096915A (en) * 2007-10-18 2009-05-07 Hitachi Chem Co Ltd Thermosetting resin composition, flexible substrate using the same, and electronic component
DE102008007749A1 (en) * 2008-02-05 2009-08-06 Tesa Se Thermally activatable and curable adhesive film, in particular for the bonding of electronic components and flexible printed conductors
JP5176073B2 (en) * 2008-05-21 2013-04-03 日立化成株式会社 Thermosetting resin composition
JP2011148862A (en) * 2010-01-19 2011-08-04 Hitachi Chem Co Ltd Thermosetting resin composition, method for forming protective film of flexible wiring board and flexible wiring board
JP5901141B2 (en) * 2010-05-17 2016-04-06 昭和電工株式会社 Light-emitting element mounting substrate, light-emitting element mounting substrate manufacturing method, light-emitting device, light-emitting device manufacturing method, and white resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232313A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Thermally conductive resin sheet and power module using the same
JP2006274258A (en) * 2005-03-04 2006-10-12 Showa Denko Kk Thermosetting resin composition
JP2007277540A (en) * 2006-03-17 2007-10-25 Showa Denko Kk Resin composition
WO2009090997A1 (en) * 2008-01-15 2009-07-23 Toyo Ink Manufacturing Co., Ltd. Curable electromagnetic shielding adhesive film, method for producing the same, use of the same, method for producing electromagnetic shielding article, and electromagnetic shielding article
JP2009263590A (en) * 2008-04-30 2009-11-12 Toyo Ink Mfg Co Ltd Polyurethane-polyurea adhesive, curable electromagnetic shielding adhesive film produced by using the same and method for producing the film
JP2010229282A (en) * 2009-03-27 2010-10-14 Toyo Ink Mfg Co Ltd Polyurethane polyurea resin composition, curable adhesive film with electromagnetic wave-shielding property and method of manufacturing the same
WO2010147095A1 (en) * 2009-06-17 2010-12-23 昭和電工株式会社 Discharge-gap-filling composition, and electrostatic discharge-protector

Also Published As

Publication number Publication date
WO2012157627A1 (en) 2012-11-22
CN103562258A (en) 2014-02-05
KR101525487B1 (en) 2015-06-03
CN103562258B (en) 2016-06-29
TW201311875A (en) 2013-03-16
TWI534256B (en) 2016-05-21
KR20130133010A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
WO2012157627A1 (en) Curable heat-dissipating composition
EP3626770B1 (en) Resin composition
KR20170017719A (en) Method of producing heat-radiation insulating sheet, heat-radiation insulating sheet and heat spreader
TWI785042B (en) Resin composition, heat storage material, and article including heat source and cured product
KR20220043762A (en) resin composition
JP2013224373A (en) Resin composition
JP2014185256A (en) Epoxy resin composition
JP6225983B2 (en) Resin composition
TW201934716A (en) Sealant for display
JP5857785B2 (en) Thermally conductive insulating resin composition and thermally conductive adhesive sheet
JP7530016B2 (en) Thermally conductive resin composition, cured product, and heat dissipation method
JP5258191B2 (en) Adhesive for semiconductor chip bonding
TWI841538B (en) Method for manufacturing laminate containing hardening bonding material
TWI743195B (en) Curable resin composition, its cured product, and bonded body joined by the cured product
JP2010248350A (en) Polyurethane resin composition
JP7400184B2 (en) thermally conductive adhesive
CN114222791A (en) Resin composition
JP2010222452A (en) Resin paste composition, and semiconductor device using the same
KR102535889B1 (en) cureable composition
TWI832151B (en) Composition and battery comprising thereof
JP7487731B2 (en) Curable composition, heat storage material, and article
JP2023549885A (en) curable composition
TW202212410A (en) Curable composition, heat storage material, and article
KR20220043766A (en) resin composition
JP2023531941A (en) Curable composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160318