JPWO2012132477A1 - Lead-acid battery and electric vehicle - Google Patents

Lead-acid battery and electric vehicle Download PDF

Info

Publication number
JPWO2012132477A1
JPWO2012132477A1 JP2012533172A JP2012533172A JPWO2012132477A1 JP WO2012132477 A1 JPWO2012132477 A1 JP WO2012132477A1 JP 2012533172 A JP2012533172 A JP 2012533172A JP 2012533172 A JP2012533172 A JP 2012533172A JP WO2012132477 A1 JPWO2012132477 A1 JP WO2012132477A1
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
lead
negative electrode
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012533172A
Other languages
Japanese (ja)
Other versions
JP5106712B2 (en
Inventor
世龍 王
世龍 王
崢 遅
崢 遅
松濤 白
松濤 白
和成 安藤
和成 安藤
佐々木 健浩
健浩 佐々木
室地 省三
省三 室地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP5106712B2 publication Critical patent/JP5106712B2/en
Publication of JPWO2012132477A1 publication Critical patent/JPWO2012132477A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • H01M50/541Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本発明の目的は、浅い充電深度(SOC)の場合においてでも、ハイレート放電を行うことができ、かつ高寿命を有する鉛蓄電池を提供することにある。本発明は、複数の単体セル12からなる鉛蓄電池1であって、単体セル12は、複数の正極板2と複数の負極板3とがセパレータ4を介して交互に配列された極板群11と、極板群11を電解液と共に収容する単体セル質14とを備え、単体セル12において、複数の正極板2は、耳部9に接続された正極バスバー6で並列接続され、複数の負極板3は、耳部10に接続された負極バスバー5で並列接続され、負極板3の耳部断面積(L)に対する正極板2の耳部断面積(K)の比(K/L)は0.6以上、1.0未満であり、隣り合う単体セル12において、一方の単体セル12の正極バスバー6と、他方の単体セルの負極バスバー5とは直接接続されることに係るものである。An object of the present invention is to provide a lead-acid battery that can perform high-rate discharge and has a long life even in the case of shallow depth of charge (SOC). The present invention is a lead storage battery 1 composed of a plurality of unit cells 12, and the unit cell 12 includes a group of electrode plates 11 in which a plurality of positive electrode plates 2 and a plurality of negative electrode plates 3 are alternately arranged with separators 4 interposed therebetween. And a single cell quality 14 that accommodates the electrode plate group 11 together with the electrolytic solution. In the single cell 12, the plurality of positive electrode plates 2 are connected in parallel by the positive electrode bus bar 6 connected to the ear portion 9, and the plurality of negative electrodes The plate 3 is connected in parallel by the negative electrode bus bar 5 connected to the ear portion 10, and the ratio (K / L) of the ear cross-sectional area (K) of the positive electrode plate 2 to the ear cross-sectional area (L) of the negative electrode plate 3 is 0.6 or more and less than 1.0, and in the adjacent single cell 12, the positive electrode bus bar 6 of one single cell 12 and the negative electrode bus bar 5 of the other single cell are directly connected. .

Description

本発明は鉛蓄電池、及びそれを動力用電源として備えた電動車両に関する。   The present invention relates to a lead-acid battery and an electric vehicle equipped with the same as a power source for power.

鉛蓄電池は、車両起動用電源やバックアップ電源などに用いられる以外に、主電源にも広く用いられている。即ち、鉛蓄電池は、独立した充放電機器用の電源として、電気自動車、電動自転車、電動オートバイク、電動スクーター、原付電動二輪車、ゴルフカートなどの動力用電源にも用いられ、太陽電池としても使われている。これらの用途において、鉛蓄電池の動作は、起動時の電流が大きく、走行時の放電電流が小さく、放電時間が長いという特徴を有する。それとともに、鉛酸蓄電池のメンテナンスを少なくすることが求められており、特に長寿命化が要求されている。電池の長寿命化という点においては、極板群にかかる圧力を向上させることやセパレータで正極活物質を押圧することにより、正極活物質の膨張を抑制し、正極活物質の剥離を防止するのが、一般的なやり方である。しかしながら、電池の大型化に伴い、電槽を補強するために材料を変更したり、電槽の壁厚を厚くしたりすると、上記のようにしても、極板群に適切な圧力をかけたり、圧力を維持したりすることが困難であった。鉛酸蓄電池は、使用期間の長期化に伴い、正極集電体の酸化によって腐食を生じるため、正極集電体の断面積が減少し、正極板全体の導電性が低下する。そのため、電池がハイレート放電をする際の電圧特性が低下する。このような正極集電体の腐食がさらに進むと、最終的に正極集電体自身が破断してしまうため、電池は容量が急速に減少し、寿命が尽きてしまう。   In addition to being used as a vehicle starting power source and a backup power source, the lead storage battery is widely used as a main power source. In other words, lead-acid batteries are used as power sources for independent charging / discharging devices, as well as power sources for electric vehicles, electric bicycles, electric motorcycles, electric scooters, moped electric motorcycles, golf carts, etc., and also as solar cells. It has been broken. In these applications, the operation of the lead-acid battery is characterized by a large current during startup, a small discharge current during travel, and a long discharge time. At the same time, it is required to reduce the maintenance of the lead acid battery, and in particular, a longer life is required. In terms of extending the life of the battery, the positive electrode active material is suppressed by suppressing the expansion of the positive electrode active material by increasing the pressure applied to the electrode plate group and pressing the positive electrode active material with a separator. But this is a common practice. However, as the size of the battery increases, changing the material to reinforce the battery case or increasing the wall thickness of the battery case may apply an appropriate pressure to the electrode plate group as described above. It was difficult to maintain pressure. Lead acid storage batteries corrode due to oxidation of the positive electrode current collector as the service period becomes longer, so that the cross-sectional area of the positive electrode current collector is reduced and the conductivity of the entire positive electrode plate is lowered. Therefore, the voltage characteristics when the battery discharges at a high rate deteriorates. When such corrosion of the positive electrode current collector further proceeds, the positive electrode current collector itself is eventually broken, so that the capacity of the battery is rapidly reduced and the life is exhausted.

電動車両用鉛蓄電池の容量、充放電特性、安全性などの特性やそれらに対応する構造について各種の検討が行われている。   Various studies are being conducted on the characteristics, such as capacity, charge / discharge characteristics, safety, etc., of lead-acid batteries for electric vehicles and structures corresponding thereto.

特許文献1には、極柱のない弁制御方式の密閉形鉛蓄電池が開示されており、該鉛蓄電池は以下の方法で作製される。まず、セパレータを用いて正負電極板で極群を構成し、溶融した鉛を充填してバスバーを形成するとともに、中間極柱の代わりにバスバーを使用して、極群における正負電極板の耳部をそれぞれ接続して、単一の極群を形成する。次に、複数の単一極群を電池のケーシング内に並列に配置してガス溶接で鉛を溶融して正負電極板の耳部にそれぞれ接続されたバスバーを接続して、単一の極群の間で直列接続を形成する。次に、電池に蓋をして固定した後、正負端子において銅端子の代わりに銅ワイヤを使って電池の正負極を引き出す。当該発明では、ブリッジ溶接やワイヤ接続の代わりにバスバー接続を採用することで、端子の液漏れで端子が腐食され、電池が短寿命化する問題を根本的に解決しており、鉛の使用量が大幅に低減し、コストが低下し、生産効率が向上している。   Patent Document 1 discloses a valve-controlled sealed lead-acid battery without a pole, and the lead-acid battery is manufactured by the following method. First, the pole group is composed of positive and negative electrode plates using a separator, filled with molten lead to form a bus bar, and the bus bar is used instead of the intermediate pole column, and the ears of the positive and negative electrode plates in the pole group Are connected to each other to form a single pole group. Next, a plurality of single pole groups are arranged in parallel in the casing of the battery, lead is melted by gas welding, and bus bars respectively connected to the ears of the positive and negative electrode plates are connected to form a single pole group A series connection is formed between the two. Next, the battery is covered and fixed, and then the positive and negative terminals of the battery are pulled out by using copper wires instead of copper terminals at the positive and negative terminals. In this invention, the use of bus bar connection instead of bridge welding or wire connection has fundamentally solved the problem of terminal corrosion due to terminal leakage and shortened battery life. Is significantly reduced, costs are reduced, and production efficiency is improved.

特許文献2には、バスバー直列接続式構造に対応する鉛酸蓄電池の蓋が開示されており、該蓋は蓋本体を備え、蓋本体の内面には密閉材用溝が刻まれており、また、蓋本体の内面には密閉材用溝よりも深いバスバー密閉溝が刻まれており、密閉材用溝とバスバー密閉溝とは連通している。いわゆるバスバー直列接続式構造とは、一回の焼成で2つの極群を直接溶接して、熱伝導性の密閉材を用いて溶接対象を電池蓋の内部に封止することで構成されたものである。よって、バスバーから生じる熱は熱伝導性の密閉材を通じて急速に伝達放出する。該考案では、蓋の内面密閉材用溝と連通するバスバーが設けられ、バスバーはその密閉用溝内まで直接延びることができ、鉛酸蓄電池のバスバー直列接続式構造を実現することができ、バスバーの導電効果を大幅に改善することができると共に、電池の内部空間も節約でき、電池のエネルギー密度を向上させることができる。鉛酸蓄電池の大電流充放電が可能となり、鉛酸蓄電池の適用分野が広がり、さらに電気自動車産業などの関連産業の発展が促進される。   Patent Document 2 discloses a lid for a lead acid battery corresponding to a bus bar serial connection type structure, and the lid includes a lid body, and a groove for a sealing material is engraved on the inner surface of the lid body. The inner surface of the lid body has a bus bar sealing groove deeper than the sealing material groove, and the sealing material groove and the bus bar sealing groove communicate with each other. The so-called bus bar series connection structure is constructed by directly welding two electrode groups in one firing and sealing the object to be welded inside the battery lid using a heat conductive sealing material. It is. Therefore, the heat generated from the bus bar is rapidly transmitted and released through the heat conductive sealing material. In the present invention, a bus bar communicating with the groove for sealing the inner surface of the lid is provided, and the bus bar can extend directly into the sealing groove, and a bus bar serial connection type structure of the lead acid battery can be realized. The conductive effect of the battery can be greatly improved, the internal space of the battery can be saved, and the energy density of the battery can be improved. Lead-acid batteries can be charged and discharged with a large current, the application fields of lead-acid batteries are expanded, and the development of related industries such as the electric vehicle industry is promoted.

特許文献3には、負極板格子の脚部の幅を正極板の格子の脚部の幅よりも大きくし、これらの極板格子で作製された負極板と正極板とを組み立てた極板群を電槽に挿入し、それぞれの脚部が極板の伸びを吸収できる鞍に取り付けられた鉛蓄電池が開示されている。鉛蓄電池の使用中、正極板が伸びやすくなるが、該伸びは鞍で十分に吸収できず、正極板の曲折などによって隣り合う負極板との間で短絡を生じ、容量の低下や寿命の終結を引き起こすという問題があった。負極板格子の脚部の断面積を正極板の格子の脚部の断面積よりも大きくすることで、正極板の伸びに対する負極の吸収効果を大きくし、正極板格子の伸びによって曲折や短絡が発生するのを防止することができる。また、特許文献3の0006段落では、鉛蓄電池用極板格子の設計において、通常負極板格子の厚さが正極板格子の厚さよりも薄いことが求めているため、負極板格子の脚部の断面積が正極板格子の脚部の断面積よりも大きくなるように、負極板の格子の脚部の幅を正極板の格子の脚部の幅よりも大きくしなければならないと記載されている。   Patent Document 3 discloses a group of electrode plates in which the width of the leg portion of the negative electrode plate grid is made larger than the width of the leg portion of the positive electrode plate lattice, and the negative electrode plate and the positive electrode plate made of these electrode plate lattices are assembled. Is inserted into a battery case, and a lead storage battery is disclosed in which each leg is attached to a cage that can absorb the elongation of the electrode plate. While using a lead-acid battery, the positive electrode plate tends to stretch, but the elongation cannot be sufficiently absorbed with scissors, causing a short circuit between adjacent negative electrode plates due to bending of the positive electrode plate, etc. There was a problem of causing. By making the cross-sectional area of the legs of the negative electrode plate lattice larger than the cross-sectional area of the legs of the positive electrode plate lattice, the negative electrode absorption effect on the elongation of the positive electrode plate is increased. It can be prevented from occurring. Further, in paragraph 0006 of Patent Document 3, in the design of a lead plate battery grid, the thickness of the negative plate grid is usually required to be thinner than the thickness of the positive plate grid. It is stated that the width of the legs of the grid of the negative electrode plate must be larger than the width of the legs of the grid of the positive plate so that the cross-sectional area is larger than the cross-sectional area of the legs of the positive plate grid. .

特許文献4には、密閉形鉛蓄電池が開示されている。極板の耳部を溶接することでバスバーを形成し、また、接着材で該バスバーを中蓋に埋め込んでバスバーの隙間及びバスバーと中蓋との接着溝壁間の隙間とを同一の寸法にすることにより、接着剤が堆積せず、隔離壁に漬浸したり、電池の外側などへあふれ出したりすることはない。   Patent Document 4 discloses a sealed lead-acid battery. The bus bar is formed by welding the ears of the electrode plate, and the bus bar is embedded in the inner lid with an adhesive so that the gap between the bus bar and the gap between the adhesive groove walls of the bus bar and the inner lid are the same size. By doing so, the adhesive is not deposited, so that it does not soak into the isolation wall or overflow to the outside of the battery.

しかしながら、上記文献には、電動車両用鉛蓄電池の過放電を考慮して電池の使用寿命を長くすることについて開示や説明が行われていない。また、従来、電動車両用鉛蓄電池の過放電を考慮して電池の使用寿命を長くすることについての検討も不十分であった。一般的には、電動車両用鉛蓄電池の放電電流が大きいほど、または、放電深度が深いほど、過放電を引き起こす可能性が有り、電池の寿命も短くなる。これは、過放電は極板格子の腐食を深め、極板格子と活物質との境界に高い抵抗層を生じ、正極活物質の軟化や剥離を引き起こし、電池の放電容量が急速に低減し、電池が早期に使用できなくなり、電池の寿命が大幅に低下するからである。電動車両は、走行中に充電することができないため、走行距離が長いほど放電深度も深くなる。また、走行中信号にさしかかる度に頻繁に大電流でブレーキをかけたり、起動したりする必要があり、電池の容量が不足している時でも、依然として大電流で起動する必要がある。この時、過放電を最も引き起こしやすくなる。電動車両用鉛蓄電池は、実際に使用される場合、充電深度(SOC:State of Charge)が浅くても、ハイレート放電が必要となるため、長寿命化の課題を解決する必要がある。   However, the above document does not disclose or explain about extending the service life of the battery in consideration of overdischarge of the lead-acid battery for electric vehicles. Conventionally, the study on extending the service life of the battery in consideration of overdischarge of the lead-acid battery for electric vehicles has also been insufficient. In general, as the discharge current of the lead-acid battery for electric vehicles is larger or the depth of discharge is deeper, there is a possibility of causing overdischarge and the life of the battery is shortened. This is because overdischarge deepens the corrosion of the electrode plate lattice, creates a high resistance layer at the boundary between the electrode plate lattice and the active material, causes softening and peeling of the positive electrode active material, and rapidly reduces the discharge capacity of the battery, This is because the battery cannot be used early, and the life of the battery is greatly reduced. Since the electric vehicle cannot be charged during traveling, the longer the traveling distance, the deeper the discharge depth. In addition, it is necessary to frequently apply a brake or start with a large current every time the driving signal is reached, and it is still necessary to start with a large current even when the battery capacity is insufficient. At this time, overdischarge is most likely to occur. When a lead storage battery for an electric vehicle is actually used, high-rate discharge is required even when the depth of charge (SOC) is shallow, so it is necessary to solve the problem of extending the life.

中国特許出願公開第101459260号明細書Chinese Patent Application No. 101459260 中国実用新案出願公開第201590439号明細書China Utility Model Application Publication No. 201590439 Specification 実開平5-45910号公報Japanese Utility Model Publication No. 5-45910 特開平3-81952号公報Japanese Patent Laid-Open No. 3-81952

本発明の目的は、浅い充電深度(SOC)の場合においでも、ハイレート放電を行うことができ、かつ長寿命を有する鉛蓄電池を提供することにある。   An object of the present invention is to provide a lead-acid battery that can perform high-rate discharge and has a long life even in the case of shallow depth of charge (SOC).

本発明に係る鉛蓄電池は、複数の単体セルからなる鉛蓄電池であって、単体セルは、複数の正極板と複数の負極板とがセパレータを介して交互に配列された極板群と、極板群を電解液と共に収容する単体セル室とを備え、正極板は、耳部を有する正極集電体と、該正極集集電体に保持される正極活物質とを備え、負極板は、耳部を有する負極集電体と、該負極集集電体に保持される負極活物質とを備え、単体セルにおいて、複数の正極板は、耳部に接続された正極バスバーで並列接続され、複数の負極板は、耳部に接続された負極バスバーで並列接続され、負極板の耳部断面積(L)に対する正極板の耳部断面積(K)の比(K/L)は、0.6以上、1.0未満であり、隣り合う単体セルにおいて、一方の単体セルの正極バスバーと、他方の単体セルの負極バスバーとは、直接接続されている。   The lead acid battery according to the present invention is a lead acid battery composed of a plurality of unit cells, and the unit cell includes a group of electrode plates in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately arranged via separators, A single cell chamber containing the plate group together with the electrolyte solution, the positive electrode plate is provided with a positive electrode current collector having ears, and a positive electrode active material held by the positive electrode current collector, the negative electrode plate is A negative electrode current collector having an ear part, and a negative electrode active material held by the negative electrode current collector, in a single cell, a plurality of positive electrode plates are connected in parallel with a positive electrode bus bar connected to the ear part, The plurality of negative electrode plates are connected in parallel by a negative electrode bus bar connected to the ear portion, and the ratio (K / L) of the ear portion cross-sectional area (K) of the positive electrode plate to the ear cross-sectional area (L) of the negative electrode plate is 0 .6 or more and less than 1.0, and in the adjacent single cells, the positive electrode bus bar of one single cell and the other The negative bus bar of the single cells, are directly connected.

本発明の鉛蓄電池によると、複数の負極板の耳部断面積の合計に対する複数の正極板の耳部断面積の合計の比は0.5〜0.8であることが好ましい。   According to the lead storage battery of the present invention, the ratio of the sum of the cross-sectional areas of the plurality of positive electrode plates to the sum of the cross-sectional areas of the plurality of negative electrode plates is preferably 0.5 to 0.8.

本発明の鉛蓄電池によると、複数の正極板の数は3枚以上で、複数の負極板の数は4枚以上であることが好ましく、複数の正極板の数は4〜9枚で、複数の負極板の数は5〜10枚であることがより好ましい。   According to the lead storage battery of the present invention, the number of the plurality of positive plates is preferably 3 or more, the number of the plurality of negative plates is preferably 4 or more, and the number of the plurality of positive plates is 4 to 9, The number of negative electrode plates is more preferably 5 to 10.

本発明の鉛蓄電池によると、正極板の耳部の厚さは負極板の耳部の厚さよりも小さいこと、及び/又は複数の正極板の耳部の厚さの合計は複数の負極板の耳部の厚さの合計よりも小さいことが好ましい。   According to the lead-acid battery of the present invention, the thickness of the ears of the positive electrode plate is smaller than the thickness of the ears of the negative electrode plate, and / or the total thickness of the ears of the plurality of positive electrode plates It is preferably smaller than the sum of the thicknesses of the ears.

本発明の鉛蓄電池によると、正極板の耳部の幅は5〜8mmであり、負極板の耳部の幅は5〜7mmであることが好ましい。   According to the lead storage battery of the present invention, the width of the ear portion of the positive electrode plate is preferably 5 to 8 mm, and the width of the ear portion of the negative electrode plate is preferably 5 to 7 mm.

本発明の鉛蓄電池によると、単体セルを2個以上有することが好ましく、4〜8個以上を有することがより好ましい。   According to the lead storage battery of the present invention, it is preferable to have two or more single cells, and more preferably 4 to 8 or more.

本発明の鉛蓄電池によると、正極集電体はレシプロ(往復動式)エキスパンド法で作製されたエキスパンド格子であることが好ましい。このとき、エキスパンド格子は、複数の格子線が交差してなるメッシュを有し、格子線の幅をW、格子の厚さをTとしたとき、格子の曲折度を表す比(T/W)が1.60〜1.80の範囲にあることが好ましい。また、好ましくは、正極活物質としての鉛ペーストがエキスパンド格子に充填され、鉛ペーストが充填された正極板の厚さをP、格子の厚さをTとしたとき、鉛ペーストの過充填率を表す比(P/T)が1.14〜1.30の範囲あることが好ましい。   According to the lead acid battery of the present invention, the positive electrode current collector is preferably an expanded lattice produced by a reciprocating (reciprocating) expanding method. At this time, the expanded lattice has a mesh formed by intersecting a plurality of lattice lines, where the lattice line width is W and the thickness of the lattice is T, a ratio (T / W) representing the degree of bending of the lattice. Is preferably in the range of 1.60 to 1.80. Preferably, the lead paste as the positive electrode active material is filled in the expanded lattice, the thickness of the positive electrode plate filled with the lead paste is P, and the thickness of the lattice is T, the overfill rate of the lead paste is The expressed ratio (P / T) is preferably in the range of 1.14 to 1.30.

本発明の鉛蓄電池によると、負極集電体は鋳造法で作製された格子であることが好ましい。   According to the lead storage battery of the present invention, the negative electrode current collector is preferably a grid produced by a casting method.

電気自動車、電動自転車、電動オートバイク、電動スクーター又は原付電動二輪車の動力用電源として、本発明の鉛蓄電池が用いられることが好ましい。   The lead storage battery of the present invention is preferably used as a power source for powering an electric vehicle, an electric bicycle, an electric motorcycle, an electric scooter, or a moped electric motorcycle.

本発明は、正極の耳部断面積を小さくすることにより、集電性を適切に低下し、かつ、隣り合う単体セルのバスバー同士は極柱を用いて溶接されるのではなく、直接に溶接されるため、極柱を用いてバスバーを接続することによる集電性への影響をなくすことができる。これにより、ハイレート過放電を抑制し、長寿命化を実現し、電池の体積を小さくすることができる。加えて、正極の集電体にはエキスパンド法で作製したエキスパンド格子を採用し、格子の曲折度を制御することにより、格子のメッシュ生じる応力を低減することができる。さらに、正極活物質の過剰充填を行い(過充填)、正極活物質としての鉛ペーストの過充填率を制御することによって、集電性を適切に低下させることができる。これにより、ハイレート放電の際、正極活物質の過放電を抑制し、ストレスによる腐食も防止でき、その結果、電池の寿命を大幅に向上することができる。   The present invention reduces the current collecting property appropriately by reducing the cross-sectional area of the positive electrode ears, and the bus bars of adjacent single cells are welded directly rather than using pole columns. Therefore, it is possible to eliminate the influence on the current collecting performance by connecting the bus bar using the pole pole. Thereby, high-rate overdischarge can be suppressed, long life can be realized, and the volume of the battery can be reduced. In addition, an expanded lattice produced by an expanding method is adopted as the positive electrode current collector, and the stress generated by the mesh of the lattice can be reduced by controlling the bending degree of the lattice. Furthermore, by collecting the positive electrode active material excessively (overfilling) and controlling the overfilling rate of the lead paste as the positive electrode active material, the current collecting property can be appropriately reduced. Thereby, at the time of high-rate discharge, overdischarge of the positive electrode active material can be suppressed and corrosion due to stress can be prevented, and as a result, the life of the battery can be greatly improved.

本発明の鉛蓄電池の一部切り欠け斜視図である。It is a partially cutaway perspective view of the lead acid battery of the present invention. (a)は本発明の鉛蓄電池の正極板の一部切り欠け正面図であり、(b)は正極板の側面図である。(A) is a partially cutaway front view of the positive electrode plate of the lead storage battery of the present invention, and (b) is a side view of the positive electrode plate. (a)は本発明の鉛蓄電池の負極板の一部切り欠け正面図であり、(b)は負極板の側面図である。(A) is a partially cutaway front view of the negative electrode plate of the lead storage battery of the present invention, and (b) is a side view of the negative electrode plate. (a)はレシプロエキスパンド法でエキスパンド格子及び極板を作製する工程を示した工程図であり、(b)は工程の一部を拡大した模式図である。(A) is process drawing which showed the process of producing an expanded lattice and an electrode plate by the reciprocating expand method, (b) is the schematic diagram which expanded a part of process. (a)はレシプロエキスパンド法で作製されたエキスパンド格子を模式的に示した正面図であり、(b)はエキスパンド格子からなる極板の側面図であり、(c)はエキスパンド格子の一部を拡大した模式図であり、(d)は(c)のエキスパンド格子のA−A線に沿った断面図であり、(e)は正極板の厚さ方向に沿って切断された一部の断面図である。(A) is the front view which showed typically the expanded lattice produced by the reciprocating expansion method, (b) is a side view of the electrode plate which consists of an expanded lattice, (c) is a part of expanded lattice. It is the expanded schematic diagram, (d) is sectional drawing along the AA line of the expanded grating | lattice of (c), (e) is a partial cross section cut | disconnected along the thickness direction of a positive electrode plate. FIG. 複数の単体セルを直列接続した状態を模式的に示した図である。It is the figure which showed typically the state which connected the some single cell in series. 本発明の実施例における鉛蓄電池の特性の評価結果を示した表である。It is the table | surface which showed the evaluation result of the characteristic of the lead acid battery in the Example of this invention.

以下、図面を用いて本発明の鉛蓄電池について説明する。説明の簡略化のため、図面において、実質的に同様の機能を有する構成要素については同一の符号を付する。なお、本発明は以下の実施形態に限定されるものではない。   Hereinafter, the lead storage battery of the present invention will be described with reference to the drawings. For simplification of description, components having substantially the same function are denoted by the same reference numerals in the drawings. In addition, this invention is not limited to the following embodiment.

本発明は鉛蓄電池に係るものであり、該鉛蓄電池は複数の単体セルを有し、該単体セルは極板群、電解液及び単体セル室を備え、極板群が電解液に浸漬した状態で単体セル室に収容され、極板群は複数の正極板と複数の負極板とがセパレータを介して交互に配列されてなるものであり、各正極板は耳部を有する正極集電体と該正極集電体に保持される正極活物質層とを備える一方、各負極板は耳部を有する負極集電体と負極集電体に保持される負極活物質層とを備えている。各単体セル間の配置関係や電気的な接続関係を最適化し、かつ、正極板及び負極板の配置や、正極板及び負極板の耳部断面積、厚さの相対的な関係などを最適化することにより、浅い充電深度(SOC)の状態でも、ハイレート放電を行うことができ、かつ長寿命を有する鉛蓄電池を実現することができる。   The present invention relates to a lead-acid battery, the lead-acid battery has a plurality of unit cells, and the unit cell includes an electrode plate group, an electrolytic solution, and a single cell chamber, and the electrode plate group is immersed in the electrolyte solution. The electrode plate group is formed by alternately arranging a plurality of positive electrode plates and a plurality of negative electrode plates via separators, each positive electrode plate having a positive electrode current collector having an ear portion Each negative electrode plate includes a negative electrode current collector having an ear portion and a negative electrode active material layer held by the negative electrode current collector. Optimize the layout and electrical connection between individual cells, and optimize the layout of the positive and negative plates, the cross-sectional area of the positive and negative plates, and the relative relationship of thickness. By doing so, it is possible to realize a lead-acid battery that can perform high-rate discharge and has a long life even in a shallow depth of charge (SOC) state.

本発明の鉛蓄電池は、開放形の液式鉛蓄電池であってもよく、密閉形の弁制御式鉛蓄電池であってもよいが、密閉形の弁制御式鉛蓄電池とするほうが好ましい。図1は、本発明の鉛蓄電池の一部切りかけ斜視図である。   The lead-acid battery of the present invention may be an open-type liquid lead-acid battery or a sealed valve-controlled lead-acid battery, but is preferably a sealed valve-controlled lead-acid battery. FIG. 1 is a partially cut perspective view of a lead storage battery of the present invention.

鉛蓄電池1は、そのケーシング19が隔離壁13によって複数の単体セル室14に区画されることにより複数の単体セル12を有し、該単体セル12は極板群11と、電解液(未図示)と単体セル室14とを有し、極板群11は、電解液に浸かる状態で単体セル室14に収容されている。極板群11は、複数の正極板2と複数の負極板3とがセパレータ4を介して交互に配列されてなるものである。充放電の効率やコスト抑制の観点から、極板群の最も外側が共に負極板であり、即ち負極板は正極板よりも1枚多くなるのが好ましい。これは、鉛蓄電池を代表とする二次電池では、電池容量は正極の電気容量を意味し、電池の放電反応はセパレータを介して対向する正極と負極との間で行われるからである。よって、正極の両面はそれぞれ負極と対向することが好ましい。   The lead-acid battery 1 has a plurality of single cells 12 with its casing 19 partitioned into a plurality of single cell chambers 14 by separating walls 13, and the single cell 12 includes an electrode plate group 11 and an electrolyte (not shown). ) And the single cell chamber 14, and the electrode plate group 11 is accommodated in the single cell chamber 14 in a state of being immersed in the electrolytic solution. The electrode plate group 11 is formed by alternately arranging a plurality of positive electrode plates 2 and a plurality of negative electrode plates 3 with separators 4 interposed therebetween. From the viewpoint of charge / discharge efficiency and cost reduction, it is preferable that the outermost side of the electrode plate group is the negative electrode plate, that is, the negative electrode plate is one more than the positive electrode plate. This is because in a secondary battery typified by a lead storage battery, the battery capacity means the electric capacity of the positive electrode, and the discharge reaction of the battery is performed between the positive electrode and the negative electrode facing each other via a separator. Therefore, it is preferable that both surfaces of the positive electrode face the negative electrode.

複数の正極板の数は3枚以上で、複数の負極板の数は4枚以上であることが好ましく、複数の正極板の数は4〜9枚であり、複数の負極板の数は5〜10枚であることがより好ましい。複数の単体セルでは、それぞれの単体セルの正極板の正極バスバー、負極板の負極バスバーがそれぞれ、該単体セルと隣り合う単体セルのそれぞれが有する負極板の負極バスバー及び正極板の正極バスバーとの接続は無極柱の直接溶接を採用することで、複数の単体セルを直列に接続する。具体的には、各正極板2の正極耳部9は正極バスバー6を通じて並列接続される一方、各負極板3の負極耳部10は負極バスバー5を通じて並列接続されている。各単体セル12の負極バスバー5と隣り合う単体セル12の正極バスバー6とは、鉛、アルミ、銅等の金属板8を用いて融接又は鋳込み溶接で直接溶接されることで、各単体セル12が隣り合う単体セル12と直列接続されて、複数の単体セルが直列接続されることになる。バスバー間の直接溶接は隔離壁13のトップ部を跨ぐようにして行ってもよく、隔離壁13が有する孔を貫通して行ってもよい。   The number of positive electrode plates is 3 or more, the number of negative electrode plates is preferably 4 or more, the number of positive electrode plates is 4 to 9, and the number of negative electrode plates is 5 More preferably, the number is ~ 10. In the plurality of single cells, the positive electrode bus bar of the positive electrode plate of each single cell and the negative electrode bus bar of the negative electrode plate are respectively connected to the negative electrode bus bar of the negative electrode plate and the positive electrode bus bar of the positive electrode plate of each single cell adjacent to the single cell. The connection employs non-polar column direct welding to connect a plurality of single cells in series. Specifically, the positive electrode ears 9 of each positive electrode plate 2 are connected in parallel through the positive electrode bus bar 6, while the negative electrode ears 10 of each negative electrode plate 3 are connected in parallel through the negative electrode bus bar 5. Each single cell 12 is directly welded to the negative electrode bus bar 5 of each single cell 12 and the positive electrode bus bar 6 of the single cell 12 adjacent to each other by fusion welding or cast welding using a metal plate 8 of lead, aluminum, copper or the like. 12 is connected in series with adjacent single cells 12, and a plurality of single cells are connected in series. Direct welding between the bus bars may be performed so as to straddle the top portion of the isolation wall 13 or may be performed through a hole of the isolation wall 13.

本願発明者は、隣り合う単体セルの極性の異なるバスバーを、極柱を使用せず、直接溶接して各単体セルを直列接続することで、単体セル間の接続状態を安定させることができ、これにより、単体セル間の集電性の変動が非常に小さくなり、電流や内部抵抗も小さくなるため、ハイレート放電に有利となり、寿命も長くできることを発見した。具体的には、隣り合う単体セルの極性の異なるバスバーを、極柱を使用して間接に直列接続した場合、電流経路が長く、内部抵抗が大きく、かつ内部抵抗の増加に伴い発熱量も多くなり、単体セル間の温度及び集電性が大きく変動する。これに対し、本発明においては、隣り合う単体セルの極性の異なるバスバーを、極柱を使用せずに直接溶接して各単体セルを直列接続しているので、電流経路が短く、内部抵抗が小さく、かつ内部抵抗の減少に伴い発熱量も少なくなる。これにより、単体セル間の温度及び集電性の変動が小さくなる。本発明でいう「無極柱の直接溶接を採用」と「極柱を使用せずに直接溶接」とは同じ意味である。すなわち、共に隣り合う単体セルにおける極性の異なるバスバー同士が直接溶接されること、あるいは、隣り合う単体セルにおける極性の異なるバスバー間で極柱を使用せず直接溶接される場合は、鉛、アルミ又は銅材等の金属板を利用して融接又は鋳込み溶接で溶接されることを意味する。   The inventor of the present application can stabilize the connection state between the single cells by connecting the single cells in series by directly welding the bus bars having different polarities of the adjacent single cells without using the pole columns, As a result, it has been found that the fluctuation of the current collecting property between single cells becomes very small, and the current and internal resistance become small, which is advantageous for high-rate discharge and can have a long life. Specifically, when bus bars with different polarities of adjacent single cells are connected in series indirectly using a pole pole, the current path is long, the internal resistance is large, and the amount of heat generated increases with the increase in internal resistance. Thus, the temperature and current collection between the single cells greatly fluctuate. On the other hand, in the present invention, the bus bars having different polarities of adjacent single cells are directly welded without using a pole column, and the single cells are connected in series, so the current path is short and the internal resistance is short. It is small and the amount of heat generation decreases as the internal resistance decreases. Thereby, the fluctuation | variation of the temperature and current collection property between single cells becomes small. In the present invention, “adopting non-polar column direct welding” and “direct welding without using a pole column” have the same meaning. That is, when the bus bars having different polarities in the adjacent single cells are directly welded or directly welded without using the pole column between the bus bars having different polarities in the adjacent single cells, lead, aluminum or It means that welding is performed by fusion welding or cast welding using a metal plate such as a copper material.

鉛蓄電池1は、単体セル12を2個以上有することが好ましく、4〜8個有することがより好ましい。ケーシング19における一端側の正極バスバーは正極端子16に接続されている一方、ケーシング19における他端側の負極バスバー5は負極端子17に接続されている。電池蓋15はケーシング19の開口部に取り付けられている。電池蓋15に設けられた通気口や弁18は、電池内に発生したガスを電池の外へ排出するためのものであるが、ガスはほとんど出ない。   The lead storage battery 1 preferably has two or more single cells 12, more preferably 4-8. The positive electrode bus bar on one end side in the casing 19 is connected to the positive electrode terminal 16, while the negative electrode bus bar 5 on the other end side in the casing 19 is connected to the negative electrode terminal 17. The battery lid 15 is attached to the opening of the casing 19. The vent or valve 18 provided in the battery lid 15 is for discharging the gas generated in the battery to the outside of the battery, but hardly emits gas.

正極板2は、正極耳部9を有する正極集電体21と、該正極集電体21に保持される正極活物質層24とを備えている。図2(a)は、本発明の鉛蓄電池の正極板2の一部切りかけ正面図であり、図2(b)は、正極板2の側面図である。   The positive electrode plate 2 includes a positive electrode current collector 21 having a positive electrode ear portion 9 and a positive electrode active material layer 24 held by the positive electrode current collector 21. 2A is a partially cut front view of the positive electrode plate 2 of the lead storage battery of the present invention, and FIG. 2B is a side view of the positive electrode plate 2.

正極集電体21及び正極バスバー6の材質は、例えばCa及びSnの少なくとも一つを含む鉛蓄電池の正極板によく使用されるPb合金であってもよいが、耐腐食性及び機械的強度からみると、0.05〜3.0質量%のSnを含むPb-Sn合金、0.01〜0.10質量%のCaを含むPb-Ca合金、又はCa及びSnを含むPb-Ca-Sn合金を使っても良い。   The material of the positive electrode current collector 21 and the positive electrode bus bar 6 may be, for example, a Pb alloy often used for a positive electrode plate of a lead storage battery containing at least one of Ca and Sn. From the viewpoint of corrosion resistance and mechanical strength, In view of this, a Pb—Sn alloy containing 0.05 to 3.0% by mass of Sn, a Pb—Ca alloy containing 0.01 to 0.10% by mass of Ca, or a Pb—Ca—Sn alloy containing Ca and Sn may be used.

正極活物質層24は主に正極活物質(PbO2)を含有するが、正極活物質以外に少量の導電材料(例えば炭素)及び添加剤を含有してもよい。The positive electrode active material layer 24 mainly contains a positive electrode active material (PbO 2 ), but may contain a small amount of a conductive material (for example, carbon) and an additive in addition to the positive electrode active material.

正極集電体21はレシプロ(往復動式)エキスパンド法で作製されたエキスパンド格子であることが好ましい。正極集電体21は、正極活物質層24を保持するメッシュ25と、メッシュ25の縁部における辺23と、その上面の辺23に接続する正極耳部9とを備える。   The positive electrode current collector 21 is preferably an expanded lattice produced by a reciprocating (reciprocating) expanding method. The positive electrode current collector 21 includes a mesh 25 that holds the positive electrode active material layer 24, a side 23 at the edge of the mesh 25, and a positive electrode ear 9 that is connected to the side 23 on the upper surface thereof.

負極板3は、負極耳部10を有する負極集電体31と、負極集電体31に保持される負極活物質層34とを備える。図3(a)は、本発明の鉛蓄電池の負極板3の一部切りかけ正面図であり、図3(b)は、負極板3の側面図である。負極集電体31はレシプロエキスパンド法又は鋳造法で作製された格子であり、負極活物質層34を保持するメッシュ35と、メッシュ35の上縁における上枠33と、上枠33に接続する負極耳部10とを備えていてもよい。   The negative electrode plate 3 includes a negative electrode current collector 31 having a negative electrode ear 10 and a negative electrode active material layer 34 held by the negative electrode current collector 31. FIG. 3A is a partially cut front view of the negative electrode plate 3 of the lead storage battery of the present invention, and FIG. 3B is a side view of the negative electrode plate 3. The negative electrode current collector 31 is a lattice produced by a reciprocating expand method or a casting method, a mesh 35 holding the negative electrode active material layer 34, an upper frame 33 at the upper edge of the mesh 35, and a negative electrode connected to the upper frame 33 The ear portion 10 may be provided.

負極活物質層34は、負極活物質即ち鉛(例えばスポンジ状、青藍色の純鉛)を含有するが、負極活物質以外に少量の膨張剤(例えば木質素及び硫酸バリウム)、導電材料(例えば炭素)及び添加剤を含有してもよい。   The negative electrode active material layer 34 contains a negative electrode active material, i.e., lead (e.g., sponge-like, blue-blue pure lead), but in addition to the negative electrode active material, a small amount of an expanding agent (e.g., wood and barium sulfate), a conductive material ( For example, carbon) and additives may be contained.

負極集電体31及び負極バスバー5は、鉛蓄電池の負極板によく使われるPb合金で構成されてもよく、特に限定されるものではないが、格子の強度を考慮すると、Ca、 SnなどのPbの水素過電圧を低下させない元素を添加したPb-Ca合金、Pb-Sn合金、Pb-Ca-Sn合金などを用いることが好ましい。正極板2が使用するPb合金と同様のPb合金を用いることがより好ましい。   The negative electrode current collector 31 and the negative electrode bus bar 5 may be made of a Pb alloy often used for a negative electrode plate of a lead storage battery, and are not particularly limited, but considering the strength of the lattice, Ca, Sn, etc. It is preferable to use a Pb—Ca alloy, a Pb—Sn alloy, a Pb—Ca—Sn alloy, or the like to which an element that does not reduce the hydrogen overvoltage of Pb is added. It is more preferable to use the same Pb alloy as the Pb alloy used for the positive electrode plate 2.

セパレータ4は鉛蓄電池によく使われるセパレータを使用し、プラスチック製セパレータ、紙製セパレータ、ガラス製セパレータ及びラバー製セパレータのいずれかでも良い。ガラス繊維マットや超微細ガラス繊維セパレータ(AGM)のほうが好ましい。セパレータは、袋状をなし、正極板の外部に密着して正極板を包囲して活物質の剥離と押し出しを防止してもよい。   The separator 4 is a separator often used for lead-acid batteries, and may be any of a plastic separator, a paper separator, a glass separator, and a rubber separator. A glass fiber mat or an ultrafine glass fiber separator (AGM) is preferred. The separator may be formed in a bag shape and may be in close contact with the outside of the positive electrode plate so as to surround the positive electrode plate to prevent the active material from peeling and extruding.

正極板2は、下記の作製方法で作製することが可能である。   The positive electrode plate 2 can be manufactured by the following manufacturing method.

未化成の正極板は、正極集電体としての正極板格子に原料である鉛粉(鉛及び酸化鉛の混合物)、硫酸、水等などが混合した正極鉛ペーストを充填した後、熟成・乾燥して得られたものである。   The unformed positive electrode plate is filled with a positive electrode lead paste mixed with lead powder (a mixture of lead and lead oxide), sulfuric acid, water, etc., in a positive electrode plate grid as a positive electrode current collector, and then aged and dried. It was obtained.

正極板格子はレシプロエキスパンド法で作製されたエキスパンド格子であることが好ましい。プロセスの詳細は後述する。このときの主な工程は、図4(a)及び(b)に示しており、(1)レシプロ(往復動式)プレス金型を用いて、鉛シート27に対してプレスを繰り返し行い、鉛シートの長さ方向に沿って複数のスリットを形成すると共に、該スリットを鉛シートの表面に直交する方向に広げることにより、複数の格子線が交差してなるメッシュ25を有する格子状シートを形成するエキスパンド加工工程と、(2)整形用金型の一対のローラを用いて格子状シートを整形し、エキスパンド格子を得る整形工程と、(3)エキスパンド格子に、その長さ方向に沿って正極活物質としての鉛ペースト24aを充填する鉛ペースト充填工程と、(4)鉛ペースト24aが充填されたエキスパンド格子を、正極耳部9を有する正極板となるように裁断する裁断工程とを備える。この工程を経て未化成の正極板2aが得られる。   The positive electrode plate lattice is preferably an expanded lattice produced by a reciprocal expanding method. Details of the process will be described later. The main steps at this time are shown in FIGS. 4 (a) and 4 (b). (1) Using a reciprocating (reciprocating) press mold, the lead sheet 27 is repeatedly pressed, A plurality of slits are formed along the length direction of the sheet, and the slits are widened in a direction perpendicular to the surface of the lead sheet to form a lattice sheet having a mesh 25 in which a plurality of lattice lines intersect. Expanding process, (2) shaping process using a pair of shaping mold rollers to shape a grid sheet to obtain an expanded grid, and (3) an expanded grid with a positive electrode along its length. A lead paste filling step of filling the lead paste 24a as an active material, and (4) a cutting step of cutting the expanded lattice filled with the lead paste 24a into a positive electrode plate having the positive electrode ears 9. Through this process, an unformed positive electrode plate 2a is obtained.

その後、未化成の正極板2aを化成して正極板2を得る。化成は、未化成の正極板及び負極板を用いて極板群を構成して、鉛蓄電池のケーシング内に装着した後に行ってもよく、極板群を構成する前に行ってもよいが、前者のほうが好ましい。   Thereafter, the unformed positive electrode plate 2a is formed to obtain the positive electrode plate 2. Chemical conversion may be performed after constituting the electrode plate group using the unformed positive electrode plate and the negative electrode plate and mounted in the casing of the lead storage battery, or may be performed before configuring the electrode plate group, The former is preferred.

負極板3は、下記の作製方法で作製することが可能である。   The negative electrode plate 3 can be manufactured by the following manufacturing method.

未化成の負極板は、負極集電体としての負極板格子に鉛粉(鉛及び酸化鉛の混合物)、硫酸、水、例えば木質素及び硫酸バリウムの膨張剤などが混合した正極鉛ペーストを充填した後、熟成・乾燥して得られるものである。   The unformed negative electrode plate is filled with a positive electrode lead paste mixed with lead powder (a mixture of lead and lead oxide), sulfuric acid, water, such as wood and barium sulfate expansion agent, in the negative electrode plate grid as a negative electrode current collector And then aged and dried.

その後、未化成の負極板を化成して負極板3、即ち負極板格子31に保持された負極活物質層34からなる負極板3を得る。化成は、未化成の正極板及び負極板を用いて極板群を構成して、鉛蓄電池のケーシング内に装着した後に行ってもよく、極板群を構成する前に行ってもよいが、前者のほうが好ましい。   Thereafter, an unformed negative electrode plate is formed to obtain the negative electrode plate 3, that is, the negative electrode plate 3 composed of the negative electrode active material layer 34 held on the negative electrode plate lattice 31. Chemical conversion may be performed after constituting the electrode plate group using the unformed positive electrode plate and the negative electrode plate and mounted in the casing of the lead storage battery, or may be performed before configuring the electrode plate group, The former is preferred.

負極板格子はレシプロエキスパンド法又は鋳造法で作製されてもよい。レシプロエキスパンド法で負極板格子を作製する場合、採用するプロセスは正極板格子のプロセスと同じであり、負極板のその後のプロセスも正極板のプロセスと略同じである。   The negative electrode plate grid may be produced by a reciprocating expand method or a casting method. When producing a negative electrode plate grid by the reciprocating expand method, the process employed is the same as the process of the positive electrode plate grid, and the subsequent process of the negative electrode plate is also substantially the same as the process of the positive electrode plate.

本願発明者は、試験と検討を繰り返し行った結果、正極板及び負極板の配置や、正極板及び負極板の耳部断面積、厚さの相対的な関係などを最適設計すると、浅い充電深度のときでもハイレート放電ができ、長寿命化の実現に有利であることを発見した。詳細は以下の通りである。   As a result of repeated tests and examinations, the inventor of the present application optimally designed the arrangement of the positive electrode plate and the negative electrode plate, the cross-sectional area of the positive electrode plate and the negative electrode plate, the relative relationship of the thickness, etc. It was discovered that high-rate discharge can be achieved even during this time, which is advantageous for realizing a long life. Details are as follows.

まず、本発明では、正極耳部断面積を負極耳部断面積よりも適切に小さくすることにより、集電性が低下し、ハイレート放電の際の正極活物質の過放電が回避できる。このため、電気容量が低い場合高い電流量を必要とせず、正極活物質層の破壊を防止することができる。しかしながら、正極耳部断面積を負極耳部断面積よりも過剰に小さくすることはできない。過剰に小さくしてしまうと、電極の化学反応即ち化成性に影響を及ぼす。また、負極板の耳部断面積に対する正極板の耳部断面積の比が小さすぎると、電池の内部抵抗が大きくなり、ハイレート放電の際のエネルギー密度が低減し、出力パワーも低下し、単体セル間の温度の変動が大きくなるため、サイクル寿命が短くなる。従って、上記二つの点を考慮すると、負極板の耳部断面積に対する正極板の耳部断面積の比は、0.6以上1.0未満であることが好ましく、0.74〜0.93であることがより好ましい。なお、複数の負極板の耳部断面積の合計に対する複数の正極板の耳部断面積の合計の比は0.5〜0.8であることが好ましく、0.59〜0.78であることがより好ましい。   First, in the present invention, by appropriately making the positive electrode ear cross-sectional area smaller than the negative electrode ear cross-sectional area, the current collecting property is reduced, and overdischarge of the positive electrode active material during high rate discharge can be avoided. For this reason, when the electric capacity is low, a high amount of current is not required, and destruction of the positive electrode active material layer can be prevented. However, the positive electrode ear cross-sectional area cannot be made excessively smaller than the negative electrode ear cross-sectional area. If it is too small, the chemical reaction of the electrode, that is, the chemical conversion, is affected. In addition, if the ratio of the cross-sectional area of the positive electrode plate to the cross-sectional area of the positive electrode plate is too small, the internal resistance of the battery increases, the energy density during high-rate discharge decreases, the output power also decreases, and the single unit The cycle life is shortened because of the large temperature variation between the cells. Therefore, considering the above two points, the ratio of the ear cross-sectional area of the positive electrode plate to the cross-sectional area of the negative electrode plate is preferably 0.6 or more and less than 1.0, and more preferably 0.74 to 0.93. Note that the ratio of the sum of the cross-sectional areas of the plurality of positive electrode plates to the sum of the cross-sectional areas of the plurality of negative electrode plates is preferably 0.5 to 0.8, and more preferably 0.59 to 0.78.

本分野の従来技術によると、正極及び負極の導電特性が一致するように、正極板の耳部と負極板の耳部との断面積を同じ値にすることが知られている。これは、導電物質の断面積と抵抗とは比例するからである。しかしながら、本発明は、従来の慣例を破り、予期せぬ効果が得られた。具体的には、従来の場合、正極板の反応抵抗が小さくなり、ハイレート放電の際の正極活物質の利用率が高くなるが、正極活物質の劣化が加速される。これに対し、本発明では、上記のように正極板及び負極板の耳部断面積の比を設定することにより、ハイレート放電の際の単体セルの間で均一に発熱させ、単体セル間の温度の変動を小さくし、サイクル寿命の長寿命化を図ることができる。   According to the prior art in this field, it is known that the cross-sectional areas of the ear portion of the positive electrode plate and the ear portion of the negative electrode plate have the same value so that the conductive characteristics of the positive electrode and the negative electrode are matched. This is because the cross-sectional area of the conductive material is proportional to the resistance. However, the present invention broke the conventional practice, and an unexpected effect was obtained. Specifically, in the conventional case, the reaction resistance of the positive electrode plate is reduced and the utilization rate of the positive electrode active material during high-rate discharge is increased, but the deterioration of the positive electrode active material is accelerated. On the other hand, in the present invention, by setting the ratio of the ear cross-sectional area of the positive electrode plate and the negative electrode plate as described above, heat is generated uniformly between the single cells during the high rate discharge, and the temperature between the single cells is increased. Can be reduced, and the cycle life can be extended.

耳部断面積は耳部の幅と厚さとを乗算したものである。具体的には、図2(a)及び(b9に示すように、正極耳部の幅をαmm、正極耳部の厚さをβmmとすると、正極板の耳部断面積(K)はα×βとなる。また、図3(a)及び(b)に示すように、負極耳部の幅をγmm、負極耳部の厚さをεmmとすると、負極板の耳部断面積(L)はγ×εとなる。このため、耳部の幅及び/又は厚さを調整することで、耳部断面積を調整することができる。本発明では、正極板の耳部の厚さは負極板の耳部の厚さよりも小さいことが好ましく、複数の正極板の耳部の厚さの合計は複数の負極板の耳部の厚さの合計より小さいことがより好ましい。各正極板の耳部の幅が5〜8mmであることが好ましく、各負極板の耳部の幅が5〜7mmであることがより好ましい。   The ear cross-sectional area is obtained by multiplying the width and thickness of the ear. Specifically, as shown in FIGS. 2A and 2B, when the width of the positive electrode ear is α mm and the thickness of the positive electrode ear is β mm, the cross-sectional area (K) of the positive electrode plate is α × 3 (a) and 3 (b), when the width of the negative electrode ear is γ mm and the thickness of the negative electrode ear is ε mm, the ear cross-sectional area (L) of the negative electrode plate is Therefore, the ear cross-sectional area can be adjusted by adjusting the width and / or thickness of the ear.In the present invention, the thickness of the ear of the positive electrode plate is the negative electrode plate. It is preferable that the total thickness of the ears of the plurality of positive electrode plates is smaller than the total thickness of the ears of the plurality of negative electrode plates. Is preferably 5 to 8 mm, more preferably 5 to 7 mm.

次に、本発明は、正極板及び負極板の集電体の構造やプロセスを選択調整することで、正極の集電性が抑制され、ハイレート放電の際の正極活物質の過放電を防止することができる。正極集電体は鉛シートを用いてレシプロ(往復動式)エキスパンド法で作製されたエキスパンド格子であることが好ましく、負極集電体は鋳造法で作製された格子であることが好ましい。本発明において、正極板はレシプロエキスパンド法で作製されたエキスパンド格子であり、かつ負極板は鋳造法で作製された格子であることが好ましい。この場合は、正極エキスパンド格子は横の骨を有しないので、正極の導電性を過大化させることがなく、集電性が相対的に低下するため、ハイレート放電の際の正極活物質の過放電を防ぐことができ、電池の長寿命化という効果が得られる。一方、負極板の鋳造格子は横の骨を有するので、負極活物質のあふれや膨張を阻止する効果を発揮することができ、電池の容積の過大化も防止できる。また、正極板及び負極板がともにレシプロエキスパンド法で作製されたエキスパンド格子の場合は、負極のエキスパンド格子も横の骨を有しないので、負極の集電性が抑制される。これに対し、正極の導電性が相対的に高められるので、本発明の効果が向上できないおそれがある。   Next, the present invention selectively adjusts the structure and process of the current collectors of the positive electrode plate and the negative electrode plate, thereby suppressing the current collecting property of the positive electrode and preventing the overdischarge of the positive electrode active material during the high rate discharge. be able to. The positive electrode current collector is preferably an expanded lattice produced by a reciprocating (reciprocating) expanding method using a lead sheet, and the negative electrode current collector is preferably a lattice produced by a casting method. In the present invention, the positive electrode plate is preferably an expanded lattice produced by a reciprocating expand method, and the negative electrode plate is preferably a lattice produced by a casting method. In this case, since the positive electrode expanded lattice does not have a horizontal bone, the positive electrode conductivity is not excessively increased and the current collecting property is relatively lowered. Can be prevented, and the effect of extending the life of the battery can be obtained. On the other hand, the cast lattice of the negative electrode plate has horizontal bones, so that the effect of preventing the negative electrode active material from overflowing and expanding can be exhibited, and an excessive increase in the volume of the battery can also be prevented. Further, in the case where the positive electrode plate and the negative electrode plate are both expanded lattices produced by the reciprocating expand method, the negative electrode expanded lattice also has no lateral bone, so that the current collecting property of the negative electrode is suppressed. On the other hand, since the electroconductivity of a positive electrode is raised relatively, there exists a possibility that the effect of this invention cannot be improved.

本発明の鉛蓄電池は、上記二つの点から設計を行うことで、著しい技術的効果が得られた。浅い充電深度の場合でもハイレート放電ができ、ハイレート放電の際の正極活物質の過放電を防止でき、長寿命を図ることができる。   The lead storage battery of the present invention has a remarkable technical effect by designing from the above two points. Even at a shallow depth of charge, high rate discharge can be performed, overdischarge of the positive electrode active material during high rate discharge can be prevented, and a long life can be achieved.

以下、レシプロエキスパンド法で鉛シートを用いてエキスパンド格子を作製する際のプロセスや制御について詳細に説明する。   Hereinafter, the process and control at the time of producing an expanded grating | lattice using a lead sheet by the reciprocating expand method are demonstrated in detail.

鉛シートは、本分野でよく使用される鉛合金箔を使っても良く、例えば、CaとSnとの少なくとも一つを含有するPb合金箔であっても良い。耐腐食性及び機械的強度からみると、Pb-Ca-Sn三元合金で構成されることが好ましい。このような合金の組成を有する鉛シートを使用する場合、鉛蓄電池のサイクル寿命特性を容易に改善することができる。   The lead sheet may be a lead alloy foil often used in this field, for example, a Pb alloy foil containing at least one of Ca and Sn. From the viewpoint of corrosion resistance and mechanical strength, it is preferably composed of a Pb—Ca—Sn ternary alloy. When a lead sheet having such an alloy composition is used, the cycle life characteristics of the lead storage battery can be easily improved.

本発明のエキスパンド加工工程では、一対の可動金型と固定金型を有する往復動式プレス金型を用いる。可動金型(上型)には、連続したカッター部が複数存在し、これらのカッター部は鉛シートの搬送方向(即ち長さ方向)にV字状に配列されているが、鉛シートの厚さ方向の中央部に対応する位置にはカッター部を設けない。固定金型(下型)には連続したリブ部が複数存在し、リブ部のリブ状面は上型のカッター部が存在する位置に対応する。外部の装置を用いて固定金型を固定し、可動金型は、上から下向きに鉛シートをプレスするよう制御される。可動金型のカッター部が隣り合うリブ部間のリブ線を通る際、鉛シート上に断続したスリットを複数形成すると共に、カッター部の先端が引続き下向きにプレスし、リブ状面に沿って鉛シート表面に直交する方向に該スリットを広げる。鉛シートの長さ方向に沿って鉛シートを搬送しながら、プレスを繰り返して行うことにより、鉛シートを複数のメッシュを有する格子状シートに加工する。また、可動金型におけるカッター部の位置を調整することにより、鉛シートの幅方向の中央部がメッシュを有さない無地部となり、当該部分は後述の裁断加工で格子の上枠と極板の耳部となる。   In the expanding process of the present invention, a reciprocating press mold having a pair of movable mold and fixed mold is used. The movable mold (upper mold) has a plurality of continuous cutter parts, and these cutter parts are arranged in a V shape in the lead sheet conveyance direction (i.e., the length direction). A cutter portion is not provided at a position corresponding to the central portion in the vertical direction. The fixed die (lower die) has a plurality of continuous rib portions, and the rib-like surface of the rib portion corresponds to the position where the upper die cutter portion exists. The fixed mold is fixed using an external device, and the movable mold is controlled to press the lead sheet downward from above. When the cutter part of the movable mold passes through the rib wire between the adjacent rib parts, a plurality of intermittent slits are formed on the lead sheet, and the tip of the cutter part continues to be pressed downward and lead along the rib surface. The slit is widened in a direction perpendicular to the sheet surface. The lead sheet is processed into a lattice-like sheet having a plurality of meshes by repeatedly performing pressing while conveying the lead sheet along the length direction of the lead sheet. Moreover, by adjusting the position of the cutter part in the movable mold, the central part in the width direction of the lead sheet becomes a plain part without a mesh, and the part is formed by the cutting frame described later and the upper frame of the grid and the electrode plate. It becomes the ear.

通常、エキスパンド加工が終了した直後の格子状シートは、厚さが大きく変動し、形状が不規則であるため、次の整形工程では、整形用金型の一対のローラを用いて格子状シートを整形する必要があり、整形した後エキスパンド格子が得られる。   Usually, since the lattice-like sheet immediately after the expanding process is largely fluctuated and the shape is irregular, in the next shaping step, the lattice-like sheet is formed by using a pair of shaping mold rollers. It needs to be shaped and an expanded grid is obtained after shaping.

従来の整形工程において、径や質量の大きい圧延ローラ対を用いて格子状シートを整形するのが一般的であり、格子状シートにかかる圧力が大きいので、格子線の交差点(ノード)における高さが圧縮され、格子全体の厚さが薄くなり、曲折の程度が低減する。本願発明者は、整形の際、格子状シートにかかる圧力が大きすぎると、格子全体の厚さが薄くなり、強度が大きくなるが、ノード箇所が応力を受けるので、腐食しやすくなり、電池の寿命に悪影響を及ぼすということを発見した。従って、本発明では、径や質量の小さな一対の圧延ローラを使用する。該一対のローラ間のピッチ及びローラ圧を制御し、ノード箇所にかかる圧力を小さくすることで、ノード箇所の高さはほとんど圧縮されず、整形後格子は依然として大きい曲折度を有する。このとき、ノード箇所に圧力がほとんどかかっていないので、ノード箇所において高い強度が維持され、耐腐食性が優れ、且つ格子の寸法の変動が小さく、格子の厚さのバラツキもそれに伴って低減する。   In a conventional shaping process, it is common to shape a grid sheet using a pair of rolling rollers having a large diameter and mass, and since the pressure applied to the grid sheet is large, the height at the intersection (node) of the grid line Is compressed, the thickness of the entire lattice is reduced, and the degree of bending is reduced. The inventor of the present application, when shaping, if the pressure applied to the lattice sheet is too large, the thickness of the entire lattice is reduced and the strength is increased, but the node location is stressed, and therefore, it is easily corroded, and the battery I discovered that it has a negative effect on lifespan. Therefore, in the present invention, a pair of rolling rollers having a small diameter and mass is used. By controlling the pitch and roller pressure between the pair of rollers and reducing the pressure applied to the node portion, the height of the node portion is hardly compressed, and the post-shaping lattice still has a large degree of bending. At this time, since almost no pressure is applied to the node portion, high strength is maintained at the node portion, the corrosion resistance is excellent, the variation in the size of the lattice is small, and the variation in the thickness of the lattice is reduced accordingly. .

図5は、上記方法で得られた本発明のエキスパンド格子7を模式的示す図である。図5(a)に示すように、エキスパンド格子7は複数の格子線gが交差してなる略菱形状のメッシュを有し、各メッシュiは4本の格子線gに囲まれ、各メッシュi間はノードfによって接続されている。エキスパンド格子7は、幅方向の中央部がメッシュが形成されていない無地部となっており、図5(a)にはエキスパンド格子7の一部のみを示している。   FIG. 5 is a diagram schematically showing the expanded lattice 7 of the present invention obtained by the above method. As shown in FIG. 5 (a), the expanded lattice 7 has a substantially rhombic mesh formed by a plurality of lattice lines g intersecting, and each mesh i is surrounded by four lattice lines g, and each mesh i They are connected by a node f. The expanded lattice 7 is a plain portion where no mesh is formed at the center in the width direction, and FIG. 5A shows only a part of the expanded lattice 7.

エキスパンド加工工程で鉛シートから切り出されたスリットを広げた後に、一定の幅と厚さを有する格子線gを形成する。格子線gの幅は鉛シートの幅方向における隣り合うスリットの間隔に、格子線gの厚さは鉛シートの厚さに、それぞれ対応する。本明細書では、「格子線の幅」、「格子線の厚さ」及び下記の「格子の厚さ」は、それぞれ本分野における通常の意味を有する。具体的には、図5(c)の模式図に示すように、格子線の幅はW、格子線の厚さはtである。なお、ここで、本発明の図5(c)には、便宜上、格子線が位置する平面を紙面と一致するように示しているが、実際には、格子線gが位置する平面は紙面に対して所定の傾斜角度を有する。図5(c)のA-A線に沿って裁断すると、図5(d)に示すように、幅Wである格子線は曲折したジグザグ形状をなし、ノード箇所fにおいて2本の格子線gが重なり合い、該重なり合う部分の長さは格子線の幅Wの2倍となり、該重なり合う部分の厚さ(図におけるハッチング部分の厚さ)は格子線の厚さtとなる。なお、厚さ方向における格子全体の最大の高さ(即ち、ノード箇所fの厚さ方向の高さ)は格子の厚さTとなる。本明細書において、格子線の幅Wに対する格子の厚さTの比T/Wを格子の曲折度と定義する。   After expanding the slits cut out from the lead sheet in the expanding process, lattice lines g having a certain width and thickness are formed. The width of the grid line g corresponds to the interval between adjacent slits in the width direction of the lead sheet, and the thickness of the grid line g corresponds to the thickness of the lead sheet. In this specification, “grid line width”, “lattice line thickness”, and “lattice thickness” below have their usual meanings in this field. Specifically, as shown in the schematic diagram of FIG. 5C, the width of the lattice line is W and the thickness of the lattice line is t. Here, in FIG. 5 (c) of the present invention, for convenience, the plane on which the grid lines are located is shown to coincide with the page, but in reality, the plane on which the grid lines g are located is on the page. A predetermined inclination angle is provided. When cutting along the line AA in FIG. 5 (c), as shown in FIG. 5 (d), the grid line having the width W has a bent zigzag shape, and two grid lines g at the node location f. The length of the overlapping portion is twice the width W of the lattice line, and the thickness of the overlapping portion (the thickness of the hatched portion in the figure) is the thickness t of the lattice line. Note that the maximum height of the entire lattice in the thickness direction (that is, the height of the node portion f in the thickness direction) is the thickness T of the lattice. In this specification, the ratio T / W of the thickness T of the grating to the width W of the grating line is defined as the degree of bending of the grating.

本願発明者は、エキスパンド加工工程でスリットの間隔を適宜調整し、かつ整形工程でローラ間のピッチ及びローラ圧をそれぞれ適宜調整することにより、格子の曲折度T/Wを所定の範囲に制御する場合、その後の充填工程において、活物質としての鉛ペーストの充填性が良好になり、活物質としての鉛ペーストを格子の各メッシュにスムーズに充填できるだけではなく、鉛ペーストを格子の表面の高さより高く充填できることを発見した。本明細書において、このような現象を単に鉛ペーストの“過充填”と称する。このように、正極格子により多くの活物質を収容することができ、容量の高い電池が得られる。   The inventor of the present application controls the bending degree T / W of the lattice within a predetermined range by appropriately adjusting the slit interval in the expanding process and appropriately adjusting the pitch between the rollers and the roller pressure in the shaping process. In this case, in the subsequent filling process, the filling property of the lead paste as the active material becomes good, and not only can the lead paste as the active material be smoothly filled into each mesh of the lattice, but also the lead paste is more than the height of the surface of the lattice. I found that I could fill it high. In this specification, such a phenomenon is simply referred to as “overfilling” of the lead paste. In this way, a large amount of active material can be accommodated in the positive electrode lattice, and a battery having a high capacity can be obtained.

本発明において、エキスパンド格子の格子の曲折度T/Wを従来よりも適宜大きくすることにより、良好な鉛ペースト塗布性が期待できる。それは、単位面積の極板に対する格子の曲折度が大きければ大きいほど、格子と活物質との間の接触面積が大きくなり、かつ活物質の表面と格子との距離が近くなる。そのため、活物質と格子との間の粘着性を改善できるだけではなく、活物質層における各箇所と格子との距離が短くなり、集電性のばらつきが低減するので、良好のハイレート放電特性を得るのに有利であると考えられるからである。   In the present invention, good lead paste applicability can be expected by appropriately increasing the degree of bending T / W of the expanded lattice. That is, the greater the degree of bending of the grating with respect to the unit area electrode plate, the larger the contact area between the grating and the active material, and the closer the distance between the active material surface and the grating. Therefore, not only can the adhesiveness between the active material and the lattice be improved, but also the distance between each location in the active material layer and the lattice is shortened, and variations in current collection are reduced, so that good high-rate discharge characteristics are obtained. This is because it is considered to be advantageous.

通常、エキスパンド格子の縁は外部枠により支持されていないので、活物質が格子の縁からこぼれるのを回避するためには、充填される活物質の量を制限しなければならない。塗布された活物質の層が薄すぎると、電池の容量は制限され、かつ格子の集電性は相対的に過剰となり、活物質の劣化を引き起こしやすくなる。一方、塗布された活物質の層が厚すぎると、活物質の外層の表面は格子から遠すぎることになり、格子との粘着性が不足し、かつ活物質において集電性が不均一となり、放電末期に剥離が生じやすくなり、電池のリサイクル寿命の劣化を引き起こす。そのため、鉛ペーストの過充填率を適切な範囲に制御する必要がある。   Normally, the edge of the expanded grid is not supported by the outer frame, so to avoid spilling the active material from the edge of the grid, the amount of active material filled must be limited. If the applied active material layer is too thin, the capacity of the battery is limited, and the current collection of the grid becomes relatively excessive, which tends to cause deterioration of the active material. On the other hand, if the applied active material layer is too thick, the surface of the outer layer of the active material will be too far from the lattice, the adhesiveness with the lattice will be insufficient, and the current collection will be uneven in the active material, Separation is likely to occur at the end of discharge, which causes deterioration of the battery recycling life. Therefore, it is necessary to control the overfilling rate of the lead paste within an appropriate range.

格子の曲折度T/Wを適切な範囲内に制御すると、ペースト塗布性が良好になるので、ペーストの塗布量を増やすことができ、適切な鉛ペーストの過充填率を容易に得ることができる。従って、電池のハイレート放電特性を高めることができる。この観点から、格子の曲折度T/Wが1.60〜1.80の範囲にあることが好ましく、1.64〜1.79の範囲内にあることがより好ましい。格子の曲折度が小さすぎると、鉛ペーストの表面における活物質の接着性が悪く、深放電を繰り返して行う場合、剥離が容易に生じ、電池のサイクル寿命の短縮を引き起こす。一方、格子の曲折度が大きすぎると、集電性の過剰が生じ、かえって過放電の際の活物質の劣化が進み、電池のサイクル寿命の短縮を引き起こす。   When the bending degree T / W of the lattice is controlled within an appropriate range, the paste applicability is improved, so the amount of paste applied can be increased, and an appropriate lead paste overfill rate can be easily obtained. . Therefore, the high rate discharge characteristics of the battery can be enhanced. From this viewpoint, the bending degree T / W of the lattice is preferably in the range of 1.60 to 1.80, and more preferably in the range of 1.64 to 1.79. When the bending degree of the lattice is too small, the adhesion of the active material on the surface of the lead paste is poor, and when repeated deep discharge is performed, peeling easily occurs and the cycle life of the battery is shortened. On the other hand, if the degree of bending of the lattice is too large, excess current collection occurs, and on the contrary, the active material deteriorates during overdischarge, leading to a reduction in the cycle life of the battery.

好適な範囲の曲折度を有する格子は、レシプロプレス金型を用いて格子ノードを破壊せずに製造することができる。上述のように、レシプロプレス工程は格子のノードをほとんど圧縮しない特徴があるので、曲折度の大きい格子状シートを作製することができる。また、その後の整形工程では、格子のノード箇所に小さい圧力をかける整形用金型を採用するので、整形後に得られたエキスパンド格子は、曲折度が大きく、かつノード箇所が圧力をほとんど受けない。従って、高い強度が保持され、腐食しにくくなる。これも電池寿命が延びる重要な要因となる。   A grid having a suitable range of bends can be produced using a reciprocating press mold without breaking the grid nodes. As described above, since the reciprocating press process has a feature of hardly compressing the nodes of the lattice, a lattice-like sheet having a high degree of bending can be produced. In the subsequent shaping process, a shaping mold that applies a small pressure to the node portion of the lattice is adopted. Therefore, the expanded lattice obtained after the shaping has a large degree of bending and the node portion hardly receives pressure. Therefore, high strength is maintained and corrosion becomes difficult. This is also an important factor for extending the battery life.

本発明において、格子の曲折度T/Wの大きさは、格子の厚さTと格子線の幅Wとの二つの要素によって決まる。格子の厚さTは、主に格子状シートの圧延前の厚さと、整形工程において格子状シートが圧延される前後の厚さの比と関係しており、格子状シートの厚さは、メッシュの大きさ及び格子線の幅等の要素によって決まる。従って、エキスパンド加工工程と整形工程でプロセスの条件を適宜制御することで、所望の曲折度を得ることができる。例えば、エキスパンド加工工程でレシプロプレス金型の可動金型の下向きの行程の大きさ又はスリットの長さを適宜調整して、形成されるメッシュの大小を制御してもよく、あるいは、固定金型のリブ形面のピッチ及び可動金型のカッター部間の距離を調整して鉛シート上のスリットの間隔を調整してもよい。なお、整形工程で格子状シートを圧延する一対の圧延ローラのピッチ、ローラの押し圧などを調整することにより、格子状シートの圧延される前後の厚さの比を制御してもよい。   In the present invention, the magnitude of the degree of bending T / W of the grating is determined by two factors: the thickness T of the grating and the width W of the grating line. The thickness T of the lattice is mainly related to the ratio between the thickness of the lattice sheet before rolling and the thickness before and after the lattice sheet is rolled in the shaping process. It depends on factors such as the size of the grid and the width of the grid lines. Therefore, a desired degree of bending can be obtained by appropriately controlling the process conditions in the expanding process and the shaping process. For example, the size of the mesh formed may be controlled by adjusting the size of the downward stroke of the movable die of the reciprocating press die or the length of the slit in the expanding process, or the fixed die. The interval between the slits on the lead sheet may be adjusted by adjusting the pitch of the rib-shaped surfaces and the distance between the cutter parts of the movable mold. In addition, you may control the ratio of the thickness before and behind rolling of a grid | lattice sheet | seat by adjusting the pitch of a pair of rolling roller which rolls a grid | lattice sheet | seat at a shaping process, the pressing pressure of a roller, etc.

本発明において期待されるのは大きい格子の曲折度を得ることである。そのため、エキスパンド加工工程においてスリットの間隔も大きく設定する必要がある。しかしながら、使用する鉛シートの厚さ(即ち、格子線の厚さ)が異なるため、スリットの間隔(即ち、格子線の幅)にも所定の好ましい範囲が存在する。具体的には、所定の鉛シートの厚さに対してスリットの間隔が大きすぎる(格子線の幅が広すぎる)と、作製された格子の厚さが厚すぎ、全体の質量も大きくなり、電池の高容量化を実現することが困難である。スリットの間隔が小さすぎる(格子線の幅が細すぎる)と、腐食による破断が生じやすく、電池のハイレート放電寿命特性が低下する。   What is expected in the present invention is to obtain a large lattice curvature. Therefore, it is necessary to set a large gap between slits in the expanding process. However, since the thickness of the lead sheet to be used (that is, the thickness of the grid line) is different, there is a predetermined preferable range for the slit interval (that is, the width of the grid line). Specifically, if the gap between the slits is too large for a given lead sheet thickness (the grid line width is too wide), the thickness of the produced grid is too thick, and the overall mass also increases, It is difficult to increase the capacity of the battery. If the interval between the slits is too small (the width of the grid line is too thin), breakage due to corrosion tends to occur, and the high-rate discharge life characteristics of the battery deteriorate.

上記のように得られたエキスパンド格子を正極板格子とし、その後鉛ペースト充填を行う。格子の長手方向に沿ってエキスパンド格子に正極活物質としての鉛ペーストを充填する。得られた極板の厚さは、鉛ペーストを含む極板の厚さの合計を意味する。図5(b)に示すように、極板の厚さPは、格子内に充填された鉛ペーストの上下表面の厚さ方向の高さの差のことである。鉛ペーストの塗布量が多ければ、極板の厚さPも大きくなる。   The expanded lattice obtained as described above is used as a positive plate lattice, and then lead paste filling is performed. The expanded lattice is filled with lead paste as a positive electrode active material along the longitudinal direction of the lattice. The thickness of the obtained electrode plate means the total thickness of the electrode plates containing lead paste. As shown in FIG. 5B, the thickness P of the electrode plate is a difference in height in the thickness direction between the upper and lower surfaces of the lead paste filled in the lattice. If the amount of lead paste applied is large, the thickness P of the electrode plate also increases.

図5(e)に示すように、本明細書において、格子の厚さTに対する極板の厚さPの比(P/T)を鉛ペーストの過充填率として定義する。本願発明者らの出発点は、まず適切な曲折度を有する格子を作製し、次に格子上に鉛ペーストを所定の過充填率で充填し、優れたハイレート放電のサイクル特性を得ることにある。従って、本願発明者らは、鉛ペーストの過充填率とハイレート放電のサイクル特性との関係を調べた結果、鉛ペーストの過充填率が特定の範囲内にある場合に優れたハイレート放電特性が得られるということを発見した。優れたハイレート放電特性が得られるという観点から、格子の厚さTに対する極板の厚さPの比(P/T)は、1.14〜1.30の範囲にあることが好ましく、1.16〜1.26の範囲にあることがより好ましい。   As shown in FIG. 5 (e), in this specification, the ratio (P / T) of the thickness P of the electrode plate to the thickness T of the lattice is defined as the overfilling rate of the lead paste. The starting point of the inventors of the present application is to first produce a lattice having an appropriate bending degree, and then fill the lattice with lead paste at a predetermined overfilling rate to obtain excellent high-rate discharge cycle characteristics. . Therefore, as a result of examining the relationship between the overfilling rate of the lead paste and the cycle characteristics of the high-rate discharge, the inventors of the present application obtained excellent high-rate discharge characteristics when the overfilling rate of the lead paste is within a specific range. I found out that From the standpoint of obtaining excellent high-rate discharge characteristics, the ratio of the plate thickness P to the grid thickness T (P / T) is preferably in the range of 1.14 to 1.30, preferably in the range of 1.16 to 1.26. More preferably.

本願発明者らは、ハイレート放電特性の改善効果からみると、格子の曲折度や鉛ペーストの過充填率を制御することは有効であるが、まず格子の曲折度T/Wを好ましい範囲にすることを確保しなければならないということを発見した。例えば、鉛ペーストの過充填率(P/T)が1.14〜1.30の範囲内の任意の数値であっても、格子の曲折度(T/W)が好ましい範囲即ち1.60〜1.80の範囲外にあると、電池のサイクル寿命特性が依然として不足する。   From the viewpoint of the effect of improving the high-rate discharge characteristics, the inventors of the present application are effective in controlling the degree of bending of the lattice and the overfilling rate of the lead paste, but first, the degree of bending of the lattice T / W is set within a preferable range. I discovered that I had to ensure that. For example, even if the lead paste overfilling ratio (P / T) is any value within the range of 1.14 to 1.30, the bending degree (T / W) of the lattice is outside the preferred range, ie, 1.60 to 1.80. And the cycle life characteristics of the battery are still insufficient.

その理由は下記のように推測される。すなわち、正極のエキスパンド格子が曲折度T/W=1.60〜1.80を満たすと、鉛ペーストが過充填化になりやすく、かつ鉛ペーストに対する正極格子の集電性が適切に低下する。その結果、ハイレート放電の際、鉛ペーストの劣化を生じることがなく、電池の寿命が長くなる。格子の曲折率が所定の範囲内にない場合、鉛ペーストが過充填状態であっても、格子との粘着性が不足し、集電性が不足又は過剰する可能性が大きくなり、その結果、ハイレート放電特性を改善する効果が得られない。   The reason is estimated as follows. That is, when the expanded lattice of the positive electrode satisfies the degree of bending T / W = 1.60 to 1.80, the lead paste is likely to be overfilled, and the current collecting property of the positive electrode lattice with respect to the lead paste is appropriately reduced. As a result, the lead paste is not deteriorated during high-rate discharge, and the battery life is extended. When the bending rate of the lattice is not within the predetermined range, even if the lead paste is in an overfilled state, the adhesiveness with the lattice is insufficient, and the possibility of insufficient or excessive current collection becomes large, The effect of improving the high rate discharge characteristics cannot be obtained.

図1に示す鉛蓄電池1は、下記の方法で組み立てられたものである。   The lead acid battery 1 shown in FIG. 1 is assembled by the following method.

正極板2をN枚、負極板3をN+1枚とし、それぞれセパレータ4を介して交互に重なり合わせて、極板群11を得る。その後、鉛、アルミ又は銅材等の金属板を用いて単体の極板群11における極性の同じである正極耳部9を融接又は鋳込み溶接して正極バスバー6を得る。一方、鉛、アルミ又は銅材等の金属板を用いて単体の極板群11における極性の同じである負極耳部10を融接又は鋳込み溶接して負極バスバー5を得る。各極板群11を電池ケーシング19における隔離壁13によって隔離された複数の単体セル室14に収容する。   The number of positive electrode plates 2 is N, and the number of negative electrode plates 3 is N + 1. The electrode plates 11 are alternately overlapped with each other via the separators 4. Thereafter, the positive electrode ear 9 having the same polarity in the single electrode plate group 11 is fused or cast-welded using a metal plate such as lead, aluminum, or copper material to obtain the positive electrode bus bar 6. On the other hand, the negative electrode ear 10 having the same polarity in the single electrode plate group 11 is fused or cast-welded using a metal plate such as lead, aluminum or copper to obtain the negative electrode bus bar 5. Each electrode plate group 11 is accommodated in a plurality of unit cell chambers 14 separated by a separation wall 13 in the battery casing 19.

図6に示すように、鉛、アルミ又は銅材等の金属板8を用いて各極板群11の負極バスバー5と隣り合う単体セルの極板群11の正極バスバー6とを無極柱の直接溶接をした後、さらに、鉛、アルミ又は銅材等の金属板8を用いて隣り合う単体セルの極板群11の負極バスバー5を次の隣り合う単体セルの極板群11の正極バスバー6と直接溶接する。このように順に直列接続していくと、各極板群が直列接続されるようになる。即ち、複数の単体セルが直列接続されることになる。最終的には、両端側における正極バスバー及び負極バスバーはそれぞれ正極端子16及び負極端子17になる。その後、電池蓋15を電池ケーシング19の開口部に取り付ける。次に、電池蓋15に設けられた液注入口から各単体セルに電解液を注入し、ケーシング19において化成を行う。通常、電解液は濃度が1.1〜1.4g/mlの硫酸であるが、二酸化シリコンなどの添加物を含有しても良い。化成後、電池内部において生じたガスや圧力を排出するための弁18を液注入口に固定して、鉛蓄電池1を得る。   As shown in FIG. 6, using a metal plate 8 such as lead, aluminum or copper, the negative electrode bus bar 5 of each electrode plate group 11 and the positive electrode bus bar 6 of the electrode plate group 11 of a single unit cell adjacent to each other are directly connected to each other. After welding, the negative electrode bus bar 5 of the electrode plate group 11 of the adjacent single cell is further replaced with the positive electrode bus bar 6 of the electrode plate group 11 of the next adjacent single cell using a metal plate 8 such as lead, aluminum or copper. Weld directly. If the series connection is performed in this way, the electrode plate groups are connected in series. That is, a plurality of single cells are connected in series. Eventually, the positive electrode bus bar and the negative electrode bus bar at both ends become the positive electrode terminal 16 and the negative electrode terminal 17, respectively. Thereafter, the battery lid 15 is attached to the opening of the battery casing 19. Next, an electrolytic solution is injected into each single cell from a liquid injection port provided in the battery lid 15, and chemical conversion is performed in the casing 19. Usually, the electrolytic solution is sulfuric acid having a concentration of 1.1 to 1.4 g / ml, but may contain an additive such as silicon dioxide. After the formation, the lead-acid battery 1 is obtained by fixing a valve 18 for discharging gas and pressure generated inside the battery to the liquid inlet.

本発明を鉛蓄電池1における各構成要素について選択や組み合わせすることで実施し、以下の実施形態を得た。   The present invention was implemented by selecting and combining the components in the lead storage battery 1, and the following embodiments were obtained.

(実施形態1)
実施形態1の鉛蓄電池1は、複数の単体セル12を有し、各単体セル12は極板群11、電解液(未図示)及び単体セル室14を有し、極板群11が電解液に浸漬した状態で単体セル室14に収容され、極板群11は複数の正極板2と複数の負極板3とがセパレータ4を介して交互に配列されてなるものであり、各正極板は耳部を有する正極集電体と該正極集電体に保持される正極活物質層とを備える一方、各負極板は耳部を有する負極集電体と負極集電体に保持される負極活物質層とを備えている。その特徴は、単体セルの正極板の正極バスバー及び負極板の負極バスバーがそれぞれ、該単体セルと隣り合う単体セルのそれぞれが有する負極板の負極バスバー及び正極板の正極バスバーに無極柱の直接溶接を用いて溶接されることで、複数の単体セルを直列に接続し、かつ負極板の耳部断面積に対する正極板の耳部断面積の比は0.6以上1.0より小さい。複数の負極板の耳部断面積の合計に対する複数の正極板の耳部断面積の合計の比は0.5〜0.8であることが好ましい。負極板の耳部断面積に対する各正極板の耳部断面積の比は0.74〜0.93であることが好ましい。複数の負極板の耳部断面積の合計に対する複数の正極板の耳部断面積の合計の比は0.59〜0.78であることが好ましい。複数の正極板の数は3枚以上で、複数の負極板の数は4枚以上であることが好ましく、複数の正極板の数は4〜9枚で、複数の負極板の数は5〜10枚であることがより好ましい。
(Embodiment 1)
The lead storage battery 1 of Embodiment 1 has a plurality of unit cells 12, each unit cell 12 has an electrode plate group 11, an electrolyte (not shown) and a unit cell chamber 14, and the electrode plate group 11 is an electrolyte. Is stored in the single cell chamber 14, and the electrode plate group 11 is formed by alternately arranging a plurality of positive electrode plates 2 and a plurality of negative electrode plates 3 with separators 4 therebetween. Each of the negative electrode plates includes a negative electrode current collector having an ear part and a negative electrode active material held by the negative electrode current collector, the positive electrode current collector having an ear part and a positive electrode active material layer held by the positive electrode current collector. And a material layer. The feature is that the positive electrode bus bar of the positive electrode plate of the single cell and the negative electrode bus bar of the negative electrode plate are each directly welded to the negative electrode bus bar of the negative electrode plate and the positive electrode bus bar of the positive electrode plate of each single cell adjacent to the single cell. Are connected in series, and the ratio of the cross-sectional area of the positive electrode plate to the cross-sectional area of the negative electrode plate is 0.6 or more and less than 1.0. It is preferable that the ratio of the total cross-sectional area of the plurality of positive electrode plates to the total cross-sectional area of the plurality of negative electrode plates is 0.5 to 0.8. The ratio of the ear cross-sectional area of each positive electrode plate to the ear cross-sectional area of the negative electrode plate is preferably 0.74 to 0.93. The ratio of the sum of the cross-sectional areas of the plurality of positive electrode plates to the sum of the cross-sectional areas of the plurality of negative electrode plates is preferably 0.59 to 0.78. The number of the plurality of positive plates is 3 or more, the number of the plurality of negative plates is preferably 4 or more, the number of the plurality of positive plates is 4 to 9, and the number of the plurality of negative plates is 5 to 10 is more preferable.

(実施形態2)
実施形態2の鉛蓄電池1は、実施形態1の鉛蓄電池1において、各正極板の耳部の厚さを負極板の耳部の厚さよりも小さくし、あるいは、複数の正極板の耳部の厚さの合計を複数の負極板の耳部の厚さの合計よりも小さくしたものである。正極板の耳部の厚さは1.0〜2.0mmであるが、1.2〜1.8mmであることが好ましい。負極板の耳部の厚さは1.2〜2.5mmであるが、1.3〜2.0mmであることが好ましい。
(Embodiment 2)
The lead-acid battery 1 of Embodiment 2 is the same as the lead-acid battery 1 of Embodiment 1 except that the thickness of the ears of each positive electrode plate is smaller than the thickness of the ears of the negative electrode plates, or the ears of a plurality of positive electrode plates. The total thickness is smaller than the total thickness of the ears of the plurality of negative electrode plates. The thickness of the ear portion of the positive electrode plate is 1.0 to 2.0 mm, preferably 1.2 to 1.8 mm. The thickness of the ear portion of the negative electrode plate is 1.2 to 2.5 mm, and preferably 1.3 to 2.0 mm.

(実施形態3)
実施形態3の鉛蓄電池1は、実施形態1の鉛蓄電池1において、正極集電体をレシプロエキスパンド法で作製されたエキスパンド格子とし、該格子の曲折度T/Wを1.60〜1.80の範囲にし、かつ負極集電体を鋳造法で作製された格子としたものである。なお、式エキスパンド格子における鉛ペースト過充填率P/Tを1.14〜1.30の範囲にする。
(Embodiment 3)
The lead storage battery 1 of Embodiment 3 is the lead storage battery 1 of Embodiment 1, wherein the positive electrode current collector is an expanded grid produced by the reciprocating expand method, and the bending degree T / W of the grid is in the range of 1.60 to 1.80. In addition, the negative electrode current collector is a lattice produced by a casting method. In addition, the lead paste overfilling rate P / T in the formula expanding lattice is set to a range of 1.14 to 1.30.

(実施形態4)
実施形態4の鉛蓄電池1は、実施形態2の鉛蓄電池1において、正極集電体をレシプロエキスパンド法で作製されたエキスパンド格子とし、該格子の曲折度T/Wを1.60〜1.80の範囲にし、かつ負極集電体を鋳造法で作製された格子としたものである。なお、エキスパンド格子における鉛ペースト過充填率P/Tを1.14〜1.30の範囲にする。
(Embodiment 4)
The lead storage battery 1 of Embodiment 4 is the lead storage battery 1 of Embodiment 2, wherein the positive electrode current collector is an expanded lattice produced by a reciprocating expand method, and the bending degree T / W of the lattice is in the range of 1.60 to 1.80. In addition, the negative electrode current collector is a lattice produced by a casting method. In addition, lead paste overfilling rate P / T in the expanded lattice is set to a range of 1.14 to 1.30.

以下、実施例に基づいて本発明について詳細に説明するが、これらの実施例は本発明の好ましい例示であり、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, these Examples are the preferable illustrations of this invention, and this invention is not limited to these Examples.

(実施例1)
(1)正極板の作製
約100:15:10の質量比で、鉛粉末(二酸化鉛と鉛との混合物)と、水と、硫酸とを混練して、正極活物質としての正極鉛ペーストを得た。
(Example 1)
(1) Production of positive electrode plate A lead powder (a mixture of lead dioxide and lead), water and sulfuric acid are kneaded at a mass ratio of about 100: 15: 10 to produce a positive electrode lead paste as a positive electrode active material. Obtained.

鋳造法で得られた約0.07質量%のCaと約1.3質量%のSnを含むPb合金である鉛シートを1.3mmにプレスする。図4(a)、(b)に示すように、まず、レシプロプレス金型を用いて鉛シート27に対してプレスを繰り返し行い、鉛シートの長さ方向に沿って複数のスリットを形成すると共に、該スリットを鉛シートの表面に直交する方向に広げることにより、複数の格子線が交差してなるメッシュ25を有する格子状シートを形成する。その後、整形用金型の一対のローラを用いて格子状シートを整形し、エキスパンド格子を得る。その後、エキスパンド格子には、その長さ方向に沿ってメッシュ25に正極活物質としての鉛ペースト24aを充填する。その後、鉛ペースト24aが充填されたエキスパンド格子を、正極耳部9を有する正極板となるように裁断する。次に、このように裁断された正極板を熟成・乾燥して、未化成の正極板2aを形成する。その後、未化成の正極板2aを化成して、正極活物質層24が正極板格子21によって保持される正極板2を得る。化成は、極板群を構成する前に行ってもよく、極板群を構成して鉛蓄電池のケーシング内に装着した後に行ってもよい。   A lead sheet, which is a Pb alloy containing about 0.07 mass% Ca and about 1.3 mass% Sn obtained by a casting method, is pressed to 1.3 mm. As shown in FIGS. 4A and 4B, first, the lead sheet 27 is repeatedly pressed using a reciprocating press die to form a plurality of slits along the length direction of the lead sheet. By expanding the slit in a direction perpendicular to the surface of the lead sheet, a lattice-like sheet having a mesh 25 in which a plurality of lattice lines intersect is formed. Thereafter, the lattice sheet is shaped using a pair of shaping mold rollers to obtain an expanded lattice. Thereafter, the expanded lattice is filled with the lead paste 24a as the positive electrode active material in the mesh 25 along the length direction thereof. Thereafter, the expanded grid filled with the lead paste 24a is cut so as to be a positive electrode plate having the positive electrode ears 9. Next, the positive electrode plate cut in this way is aged and dried to form an unformed positive electrode plate 2a. Thereafter, the unformed positive electrode plate 2a is formed to obtain the positive electrode plate 2 in which the positive electrode active material layer 24 is held by the positive electrode plate lattice 21. Chemical conversion may be performed before the electrode plate group is configured, or may be performed after the electrode plate group is configured and mounted in the lead-acid battery casing.

なお、正極板の各構成要素のパラメータは、図7の表に示してある。なお、表中の「Exp」は、「エキスパンド格子」の略である。   The parameters of each component of the positive electrode plate are shown in the table of FIG. In the table, “Exp” is an abbreviation for “expanded lattice”.

(2)負極板の作製
約100:15:10の質量比で、鉛粉末と、水と、硫酸とを混練して、負極活物質としての負極鉛ペーストを得た。鋳造法によって約0.07質量%のCa及び約1.3質量%のSnを含むPb合金を用いて負極集電体の負極板格子を作製した。負極板格子に鉛ペーストを充填して未化成の負極板を得た。未化成の負極板を化成して、負極活物質層34が負極板格子31によって保持される正極板2を得た。化成は、極板群を構成する前に行ってもよく、極板群を構成して鉛蓄電池のケーシング内に装着した後に行ってもよい。
(2) Production of Negative Electrode Plate Lead powder, water, and sulfuric acid were kneaded at a mass ratio of about 100: 15: 10 to obtain a negative electrode lead paste as a negative electrode active material. A negative electrode plate grid of a negative electrode current collector was prepared using a Pb alloy containing about 0.07 mass% Ca and about 1.3 mass% Sn by a casting method. An unformed negative electrode plate was obtained by filling a negative electrode plate lattice with lead paste. An unformed negative electrode plate was formed to obtain a positive electrode plate 2 in which the negative electrode active material layer 34 was held by the negative electrode plate lattice 31. Chemical conversion may be performed before the electrode plate group is configured, or may be performed after the electrode plate group is configured and mounted in the lead-acid battery casing.

なお、負極板の各構成要素のパラメータは、図7の表に示してある。   The parameters of each component of the negative electrode plate are shown in the table of FIG.

(3)鉛蓄電池の作製
以下の方法で図1に示す鉛蓄電池1を得た。
(3) Preparation of lead acid battery The lead acid battery 1 shown in FIG. 1 was obtained by the following method.

得られた負極板3を5枚、正極板2を4枚とし、それぞれセパレータ4を介して交互に重なり合わせて、極板群11を得た。その後、単体の極板群11における同じ極性の正極耳部9及び負極耳部10を、それぞれ接続して、正極バスバー6及び負極バスバー5をそれぞれ得た。各極板群11を電池ケーシング19における隔離壁13によって隔離された複数の単体セル室14に収容した。極板群11の負極バスバー5と隣り合う単体セルの極板群11の正極バスバー6とに対して無極柱の直接溶接を行うことで、隣り合う2つの極板群11を直列接続した。   The obtained negative electrode plate 3 and the positive electrode plate 2 were made into four sheets, and each was overlapped alternately via the separator 4, and the electrode group 11 was obtained. Thereafter, the positive electrode ear portion 9 and the negative electrode ear portion 10 having the same polarity in the single electrode plate group 11 were connected to obtain the positive electrode bus bar 6 and the negative electrode bus bar 5, respectively. Each electrode plate group 11 was accommodated in a plurality of single cell chambers 14 separated by a separating wall 13 in the battery casing 19. Two adjacent electrode plate groups 11 were connected in series by directly welding nonpolar columns to the negative electrode bus bar 5 of the electrode plate group 11 and the positive electrode bus bar 6 of the electrode plate group 11 of the adjacent unit cell.

直列接続された6つの極板群のうち、両端側に位置する2つの極板群における一方の極板群の正極バスバー6と正極端子16とを接続し、他方の極板群の負極バスバー5と負極端子17とを接続した。その後、電池蓋15を電池ケーシング19の開口部に取り付けた。次に、電池蓋15に設けられた液注入口から各単体セルに電解液として濃度が1.242g/mlの硫酸を注入し、ケーシングにおいて化成を行った。化成後、電池内部において生じたガスや圧力を排出するための弁18を液注入口に固定して、鉛蓄電池1を得た。   Of the six electrode plate groups connected in series, the positive electrode bus bar 6 of one electrode plate group and the positive electrode terminal 16 in the two electrode plate groups located at both ends are connected, and the negative electrode bus bar 5 of the other electrode plate group. And the negative electrode terminal 17 were connected. Thereafter, the battery lid 15 was attached to the opening of the battery casing 19. Next, sulfuric acid having a concentration of 1.242 g / ml was injected as an electrolytic solution into each single cell from a liquid injection port provided in the battery lid 15, and chemical conversion was performed in the casing. After the formation, a lead-acid battery 1 was obtained by fixing a valve 18 for discharging gas and pressure generated inside the battery to the liquid inlet.

(4)鉛蓄電池の性能についての評価
得られた各鉛蓄電池1に対して、ハイレート放電寿命特性及び電池の容積を測定した。
(4) Evaluation of performance of lead storage battery For each of the obtained lead storage batteries 1, high-rate discharge life characteristics and battery volume were measured.

ハイレート放電寿命特性の測定方法は、下記のようなものである。   The method for measuring the high-rate discharge life characteristics is as follows.

電池仕様:12V、20Ah
充電条件:14.7Vの定電圧充電、最大充電時間:16時間
放電条件:電圧が9.6Vに低下するまで、30A(1.5C)の定電流放電
上記充放電サイクルを繰り返し行い、電池の放電容量が1回目のサイクルの放電容量の80%まで低下したときに試験を終了し、行われた充放電サイクルの回数を計算して、該サイクルの回数に基づいてハイレート放電寿命特性を評価した。
Battery specifications: 12V, 20Ah
Charging condition: 14.7V constant voltage charging, maximum charging time: 16 hours Discharging condition: 30A (1.5C) constant current discharging until the voltage drops to 9.6V
The above charge / discharge cycle is repeated, the test is terminated when the discharge capacity of the battery drops to 80% of the discharge capacity of the first cycle, the number of charge / discharge cycles performed is calculated, and the number of cycles Based on this, the high-rate discharge life characteristics were evaluated.

ハイレート放電寿命特性を評価する際の基準は、下記の通りである。   The criteria for evaluating the high-rate discharge life characteristics are as follows.

◎ :サイクルの回数が500回以上
○ :サイクルの回数が300回以上500回よりも少ない
△ :サイクルの回数が200回以上300回よりも少ない
× :サイクルの回数が150回以上200回よりも少ない
××:サイクルの回数が150回以下
電池の容積は、単にバスバー溶接後の極板群の高さで表すことができるが、極板群の高さが高いほど、最終的に組み立てられた鉛蓄電池の容積が大きくなる。実際に作成された電池の寸法によると、極柱を使用して隣り合う単体セルの極性の異なるバスバーを間接に溶接する場合と比較して、極柱を使用せず、隣り合う単体セルの極性の異なるバスバーを直接溶接する場合は、極板群の高さは通常約10mm〜60mmの範囲で増加する。このため、本発明では、電池容積の評価基準を下記のように示す。
◎: The number of cycles is 500 times or more ○: The number of cycles is 300 times or less than 500 times △: The number of cycles is 200 times or more and less than 300 times
×: The number of cycles is 150 or more and less than 200 times. ××: The number of cycles is 150 or less. The battery volume can be expressed simply by the height of the electrode plate group after bus bar welding. The higher the height, the larger the volume of the finally assembled lead-acid battery. According to the size of the battery actually created, the polarity of the adjacent single cell without using the pole column is compared to the case where the bus bar having the polarity of the adjacent single cell using the pole column is indirectly welded. When directly welding different bus bars, the height of the electrode plate group usually increases in the range of about 10 mm to 60 mm. For this reason, in this invention, the evaluation criteria of a battery volume are shown as follows.

○:極柱を使用せず、極板群の高さが低い。     ○: No pole column is used, and the height of the electrode plate group is low.

×:極柱を使用して極板群の高さが高い。     X: The height of the electrode plate group is high using the pole column.

(実施例2)
正極耳部1枚の断面積及び各正極耳部断面積の合計を変更する以外は、実施例1と同様の方法で鉛蓄電池1を作製した。
(Example 2)
A lead storage battery 1 was produced in the same manner as in Example 1, except that the cross-sectional area of one positive electrode ear and the total cross-sectional area of each positive electrode ear were changed.

(実施例3)
正極耳部1枚の断面積及び各正極耳部断面積の合計を変更する以外は、実施例1と同様の方法で鉛蓄電池1を作製した。
Example 3
A lead storage battery 1 was produced in the same manner as in Example 1 except that the cross-sectional area of one positive electrode ear and the total cross-sectional area of each positive electrode ear were changed.

(実施例4)
正極耳部1枚の断面積及び各正極耳部断面積の合計を変更する以外は、実施例1と同様の方法で鉛蓄電池1を作製した。
Example 4
A lead storage battery 1 was produced in the same manner as in Example 1 except that the cross-sectional area of one positive electrode ear and the total cross-sectional area of each positive electrode ear were changed.

(実施例5)
単体セル1つにおける正極板の数を6枚、負極板の数を7枚に変更し、正極耳部1枚の断面積、各正極耳部断面積の合計、及び各負極耳部断面積の合計を変更する以外は、実施例1と同様の方法で鉛蓄電池1を作製した。
(Example 5)
The number of positive plates in a single cell was changed to 6 and the number of negative plates was changed to 7. The cross-sectional area of one positive electrode ear, the total cross-sectional area of each positive electrode ear, and the cross-sectional area of each negative electrode ear A lead storage battery 1 was produced in the same manner as in Example 1 except that the total was changed.

(実施例6)
単体セル1つにおける正極板の数を9枚、負極板の数を10枚に変更し、正極耳部1枚の断面積、各正極耳部断面積の合計、及び各負極耳部断面積の合計を変更する以外は、実施例1と同様の方法で鉛蓄電池1を作製した。
Example 6
The number of positive plates in a single cell is changed to 9 and the number of negative plates is changed to 10. The cross-sectional area of one positive electrode ear, the total cross-sectional area of each positive electrode ear, and the cross-sectional area of each negative electrode ear A lead storage battery 1 was produced in the same manner as in Example 1 except that the total was changed.

(実施例7)
負極板格子31もレシプロエキスパンド法で作製し、負極活物質層34が負極板格子31に保持される負極板3を得た以外は、実施例1と同様の方法で鉛蓄電池1を作製した。
(Example 7)
A lead storage battery 1 was prepared in the same manner as in Example 1, except that the negative electrode plate lattice 31 was also prepared by the reciprocating expand method, and the negative electrode plate 3 in which the negative electrode active material layer 34 was held by the negative electrode plate lattice 31 was obtained.

(実施例8)
正極板の作製中、正極板の格子の曲折度T/Wが1.64で、鉛ペーストの過充填率P/Tが1.26となるように、一対の圧延ローラのローラピッチ及びローラ圧を調整した。それ以外は実施例1と同様の方法で鉛蓄電池とを作製した。
(Example 8)
During the production of the positive electrode plate, the roller pitch and the roller pressure of the pair of rolling rollers were adjusted so that the bending degree T / W of the lattice of the positive electrode plate was 1.64 and the overfill ratio P / T of the lead paste was 1.26. Otherwise, a lead-acid battery was produced in the same manner as in Example 1.

(実施例9)
正極板の作製中、正極板の格子曲折度T/Wが1.71で、鉛ペーストの過充填率P/Tが1.21となるように、一対の圧延ローラのローラピッチ及びローラ圧を調整した。それ以外は実施例1と同様の方法で鉛蓄電池とを作製した。
Example 9
During the production of the positive electrode plate, the roller pitch and the roller pressure of the pair of rolling rollers were adjusted so that the lattice bending degree T / W of the positive electrode plate was 1.71 and the overfill ratio P / T of the lead paste was 1.21. Otherwise, a lead-acid battery was produced in the same manner as in Example 1.

(実施例10)
正極板の作製中、正極板の格子曲折度T/Wが1.79で、鉛ペーストの過充填率P/Tが1.16となるように、一対の圧延ローラのローラピッチ及びローラ圧を調整した。それ以外は実施例1と同様の方法で鉛蓄電池とを作製した。
Example 10
During the production of the positive electrode plate, the roller pitch and the roller pressure of the pair of rolling rollers were adjusted so that the lattice bending degree T / W of the positive electrode plate was 1.79 and the lead paste overfill rate P / T was 1.16. Otherwise, a lead-acid battery was produced in the same manner as in Example 1.

(比較例1)
比較例1は実施例1〜6と比較するためのものであり、実施例1〜6と異なるのは、下記の2点である。即ち、(1)正極板の耳部の幅を9mmに増やし、正極板の耳部断面積の合計を大きくした結果、各負極板の耳部断面積に対する各正極板の耳部断面積の比が1.11となり、各負極板の耳部断面積の合計に対する各正極板の耳部断面積の合計の比が0.89となる。(2)極板群の正極バスバーを正極極柱に、負極バスバーを負極極柱に接続し、各単体セルの負極極柱を隣り合う単体セルの正極極柱に直列接続して、隣り合う単体セルの直列接続を実現した。言い換えると、各単体セルの正極板の正極バスバー及び負極板の負極バスバーがそれぞれ隣り合う単体セルの負極板の負極バスバー及び正極板の正極バスバーに極柱を使用して溶接接続されることで、隣り合う単体セルの直列接続が実現されている。即ち、従来の極柱を使用する間接接続方式で複数の単体セルが直列接続される。
(Comparative Example 1)
Comparative Example 1 is for comparison with Examples 1-6, and differs from Examples 1-6 in the following two points. That is, (1) As a result of increasing the edge width of the positive electrode plate to 9 mm and increasing the total cross-sectional area of the positive electrode plate, the ratio of the ear cross-sectional area of each positive electrode plate to the cross-sectional area of each negative electrode plate Is 1.11, and the ratio of the sum of the cross-sectional areas of the respective positive electrode plates to the sum of the cross-sectional areas of the respective ear parts is 0.89. (2) The positive electrode bus bar of the electrode plate group is connected to the positive electrode pole column, the negative electrode bus bar is connected to the negative electrode pole column, the negative electrode pole column of each single cell is connected in series to the positive electrode pole column of the adjacent single cell, and the adjacent single cell A series connection of cells was realized. In other words, the positive electrode bus bar of the positive electrode plate and the negative electrode bus bar of the negative electrode plate of each single cell are welded and connected to the negative electrode bus bar of the negative electrode plate of the adjacent single cell and the positive electrode bus bar of the positive electrode plate, respectively. Series connection of adjacent single cells is realized. That is, a plurality of single cells are connected in series by an indirect connection method using a conventional pole pole.

(比較例2)
比較例2は実施例1〜6と比較するためのものであり、実施例1〜6と異なるのは下記の点である。即ち、各正極板の耳部の幅を9mmに増やし、各正極板の耳部断面積の合計を大きくした結果、各負極板の耳部断面積に対する各正極板の耳部断面積の比が1.11となり、各負極板の耳部断面積の合計に対する各正極板の耳部断面積の合計の比が0.89となる。
(Comparative Example 2)
Comparative Example 2 is for comparison with Examples 1 to 6, and differs from Examples 1 to 6 in the following points. That is, as a result of increasing the width of the ear part of each positive electrode plate to 9 mm and increasing the sum of the ear cross-sectional area of each positive electrode plate, the ratio of the ear cross-sectional area of each positive electrode plate to the ear cross-sectional area of each negative electrode plate is 1.11, and the ratio of the sum of the ear cross-sectional areas of each positive electrode plate to the sum of the cross-sectional areas of each negative electrode plate is 0.89.

(比較例3)
比較例3は実施例1〜6と比較するためのものであり、実施例1〜6と異なるのは下記の点である。即ち、各正極板の耳部の幅を4.5mmに減らし、各正極板の耳部断面積の合計を小さくした結果、各負極板の耳部断面積に対する各正極板の耳部断面積の比が0.56となり、各負極板の耳部断面積の合計に対する各正極板の耳部断面積の合計の比が0.45となる。
(Comparative Example 3)
Comparative Example 3 is for comparison with Examples 1 to 6, and differs from Examples 1 to 6 in the following points. In other words, the ratio of the ear cross-sectional area of each positive electrode plate to the ear cross-sectional area of each negative electrode plate as a result of reducing the width of the ear cross-sectional area of each positive electrode plate to 4.5 mm and reducing the total cross-sectional area of each positive electrode plate Is 0.56, and the ratio of the total cross-sectional area of each positive electrode plate to the total cross-sectional area of each negative electrode plate is 0.45.

(比較例4)
比較例4は実施例8〜10と比較するためのものであり、実施例8〜10と異なるの下記の点である。即ち、各単体セルの正極板の正極バスバー及び負極板の負極バスバーがそれぞれ、該単体セルと隣り合う単体セルの負極板の負極バスバー及び正極板の正極バスバーに極柱を使用して溶接接続されることで、隣り合う単体セルの直列接続が実現されている。即ち、従来の極柱を使用する間接接続方式で複数の単体セルが直列接続される。
(Comparative Example 4)
Comparative Example 4 is for comparison with Examples 8 to 10, and is different from Examples 8 to 10 in the following points. That is, the positive electrode bus bar of the positive electrode plate and the negative electrode bus bar of the negative electrode plate of each single cell are welded and connected to the negative electrode bus bar of the negative electrode plate of the single cell adjacent to the single cell and the positive electrode bus bar of the positive electrode plate, respectively. In this way, series connection of adjacent single cells is realized. That is, a plurality of single cells are connected in series by an indirect connection method using a conventional pole pole.

各実施例及び各比較例の正極板及び負極板の作製条件、各構成要素及び物性の評価結果は図7の表に示す。   The table of FIG. 7 shows the production conditions of each positive electrode plate and negative electrode plate of each example and each comparative example, each component, and the evaluation results of physical properties.

図7の表に示すように、実施例1〜4において、正極板格子にはレシプロエキスパンド法で作製されたエキスパンド格子が、負極板格子には鋳造法で作製された格子が用いられており、かつ負極板の耳部断面積に対する正極板の耳部断面積の比を0.6以上1.0未満で、複数の負極板の耳部断面積の合計に対する複数の正極板の耳部断面積の合計の比を0.5〜0.8とする。これに加えて、隣り合う単体セルの極性の異なるバスバーを、極柱を使用せず、直接溶接して各単体セルを直列接続した結果、ハイレート放電寿命特性が良好となり、極柱を用いてバスバーを接続することによる集電性や電池容積への影響をなくした。   As shown in the table of FIG. 7, in Examples 1 to 4, the positive plate lattice uses an expanded lattice produced by the reciprocating expand method, and the negative plate lattice uses a lattice produced by the casting method. The ratio of the ear cross-sectional area of the positive electrode plate to the ear cross-sectional area of the negative electrode plate is 0.6 or more and less than 1.0, and the ratio of the sum of the ear cross-sectional areas of the plurality of positive electrode plates to the sum of the ear cross-sectional areas of the plurality of negative electrode plates Is set to 0.5 to 0.8. In addition to this, bus bars with different polarities of adjacent single cells are directly welded without connecting poles, and the individual cells are connected in series, resulting in better high-rate discharge life characteristics. Eliminating the effects of current collection and battery capacity.

これに対し、比較例1及び2においては、各負極板の耳部断面積に対する各正極板の耳部断面積の比が1.0を上回り、各負極板の耳部断面積の合計に対する各正極板の耳部断面積の合計の比が0.8を上回った結果、ハイレート放電寿命特性が悪くなった。また、比較例1においては、従来の極柱を使用する間接接続方式で採用した結果、極柱が集電性に影響を及ぼし、ハイレート放電寿命特性が著しく劣化し、電池の容積が過大となる。比較例3においては、各負極板の耳部断面積に対する各正極板の耳部断面積の比が0.6を下回り、各負極板の耳部断面積の合計に対する各正極板の耳部断面積の合計の比が0.5を下回った結果、ハイレート放電寿命特性も悪くなった。   On the other hand, in Comparative Examples 1 and 2, the ratio of the ear cross-sectional area of each positive electrode plate to the cross-sectional area of each negative electrode plate exceeds 1.0, and each positive electrode plate with respect to the sum of the cross-sectional area of each negative electrode plate As a result of the ratio of the sum of the cross-sectional areas of the ears exceeding 0.8, the high-rate discharge life characteristics deteriorated. Moreover, in Comparative Example 1, as a result of adopting the conventional indirect connection method using the pole pole, the pole pole affects the current collecting performance, the high rate discharge life characteristics are remarkably deteriorated, and the battery volume becomes excessive. . In Comparative Example 3, the ratio of the ear cross-sectional area of each positive electrode plate to the ear cross-sectional area of each negative electrode plate is less than 0.6, and the ear cross-sectional area of each positive electrode plate with respect to the sum of the ear cross-sectional areas of each negative electrode plate As a result of the total ratio being less than 0.5, the high rate discharge life characteristics also deteriorated.

実施例5及び6は、実施例1〜4において単体セル1枚の正極板及び負極板の数を変更したものである。その結果、ハイレート放電寿命特性が良好で、電池容積の小さな鉛蓄電池が得られた。   In Examples 5 and 6, the numbers of the positive electrode plate and the negative electrode plate of one single cell in Examples 1 to 4 are changed. As a result, a lead storage battery having good high-rate discharge life characteristics and a small battery volume was obtained.

実施例7において、正極板格子及び負極板格子には、それぞれレシプロエキスパンド法で作製しエキスパンド格子を採用しているが、正極板格子のみレシプロエキスパンド法で作製しエキスパンド格子を採用する実施例2、3、5、6と比較すると、ハイレート放電寿命特性の実質的な変化が見られない。その原因は、上記のように、正極板格子及び負極板格子には、それぞれレシプロエキスパンド法で作製しエキスパンド格子を採用した場合、負極エキスパンド格子も横の骨を有しないので、負極の集電性が抑制される。これに対し、これに対し、正極の導電性が相対的に高められるので、本発明の効果が向上できないおそれがある。   In Example 7, each of the positive electrode plate lattice and the negative electrode plate lattice is produced by a reciprocating expand method and employs an expanded lattice, but only the positive electrode plate lattice is produced by a reciprocating expand method and Example 2 is employed. Compared with 3, 5, and 6, no substantial change in the high rate discharge life characteristics is observed. The reason for this is that, as described above, the positive electrode plate lattice and the negative electrode plate lattice are produced by the reciprocating expand method, respectively, and when the expanded lattice is adopted, the negative electrode expanded lattice also has no lateral bone. Is suppressed. On the other hand, since the electroconductivity of a positive electrode is raised relatively, there exists a possibility that the effect of this invention cannot be improved.

実施例8、9及び10は、実施例1〜6においてレシプロエキスパンド法で正極板を作製する中で、正極板の格子の曲折度T/Wや鉛ペーストの過充填率P/Tを適切な範囲に制御した結果、加工中、格子のメッシュに生じる応力を低減でき、集電性を適切に低下させた。ハイレート放電の際の正極活物質は過放電を生じず、応力による腐食も生じにくくなる。このため、ハイレート放電寿命特性を大幅に向上することができる。   In Examples 8, 9 and 10, while preparing the positive electrode plate by the reciprocating expand method in Examples 1 to 6, the degree of bending T / W of the grid of the positive electrode plate and the overfilling rate P / T of the lead paste are appropriate. As a result of controlling the range, the stress generated in the mesh of the lattice during processing can be reduced, and the current collecting property is appropriately reduced. The positive electrode active material at the time of high-rate discharge does not cause overdischarge, and corrosion due to stress hardly occurs. For this reason, the high-rate discharge life characteristics can be greatly improved.

これに対し、比較例4と実施例9との主な相違点は、従来の極柱を使用する間接接続方式を採用した点にあり、その結果、ハイレート放電寿命特性が悪くなり、電池の容積が過大となる。   On the other hand, the main difference between Comparative Example 4 and Example 9 is that an indirect connection method using a conventional pole pole is adopted, and as a result, the high-rate discharge life characteristics are deteriorated, and the battery volume is reduced. Becomes excessive.

上記のように、本発明において、浅い充電深度(SOC)の状態でもハイレート放電を行うことができ、かつ長寿命が長くなるようにするため、正極活物質の過放電を回避しなければならない。講ずる技術的手段は下記の2つである。(1)正極の耳部断面積を小さくすることにより、集電性を適切に低下し、これに加えて、隣り合う単体セルのバスバー間は極柱を用いて溶接するのではなく、直接溶接する。これにより、単体セル同士の接続状態が安定し、単体セル同士の集電性の変動が非常に少なく、長寿命化を図ることができる。(2)上記(1)において、レシプロエキスパンド法で作製された正極板の格子曲折度T/Wや、鉛ペースト過充填率の比P/Tを適切な範囲とし、レシプロエキスパンド法を用いて格子線の交差点にほとんど圧力をかけないようにする。これにより、曲折率の大きい正極板格子を形成することができる。また、圧力のかかる交差点がほとんどないので、圧力を受けないため、腐食しにくくなる。その結果、ハイレート放電特性及び長寿命特性がより良好になる。格子曲折度T/Wを1.60〜1.80の範囲、鉛ペースト過充填率の比P/Tを1.14〜1.30の範囲にすることが好ましい。さらに、上記2つの技術手段において、極板の数を増やしても(正/負=6/7又は9/10)同様の効果が得られる。さらに、負極板格子の種類を変更しても(レシプロエキスパンド法で作製されたエキスパンド格子又は鋳造法で作製された格子)、同様の効果が得られる。   As described above, in the present invention, overdischarge of the positive electrode active material must be avoided so that high rate discharge can be performed even in a shallow depth of charge (SOC) state and a long lifetime is obtained. The following two technical measures are taken. (1) By reducing the cross-sectional area of the positive electrode, the current collecting property is appropriately reduced. In addition, the bus bars of adjacent single cells are not welded using pole columns but are directly welded. To do. Thereby, the connection state between the single cells is stabilized, the fluctuation of the current collecting property between the single cells is very small, and the life can be extended. (2) In the above (1), the lattice bending degree T / W of the positive electrode plate produced by the reciprocating expand method and the ratio P / T of the lead paste overfilling ratio are within appropriate ranges, and the lattice is obtained using the reciprocating expand method. Apply little pressure to the intersection of lines. Thereby, a positive electrode plate lattice with a large curvature can be formed. Moreover, since there is almost no intersection where pressure is applied, it is not corroded because it is not subjected to pressure. As a result, high rate discharge characteristics and long life characteristics are improved. The lattice bending degree T / W is preferably in the range of 1.60 to 1.80, and the lead paste overfill ratio P / T is preferably in the range of 1.14 to 1.30. Further, in the above two technical means, the same effect can be obtained even if the number of electrode plates is increased (positive / negative = 6/7 or 9/10). Furthermore, even if the type of the negative electrode plate lattice is changed (expanded lattice produced by the reciprocating expand method or lattice produced by the casting method), the same effect can be obtained.

1 鉛蓄電池
2 正極板
3 負極板
4 セパレータ
5 負極バスバー
6 正極バスバー
7 エキスパンド格子
8 金属板
9 正極耳部
10 負極耳部
11 極板群
12 単体セル
13 隔離壁
14 単体セル室
15 電池蓋
16 正極端子
17 負極端子
18 弁
19 ケーシング
21 正極集電体(正極板格子)
23 辺
24 正極活物質層
24a 鉛ペースト
25 メッシュ
27 鉛シート
31 負極集電体(負極板格子)
33 上枠
34 負極活物質層
35 メッシュ
1 Lead acid battery
2 Positive plate
3 Negative electrode plate
4 Separator
5 Negative bus bar
6 Positive bus bar
7 Expanded lattice
8 Metal plate
9 Positive electrode ear
10 Negative electrode ear
11 electrode plate group
12 Single cell
13 Isolation wall
14 Single cell room
15 Battery cover
16 Positive terminal
17 Negative terminal
18 valves
19 Casing
21 Positive current collector (positive plate grid)
23 sides
24 Positive electrode active material layer
24a Lead paste
25 mesh
27 Lead sheet
31 Negative electrode current collector (negative electrode plate grid)
33 Upper frame
34 Negative electrode active material layer
35 mesh

Claims (17)

複数の単体セルからなる鉛蓄電池であって、
前記単体セルは、
複数の正極板と複数の負極板とがセパレータを介して交互に配列された極板群と、
前記極板群を電解液と共に収容する単体セル室と
を備え、
前記正極板は、耳部を有する正極集電体と、該正極集集電体に保持される正極活物質とを備え、
前記負極板は、耳部を有する負極集電体と、該負極集集電体に保持される負極活物質とを備え、
前記単体セルにおいて、
前記複数の正極板は、前記耳部に接続された正極バスバーで並列接続され、
前記複数の負極板は、前記耳部に接続された負極バスバーで並列接続され、
前記負極板の耳部断面積(L)に対する前記正極板の耳部断面積(K)の比(K/L)は、0.6以上、1.0未満であり、
隣り合う前記単体セルにおいて、
一方の単体セルの正極バスバーと、他方の単体セルの負極バスバーとは、直接接続されている、鉛蓄電池。
A lead acid battery comprising a plurality of unit cells,
The single cell is
An electrode plate group in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately arranged via separators;
A single cell chamber for accommodating the electrode plate group together with an electrolyte,
The positive electrode plate includes a positive electrode current collector having an ear part, and a positive electrode active material held by the positive electrode current collector,
The negative electrode plate includes a negative electrode current collector having an ear part, and a negative electrode active material held by the negative electrode current collector,
In the single cell,
The plurality of positive plates are connected in parallel with a positive bus bar connected to the ear,
The plurality of negative plates are connected in parallel with a negative bus bar connected to the ear,
The ratio (K / L) of the ear cross-sectional area (K) of the positive electrode plate to the ear cross-sectional area (L) of the negative electrode plate is 0.6 or more and less than 1.0,
In the adjacent single cells,
The lead acid battery in which the positive electrode bus bar of one single cell and the negative electrode bus bar of the other single cell are directly connected.
請求項1に記載された鉛蓄電池において、
前記複数の負極板の耳部断面積の合計に対する前記複数の正極板の耳部断面積の合計の比は0.5〜0.8である、鉛蓄電池。
The lead acid battery according to claim 1,
The lead acid battery in which the ratio of the sum of the ear cross-sectional areas of the plurality of positive electrode plates to the sum of the ear cross-sectional areas of the plurality of negative electrode plates is 0.5 to 0.8.
請求項1に記載された鉛蓄電池において、
前記負極板の耳部断面積(L)に対する前記各正極板の耳部断面積(K)の比は0.74〜0.93である、鉛蓄電池。
The lead acid battery according to claim 1,
The lead acid battery, wherein a ratio of an ear cross-sectional area (K) of each positive electrode plate to an ear cross-sectional area (L) of the negative electrode plate is 0.74 to 0.93.
請求項2に記載された鉛蓄電池において、
前記複数の負極板の耳部断面積の合計に対する前記複数の正極板の耳部断面積の合計の比は0.59〜0.78である、鉛蓄電池。
In the lead acid battery according to claim 2,
The lead acid battery in which the ratio of the sum of the cross-sectional areas of the plurality of positive electrode plates to the sum of the cross-sectional areas of the plurality of negative electrode plates is 0.59 to 0.78.
請求項1〜4のいずれか1項に記載された鉛蓄電池において、
前記複数の正極板の数は3枚以上で、前記複数の負極板の数は4枚以上である、鉛蓄電池。
In the lead acid battery described in any one of Claims 1-4,
The lead storage battery, wherein the number of the plurality of positive plates is three or more and the number of the plurality of negative plates is four or more.
請求項5に記載された鉛蓄電池において、
前記複数の負極板の数は、前記複数の正極板の数よりも多く、前記複数の正極板の数は4〜9枚で、前記複数の負極板の数は5〜10枚以上である、鉛蓄電池。
In the lead acid battery according to claim 5,
The number of the plurality of negative electrode plates is greater than the number of the plurality of positive electrode plates, the number of the plurality of positive electrode plates is 4 to 9, and the number of the plurality of negative electrode plates is 5 to 10 or more. Lead acid battery.
請求項1〜4のいずれか1項に記載された鉛蓄電池において、
前記正極板の耳部の厚さは、前記負極板の耳部の厚さよりも小さい、鉛蓄電池。
In the lead acid battery described in any one of Claims 1-4,
The lead-acid battery, wherein the thickness of the ear portion of the positive electrode plate is smaller than the thickness of the ear portion of the negative electrode plate.
請求項1〜4のいずれか1項に記載された鉛蓄電池において、
前記複数の正極板の耳部の厚さの合計は、前記複数の負極板の耳部の厚さの合計よりも小さい、鉛蓄電池。
In the lead acid battery described in any one of Claims 1-4,
The lead storage battery, wherein the total thickness of the ears of the plurality of positive plates is smaller than the total thickness of the ears of the plurality of negative plates.
請求項1〜4のいずれか1項に記載された鉛蓄電池において、
前記正極板の耳部の幅は5〜8mmであり、前記負極板の耳部の幅は5〜7mmである、鉛蓄電池。
In the lead acid battery described in any one of Claims 1-4,
The lead-acid battery in which the width of the ear portion of the positive electrode plate is 5 to 8 mm, and the width of the ear portion of the negative electrode plate is 5 to 7 mm.
請求項1〜4のいずれか1項に記載された鉛蓄電池において、
前記単体セルを2個以上有する、鉛蓄電池。
In the lead acid battery described in any one of Claims 1-4,
A lead-acid battery having two or more single cells.
請求項10に記載された鉛蓄電池において、
前記単体セルを4〜8個有する、鉛蓄電池。
In the lead acid battery described in claim 10,
A lead acid battery having 4 to 8 single cells.
請求項1〜4のいずれか1項に記載された鉛蓄電池において、
前記正極集電体は、レシプロエキスパンド法で作製されたエキスパンド格子からなる、鉛蓄電池。
In the lead acid battery described in any one of Claims 1-4,
The positive electrode current collector is a lead storage battery made of an expanded lattice produced by a reciprocating expand method.
請求項12に記載された鉛蓄電池において、
前記エキスパンド格子は複数の格子線が交差してなるメッシュを有しており、前記格子線の幅をW、前記格子の厚さをTとしたとき、前記格子の曲折度を表す比(T/W)が1.60〜1.80の範囲にある、鉛蓄電池。
In the lead acid battery described in Claim 12,
The expanded lattice has a mesh formed by intersecting a plurality of lattice lines, and when the width of the lattice line is W and the thickness of the lattice is T, a ratio (T / Lead acid battery in which W) is in the range of 1.60 to 1.80.
請求項12に記載された鉛蓄電池において、
前記エキスパンド格子に正極活物質としての鉛ペーストが充填されており、前記鉛ペーストが充填された正極板の厚さをP、前記格子の厚さをTとしたとき、鉛ペーストの過充填率を表す比(P/T)が、1.14〜1.30の範囲にある、鉛蓄電池。
In the lead acid battery described in Claim 12,
The expanded grid is filled with a lead paste as a positive electrode active material. When the thickness of the positive electrode plate filled with the lead paste is P and the thickness of the grid is T, the overfill rate of the lead paste is A lead acid battery having a ratio (P / T) in the range of 1.14 to 1.30.
請求項1〜4のいずれか1項に記載された鉛蓄電池において、
前記負極集電体は鋳造法で作製された格子からなる、鉛蓄電池。
In the lead acid battery described in any one of Claims 1-4,
The negative electrode current collector is a lead storage battery comprising a lattice produced by a casting method.
請求項1〜4のいずれか1項に記載された鉛蓄電池を動力用電源として備えた、電動車両。   The electric vehicle provided with the lead storage battery as described in any one of Claims 1-4 as a power supply for motive power. 請求項16に記載された電動車両において、
前記電動車両は、電気自動車、電動自転車、電動オートバイク、電動スクーター又は原付電動二輪車である、電動車両。
The electric vehicle according to claim 16, wherein
The electric vehicle is an electric vehicle, an electric bicycle, an electric motorcycle, an electric scooter, or a moped electric motorcycle.
JP2012533172A 2011-03-31 2012-04-02 Lead-acid battery and electric vehicle Expired - Fee Related JP5106712B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110091529.5 2011-03-31
CN201110091529.5A CN102738434B (en) 2011-03-31 2011-03-31 Lead storage battery
PCT/JP2012/002287 WO2012132477A1 (en) 2011-03-31 2012-04-02 Lead-acid storage battery and electric vehicle

Publications (2)

Publication Number Publication Date
JP5106712B2 JP5106712B2 (en) 2012-12-26
JPWO2012132477A1 true JPWO2012132477A1 (en) 2014-07-24

Family

ID=46930245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012533172A Expired - Fee Related JP5106712B2 (en) 2011-03-31 2012-04-02 Lead-acid battery and electric vehicle

Country Status (3)

Country Link
JP (1) JP5106712B2 (en)
CN (1) CN102738434B (en)
WO (1) WO2012132477A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202949015U (en) * 2012-11-20 2013-05-22 深圳市雄韬电源科技股份有限公司 Lead-acid storage battery and pole plate cladding structure thereof
DE102013106206B4 (en) 2013-06-14 2018-06-28 Johnson Controls Autobatterie Gmbh & Co. Kgaa Accumulator and method for producing a rechargeable battery
CN103594675A (en) * 2013-10-12 2014-02-19 河南超威电源有限公司 High-capacity storage battery and production method thereof
CN106025386A (en) * 2016-06-30 2016-10-12 济源市万洋绿色能源有限公司 6-EVF-38AH lead-acid battery
CN105958128A (en) * 2016-06-30 2016-09-21 济源市万洋绿色能源有限公司 6-EVF-45AH lead-acid storage battery
CN105958129A (en) * 2016-06-30 2016-09-21 济源市万洋绿色能源有限公司 6-DZM-12E lead-acid storage battery
KR101767847B1 (en) * 2016-12-14 2017-08-23 가부시키가이샤 지에스 유아사 Method for connecting electrode plates of lead-acid battery, Method for manufacturing lead-acid battery, Lead-acid battery manufactured by the method, and Device for connecting electrode plates of lead-acid battery
KR102201342B1 (en) * 2017-07-06 2021-01-08 주식회사 엘지화학 Battery module, battery pack including the same, and vehicle including the same
CN107946598B (en) * 2017-11-29 2021-11-02 中宝(天津)集团有限公司 High-efficient environmental protection lead-based storage battery
CN109065970B (en) * 2018-06-20 2024-02-02 江苏华富储能新技术股份有限公司 Bipolar lead-acid storage battery
CN109103515A (en) * 2018-08-28 2018-12-28 北京润宝利德科技有限公司 Lead base battery
CN109193042A (en) * 2018-08-31 2019-01-11 天能电池(芜湖)有限公司 High power type battery and its pole plate manufacturing method
US20210167363A1 (en) * 2018-09-27 2021-06-03 The Furukawa Battery Co., Ltd. Lead Storage Battery
JP7347439B2 (en) * 2018-10-16 2023-09-20 株式会社Gsユアサ lead acid battery
CN109390638A (en) * 2018-10-30 2019-02-26 浙江平湖华龙实业股份有限公司 A kind of automobile start and stop lead-acid battery
JPWO2020110175A1 (en) * 2018-11-26 2021-10-07 昭和電工マテリアルズ株式会社 Lead-acid battery
CN111604609A (en) * 2020-04-07 2020-09-01 浙江创为智能装备股份有限公司 Welding process for lead-acid storage battery binding post
CN111515492A (en) * 2020-04-07 2020-08-11 浙江创为智能装备股份有限公司 Welding process for bus bar of lead-acid storage battery
CN112151885B (en) * 2020-08-21 2023-12-22 安徽理士电源技术有限公司 Method for assembling long-service-life silicon-based bipolar lead storage battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149772A (en) * 1980-04-18 1981-11-19 Yuasa Battery Co Ltd Grid for lead battery
JPH0381952A (en) * 1989-08-25 1991-04-08 Matsushita Electric Ind Co Ltd Sealed type lead-acid battery
JP4229584B2 (en) * 2000-12-25 2009-02-25 古河電池株式会社 Lead acid battery
JP2004220927A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP4599940B2 (en) * 2004-08-20 2010-12-15 パナソニック株式会社 Lead acid battery
JP4675156B2 (en) * 2005-05-25 2011-04-20 古河電池株式会社 Control valve type lead acid battery
JP2010049854A (en) * 2008-08-20 2010-03-04 Panasonic Corp Manufacturing method of grid for lead-acid storage battery, manufacturing method of electrode plate for lead-acid storage battery, and manufacturing method of lead-acid storage battery
CN101459260A (en) * 2009-01-06 2009-06-17 江苏优德电源科技有限公司 Electrodeless column valve control sealed type lead acid battery
JP2010192162A (en) * 2009-02-16 2010-09-02 Gs Yuasa Corp Lead-acid storage battery
CN202004076U (en) * 2011-03-31 2011-10-05 松下蓄电池(沈阳)有限公司 Lead accumulator

Also Published As

Publication number Publication date
WO2012132477A1 (en) 2012-10-04
JP5106712B2 (en) 2012-12-26
CN102738434B (en) 2014-03-05
CN102738434A (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5106712B2 (en) Lead-acid battery and electric vehicle
CN202004076U (en) Lead accumulator
KR102184104B1 (en) Battery grid with varied corrosion resistance
JP5079324B2 (en) Lead acid battery
JP5325358B1 (en) ELECTRODE FOR BATTERY AND METHOD FOR MANUFACTURING THE SAME
EP1717896B1 (en) Lead acid battery
JP5230845B2 (en) Electrode plate group for lead-acid battery, lead-acid battery, and method for producing electrode plate group for lead-acid battery
US20190393512A1 (en) Battery grid
KR20110106506A (en) Lithium battery
CN104518201B (en) Lead accumulator
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
CN102903966B (en) Sealed lead accumulator
WO2017085922A1 (en) Lead storage battery and method for producing same
WO2019088040A1 (en) Lead storage battery separator and lead storage battery
CN112310410A (en) Grid of lead-acid battery and lead-acid battery
KR100721638B1 (en) Method of producing lattice body for lead storage battery, and lead storage battery
CN203491336U (en) Lead storage battery
JP6982593B2 (en) Lead-acid battery
CN202094213U (en) Grid for lead storage battery, positive plate, plate group and lead storage battery
JP2010108822A (en) Alkaline storage battery, and discharge reserve reduction method of alkaline storage battery
CN202712322U (en) Post for welding penetration wall of storage battery
JP4802903B2 (en) Lead acid battery
JP5594039B2 (en) Lead plate for lead-acid battery and lead-acid battery using the same
CN105720271A (en) Rib strip for reinforcing combination of lead-acid storage battery grid and active material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees