JPWO2012070142A1 - 翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法 - Google Patents

翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法 Download PDF

Info

Publication number
JPWO2012070142A1
JPWO2012070142A1 JP2011505048A JP2011505048A JPWO2012070142A1 JP WO2012070142 A1 JPWO2012070142 A1 JP WO2012070142A1 JP 2011505048 A JP2011505048 A JP 2011505048A JP 2011505048 A JP2011505048 A JP 2011505048A JP WO2012070142 A1 JPWO2012070142 A1 JP WO2012070142A1
Authority
JP
Japan
Prior art keywords
pressure
hydraulic
discharge
hydraulic cylinder
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011505048A
Other languages
English (en)
Other versions
JP5331197B2 (ja
Inventor
誠太 関
誠太 関
智裕 沼尻
智裕 沼尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Application granted granted Critical
Publication of JP5331197B2 publication Critical patent/JP5331197B2/ja
Publication of JPWO2012070142A1 publication Critical patent/JPWO2012070142A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/604Control system actuates through hydraulic actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

油圧シリンダ(48)は、風力発電装置の翼(20)に連結され、駆動することによって翼(20)のピッチ角を変化させ、可変吐出量形の油圧ポンプ(44)は、油圧シリンダ(48)へ作動油を供給し、吐出圧力が負荷圧力に追従しない。圧力制御弁は、油圧ポンプ(44)の吐出圧力が設定圧力となった場合に、油圧ポンプ(44)の吐出量を変化させ、油圧ポンプ(44)の吐出圧力をカットオフ圧力未満の圧力とするために開状態となる。そして、設定制御部(60)は、上記圧力が油圧シリンダ(48)によってピッチ角を所定の角度に変化させるのに必要最低限な圧力となるように、上記設定圧力を、油圧シリンダ(48)が必要とする油圧に基づいて設定するので、油圧ポンプ(44)の吐出圧力と負荷圧力との差圧を減少させることができ、かつ消費電力の低減を図ることができる。

Description

本発明は、翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法に関するものである。
複数の翼が回動可能に連結されているロータの回転により発電する風力発電装置は、特許文献1に記載のように、翼を駆動させるための油圧シリンダが設けられている。そして、油圧シリンダが駆動することで各翼がロータに対して回動し、翼のピッチが変えられるようになっている。
そして、油圧シリンダへ作動油を供給する油圧ポンプとして、可変吐出量形の油圧ポンプ(例えば、斜板式の油圧ポンプであるアキシアルピストンポンプ)が用いられる場合がある。この油圧ポンプは、吐出流量が負荷流量にポンプの設定範囲内で追従するという利点がある。
特開2002−303255号公報
しかし、上記油圧ポンプは、吐出流量が負荷流量に追従する一方、吐出圧力が負荷圧力に追従しないため、吐出圧力と負荷圧力との差圧が損失エネルギーとなり、主に熱エネルギーとして失われ、作動油の温度を上昇させる。
そのため、ポンプを駆動させるための電動機の出力が上記差圧分だけ過大となり、かつ作動油の温度を適正温度とするためのオイルクーラをはじめとする冷却機能も差圧による温度上昇に応じて必要となる。
本発明は、このような事情に鑑みてなされたものであって、吐出圧力が負荷圧力に追従しない可変吐出量形の油圧ポンプを、翼のピッチ角を変更させるための油圧シリンダへの作動油の供給に用いたとしても、該油圧ポンプの吐出圧力と負荷圧力との差圧を減少させることができる翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法を提供することを目的とする。
上記課題を解決するために、本発明の翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法は以下の手段を採用する。
すなわち、本発明に係る翼ピッチ制御装置は、複数の翼が回動可能に連結されているロータの回転により発電する風力発電装置の翼ピッチ制御装置であって、前記翼に連結され、駆動することによって前記翼のピッチ角を変化させる油圧シリンダと、前記油圧シリンダへ作動油を供給し、吐出圧力が負荷圧力に追従せず、かつ予め定められた第1圧力以上では作動油を吐出しない可変吐出量形の油圧ポンプと、前記油圧ポンプの吐出圧力が設定圧力となった場合に、前記油圧ポンプの吐出量を変化させ、前記油圧ポンプの吐出圧力を前記第1圧力未満の第2圧力とするために開状態となる弁と、前記第2圧力が前記油圧シリンダによって前記ピッチ角を所定の角度に変化させる圧力となるように、前記設定圧力を、前記油圧シリンダが必要とする油圧に基づいて設定する吐出圧力設定手段と、を備える。
本発明によれば、油圧シリンダは、風力発電装置の翼に連結され、駆動することによって翼のピッチ角を変化させ、可変吐出量形の油圧ポンプは、例えば、斜板式の油圧ポンプ(アキシアルピストンポンプ)やラジアルピストンポンプであって、油圧シリンダへ作動油を供給し、吐出圧力が負荷圧力に追従せず、かつ予め定められた第1圧力以上では作動油を吐出しない。
弁は、油圧ポンプの吐出圧力が設定圧力となった場合に開状態となることで、油圧ポンプの吐出量を変化させ、油圧ポンプの吐出圧力を第1圧力未満の第2圧力とする。
そして、吐出圧力設定手段によって、第2圧力が油圧シリンダによってピッチ角を所定の角度に変化させる圧力となるように、弁を開状態とする設定圧力が、油圧シリンダが必要とする油圧に基づいて設定される。
従って、油圧ポンプの吐出圧力が、油圧シリンダを駆動させるために必要最低限の圧力となるので、可変吐出量形の油圧ポンプを、翼のピッチ角を変更させるための油圧シリンダへの作動油の供給に用いたとしても、油圧ポンプの吐出圧力と負荷圧力との差圧を減少させることができる。
また、本発明の翼ピッチ制御装置は、前記油圧シリンダが複数備えられ、前記吐出圧力設定手段が、前記設定圧力を、複数の前記油圧シリンダが必要とする油圧のうち、最も高い油圧に基づいて前記設定圧力を設定してもよい。
本発明によれば、油圧シリンダが必要とする油圧が、各油圧シリンダ毎に異なっていても、吐出圧力設定手段によって、弁が開状態となる設定圧力が、最も高い油圧に基づいて設定される。従って、風力発電装置の翼のピッチ角が各々独立して制御されていても、油圧ポンプの吐出圧力と負荷圧力との差圧を減少させることができる。
また、本発明の翼ピッチ制御装置は、前記油圧シリンダが生じさせる物理量を測定する測定手段を備え、前記吐出圧力設定手段が、前記測定手段によって測定された前記物理量を用いて前記油圧シリンダが必要とする油圧を導出し、前記設定圧力を、該導出した油圧に基づいて設定してもよい。
本発明によれば、吐出圧力設定手段によって、測定手段で測定された物理量を用いて油圧シリンダが必要とする油圧が導出され、弁が開状態となる設定圧力が、該導出された油圧に基づいて設定されるので、より簡易に、油圧シリンダが必要とする油圧を常時導出することができる。
また、本発明の翼ピッチ制御装置は、前記吐出圧力設定手段が、前記風力発電装置が有する情報を用いて前記油圧シリンダが必要とする油圧を導出し、前記設定圧力を、該導出した油圧に基づいて設定してもよい。
本発明によれば、吐出圧力設定手段によって、風力発電装置が有する情報を用いて油圧シリンダが必要とする油圧が導出され、弁が開状態となる設定圧力が、該導出された油圧に基づいて設定されるので、簡易な構成で、油圧シリンダが必要とする油圧を常時導出することができる。
また、前記風力発電装置が有する情報を、前記風力発電装置が有する発電機出力、前記翼のピッチ角、前記翼のアジマス角、及び前記ロータの回転数の少なくとも一つとしてもよい。
本発明によれば、すなわち、幾何学的に変換されるシリンダ推力を用いて油圧シリンダが必要とする油圧を導出するので、より簡易に、油圧シリンダが必要とする油圧を導出することができる。
一方、本発明に係る風力発電装置は、複数の翼を有するロータと、前記ロータが有する複数の翼のピッチ角を変化させるための上記記載の翼ピッチ制御装置と、を備える。
本発明によれば、上記記載の翼ピッチ制御装置を備えるため、油圧ポンプの吐出圧力を、油圧シリンダを駆動させるために必要最低限な圧力にすることが可能となるので、油圧ポンプの吐出圧力と負荷圧力との差圧を減少させることができる。
さらに、本発明に係る翼ピッチ制御方法は、翼に連結され、駆動することによって前記翼のピッチ角を変化させる油圧シリンダと、前記油圧シリンダへ作動油を供給し、吐出圧力が負荷圧力に追従せず、かつ予め定められた第1圧力以上では作動油を吐出しない可変吐出量形の油圧ポンプと、を備えた風力発電装置の翼ピッチ制御方法であって、前記油圧ポンプの吐出圧力が設定圧力となった場合に、前記油圧ポンプの吐出量を変化させ、前記油圧ポンプの吐出圧力を前記第1圧力未満の第2圧力とするために開状態となる弁により、該第2圧力が前記油圧シリンダによって前記ピッチ角を所定の角度に変化させる圧力となるように、前記設定圧力を、前記油圧シリンダが必要とする油圧に基づいて設定する工程、を含む。
本発明によれば、油圧ポンプの吐出圧力が、油圧シリンダを駆動させるために必要最低限の圧力となるので、油圧ポンプの吐出圧力と負荷圧力との差圧を減少させることができる。
本発明によれば、吐出圧力が負荷圧力に追従しない可変吐出量形の油圧ポンプを、翼のピッチ角を変更させるための油圧シリンダへの作動油の供給に用いたとしても、該油圧ポンプの吐出圧力と負荷圧力との差圧を減少させることができる、という優れた効果を有する。
本発明の第1実施形態に係る風力発電装置の外観図である。 本発明の第1実施形態に係る翼のピッチ角を制御するための翼ピッチ制御装置の構成を示すブロック図である。 アキシアルピストンポンプの損失エネルギーの説明に要する図であり、(A)は、アキシアルピストンポンプを用いた油圧回路の一例を示し、(B)は、アキシアルピストンポンプの吐出圧力と吐出流量との関係の一例を示すグラフである。 本発明の第1実施形態に係る油圧ポンプの油圧回路図である。 本発明の第1実施形態に係る吐出圧力制御プログラムの処理の流れを示すフローチャートである。 本発明の第1実施形態に係る圧力制御弁設定処理の効果を示す図である。 本発明の第2実施形態に係る翼のピッチ角を制御するための翼ピッチ制御装置の構成を示すブロック図である。 本発明の第2実施形態に係る吐出圧力制御プログラムの処理の流れを示すフローチャートである。
以下に、本発明に係る翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
以下、本発明の第1実施形態について説明する。
図1は、本第1実施形態に係る風力発電装置10の外観図である。
図1に示す風力発電装置10は、基礎12上に立設される支柱14と、支柱14の上端に設置されるナセル16と、略水平な軸線周りに回転可能にしてナセル16に設けられるロータ18とを有している。
ロータ18には、その回転軸線周りに放射状にして複数枚(本第1実施形態では3枚)の風車回転翼(以下、単に「翼20」という)がロータ18に取り付けられている。これにより、ロータ18の回転軸線方向から翼20に当たった風の力が、ロータ18を回転軸線周りに回転させる動力に変換され、該動力が発電機(不図示)によって電力に変換されるようになっている。なお、翼20は、風向きに対して回動可能にロータ18に連結されており、翼20のピッチ角が制御可能とされている。
このような風力発電装置10は、例えば、翼20のピッチ角を個別に制御する翼ピッチ制御装置40(図2参照)に油圧が用いられている。また、翼20と一体に回転する主軸を支持する軸受や、翼20及び主軸の回転数を増速する増速機等の回転・摺動部に対し、潤滑油を供給して潤滑する潤滑装置が設けられている。
図2は、第1実施形態に係る翼20のピッチ角を制御するための翼ピッチ制御装置40の構成を示すブロック図である。
翼ピッチ制御装置40は、オイルタンク42、油圧ポンプ44、電磁比例方向流量制御弁46A,46B,46C、及び油圧シリンダ48A,48B,48Cを備えており、各々、油圧配管50によって接続されている。なお、電磁比例方向流量制御弁46A,46B,46C、及び油圧シリンダ48A,48B,48Cは、各々翼20毎に対応して備えられている。以下の説明において、各電磁比例方向流量制御弁を区別する場合は、符号の末尾にA〜Cの何れかを付し、各電磁比例方向流量制御弁を区別しない場合は、A〜Cを省略する。また、各油圧シリンダを区別する場合は、符号の末尾にA〜Cの何れかを付し、各油圧シリンダを区別しない場合は、A〜Cを省略する。
オイルタンク42には、作動油が貯蔵されており、該作動油は、油圧ポンプ44によって、吸引及び昇圧され、油圧配管50を通って回転継手52及び分配ブロック54を介して、各翼20毎に設けられた電磁比例方向流量制御弁46及び油圧シリンダ48へ供給される。
電磁比例方向流量制御弁46には、風力発電装置10の全体の制御を司る主制御部56から送信される、翼20のピッチ角の設定値を示すピッチ角指令値が送信される。そして、電磁比例方向流量制御弁46は、受信したピッチ角指令値に応じたスプール位置指令値に基づいて、翼20のピッチ角を変化させる方向に応じて油圧流路を切り替えると共に、油圧シリンダ48へ供給する作動油の流量を制御する。
油圧シリンダ48は、翼20に連結され、駆動することによって翼20のピッチ角を変化させるものである。油圧シリンダ48に供給された作動油は、電磁比例方向流量制御弁46が設定した油圧流路及び流量に応じてピストンを左右いずれか一方に押圧する。この結果、油圧シリンダ48のピストンロッドに連結された翼20は、ピストンの移動方向に応じて回動し、所望のピッチ角に制御される。
回転継手52は、ナセル16(固定部)側の油圧配管50とロータ18(回転部)側の油圧配管50を繋ぎ、分配ブロック54は、各電磁比例方向流量制御弁46へ作動油を分配する。
また、本第1実施形態に係る油圧シリンダ48は、各々油圧シリンダ48が生じさせる物理量を測定する測定部58を備えている。なお、本第1実施形態に係る測定部58は、上記物理量として油圧シリンダ48の推力を測定する。
ここで、本第1実施形態にかかる油圧ポンプ44は、吐出流量は負荷流量に追従するものの、吐出圧力が負荷圧力に追従せず、かつ予め定められたカットオフ圧力以上では作動油を吐出しない可変吐出量形の油圧ポンプ(本第1実施形態では、一例として斜板式の油圧ポンプ(所謂アキシアルピストンポンプ))である。
図3(A)は、従来のアキシアルピストンポンプ70を用いた油圧回路の一例を示し、図3(B)は、アキシアルピストンポンプ70の吐出圧力と吐出流量との関係を示すグラフである。
図3(A)に示すように、電動機72によって駆動されるアキシアルピストンポンプ70からの吐出流量をQinとし、吐出圧力をPinとする。一方、絞り弁74を介して接続されている油圧モータ(負荷)76の負荷流量をQoutとし、負荷圧力をPoutとする。そして、図3(B)の実線が、アキシアルピストンポンプ70における予め設定された吐出圧力と吐出流量との関係を示す油圧−流量カーブであり、馬力(吐出圧力と吐出流量との積)が一定になるように、馬力制御がされている場合である。この場合、式(1)に示されるように、吐出圧力Pinと負荷圧力Poutとの差圧ΔPと吐出流量Qinとの積が損失エネルギーΔLに相当する。
Figure 2012070142
一方、一点鎖線が、馬力制御がされていない場合であり、この場合、カットオフ圧力Pcutoffと負荷圧力Poutとの差圧と吐出流量Qinとの積が損失エネルギーに相当する。
Figure 2012070142
ここで、従来、上記損失エネルギーは、電磁比例方向流量制御弁によって絞りにより消費され、主に熱エネルギーとして消費され、作動油の温度が上昇する。このため、アキシアルピストンポンプ70を駆動させるための電動機72の出力が上記差圧分だけ過大なうえ、作動油の温度を適正に保つためのオイルクーラを必要としていた。
そこで、本第1実施形態に係る油圧ポンプ44には、油圧ポンプ44の吐出圧力が設定圧力となった場合に、油圧ポンプ44の吐出量を変化(油圧ポンプ44の斜板の傾転量を変化)させることで、油圧ポンプ44の吐出圧力をカットオフ圧力未満の圧力とするために開状態となる圧力制御弁80(図4参照)が設けられている。
図4は、本第1実施形態にかかる油圧ポンプ44の油圧回路図の一例(馬力制御がない油圧ポンプ)である。同図に示すように、斜板82を有する油圧ポンプ44は、斜板82に連結されたサーボピストン84の両端の圧力室(大径室86A及び小径室86B)内の圧力をカットオフスプール88と差圧スプール90によって制御することで、ポンプ吐出流量を変化させる。なお、差圧スプール90の図4の左側には、バネ力及び作動油の吐出圧力が働く一方、右側には作動油の吐出圧力が働いている。そして、差圧スプール90の図4の左側には、油圧配管あるいはマニホールドラックを介して圧力制御弁80が接続されている。
油圧ポンプ44の吐出圧力が、圧力制御弁80が開状態となる設定圧力よりも低い場合には、従来既知のアキシアルピストンポンプと同様の動作をするため、説明を省略するが、油圧ポンプ44の吐出圧力が、上記設定圧力に達した場合には、以下のような動作を行うため、油圧ポンプ44の吐出圧力は、上記設定圧力に応じたカットオフ圧力以下の圧力に制御される。なお、油圧ポンプ44の吐出圧力が、圧力制御弁80が開状態となる設定圧力よりも低い場合は、差圧スプール90は、差圧スプール90に働くバネ力によって、図4の右側に位置している。
油圧ポンプ44の吐出圧力が、圧力制御弁80が開状態となる設定圧力に達した場合、圧力制御弁80が開き、絞り92によって差圧スプール90の左右に圧力差が生じる。この圧力差が差圧スプール90に働くバネ力よりも大きくなった場合に、差圧スプールが図4の左側に移動する。
これによって、吐出圧力は、サーボピストン84の大径室86Aに導かれ、サーボピストン84は、斜板82の傾転量を減少させる。このため、油圧ポンプ44の流量が減少する。
一方、オリフィス92を通る流量が減少すると、絞り92によって生じる圧力差が小さくなるため、差圧スプール90は再び右側へ戻り、サーボピストン84は、斜板82の傾転量を増加させる。
この動作を繰り返すことによって、本第1実施形態に係る油圧ポンプ44の吐出圧力は、カットオフ圧力以下の圧力(圧力制御弁80と差圧スプール90の設定圧力との合計の圧力)に制御される。
なお、油圧ポンプ44の吐出圧力の最大値であるカットオフ圧力は、カットオフスプール88によって決定されるため、カットオフ圧力の大きさは変化しない。
そして、本第1実施形態に係る翼ピッチ制御装置40は、油圧ポンプ44の吐出圧力が油圧シリンダ48によって翼20のピッチ角を所定の角度に変化させる圧力となるように、圧力制御弁80が開状態となる設定圧力を、油圧シリンダ48が必要とする油圧に基づいて設定する設定制御部60(図2参照)を備えている。すなわち、設定制御部60によって、吐出圧力Pinと負荷圧力Poutとの差圧ΔPが小さくなるように、圧力制御弁80が開状態となる圧力が設定される処理(以下、「圧力制御弁設定処理」という。)が行われる。上記所定の角度とは、ピッチ角指令値に基づくピッチ角である。また、油圧シリンダ48が必要とする油圧を、以下の説明において「必要圧力」という。
なお、本第1実施形態に係る設定制御部60には、測定部58で測定された油圧シリンダ48の推力を示す推力値が連続して送信される。そして、設定制御部60は、該推力値を用いて油圧シリンダ48の必要圧力を導出し、圧力制御弁80が開状態となる設定圧力を、該導出した必要圧力に基づいて設定する。
図5は、圧力制御弁設定処理を行う場合に、設定制御部60によって実行される圧力制御弁設定プログラムの処理の流れを示すフローチャートであり、圧力制御弁設定プログラムは設定制御部60が備える不図示の記憶装置(半導体記憶装置又は磁気記憶装置)の所定領域に予め記憶されている。なお、本プログラムは、風力発電装置10の動作が開始されると共に開始される。
まず、ステップ100では、主制御部56から送信されるピッチ角指令値と実際のピッチ角(実角)との偏差を算出し、計測された油圧シリンダ48の推力値と該偏差をはじめとするピッチ制御プログラム内の演算とに基づいて、各油圧シリンダ48毎に必要な推力(以下、「必要推力」という。)を算出する。
次のステップ102では、ステップ100で算出した各油圧シリンダ48毎の必要推力から、各油圧シリンダ48の必要圧力を算出する。なお、以下の説明において、油圧シリンダ48Aの必要圧力をPとし、油圧シリンダ48Bの必要圧力をPとし、油圧シリンダ48Cの必要圧力をPとする。
次のステップ104では、ステップ102で算出した必要圧力P,P,Pのうち、最も高い必要圧力に基づいて、圧力制御弁80の設定圧力を設定する。具体的には、圧力制御弁80の設定圧力は、例えば、最も高い必要圧力に油圧ポンプ44から油圧シリンダ48までの圧損を加味した圧力が油圧ポンプ44の吐出圧力となるように設定される。そして、本プログラムは、風力発電装置10の動作が停止されるまで繰り返される。
図6は、圧力制御弁設定処理の効果の一例を示す図である。
圧力制御弁80が設けられていない従来の油圧ポンプでは、吐出圧力と各必要圧力P,P,Pとの差圧ΔP’,ΔP’,ΔP’とが損失エネルギーに相当する。
一方、本第1実施形態では、油圧ポンプ44が、必要圧力P,P,Pのうち、最大値である必要圧力Pと同等の吐出圧力で作動油を吐出するように、圧力制御弁80が開状態となる設定圧力が設定される。このため、本第1実施形態に係る翼ピッチ制御装置40では、吐出圧力と必要圧力Pとはほぼ同等となり、油圧ポンプ44の吐出圧力が、油圧シリンダ48を駆動させるために必要最低限の圧力となるので、吐出圧力と必要圧力Pとの差圧は、無視できるほど小さくなる。そして、吐出圧力と必要圧力Pとの差圧ΔP(ΔP<ΔP’)、吐出圧力と必要圧力Pとの差圧ΔP(ΔP<ΔP’)が、損失エネルギーに相当するため、従来に比較して、損失エネルギーが低減される。
以上説明したように、本第1実施形態に係る翼ピッチ制御装置40は、油圧ポンプ44の吐出圧力が設定圧力となった場合に開状態となることで、油圧ポンプ44が有する斜板82の傾転量を変化させ、油圧ポンプ44の吐出圧力をカットオフ圧力未満の圧力とする圧力制御弁80を備える。そして、翼ピッチ制御装置40が備える設定制御部60は、油圧ポンプ44の吐出圧力が油圧シリンダ48によってピッチ角を所定の角度に変化させる圧力となるように、上記設定圧力を、油圧シリンダ48の必要圧力に基づいて設定する。
従って、油圧ポンプ44の吐出圧力が、油圧シリンダ48を駆動させるための圧力とほぼ同等となり、油圧ポンプ44の吐出圧力が、油圧シリンダ48を駆動させるために必要最低限の圧力となるので、可変吐出量形の油圧ポンプ44を、翼20のピッチ角を変更させるための油圧シリンダ48への作動油の供給に用いたとしても、油圧ポンプ44の吐出圧力と負荷圧力との差圧を減少させることができる。また、本第1実施形態に係る翼ピッチ制御装置40は、油圧シリンダ48を駆動させるための圧力を必要最低限の圧力とできるため、従来に比較して、消費電力の低減を図ることができる。
また、油圧シリンダ48の必要圧力が各油圧シリンダ48毎に異なっていても、設定制御部60が、圧力制御弁80が開状態となる設定圧力を、最も高い必要圧力に基づいて設定する。従って、本第1実施形態に係るピッチ制御部40は、翼20のピッチ角が各々独立して制御されていても、油圧ポンプ44の吐出圧力と負荷圧力との差圧を減少させることができる。
また、設定制御部60は、測定部58で測定された油圧シリンダ48の推力を用いて油圧シリンダ48の必要圧力を導出し、圧力制御弁80が開状態となる設定圧力を、該導出した油圧に基づいて設定する。従って、本第1実施形態に係るピッチ制御部40は、より簡易に、油圧シリンダ48の必要圧力を常時導出することができる。
なお、本第1実施形態では、測定部58が、油圧シリンダ48の推力を測定し、測定した推力を用いて油圧シリンダ48毎の必要圧力を算出する場合について説明したが、本発明は、これに限定されるものではなく、例えば、測定部58が、油圧シリンダ48の圧力を測定し、測定した圧力を用いて油圧シリンダ48毎の必要圧力を算出する形態としてもよい。
〔第2実施形態〕
以下、本発明の第2実施形態について説明する。
図7は、本第2実施形態に係る翼ピッチ制御装置40の構成を示す。なお、図7における図2と同一の構成部分については図2と同一の符号を付して、その説明を省略する。また、本第2実施形態に係る油圧ポンプ44の構成は、図4に示される第1実施形態に係る油圧ポンプ44の構成と同様であるので説明を省略する。
本第2実施形態に係る各油圧シリンダ48には、第1実施形態とは異なり、測定部58が設けられていない。
そして、本第2実施形態に係る設定制御部60(圧力制御弁設定処理)は、風力発電装置10が有する発電機の出力(以下、「発電機出力」という。)、翼20のピッチ角、翼20のアジマス角、及びロータ18の回転数等の風力発電装置10が有する情報を用いて、油圧シリンダ48の必要圧力を推定導出し、圧力制御弁80が開状態となる設定圧力を、該導出した必要圧力に基づいて設定する。
図8は、本第2実施形態に係る圧力制御弁設定処理を行う場合に、設定制御部60によって実行され圧力制御弁設定プログラムの処理の流れを示すフローチャートであり、圧力制御弁設定プログラムは設定制御部60が備える不図示の記憶装置(半導体記憶装置又は磁気記憶装置)の所定領域に予め記憶されている。なお、本プログラムは、風力発電装置10の動作が開始されると共に開始される。
まず、ステップ200では、発電機出力、ピッチ角、アジマス角、及び回転数を用いて、各翼20の翼根に作用する推定回転トルクを算出する。
次のステップ202では、ピッチ角指令値の時間変化から、ピッチ角指令値が、翼20をファイン(Fine)方向又はフェザー(Feather)方向の何れの方向へ翼20を傾けるものであるかを導出する。
次のステップ204では、ステップ200で算出された回転トルク、ステップ202で導出された翼20を傾ける方向、及びピッチ角指令値と実角との偏差に基づいて、各油圧シリンダ48毎の必要推力を算出する。
次のステップ206では、ステップ204で算出した各油圧シリンダ48毎の必要推力から、各油圧シリンダ48の必要圧力P,P,Pを算出する。
次のステップ208では、ステップ206で算出した必要圧力P,P,Pのうち、最も高い必要圧力に基づいて、圧力制御弁80の設定圧力を設定し、風力発電装置10の動作が停止されるまで、本プログラムを繰り返す。
以上説明したように、本第2実施形態に係る翼ピッチ制御装置40は、風力発電装置10が有する情報を用いて油圧シリンダ48の必要圧力を導出し、圧力制御弁80が開状態となる設定圧力を、該導出した必要圧力に基づいて設定する。従って、本第2実施形態に係る翼ピッチ制御装置40は、簡易な構成で、油圧シリンダ48の必要圧力を導出することができる。
以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更または改良を加えることができ、該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
例えば、上記各実施形態では、複数の翼20には、各々ピッチ角を制御するための複数の電磁比例方向流量制御弁46及び複数の油圧シリンダ48が設けられ、各翼20毎にピッチ角が独立して制御される場合について説明したが、本発明は、これに限定されるものではなく、電磁比例方向流量制御弁46及び油圧シリンダ48は、一つだけ設けられ、複数の翼20のピッチ角を独立させずに制御する形態としてもよい。この形態の場合、負荷が一つとなるため、油圧ポンプ44の吐出圧力と負荷圧力との差圧をより減少させることができる。
また、上記各実施形態では、可変吐出量形の油圧ポンプ44として、斜板式の油圧ポンプ(アキシアルピストンポンプ)を用いる場合について説明したが、本発明は、これに限定されるものではなく、可変吐出量形の油圧ポンプとして、ラジアルピルトンポンプを用いる形態としてもよい。
10 風力発電装置
18 ロータ
20 翼
40 翼ピッチ制御装置
44 油圧ポンプ
48 油圧シリンダ
58 測定部
60 設定制御部
80 圧力制御弁
82 斜板
ここで、本第1実施形態にかかる油圧ポンプ44は、吐出流量は負荷流量に追従するものの、吐出圧力が負荷圧力に追従せず、かつ予め定められたカットオフ圧力以上では作動油を吐出しない可変吐出量形の油圧ポンプ(本第1実施形態では、一例として斜板式の油圧ポンプ(所謂アキシアルピストンポンプ))である。
図3(A)は、従来のアキシアルピストンポンプ70を用いた油圧回路の一例を示し、図3(B)は、アキシアルピストンポンプ70の吐出圧力と吐出流量との関係を示すグラフである。
図3(A)に示すように、電動機72によって駆動されるアキシアルピストンポンプ70からの吐出流量をQinとし、吐出圧力をPinとする。一方、絞り弁74を介して接続されている油圧モータ(負荷)76の負荷流量をQoutとし、負荷圧力をPoutとする。そして、図3(B)の実線が、アキシアルピストンポンプ70における予め設定された吐出圧力と吐出流量との関係を示す油圧−流量カーブであり、馬力(吐出圧力と吐出流量との積)が一定になるように、馬力制御がされている場合である。この場合、式(1)に示されるように、吐出圧力Pin [Mpa]と負荷圧力Pout [Mpa]との差圧ΔPと吐出流量Qin [L/min]との積が損失エネルギーΔLに相当する。
Figure 2012070142
一方、一点鎖線が、馬力制御がされていない場合であり、この場合、カットオフ圧力Pcutoff [Mpa]と負荷圧力Pout [Mpa]との差圧と吐出流量Qin [L/min]との積が損失エネルギーに相当する。
Figure 2012070142
ここで、従来、上記損失エネルギーは、電磁比例方向流量制御弁によって絞りにより消費され、主に熱エネルギーとして消費され、作動油の温度が上昇する。このため、アキシアルピストンポンプ70を駆動させるための電動機72の出力が上記差圧分だけ過大なうえ、作動油の温度を適正に保つためのオイルクーラを必要としていた。
図4は、本第1実施形態にかかる油圧ポンプ44の油圧回路図の一例(馬力制御がない油圧ポンプ)である。同図に示すように、斜板82を有する油圧ポンプ44は、斜板82に連結されたサーボピストン84の両端の圧力室(大径室86A及び小径室86B)内の圧力をカットオフスプール88と差圧スプール90によって制御することで、ポンプ吐出流量を変化させる。なお、差圧スプール90の図4の左側には、バネ力及び作動油の吐出圧力が働く一方、右側には作動油の吐出圧力が働いている。そして、差圧スプール90の図4の左側には、油圧配管あるいはマニホールドを介して圧力制御弁80が接続されている。
油圧ポンプ44の吐出圧力が、圧力制御弁80が開状態となる設定圧力よりも低い場合には、従来既知のアキシアルピストンポンプと同様の動作をするため、説明を省略するが、油圧ポンプ44の吐出圧力が、上記設定圧力に達した場合には、以下のような動作を行うため、油圧ポンプ44の吐出圧力は、上記設定圧力に応じたカットオフ圧力以下の圧力に制御される。なお、油圧ポンプ44の吐出圧力が、圧力制御弁80が開状態となる設定圧力よりも低い場合は、差圧スプール90は、差圧スプール90に働くバネ力によって、図4の右側に位置している。
例えば、上記各実施形態では、複数の翼20には、各々ピッチ角を制御するための複数の電磁比例方向流量制御弁46及び複数の油圧シリンダ48が設けられ、各翼20毎にピッチ角が独立して制御される場合について説明したが、本発明は、これに限定されるものではなく、電磁比例方向流量制御弁46及び油圧シリンダ48は、一つだけ設けられ、複数の翼20のピッチ角を独立させずに制御する形態としてもよい
さらに、本発明に係る翼ピッチ制御方法は、翼に連結され、駆動することによって前記翼のピッチ角を変化させる油圧シリンダと、前記油圧シリンダへ作動油を供給し、吐出圧力が負荷圧力に追従せず、かつ予め定められた第1圧力以上では作動油を吐出しない可変吐出量形の油圧ポンプと、を備えた風力発電装置の翼ピッチ制御方法であって、前記油圧ポンプの吐出圧力が設定圧力となった場合に弁が開状態となることで、前記油圧ポンプの吐出量を変化させ、前記油圧ポンプの吐出圧力を前記第1圧力未満の第2圧力とする工程と、前記第2圧力が前記油圧シリンダによって前記ピッチ角を所定の角度に変化させる圧力となるように、前記設定圧力を、前記油圧シリンダが必要とする油圧に基づいて設定する工程、を含む。
本発明によれば、油圧ポンプの吐出圧力が、油圧シリンダを駆動させるために必要最低限の圧力となるので、油圧ポンプの吐出圧力と負荷圧力との差圧を減少させることができる。
本発明の第1実施形態に係る風力発電装置の外観図である。 本発明の第1実施形態に係る翼のピッチ角を制御するための翼ピッチ制御装置の構成を示すブロック図である。 アキシアルピストンポンプの損失エネルギーの説明に要する図であり、(A)は、アキシアルピストンポンプを用いた油圧回路の一例を示し、(B)は、アキシアルピストンポンプの吐出圧力と吐出流量との関係の一例を示すグラフである。 本発明の第1実施形態に係る油圧ポンプの油圧回路図である。 本発明の第1実施形態に係る圧力制御弁設定プログラムの処理の流れを示すフローチャートである。 本発明の第1実施形態に係る圧力制御弁設定処理の効果を示す図である。 本発明の第2実施形態に係る翼のピッチ角を制御するための翼ピッチ制御装置の構成を示すブロック図である。 本発明の第2実施形態に係る圧力制御弁設定プログラムの処理の流れを示すフローチャートである。
油圧ポンプ44の吐出圧力が、圧力制御弁80が開状態となる設定圧力に達した場合、圧力制御弁80が開き、絞り92によって差圧スプール90の左右に圧力差が生じる。この圧力差が差圧スプール90に働くバネ力よりも大きくなった場合に、差圧スプールが図4の左側に移動する。
これによって、吐出圧力は、サーボピストン84の大径室86Aに導かれ、サーボピストン84は、斜板82の傾転量を減少させる。このため、油圧ポンプ44の流量が減少する。
一方、絞り92を通る流量が減少すると、絞り92によって生じる圧力差が小さくなるため、差圧スプール90は再び右側へ戻り、サーボピストン84は、斜板82の傾転量を増加させる。
この動作を繰り返すことによって、本第1実施形態に係る油圧ポンプ44の吐出圧力は、カットオフ圧力以下の圧力(圧力制御弁80と差圧スプール90の設定圧力との合計の圧力)に制御される。
なお、油圧ポンプ44の吐出圧力の最大値であるカットオフ圧力は、カットオフスプール88によって決定されるため、カットオフ圧力の大きさは変化しない。
図8は、本第2実施形態に係る圧力制御弁設定処理を行う場合に、設定制御部60によって実行される圧力制御弁設定プログラムの処理の流れを示すフローチャートであり、圧力制御弁設定プログラムは設定制御部60が備える不図示の記憶装置(半導体記憶装置又は磁気記憶装置)の所定領域に予め記憶されている。なお、本プログラムは、風力発電装置10の動作が開始されると共に開始される。
また、上記各実施形態では、可変吐出量形の油圧ポンプ44として、斜板式の油圧ポンプ(アキシアルピストンポンプ)を用いる場合について説明したが、本発明は、これに限定されるものではなく、可変吐出量形の油圧ポンプとして、ラジアルピストンポンプを用いる形態としてもよい。

Claims (7)

  1. 複数の翼が回動可能に連結されているロータの回転により発電する風力発電装置の翼ピッチ制御装置であって、
    前記翼に連結され、駆動することによって前記翼のピッチ角を変化させる油圧シリンダと、
    前記油圧シリンダへ作動油を供給し、吐出圧力が負荷圧力に追従せず、かつ予め定められた第1圧力以上では作動油を吐出しない可変吐出量形の油圧ポンプと、
    前記油圧ポンプの吐出圧力が設定圧力となった場合に、前記油圧ポンプの吐出量を変化させ、前記油圧ポンプの吐出圧力を前記第1圧力未満の第2圧力とするために開状態となる弁と、
    前記第2圧力が前記油圧シリンダによって前記ピッチ角を所定の角度に変化させる圧力となるように、前記設定圧力を、前記油圧シリンダが必要とする油圧に基づいて設定する吐出圧力設定手段と、
    を備えた翼ピッチ制御装置。
  2. 前記油圧シリンダは、複数備えられ、
    前記吐出圧力設定手段は、前記設定圧力を、複数の前記油圧シリンダが必要とする油圧のうち、最も高い油圧に基づいて前記設定圧力を設定する請求項1記載の翼ピッチ制御装置。
  3. 前記油圧シリンダが生じさせる物理量を測定する測定手段
    を備え、
    前記吐出圧力設定手段は、前記測定手段によって測定された前記物理量を用いて前記油圧シリンダが必要とする油圧を導出し、前記設定圧力を、該導出した油圧に基づいて設定する請求項1記載の翼ピッチ制御装置。
  4. 前記吐出圧力設定手段は、前記風力発電装置が有する情報を用いて前記油圧シリンダが必要とする油圧を導出し、前記設定圧力を、該導出した油圧に基づいて設定する請求項1記載の翼ピッチ制御装置。
  5. 前記風力発電装置が有する情報は、前記風力発電装置が有する発電機出力、前記翼のピッチ角、前記翼のアジマス角、及び前記ロータの回転数の少なくとも一つである請求項4記載の翼ピッチ制御装置。
  6. 複数の翼を有するロータと、
    前記ロータが有する複数の翼のピッチ角を変化させるための請求項1から請求項5の何れか1項記載の翼ピッチ制御装置と、
    を備えた風力発電装置。
  7. 翼に連結され、駆動することによって前記翼のピッチ角を変化させる油圧シリンダと、前記油圧シリンダへ作動油を供給し、吐出圧力が負荷圧力に追従せず、かつ予め定められた第1圧力以上では作動油を吐出しない可変吐出量形の油圧ポンプと、を備えた風力発電装置の翼ピッチ制御方法であって、
    前記油圧ポンプの吐出圧力が設定圧力となった場合に、前記油圧ポンプの吐出量を変化させ、前記油圧ポンプの吐出圧力を前記第1圧力未満の第2圧力とするために開状態となる弁により、該第2圧力が前記油圧シリンダによって前記ピッチ角を所定の角度に変化させる圧力となるように、前記設定圧力を、前記油圧シリンダが必要とする油圧に基づいて設定する工程、
    を含む翼ピッチ制御方法。
JP2011505048A 2010-11-25 2010-11-25 翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法 Expired - Fee Related JP5331197B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071063 WO2012070142A1 (ja) 2010-11-25 2010-11-25 翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法

Publications (2)

Publication Number Publication Date
JP5331197B2 JP5331197B2 (ja) 2013-10-30
JPWO2012070142A1 true JPWO2012070142A1 (ja) 2014-05-19

Family

ID=46124951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011505048A Expired - Fee Related JP5331197B2 (ja) 2010-11-25 2010-11-25 翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法

Country Status (7)

Country Link
US (1) US8439638B2 (ja)
JP (1) JP5331197B2 (ja)
KR (1) KR101206665B1 (ja)
CN (1) CN102741548A (ja)
AU (1) AU2010276466A1 (ja)
CA (1) CA2730677A1 (ja)
WO (1) WO2012070142A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371241B2 (ja) * 2015-03-17 2018-08-08 三菱重工業株式会社 風力発電設備及び風力発電設備の制御方法
RU2643885C2 (ru) * 2015-03-25 2018-02-06 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный аграрный университет" Гидравлическая система ограничения мощности и частоты вращения ветроагрегата
CN105179167B (zh) * 2015-09-22 2018-04-13 南车株洲电力机车研究所有限公司 一种变桨电机制动器的控制方法
EP3803110B1 (en) * 2018-06-11 2023-03-01 Vestas Wind Systems A/S Velocity feedfoward control of a hydraulic pitch system
CN109098931B (zh) * 2018-07-19 2021-01-15 钱枫 一种船舶用太阳能和风力组合式发电装置
CN109162870B (zh) * 2018-08-31 2020-02-07 北京金风科创风电设备有限公司 风力发电机组的调桨控制方法、装置、设备及存储介质
CN110131098A (zh) * 2019-02-26 2019-08-16 泗阳高传电机制造有限公司 一种可变螺距风力发电叶片
EP3805556A1 (en) * 2019-10-09 2021-04-14 Siemens Gamesa Renewable Energy A/S Method of controlling a wind turbine and controller for a wind turbine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986071A (en) * 1989-06-05 1991-01-22 Komatsu Dresser Company Fast response load sense control system
JPH08226373A (ja) * 1995-02-21 1996-09-03 Mitsubishi Heavy Ind Ltd 可変ピッチ翼式風車
JP2002303255A (ja) 2001-04-09 2002-10-18 Mitsubishi Heavy Ind Ltd 風力発電装置
CA2483359C (en) 2002-04-24 2007-12-11 Vestas Wind Systems A/S Wind turbine, hydraulic system, air bleed system and method of controlling at least two wind turbine blades
DE102006012009A1 (de) * 2006-03-14 2007-09-20 Robert Bosch Gmbh Positionsmesseinrichtung für eine Rotorblattverstelleinrichtung
US20100232964A1 (en) 2007-11-09 2010-09-16 David Geiger Electro-hydraulic actuator for controlling the pitch of a blade of a wind turbine
JP5330945B2 (ja) 2008-10-29 2013-10-30 三菱重工業株式会社 油圧システム及びこれを備えた風力発電装置

Also Published As

Publication number Publication date
CA2730677A1 (en) 2012-05-25
US20120134801A1 (en) 2012-05-31
KR101206665B1 (ko) 2012-11-29
US8439638B2 (en) 2013-05-14
CN102741548A (zh) 2012-10-17
KR20120090757A (ko) 2012-08-17
AU2010276466A1 (en) 2012-06-14
WO2012070142A1 (ja) 2012-05-31
JP5331197B2 (ja) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5331197B2 (ja) 翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法
KR101302200B1 (ko) 풍력 터빈
US20110142596A1 (en) Method for monitoring a component in a hydraulic circuit, monitoring device and fluid turbine
KR20130026440A (ko) 재생 에너지형 발전 장치 및 그 운전 방법
JP5260651B2 (ja) 風力発電装置
KR101613383B1 (ko) 수력 발전 설비를 위한 터빈 및 수력 발전 설비
CN102165190A (zh) 涡轮机速度稳定控制系统
EP3406903B1 (en) Variable displacement fuel pump with position sensor
JP5502202B2 (ja) 再生エネルギー型発電装置及びその運転方法
KR20160129391A (ko) 해상풍력발전기의 피치 또는 요 베어링 시험기용 서보 하이브리드 액츄에이터 시스템
CN104100508A (zh) 将由马达驱动的、转速可变的液压泵作为流体静力的传动装置的应用
JP2005226609A (ja) 軸流機械の動翼角度可変装置
JP6140071B2 (ja) 油圧トランスミッション及び再生エネルギー型発電装置、並びにそれらの運転方法
US20080199318A1 (en) Adjustment Device For Adjusting Propeller Blades of a Propeller Pump and a Propeller Pump Including Such a Device
JP2008267565A (ja) 油圧アクチュエータ駆動制御装置、ファン駆動制御装置および建設機械
KR101438227B1 (ko) 건설기계의 유압펌프 최대 마력 제어를 이용한 엔진 회전수저하 방지 장치
KR101460909B1 (ko) 유압식 풍력발전기용 유압제어시스템
JP5502201B2 (ja) 再生エネルギー型発電装置及びその運転方法
CN110177931B (zh) 用于使涡轮的叶片定向的方法
US20230052785A1 (en) Axial piston pump controller
CN101429950A (zh) 一种轴流风机的动叶调节机构
PL227767B1 (pl) Urządzenie do regulacji nachylenia kąta łopat w maszynach przepływowych
CN113915191A (zh) 用于风力发电机比例伺服控制液压变桨的油缸
CN101968067A (zh) 一种高精度的泵控系统
JP2017061885A (ja) ピストンポンプまたは発電装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R151 Written notification of patent or utility model registration

Ref document number: 5331197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees