JPWO2012067082A1 - Condensing device, photovoltaic power generation device, and photothermal conversion device - Google Patents

Condensing device, photovoltaic power generation device, and photothermal conversion device Download PDF

Info

Publication number
JPWO2012067082A1
JPWO2012067082A1 JP2012544247A JP2012544247A JPWO2012067082A1 JP WO2012067082 A1 JPWO2012067082 A1 JP WO2012067082A1 JP 2012544247 A JP2012544247 A JP 2012544247A JP 2012544247 A JP2012544247 A JP 2012544247A JP WO2012067082 A1 JPWO2012067082 A1 JP WO2012067082A1
Authority
JP
Japan
Prior art keywords
condensing
optical element
light
condensing optical
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012544247A
Other languages
Japanese (ja)
Inventor
和歌奈 内田
和歌奈 内田
達雄 丹羽
達雄 丹羽
達也 千賀
達也 千賀
彰平 藤原
彰平 藤原
忠彦 齊藤
忠彦 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2012067082A1 publication Critical patent/JPWO2012067082A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

集光装置は、第1の集光レンズ,第2の集光レンズ、第1の集光レンズにより集光入射する入射光を導く第1の集光光学素子、第2の集光レンズにより集光入射する入射光を導く第2の集光光学素子とを備えて構成される。集光光学素子は、各々入射光を透過する上面及び上面と対向して延びる下面と、上面と下面の間に入射光の光軸と交差して設けられた反射面と、反射面の反対側に設けられた出射面とを有する。第1の集光光学素子及び第2の集光光学素子の反射面が上下に重複せず第1の集光光学素子及び第2の集光光学素子の出射面が上下に並ぶように第1の集光光学素子と第2の集光光学素子が上下に重ねて配設され、第1の集光レンズ及び第2の集光レンズにより集光されそれぞれ反射面により反射された光が、出射面に導かれるように構成される。The condensing device includes a first condensing lens, a second condensing lens, a first condensing optical element that guides incident light condensed and incident by the first condensing lens, and a second condensing lens. And a second condensing optical element that guides incident light incident thereon. The condensing optical element includes an upper surface that transmits incident light, a lower surface that extends opposite to the upper surface, a reflective surface that is provided between the upper surface and the lower surface so as to intersect the optical axis of the incident light, and an opposite side of the reflective surface And an exit surface provided on the surface. The first condensing optical element and the second condensing optical element are arranged so that the reflecting surfaces of the first condensing optical element and the second condensing optical element do not overlap vertically, and the exit surfaces of the first condensing optical element and the second condensing optical element are aligned vertically. The condensing optical element and the second condensing optical element are arranged one above the other so that the light condensed by the first condensing lens and the second condensing lens and reflected by the reflecting surface is emitted. Configured to be guided to the surface.

Description

本発明は、光を集光する装置に関し、より詳細には、厚さ方向に入射する光を側面方向に集光する集光装置、及びこれを用いた光発電装置並びに光熱変換装置に関する。   The present invention relates to an apparatus that condenses light, and more particularly, to a condensing apparatus that condenses light incident in a thickness direction in a side surface direction, and a photovoltaic device and a photothermal conversion apparatus using the condensing apparatus.

近年、CO2排出量の削減が全世界的に求められ、自然エネルギーの利用が進められている。太陽光のエネルギー利用に関しては、旧来より太陽熱温水器等において太陽光の熱エネルギーが利用されてきた。このほか、太陽光の光エネルギーを電気エネルギーに変換して利用する太陽光発電システムが一般家庭に導入され、大規模な太陽光発電所も各国で実用化段階に入りつつある。In recent years, reduction of CO 2 emissions has been demanded worldwide and the use of natural energy has been promoted. Regarding the use of solar energy, solar thermal energy has been used in solar water heaters and the like from the past. In addition, solar power generation systems that convert the light energy of sunlight into electrical energy have been introduced into ordinary households, and large-scale solar power plants are entering the practical stage in various countries.

光エネルギーを電気エネルギーに変換する太陽電池セルは、光電変換する材料分類上、シリコン系、化合物系、有機系、色素増感系などに分類される。このような材料により構成される一般的な太陽電池のセルは、光エネルギーから電力への変換効率が概ね10〜20%程度である。これに対し、太陽光の放射スペクトル範囲を複数の波長帯域に分割し、各波長帯域の光を光電変換するのに最適なバンドギャップの半導体層を複数積層して、光エネルギーから電力への変換効率を40%程度まで高めた、多接合型(タンデム型、積層型などとも称される)の太陽電池セルが開発されている。   Solar cells that convert light energy into electrical energy are classified into silicon-based, compound-based, organic-based, dye-sensitized systems, and the like in terms of photoelectric conversion material classification. A cell of a general solar battery composed of such a material has a conversion efficiency from light energy to electric power of about 10 to 20%. On the other hand, the solar radiation spectrum range is divided into multiple wavelength bands, and multiple semiconductor layers with optimal band gaps for photoelectric conversion of light in each wavelength band are stacked to convert light energy to power Multi-junction type (also referred to as tandem type, stacked type, etc.) solar cells with improved efficiency up to about 40% have been developed.

しかし、上記のような高効率の太陽電池セルは極めて高価であり、航空宇宙などの特殊な用途以外では使用することが困難である。そこで、小型のセルに太陽光を集光して入射させることでコストを低減し、高効率で太陽光発電を行う集光型の太陽電池モジュールが考案されている。集光形式として、太陽光をフレネルレンズや反射鏡等により集光して太陽電池セルに直接入射させるレンズ集光型(特許文献1、特許文献2を参照)、蛍光粒子が分散された蛍光プレートに太陽光を入射させ、プレート内で発生した蛍光をプレート側方に取り出して集光する蛍光プレート集光型(特許文献3を参照)、ホログラムフィルム及び太陽電池セルが挟み込まれたプレートに太陽光を入射させ、ホログラムフィルムにより回折した光を太陽電池セルに導く分光集光型(特許文献4を参照)などが提案されている。   However, the high-efficiency solar cells as described above are extremely expensive and difficult to use except for special applications such as aerospace. In view of this, a concentrating solar cell module has been devised that condenses and enters sunlight into a small cell to reduce costs and to perform solar power generation with high efficiency. As a condensing type, a lens condensing type that condenses sunlight by a Fresnel lens or a reflecting mirror and directly enters the solar cell (see Patent Document 1 and Patent Document 2), a fluorescent plate in which fluorescent particles are dispersed Fluorescent plate condensing type (refer to Patent Document 3), in which sunlight is incident on the plate, and the fluorescence generated in the plate is taken out and collected to the side of the plate, and sunlight is applied to the plate between which the hologram film and the solar battery cell are sandwiched. A spectral condensing type (see Patent Document 4) that guides light diffracted by a hologram film to a solar battery cell has been proposed.

日本国特表2005−142373号公報Japanese National Table 2005-142373 日本国特開2005−217224号公報Japanese Unexamined Patent Publication No. 2005-217224 米国特許出願公開第2006/0107993号明細書US Patent Application Publication No. 2006/0107993 米国特許第6274860号明細書US Pat. No. 6,274,860

しかしながら、上記各集光方式には長所がある反面、次のような課題もがある。例えば、太陽光をフレネルレンズや反射鏡等により集光し、収束光を太陽電池セルに直接入射させる従来のレンズ集光型では、比較的大型のレンズ等と各レンズ等に対応した太陽電池セルが設けられている。このため、レンズ等の焦点距離に応じて装置が大型化するという課題がある。また、多数の太陽電池セルがレンズ等の焦点位置に分散配置されるため装置が複雑化するという課題がある。蛍光プレート集光型や分光集光型は、モジュールの光軸方向寸法(厚さ)を小さく(薄く)できるが、波長依存性や変換効率の面で改善すべき余地がある。   However, each condensing method has advantages, but has the following problems. For example, in the conventional lens condensing type in which sunlight is condensed by a Fresnel lens or a reflecting mirror and the convergent light is directly incident on the solar cell, the solar cell corresponding to a relatively large lens and each lens. Is provided. For this reason, there exists a subject that an apparatus enlarges according to the focal distances, such as a lens. In addition, there is a problem that the apparatus becomes complicated because a large number of solar cells are dispersedly arranged at focal positions such as lenses. The fluorescent plate condensing type and the spectral condensing type can reduce (thin) the dimension (thickness) of the module in the optical axis direction, but there is room for improvement in terms of wavelength dependency and conversion efficiency.

本発明は、上記のような事情に鑑みてなされたものであり、太陽光等の光エネルギーを、簡明な装置で効率的に利用可能な新たな集光装置を提供する。   This invention is made | formed in view of the above situations, and provides the new condensing apparatus which can utilize light energy, such as sunlight, efficiently with a simple apparatus.

本発明を例示する第1の態様は、集光装置である。この集光装置は、第1の集光レンズ及び透明材料により形成され第1の集光レンズにより集光されて入射する入射光を導く第1の集光光学素子と、第2の集光レンズ、及び透明材料により形成され第2の集光レンズにより集光されて入射する入射光を導く第2の集光光学素子とを備えて構成される。第1の集光光学素子及び第2の集光光学素子は、各々、入射光を透過する上面及びこの上面と対向して延びる下面と、上面と下面の間に入射光の光軸と交差して設けられ入射光を反射する反射面(例えば、実施形態における集光反射面25,35)と、反射面の反対側に設けられた出射面とを有し、第1の集光光学素子の反射面と第2の集光光学素子の反射面とが上下に重複せず第1の集光光学素子の出射面と第2の集光光学素子の出射面とが上下に並ぶように第1の集光光学素子と第2の集光光学素子とが上下に重ねて配設されて、第1の集光レンズ及び第2の集光レンズにより集光され各々反射面により反射された光が、第1の集光光学素子及び第2の集光光学素子の出射面に導かれるように構成される。なお、便宜的に、入射光が透過する面を「上面」とし、この上面に対向する面を「下面」と表記するが、集光装置の配設姿勢は光が入射する方位等に応じて任意であり、位置や姿勢を規定するものではない。   The 1st mode which illustrates the present invention is a condensing device. This condensing device includes a first condensing optical element that is formed of a first condensing lens and a transparent material, and that guides incident light that is condensed by the first condensing lens and incident, and a second condensing lens. , And a second condensing optical element that guides incident light that is condensed by the second condensing lens and is incident by the second condensing lens. Each of the first condensing optical element and the second condensing optical element intersects the optical axis of the incident light between the upper surface transmitting the incident light, the lower surface extending opposite to the upper surface, and the upper surface and the lower surface. And reflecting surfaces that reflect incident light (for example, the condensing reflecting surfaces 25 and 35 in the embodiment) and an exit surface provided on the opposite side of the reflecting surface, The reflection surface and the reflection surface of the second condensing optical element do not overlap vertically, and the first condensing optical element emission surface and the second condensing optical element emission surface are aligned vertically. The condensing optical element and the second condensing optical element are arranged one above the other so that the light condensed by the first condensing lens and the second condensing lens and reflected by the reflecting surface is reflected. The first condensing optical element and the second condensing optical element are configured to be guided to the emission surfaces. For convenience, the surface through which incident light is transmitted is referred to as the “upper surface”, and the surface opposite to the upper surface is referred to as the “lower surface”. It is optional and does not define the position or orientation.

この場合において、反射面は、集光レンズにより所定の集束角度または発散角度で反射面に入射する光線の最小入射角が、反射面と空気との界面における全反射角以上となるように設定することが好ましい。また、反射面は、集光レンズにより所定の集束角度または発散角度で入射した入射光の反射後の拡がり角を抑制する曲面状に形成することが好ましい。さらに、反射面は、当該反射面で反射されて下面及び/または上面に入射する光線の最小入射角が、これらの面と空気との界面における全反射角以上となるように設定することが好ましい。   In this case, the reflecting surface is set so that the minimum incident angle of light incident on the reflecting surface at a predetermined focusing angle or diverging angle by the condenser lens is equal to or greater than the total reflection angle at the interface between the reflecting surface and air. It is preferable. The reflecting surface is preferably formed in a curved surface shape that suppresses the spread angle after reflection of incident light incident at a predetermined focusing angle or divergence angle by the condenser lens. Further, the reflecting surface is preferably set so that the minimum incident angle of the light beam reflected by the reflecting surface and incident on the lower surface and / or the upper surface is equal to or greater than the total reflection angle at the interface between these surfaces and air. .

第1の集光光学素子及び第2の集光光学素子は、上面と下面の間を繋ぎ出射面を挟んで相互に対向する第1側面及び第2側面を有し、上面から入射して反射面により反射された光が、上面、下面、第1側面及び第2側面により全反射されて、出射面に導かれるように構成することが好ましい。   The first condensing optical element and the second condensing optical element have a first side surface and a second side surface that connect the upper surface and the lower surface and face each other across the emission surface, and are incident and reflected from the upper surface. It is preferable that the light reflected by the surface is totally reflected by the upper surface, the lower surface, the first side surface and the second side surface and guided to the output surface.

以上の本発明の態様において、上下に重ねて配設される第1の集光光学素子と第2の集光光学素子とは上下に密着して配設され、密着する上面と下面がマッチングにより一体的に結合されるように構成することが好ましい。   In the above aspect of the present invention, the first condensing optical element and the second condensing optical element that are arranged one above the other are arranged in close contact with each other, and the upper and lower surfaces that are in close contact are matched by matching. It is preferable to be configured to be integrally coupled.

なお、第1の集光レンズ及び第2の集光レンズは、各々光を集光する複数の単位集光レンズからなり、第1の集光光学素子、第2の集光光学素子は、各単位集光レンズにより集光されて入射する各入射光に対応して設けられた複数の反射面を有して一体に形成されるように構成することが好ましい。   The first condenser lens and the second condenser lens are each composed of a plurality of unit condenser lenses for condensing light, and the first condenser optical element and the second condenser optical element are respectively It is preferable that a plurality of reflecting surfaces provided corresponding to each incident light that is collected by the unit condenser lens and incident thereon are formed integrally.

また、第1側面は個々の反射面に対応して複数設けられ、第2側面は複数の前記反射面に共通して一体に設けられるように構成することが好ましい。この場合、第1の集光光学素子と第2の集光光学素子とは、第1側面及び第2側面が、出射方向に延びる軸(例えば、実施形態におけるx軸)に対して軸対称になるように形成することが好ましい。   Further, it is preferable that a plurality of first side surfaces are provided corresponding to the respective reflecting surfaces, and a second side surface is provided integrally with the plurality of reflecting surfaces. In this case, the first condensing optical element and the second condensing optical element are symmetrical with respect to an axis (for example, the x axis in the embodiment) in which the first side surface and the second side surface extend in the emission direction. It is preferable to form it as follows.

さらに、第1の集光レンズ及び第2の集光レンズは、各々複数の単位集光レンズがマトリクス状に配設されてレンズアレイが形成され、第1の集光光学素子及び第2の集光光学素子は、各行の単位集光レンズに対応して反射面及び第1側面及び第2側面が形成された素子ユニットが複数列設けられて一体に形成されるように構成することが好ましい。また、反射面と出射面とを結ぶ方向の大きさが上面と下面を結ぶ厚さ方向の大きさに対して充分に大きいプレート状またはシート状に形成されるように構成することが好ましい。   Further, each of the first condenser lens and the second condenser lens has a plurality of unit condenser lenses arranged in a matrix to form a lens array, and the first condenser optical element and the second condenser lens are formed. The optical optical element is preferably configured such that a plurality of element units each having a reflecting surface, a first side surface, and a second side surface are provided corresponding to the unit condenser lens in each row and are integrally formed. Further, it is preferable that the plate is formed in a plate shape or a sheet shape in which the size in the direction connecting the reflection surface and the output surface is sufficiently larger than the size in the thickness direction connecting the upper surface and the lower surface.

本発明を例示する第2の態様は光発電装置である。この態様の光発電装置は、第1の態様の集光装置と、集光装置により出射面に導かれた光を光電変換する光電変換素子とを備えて構成される。   A second aspect illustrating the present invention is a photovoltaic device. The photovoltaic device according to this aspect includes the light collecting device according to the first aspect and a photoelectric conversion element that photoelectrically converts light guided to the emission surface by the light collecting device.

本発明を例示する第3の態様は光熱変換装置である。この態様の光熱変換装置は、第1の態様の集光装置と、集光装置により出射面に導かれた光を光熱変換する光熱変換素子とを備えて構成される。   A third aspect illustrating the present invention is a photothermal conversion device. The photothermal conversion device according to this aspect includes the light condensing device according to the first aspect and a photothermal conversion element that photothermally converts the light guided to the emission surface by the light condensing device.

本発明の第1の態様の集光装置は、第1の集光光学素子、第2の集光光学素子における反射面が上下に重複せず出射面が上下に並ぶように第1の集光光学素子、第2の集光光学素子が上下に重ねて配設されて、第1の集光レンズ、第2の集光レンズにより集光されて各反射面により反射された光が上下に並ぶ出射面に導かれるように構成される。従って、本発明の第1の態様の集光装置によれば、集光効率を向上して太陽光等の光エネルギーを効率的に利用可能な、新たな集光装置を提供することができる。   The condensing device according to the first aspect of the present invention provides the first condensing device such that the reflecting surfaces of the first condensing optical element and the second condensing optical element do not overlap vertically and the exit surfaces are aligned vertically. The optical element and the second condensing optical element are arranged one above the other so that the light condensed by the first condensing lens and the second condensing lens and reflected by the reflecting surfaces is lined up and down. It is comprised so that it may be guide | induced to the output surface. Therefore, according to the condensing device of the first aspect of the present invention, it is possible to provide a new condensing device that can improve the condensing efficiency and efficiently use light energy such as sunlight.

本発明の第2の態様の光発電装置は、上記のような集光装置と、集光装置により集光された光を光電変換する光電変換素子とを備えて構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを効率的に利用可能な光発電装置を提供することができる。   The photovoltaic device according to the second aspect of the present invention includes the above-described condensing device and a photoelectric conversion element that photoelectrically converts light collected by the condensing device. For this reason, the photovoltaic device which can utilize light energy, such as sunlight efficiently, with a thin and simple structure can be provided.

本発明の第3の態様の光熱変換装置は、上記のような集光装置と、集光装置により集光された光を光熱変換する光熱変換素子とを備えて構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを効率的に利用可能な光熱変換装置を提供することができる。   A photothermal conversion device according to a third aspect of the present invention includes the above-described condensing device and a photothermal conversion element that photothermally converts the light collected by the condensing device. For this reason, the photothermal conversion apparatus which can utilize light energy, such as sunlight efficiently, with a thin and simple structure can be provided.

図1は、本発明の態様を例示する光発電装置PVSの外観斜視図である。FIG. 1 is an external perspective view of a photovoltaic power generator PVS illustrating an embodiment of the present invention. 図2は、光発電装置PVSにおける第1構成形態の集光装置1の基本構成を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining the basic configuration of the condensing device 1 of the first configuration form in the photovoltaic power generation device PVS. 図3は、集光装置1において、集光レンズにより集光光学素子に集光入射する光の伝播状態を光線追跡したシミュレーション結果を例示する側面視の概念図である。FIG. 3 is a conceptual diagram of a side view illustrating a simulation result of ray tracing of the propagation state of light condensed and incident on the condensing optical element by the condensing lens in the condensing device 1. 図4は、図3における集光反射面の近傍部分を拡大した画像である。FIG. 4 is an enlarged image of the vicinity of the condensing reflection surface in FIG. 図5は、集光装置1における第1構成例の集光装置1aの斜視図である。FIG. 5 is a perspective view of the light collecting device 1a of the first configuration example in the light collecting device 1. FIG. 図6は集光装置1aの側面図である。FIG. 6 is a side view of the light collecting device 1a. 図7は、集光装置1aを構成する集光光学素子20I(20A,20B,20C)の平面図及び側面図である。FIG. 7 is a plan view and a side view of the condensing optical element 20I (20A, 20B, 20C) constituting the condensing device 1a. 図8は、集光光学素子20Iにおける集光光学素子20A,20Bの平面図及び側面図である。FIG. 8 is a plan view and a side view of the condensing optical elements 20A and 20B in the condensing optical element 20I. 図9は、集光光学素子20Iにおける集光光学素子20C(集光部20s)の平面図及び側面図である。FIG. 9 is a plan view and a side view of the condensing optical element 20C (condenser 20s) in the condensing optical element 20I. 図10は、集光光学素子20Iの素子ユニットを斜め上方から見た斜視図である。FIG. 10 is a perspective view of the element unit of the condensing optical element 20I as viewed obliquely from above. 図11は、集光装置1における第2構成例の集光装置1bの斜視図である。FIG. 11 is a perspective view of the light collecting device 1b of the second configuration example in the light collecting device 1. FIG. 図12は、集光装置1bの側面図である。FIG. 12 is a side view of the light collecting device 1b. 図13は、集光装置1における第3構成例の集光装置1cを構成する集光光学素子20A,20B,20Cの平面図である。FIG. 13 is a plan view of the condensing optical elements 20A, 20B, and 20C constituting the condensing device 1c of the third configuration example in the condensing device 1. FIG. 図14は、集光装置1cの側面図である。FIG. 14 is a side view of the light collecting device 1c. 図15は、第2構成形態の集光装置2における集光光学素子20IIの基本構成を説明するための模式図である。FIG. 15 is a schematic diagram for explaining the basic configuration of the condensing optical element 20II in the condensing device 2 of the second configuration form. 図16は、集光光学素子20IIにおいて、集光レンズにより集光されて入射する入射光と集光反射面との関係を説明するための説明図である。FIG. 16 is an explanatory diagram for explaining the relationship between incident light collected by the condenser lens and incident thereon and the condensing reflection surface in the condensing optical element 20II. 図17は、集光光学素子20IIの集光光学素子20C(集光部20s)を斜め上方から見た斜視図である。FIG. 17 is a perspective view of the condensing optical element 20C (condenser 20s) of the condensing optical element 20II as viewed obliquely from above. 図18(a)は、集光光学素子20IIの光学構造の拡大斜視図、図18(b)は、集光装置2における第1構成例の集光光学素子20C(集光部20s1)の反射光の配向構成を示す概念図、図18(c)は、集光装置2における第2構成例の集光光学素子20C(集光部202)の反射光の配向構成を示す概念図である。18A is an enlarged perspective view of the optical structure of the condensing optical element 20II, and FIG. 18B is a diagram of the condensing optical element 20C (the condensing unit 20s 1 ) of the first configuration example in the condensing device 2. FIG. 18C is a conceptual diagram illustrating the orientation configuration of the reflected light, and FIG. 18C is a conceptual diagram illustrating the orientation configuration of the reflected light of the condensing optical element 20C (the condensing unit 20 2 ) of the second configuration example in the condensing device 2. is there. 図19は、集光装置2における第3構成例の集光装置の概念図である。FIG. 19 is a conceptual diagram of the light concentrating device of the third configuration example in the light concentrating device 2. 図20は、PMMAにおける波長と屈折率との関係を示す表である。FIG. 20 is a table showing the relationship between the wavelength and the refractive index in PMMA. 図21は、太陽光の放射スペクトル分布を表すグラフである。FIG. 21 is a graph showing the radiation spectrum distribution of sunlight. 図22は、第1構成形態の集光装置1に太陽光を入射したときのシミュレーション結果を例示する側面視の概念図である。FIG. 22 is a side view conceptual diagram illustrating a simulation result when sunlight is incident on the light concentrating device 1 of the first configuration form. 図23は、第1構成形態の集光装置1に太陽光を入射したときのシミュレーション結果を例示する斜め上方から見た概念図である。FIG. 23 is a conceptual diagram illustrating a simulation result when sunlight is incident on the concentrating device 1 of the first configuration form, as viewed from obliquely above. 図24(a)は、集光装置1aに太陽光を入射したときのシミュレーション結果を側方から見た拡大図、図24(b)は、集光装置1aに太陽光を入射したときのシミュレーション結果を集光光学素子20A,20B,20Cの上方から見た拡大図である。FIG. 24A is an enlarged view of a simulation result when sunlight is incident on the light collecting device 1a, and FIG. 24B is a simulation when sunlight is incident on the light collecting device 1a. It is the enlarged view which looked at the result from condensing optical element 20A, 20B, 20C from the upper part. 図25(a),(b),及び(c)は、それぞれ上記集光装置1aのシミュレーション結果を、集光光学素子20A,20B,及び20Cの側方から見た場合の部分拡大図である。25 (a), (b), and (c) are partially enlarged views of the simulation results of the condensing device 1a when viewed from the side of the condensing optical elements 20A, 20B, and 20C, respectively. . 図26は、上記集光装置1aの出力部から出射する光の照度分布を表す説明図である。FIG. 26 is an explanatory diagram showing the illuminance distribution of the light emitted from the output unit of the light collecting device 1a. 図27(a)は、集光光学素子20A,20B,20Cを接着した集光装置1aに太陽光を入射したときのシミュレーション結果を側方から見た拡大図、図27(b)は、集光光学素子20A,20B,20Cを接着した集光装置1aに太陽光を入射したときのシミュレーション結果を、集光光学素子20A,20B,20Cを上方から見た拡大図である。FIG. 27A is an enlarged view of a simulation result when sunlight is incident on the light collecting apparatus 1a to which the light collecting optical elements 20A, 20B, and 20C are bonded, and FIG. It is the enlarged view which looked at condensing optical element 20A, 20B, 20C from the upper direction, and the simulation result when sunlight injects into the condensing apparatus 1a which adhere | attached optical optical element 20A, 20B, 20C. 図28(a),(b),及び(c)は、それぞれ上記集光装置1aのシミュレーション結果を、集光光学素子20A,20B,及び20Cの側方から見た場合の部分拡大図である。28 (a), (b), and (c) are partially enlarged views of the simulation results of the condensing device 1a when viewed from the side of the condensing optical elements 20A, 20B, and 20C, respectively. . 図29は、上記集光装置1aの出力部から出射する光の照度分布を表す説明図である。FIG. 29 is an explanatory diagram showing the illuminance distribution of the light emitted from the output unit of the light collecting device 1a. 図30(a)は、集光装置1cに太陽光を入射したときのシミュレーション結果を側方から見た拡大図、図30(b)は、集光装置1cに太陽光を入射したときのシミュレーション結果を、集光光学素子20A,20B,20Cの上方から見た拡大図である。FIG. 30A is an enlarged view of a simulation result when sunlight is incident on the light collecting device 1c, and FIG. 30B is a simulation when sunlight is incident on the light collecting device 1c. It is the enlarged view which looked at the result from upper direction of condensing optical element 20A, 20B, 20C. 図31(a),(b),及び(c)は、それぞれ上記集光装置1cのシミュレーション結果を、集光光学素子20A,20B,及び20Cの側方から見た場合の部分拡大図である。31 (a), (b), and (c) are partially enlarged views of the simulation results of the light collecting device 1c when viewed from the side of the light collecting optical elements 20A, 20B, and 20C, respectively. . 図32は、上記集光装置1cの出力部から出射する光の照度分布を表す説明図である。FIG. 32 is an explanatory diagram showing the illuminance distribution of the light emitted from the output unit of the light collecting device 1c. 図33は、集光光学素子からの光エネルギーの取り出し手法を例示する概念図である。FIG. 33 is a conceptual diagram illustrating a method for extracting light energy from the condensing optical element. 図34(a)は集光装置1dの斜視図、図34(b)は集光装置1dを構成する集光光学素子20I(20A,20B,20C)の平面図である。FIG. 34A is a perspective view of the condensing device 1d, and FIG. 34B is a plan view of the condensing optical element 20I (20A, 20B, 20C) constituting the condensing device 1d.

以下、本発明を実施するための形態について図面を参照しながら説明する。本発明の態様を例示する光発電装置PVSの外観斜視図を図1に示す。また、光発電装置PVSにおける第1構成形態の集光装置1の原理を説明するための概念図を図2に示す。説明を明瞭化するため、相互に直行するx軸、y軸、z軸から成る座標系を規定し、これを図1中に示す。z軸は光発電装置PVSにおける集光装置1の厚さ方向に延びる軸、x軸は集光装置1により集光されて取り出される光の取り出し方向に延びる軸、y軸はこれらの2軸と直交する方向に延びる軸である。説明の便宜上、図2に示す姿勢をもって上下左右ということがあるが、光発電装置PVSの配設姿勢は光の入射方位に応じて任意であり、位置や姿勢を規定するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows an external perspective view of a photovoltaic power generator PVS illustrating an embodiment of the present invention. Moreover, the conceptual diagram for demonstrating the principle of the condensing apparatus 1 of the 1st structure form in the photovoltaic device PVS is shown in FIG. In order to clarify the explanation, a coordinate system composed of an x-axis, a y-axis and a z-axis orthogonal to each other is defined, and this is shown in FIG. The z-axis is an axis extending in the thickness direction of the light collecting device 1 in the photovoltaic device PVS, the x-axis is an axis extending in the extraction direction of light collected and extracted by the light collecting device 1, and the y-axis is these two axes. It is an axis extending in an orthogonal direction. For convenience of explanation, the orientation shown in FIG. 2 may be referred to as up, down, left, and right, but the orientation of the photovoltaic device PVS is arbitrary depending on the incident direction of light, and does not define the position or orientation.

[光発電装置及び集光装置の概要]
装置全体の概要を把握するため、まず光発電装置PVSの全体構成について説明する。光発電装置PVSは、入射する光を集光する集光装置1、2と、集光装置1、2により集光されて端部に導かれた光を光電変換する光電変換素子5とを備えて構成される。図1及び図2に示す集光装置1、2は、上方から入射する光(例えば太陽光)を集光する第1の集光レンズ10A,第2の集光レンズ10Bと、透明材料により形成され第1の集光レンズ及び第2の集光レンズにより集光されて入射する入射光を導く第1の集光光学素子20A,第2の集光光学素子20Bとを備えて構成される。
[Outline of photovoltaic device and condensing device]
In order to grasp the outline of the entire apparatus, first, the overall configuration of the photovoltaic power generation apparatus PVS will be described. The photovoltaic device PVS includes condensing devices 1 and 2 that collect incident light, and a photoelectric conversion element 5 that photoelectrically converts the light collected by the condensing devices 1 and 2 and guided to the end. Configured. 1 and 2 are formed of a first condensing lens 10A and a second condensing lens 10B that condense light (for example, sunlight) incident from above and a transparent material. The first condensing optical element 20A and the second condensing optical element 20B that guide incident light that is condensed by the first condensing lens and the second condensing lens are configured.

第1の集光レンズ10A,第2集光レンズ10B、第1の集光光学素子20A,第2の集光光学素子20Bはそれぞれ、基本的に同じ構造の複数の集光レンズまたは集光光学素子を組み合わせて構成される。集光レンズ10(10A,10B)、集光光学素子20(20A,20B)は、例えば光学ガラス等の無機材料やPMMA等の樹脂材料を用いて作製される。図1は、集光レンズと集光光学素子からなる集光構造を二組設けた例を示しているが、集光レンズと集光光学素子の組数は三組以上であっても良い。   The first condenser lens 10A, the second condenser lens 10B, the first condenser optical element 20A, and the second condenser optical element 20B are each basically a plurality of condenser lenses or condenser optics having the same structure. It is configured by combining elements. The condensing lens 10 (10A, 10B) and the condensing optical element 20 (20A, 20B) are manufactured using, for example, an inorganic material such as optical glass or a resin material such as PMMA. FIG. 1 shows an example in which two sets of condensing structures including a condensing lens and a condensing optical element are provided, but the number of condensing lenses and condensing optical elements may be three or more.

図1に示す集光レンズ10(10A,10B)は、下添え字を付して示す複数の単位集光レンズをx軸方向及びy軸方向に複数行×複数列(m行×n列、m及びnは自然数)並べてマトリクス状に配設したレンズアレイにより構成した例を示す。レンズアレイは、複数の単位集光レンズをマトリクス状に一体成型して構成してもよいし、あるいは、個々に形成した単位集光レンズを枠体等にマトリクス状に配置固定して構成してもよい。   The condensing lens 10 (10A, 10B) shown in FIG. 1 includes a plurality of unit condensing lenses indicated by subscripts in a plurality of rows × a plurality of columns (m rows × n columns, in the x-axis direction and the y-axis direction, An example in which m and n are natural numbers) is configured by a lens array arranged in a matrix. The lens array may be configured by integrally molding a plurality of unit condenser lenses in a matrix shape, or may be configured by arranging and fixing individually formed unit condenser lenses in a matrix form on a frame or the like. Also good.

集光光学素子20(20A,20B)は、各々の集光レンズである単位集光レンズにより集光されて入射する入射光を反射する集光反射面を有し、上面22で入射した光をx軸方向に導くように構成される。図1に示す集光光学素子20は、複数の単位集光レンズ1011,1012,…10m1,10m2,…10mnにより集光入射する各入射光に対応する複数(m行×n列)の集光反射面を有し、一体のプレート状に形成した構成例である。光電変換素子5は、公知の種々の素子を用いることができ、例えば、前述した種々の形態の太陽電池セルを用いて構成することができる。The condensing optical element 20 (20A, 20B) has a condensing reflection surface that reflects incident light that is collected and incident by a unit condensing lens that is each condensing lens. It is configured to guide in the x-axis direction. The condensing optical element 20 shown in FIG. 1 has a plurality (m rows × n) corresponding to each incident light that is condensed and incident by a plurality of unit condensing lenses 10 11 , 10 12 ,... 10 m 1 , 10 m 2 ,. This is an example of a configuration in which the light collecting and reflecting surfaces are arranged in a single plate. As the photoelectric conversion element 5, various known elements can be used, and for example, the photoelectric conversion element 5 can be configured using the solar cells of various forms described above.

ここで、第1構成形態の集光装置1と、後述する第2構成形態の集光装置2とは、集光光学素子20の構成が相違する。そこで、両者を区別する際には、第1構成形態の集光光学素子20を集光光学素子20I、第2構成形態の集光光学素子20を集光光学素子20IIと表記する。   Here, the condensing optical element 20 differs in the condensing device 1 of the 1st structure form and the condensing apparatus 2 of the 2nd structure form mentioned later. Therefore, when distinguishing between them, the condensing optical element 20 of the first configuration form is referred to as a condensing optical element 20I, and the condensing optical element 20 of the second configuration form is referred to as a condensing optical element 20II.

[第1構成形態の集光装置]
図2は、第1構成形態の集光装置1における集光光学素子20Iの基本構成を説明するための模式図であり、集光レンズ10により集光されて集光光学素子20Iに入射した光が、集光反射面25により反射されて素子内を伝播する様子を模式的に描いた図である。
[Condenser of First Configuration]
FIG. 2 is a schematic diagram for explaining the basic configuration of the condensing optical element 20I in the condensing device 1 of the first configuration form, and the light collected by the condensing lens 10 and incident on the condensing optical element 20I. FIG. 6 is a diagram schematically illustrating a state in which the light is reflected by the condensing reflection surface 25 and propagates in the element.

集光光学素子20Iは、集光レンズ10により集光され基材21に入射する入射光を透過する上面22と、上面に対向して平行に延びる下面23と、上面22,下面23の間に入射光の光軸LAと交差して設けられ入射光を反射する集光反射面25と、集光反射面25の反対側に設けられた出射面26とを有して構成される。図示する形態は、集光反射面25を上面と下面を繋ぐ傾斜平面とした構成を示す。   The condensing optical element 20I includes an upper surface 22 that transmits incident light that is collected by the condensing lens 10 and is incident on the base material 21, a lower surface 23 that extends in parallel to face the upper surface, and an upper surface 22 and a lower surface 23. It has a condensing reflection surface 25 provided to intersect the optical axis LA of incident light and reflecting incident light, and an exit surface 26 provided on the opposite side of the condensing reflection surface 25. The form to show shows the structure which used the condensing reflective surface 25 as the inclined plane which connects an upper surface and a lower surface.

図3及び図4に、集光レンズ10により集光されて集光光学素子20Iに入射した光が集光光学素子20の内部をどのように伝播するか、光線追跡(Ray-trace)したシミュレーション結果を示す。図4は、図3における集光反射面25の近傍部分を拡大したシミュレーション結果であり、図4(a)は集光反射面25の近傍をy軸方向に見た図、図4(b)は集光反射面25の近傍を斜め下方から見た図である。   3 and 4, a ray-trace simulation of how the light collected by the condenser lens 10 and incident on the condenser optical element 20I propagates inside the condenser optical element 20. Results are shown. 4 is a simulation result in which the vicinity of the condensing reflection surface 25 in FIG. 3 is enlarged, and FIG. 4A is a view of the vicinity of the condensing reflection surface 25 in the y-axis direction, and FIG. These are the figures which looked at the vicinity of the condensing reflective surface 25 from diagonally downward.

図4(b)に示すように、集光光学素子20Iは、上面22と下面23間において集光反射面25と出射面26との間を繋ぎ、相互に対向して平行に延びる第1側面24a及び第2側面24bを有してy−z断面が方形となるように形成される。   As shown in FIG. 4B, the condensing optical element 20I connects the condensing reflection surface 25 and the exit surface 26 between the upper surface 22 and the lower surface 23, and extends in parallel so as to face each other. It has 24a and 2nd side surface 24b, and is formed so that a yz cross section may become a square.

集光レンズ10により集光されつつ上面22から入射し、集光反射面25により反射された光は、集光レンズ10の形状に応じて円錐状または角錐状に拡がって集光光学素子20内を伝播する。集光光学素子20は、上面22から入射した光が、集光反射面25、上面22、下面23、第1側面24a、第2側面24bにおいて全反射されてx軸方向(図2における右方)に導かれ、出射面26に取り出されるように構成される。   The light that is incident on the upper surface 22 while being condensed by the condenser lens 10 and is reflected by the condenser reflection surface 25 spreads in a conical shape or a pyramid shape according to the shape of the condenser lens 10, and enters the condensing optical element 20. To propagate. In the condensing optical element 20, light incident from the upper surface 22 is totally reflected on the condensing reflection surface 25, the upper surface 22, the lower surface 23, the first side surface 24 a, and the second side surface 24 b, and the x-axis direction (rightward in FIG. 2). ) And is extracted to the exit surface 26.

集光レンズ10により集光されて集光反射面25に入射する光に関して、図2中の集光反射面近傍の部分拡大図に示されるように、集光レンズ10の中心を通って光軸LAに沿って集光反射面25に入射する光線の入射角(便宜的に「光軸入射角」という)θ1LAと、位置集光レンズ10の外周部を通って光軸LAとは角度をなして集光反射面25に入射する光線の入射角とは異なる。この部分拡大図から明らかなように、集光反射面25による反射方向側のレンズ外周部を通って集光反射面25に入射する光線の入射角が最小入射角θ1minとなる。With respect to the light collected by the condenser lens 10 and incident on the condenser reflection surface 25, the optical axis passes through the center of the condenser lens 10 as shown in the partially enlarged view in the vicinity of the condenser reflection surface in FIG. The angle of incidence of light incident on the condensing reflection surface 25 along LA (for convenience, the “optical axis incident angle”) θ1 LA and the optical axis LA through the outer periphery of the position condensing lens 10 are Therefore, the incident angle of the light ray incident on the condensing reflection surface 25 is different. As is clear from this partial enlarged view, the incident angle of the light beam that enters the condensing reflection surface 25 through the lens outer peripheral portion on the reflection direction side by the condensing reflection surface 25 is the minimum incident angle θ1 min .

集光光学素子20では、集光反射面25に集光入射する光線の最小入射角θ1minが、集光反射面25における全反射角以上となるように設定される。具体的には、集光光学素子の基材21の屈折率n及び集光レンズ10の開口数NA(NA=nsinθNA:θNAは集光レンズを出射する光線の光軸LAに対する最大角)を所定値としたときに、上記最小入射角θ1minが集光反射面25における全反射角以上になるように、集光反射面25の傾斜角θ25を設定することができる。In the condensing optical element 20, the minimum incident angle θ < b > 1 min of the light beam that is collected and incident on the condensing reflection surface 25 is set to be equal to or greater than the total reflection angle on the condensing reflection surface 25. Specifically, the refractive index n of the base material 21 of the condensing optical element and the numerical aperture NA of the condensing lens 10 (NA = n sin θ NA : θ NA is the maximum angle with respect to the optical axis LA of the light beam emitted from the condensing lens). The inclination angle θ 25 of the condensing / reflecting surface 25 can be set so that the minimum incident angle θ 1 min is equal to or greater than the total reflection angle at the condensing / reflecting surface 25.

集光光学素子の基材21の屈折率n及び集光反射面25の傾斜角θ25を所定値とし、最小入射角θ1minが集光反射面25における全反射角以上となるように、集光レンズ10の開口数NA(一般的には、集光レンズ10の焦点距離f)を設定しても良い。あるいは、集光レンズ10の開口数NA及び集光反射面25の傾斜角θ25を所定値とし、最小入射角θ1minが集光反射面25における全反射角以上となるように、集光光学素子の基材21の屈折率nを設定すること、具体的には基材21の材質やドープする添加物等を選択することにより設定することもできる。The refractive index n of the base 21 of the condensing optical element and the inclination angle θ 25 of the converging / reflecting surface 25 are set to predetermined values, and the light is collected so that the minimum incident angle θ 1 min is equal to or greater than the total reflection angle on the condensing / reflecting surface 25. The numerical aperture NA of the optical lens 10 (generally, the focal length f of the condenser lens 10) may be set. Alternatively, the condensing optics so that the numerical aperture NA of the condensing lens 10 and the inclination angle θ 25 of the condensing reflection surface 25 are set to predetermined values, and the minimum incident angle θ 1 min is equal to or greater than the total reflection angle on the condensing reflection surface 25. It is also possible to set the refractive index n of the base material 21 of the element, specifically by selecting the material of the base material 21 and the additive to be doped.

集光反射面25で全反射した光全体を下面23に入射する際には、集光反射面25に最小入射角θ1minで入射し反射された光線が下面23(及び上面22)において最大入射角で入する。一方、集光反射面25に最大入射角で入射し反射された光線が下面23(及び上面22)において最小入射角θ2minで入する。従って、集光反射面25、上面22,下面23及び第1側面24a,第2側面24bのそれぞれが、空気との界面において全反射の条件を満たすように、集光反射面25の傾斜角θ25、集光レンズ10の開口数NA、集光光学素子20の屈折率nは設定される。When the entire light totally reflected by the condensing / reflecting surface 25 is incident on the lower surface 23, the light beam incident and reflected by the condensing / reflecting surface 25 at the minimum incident angle θ 1 min is maximally incident on the lower surface 23 (and the upper surface 22). Enter at the corner. On the other hand, a light beam incident and reflected on the condensing reflection surface 25 at the maximum incident angle enters the lower surface 23 (and the upper surface 22) at the minimum incident angle θ2 min . Accordingly, the inclination angle θ of the condensing / reflecting surface 25 is set so that each of the condensing / reflecting surface 25, the upper surface 22, the lower surface 23, the first side surface 24a, and the second side surface 24b satisfies the condition of total reflection at the interface with air. 25 , the numerical aperture NA of the condenser lens 10 and the refractive index n of the condenser optical element 20 are set.

このような構成によれば、集光レンズ10により集光されて集光光学素子20の上面22から入射した入射光が、集光光学素子20内に入射して以降、空気との全ての界面(集光反射面25、上面22,下面23、第1側面24a,第2側面24b)で全反射され、出射面26に導かれる。そのため、集光光学素子20に入射した光の波長依存性は低く、閉じ込め効率は高くすることができるので、集光した光を高効率で出射面26に導くことができる。   According to such a configuration, the incident light that is condensed by the condenser lens 10 and incident from the upper surface 22 of the condenser optical element 20 enters the condenser optical element 20, and then all the interfaces with air. The light is totally reflected by the condensing reflection surface 25, the upper surface 22, the lower surface 23, the first side surface 24 a, and the second side surface 24 b, and is guided to the emission surface 26. Therefore, the wavelength dependency of the light incident on the condensing optical element 20 is low and the confinement efficiency can be increased, so that the condensed light can be guided to the emission surface 26 with high efficiency.

なお、上記いずれかの面、例えば下面23に、基材21と屈折率が異なる保護膜等の膜を形成した場合には、基材21と膜との界面において膜の屈折率に応じた光の屈折が生じる。しかしながら、基材21と膜との界面、及び膜と空気との界面においてスネルの法則が成立し、下面23に入射する光の傾斜角が基材21と空気との界面における全反射角以上になっていれば、少なくとも膜と空気との界面において全反射条件が満たされされ、入射光が集光光学素子20の内部に閉じ込められる。   When a film such as a protective film having a refractive index different from that of the base material 21 is formed on any of the above surfaces, for example, the lower surface 23, light corresponding to the refractive index of the film at the interface between the base material 21 and the film. Refraction occurs. However, Snell's law is established at the interface between the base material 21 and the film and between the film and air, and the inclination angle of the light incident on the lower surface 23 is greater than the total reflection angle at the interface between the base material 21 and the air. If so, the total reflection condition is satisfied at least at the interface between the film and air, and the incident light is confined in the condensing optical element 20.

また、上記の保護膜等を有する構成において、下面に入射する光の傾斜角が基材21と膜との界面における全反射角以上になっている場合は、基材21と膜との界面において全反射条件が満たされ、下面に入射した光は膜中に進入することなく基材中へ全反射される。そのため、膜の外側表面が平滑でない等の理由により膜と空気の界面で全反射条件を維持できない場合でも、集光光学素子20に入射した光が集光光学素子20内に閉じ込められ、出射面26に取り出される。   Further, in the configuration having the above protective film or the like, when the inclination angle of the light incident on the lower surface is equal to or greater than the total reflection angle at the interface between the base material 21 and the film, at the interface between the base material 21 and the film The total reflection condition is satisfied, and the light incident on the lower surface is totally reflected into the substrate without entering the film. Therefore, even when the total reflection condition cannot be maintained at the interface between the film and air because the outer surface of the film is not smooth, the light incident on the condensing optical element 20 is confined in the condensing optical element 20, and the exit surface 26 is taken out.

集光装置1においては、集光レンズ10及び集光光学素子20Iは、集光レンズ10により集光されて素子内に入射する入射光が、集光反射面25の面上またはその近傍に焦点を結ぶように構成される。なお、物質の屈折率は透過する光の波長λによって変化する。そのため、集光しようとする光の波長λが幅を持つ場合に、短波長側の光の焦点位置と長波長側の光の焦点位置は一般的に異なり、焦点位置が波長帯域の広さに応じた幅を持つ。光集光装置1においては、入射光の波長を太陽光の放射スペクトルに応じてλ=350〜1100nmとし、集光レンズ10として色収差の少ないレンズを用いるとともに、集光反射面25上でビームスポット径が最小となるように設定している。   In the condensing device 1, the condensing lens 10 and the condensing optical element 20 </ b> I focus incident light that is condensed by the condensing lens 10 and enters the element on or near the condensing reflection surface 25. Configured to tie. Note that the refractive index of the substance varies depending on the wavelength λ of the transmitted light. Therefore, when the wavelength λ of the light to be collected has a width, the focal position of the light on the short wavelength side and the focal position of the light on the long wavelength side are generally different, and the focal position is wide in the wavelength band. It has a corresponding width. In the light condensing device 1, the wavelength of incident light is set to λ = 350 to 1100 nm according to the radiation spectrum of sunlight, and a lens with little chromatic aberration is used as the condensing lens 10 and a beam spot on the condensing reflection surface 25. The diameter is set to be the minimum.

このような構成により、集光反射面25の投影面積を最小化することができ、これにより集光光学素子20Iの厚さを最小化することができる。なお入射光の波長帯域が狭い場合や色収差を補償可能な場合には、入射光の焦点位置を集光反射面25上に合わせて設定することができる。一方、焦点位置における入射光のパワー密度等に応じて、僅かにデフォーカスするように構成しても良い。   With such a configuration, the projected area of the condensing reflection surface 25 can be minimized, and thereby the thickness of the condensing optical element 20I can be minimized. If the wavelength band of incident light is narrow or if chromatic aberration can be compensated, the focal position of incident light can be set on the condensing reflection surface 25. On the other hand, you may comprise so that it may defocus slightly according to the power density etc. of the incident light in a focus position.

集光反射面25で全反射された光は、上面22、下面23、第1側面24a、第2側面24bの各面で全反射されて光学素子20内をx軸方向に伝播し、出射面26から取り出される。図示する構成形態において、出射面26はy−z平面に沿って形成されるとともに端面が研磨されて反射防止コーティングが施されており、光学素子20内を伝播して出射面26に入射した光が、出射面26で反射されることなく出射して光電変換素子5に入射する。   The light totally reflected by the condensing reflection surface 25 is totally reflected by each of the upper surface 22, the lower surface 23, the first side surface 24a, and the second side surface 24b, propagates in the optical element 20 in the x-axis direction, and is emitted. 26. In the configuration shown in the drawing, the exit surface 26 is formed along the yz plane and the end surface is polished and anti-reflection coating is applied, and light that propagates through the optical element 20 and enters the exit surface 26. However, the light is emitted without being reflected by the light exit surface 26 and enters the photoelectric conversion element 5.

以上、集光光学素子20Iの基本構成(単位構成)について説明した。説明では、集光反射面25について、屈折率差を利用した全反射とする構成を説明したが、集光反射面25に、例えばAu,Ag,Al等の金属を蒸着したミラーを形成して、それにより入射光を反射させる構成とすることもできる。この場合、集光反射面25において反射損失が発生するが、光軸入射角θ1LAを小さく(集光反射面25の傾斜角θ25を小さく)することができる。例えば、光軸入射角θ25を45度にすれば、集光反射面25で反射された光の、上面22、下面23、第1側面24a、第2側面24bへの最小入射角が大きくなるため、より開口数が大きい短焦点の集光レンズを用いることができ、これにより集光装置1の厚さを低減することができる。なお、説明簡明化のため、集光反射面25を平面とした場合を例示したが、後述する第2構成形態の集光光学素子20IIの集光反射面35のように所定形状の凸面または凹面等としても良い。The basic configuration (unit configuration) of the condensing optical element 20I has been described above. In the description, the condensing / reflecting surface 25 is described as having a total reflection using a difference in refractive index, but a mirror on which a metal such as Au, Ag, or Al is deposited is formed on the condensing / reflecting surface 25. Thereby, it can also be set as the structure which reflects incident light. In this case, the reflection loss in the light converging reflection surface 25 is generated, it is possible to reduce the optical axis incident angle .theta.1 LA (small inclination angle theta 25 of condensing and reflecting surface 25). For example, if the optical axis incident angle θ 25 is set to 45 degrees, the minimum incident angle of the light reflected by the condensing reflection surface 25 to the upper surface 22, the lower surface 23, the first side surface 24a, and the second side surface 24b increases. Therefore, a short-focus condenser lens having a larger numerical aperture can be used, whereby the thickness of the condenser 1 can be reduced. For the sake of simplicity of explanation, the case where the condensing reflection surface 25 is a flat surface is illustrated, but a convex or concave surface having a predetermined shape such as a condensing reflection surface 35 of the condensing optical element 20II of the second configuration form to be described later. And so on.

次に、第1構成形態の集光装置1の具体的な構成例について、3組の集光レンズ10及び集光光学素子20により集光装置を構成した場合について説明する。まず、本構成形態における第1構成例の集光装置1aについて図5〜図10を参照して説明する。図5は集光装置1aの斜視図、図6は集光装置1aの側面図、図7は集光装置1aを構成する集光光学素子20A,20B,20Cの平面図及び側面図、図8は集光光学素子20A,20Bの平面図及び側面図、図9は集光光学素子20Cの平面図及び側面図、図10は集光光学素子20Cの素子ユニットを斜め上方から見た斜視図である。   Next, a specific configuration example of the condensing device 1 of the first configuration form will be described in the case where the condensing device is configured by three sets of the condensing lens 10 and the condensing optical element 20. First, the condensing apparatus 1a of the 1st structural example in this structure form is demonstrated with reference to FIGS. 5 is a perspective view of the condensing device 1a, FIG. 6 is a side view of the condensing device 1a, FIG. 7 is a plan view and a side view of the condensing optical elements 20A, 20B, and 20C constituting the condensing device 1a. 9 is a plan view and a side view of the condensing optical elements 20A and 20B, FIG. 9 is a plan view and a side view of the condensing optical element 20C, and FIG. 10 is a perspective view of the element unit of the condensing optical element 20C as viewed obliquely from above. is there.

各図では、集光光学素子を上方から見たときに透視される集光反射面25を実線で表している。また、図6〜図8中に集光レンズ光軸に対応させて示した1〜30の数値は、集光光学素子20A,20B,20Cにおける単位集光レンズ及び集光反射面25の列数を、上流側(20A側)から順に付与したときの列番号であり、1〜10が集光光学素子20A、11〜20が集光光学素子20B、21〜30集光光学素子20Cの単位集光レンズまたは集光反射面に該当する。   In each figure, the condensing reflection surface 25 seen through when the condensing optical element is viewed from above is indicated by a solid line. The numerical values 1 to 30 shown in FIGS. 6 to 8 corresponding to the optical axis of the condensing lens are the number of unit condensing lenses and condensing reflection surfaces 25 in the condensing optical elements 20A, 20B, and 20C. Are the column numbers in the order from the upstream side (20A side), 1 to 10 are the condensing optical elements 20A, 11 to 20 are the condensing optical elements 20B, and 21 to 30 are the unit collections of the condensing optical elements 20C. Corresponds to optical lens or condensing reflection surface.

集光装置1aは、3つの集光レンズ(レンズアレイ)10A,10B,10Cと、3つの集光光学素子20A,20B,20Cとからなり、集光レンズ10A,10B,10C及び集光光学素子20A,20B,20Cは、各々m行×n列の単位集光レンズ及びこれに対応する集光反射面25を有して構成される。   The condensing device 1a includes three condensing lenses (lens arrays) 10A, 10B, and 10C and three condensing optical elements 20A, 20B, and 20C, and the condensing lenses 10A, 10B, and 10C and the condensing optical elements. Each of 20A, 20B, and 20C has a unit condenser lens of m rows × n columns and a condensing reflection surface 25 corresponding thereto.

集光光学素子20A,20B,20Cは、図7〜図9に示すように、m行×n列の集光反射面25を備えた櫛歯状の集光部20sを主体として構成される。集光部20sは、図10に示すように、1行×n列分の集光反射面25が形成された素子ユニット200(201,202,203…)を単位とし、これをm個(m行分)並列に合体して構成される。各図には、m=n=10、すなわち10行×10列とした構成形態を例示する。   As shown in FIGS. 7 to 9, the condensing optical elements 20A, 20B, and 20C are mainly composed of a comb-like condensing part 20s having condensing reflection surfaces 25 of m rows × n columns. As shown in FIG. 10, the light condensing unit 20 s is composed of m element units 200 (201, 202, 203...) In which the light converging reflection surfaces 25 for 1 row × n columns are formed. Lines) Composed in parallel. Each figure illustrates a configuration form in which m = n = 10, that is, 10 rows × 10 columns.

各素子ユニット200には、10か所の集光反射面25,25,25…がx軸に沿って所定間隔で並んで形成されている。これらの集光反射面25,25,25…は、各集光反射面で反射された光が他の集光反射面にかからないように、すなわち他の集光反射面により遮られないように、集光反射面25、及び第1側面24a,第2側面24bがx軸から僅かに傾斜して(図9において数度程度左右方向に傾斜して)形成されている。第2側面24bは連続する1枚の平面で形成され、第1側面24aは集光反射面25を挟んで階段状ないし鋸刃状に形成される。   In each element unit 200, ten condensing / reflecting surfaces 25, 25, 25,... Are arranged at predetermined intervals along the x-axis. These light collecting / reflecting surfaces 25, 25, 25... Are arranged so that the light reflected by each light collecting / reflecting surface is not applied to other light collecting / reflecting surfaces, that is, not blocked by other light collecting / reflecting surfaces. The condensing reflection surface 25, the first side surface 24a, and the second side surface 24b are formed to be slightly inclined from the x axis (inclined in the left-right direction by several degrees in FIG. 9). The second side surface 24b is formed by one continuous plane, and the first side surface 24a is formed in a stepped shape or a saw blade shape with the condensing reflection surface 25 interposed therebetween.

すなわち、素子ユニット200は、個々に上面22,下面23、集光反射面25、第1側面24a,第2側面24b、及び出射面26を有する角柱状の単位集光素子を10個並列に束ね、相互に接する第1側面24a及び第2側面24bを排して側面を共有化し、これにより10個の単位集光素子を一体に集積したものである。各集光光学素子20A,20B,20Cの集光部20sは、この素子ユニット200を10枚並列に並べて一体のプレート状に形成したものであり、100個の単位集光素子を一体に集積した機能素子に相当する。   That is, in the element unit 200, 10 prismatic unit condensing elements each having an upper surface 22, a lower surface 23, a condensing reflection surface 25, a first side surface 24a, a second side surface 24b, and an exit surface 26 are bundled in parallel. The first side surface 24a and the second side surface 24b that are in contact with each other are removed to share the side surface, thereby integrating the 10 unit condensing elements integrally. The condensing part 20s of each condensing optical element 20A, 20B, 20C is formed by arranging ten element units 200 in parallel and forming an integral plate, and 100 unit condensing elements are integrated together. It corresponds to a functional element.

そして、集光装置1においては、集光光学素子20A,20B,20Cの集光反射面25,25,25…が上下に重複せず、各集光光学素子の出射面26が上下に並ぶように構成される。具体的には、集光光学素子20A,20Bは、図8に示すように、基材21がx軸方向に延設されて平板状の導光部20tが形成される。そして集光光学素子20Aの導光部20tの上に集光光学素子20Bが載置され、集光光学素子20Bの導光部20tの上に集光光学素子20Cが載置されて、集光光学素子20A,20B,20Cの出射面26,26,26が上下に並んで配置されるようになっている。   In the condensing device 1, the condensing reflection surfaces 25, 25, 25... Of the condensing optical elements 20A, 20B, and 20C do not overlap vertically, and the exit surfaces 26 of the respective condensing optical elements are aligned vertically. Configured. Specifically, in the condensing optical elements 20A and 20B, as shown in FIG. 8, the base material 21 is extended in the x-axis direction to form a flat light guide 20t. The condensing optical element 20B is placed on the light guide portion 20t of the condensing optical element 20A, and the condensing optical element 20C is placed on the light guide portion 20t of the condensing optical element 20B. The emission surfaces 26, 26, 26 of the optical elements 20A, 20B, 20C are arranged side by side.

このとき、集光光学素子20Aの集光反射面25と、集光光学素子20Bの集光反射面25と、集光光学素子20Cの集光反射面25とは、z軸方向の高さ位置が導光部20tの厚さ分異なっている。一方、第1構成例の集光装置1aの集光レンズ10A,10B,10Cは、いずれも同じ焦点距離(例えば焦点距離f=20mm)の単位集光レンズをマトリクス状に配設した同一のレンズアレイである。そのため、第1構成例の集光装置1aでは、集光反射面の高さ位置の差異に対応して集光レンズ10A,10B,10Cの高さ位置を異ならせ(図6を参照)、集光レンズを介して各集光光学素子20A,20B,20Cに入射する入射光が、各集光部20sの集光反射面25に同じ条件で入射するように設定している。   At this time, the condensing reflection surface 25 of the condensing optical element 20A, the condensing reflection surface 25 of the condensing optical element 20B, and the condensing reflection surface 25 of the condensing optical element 20C are height positions in the z-axis direction. Are different by the thickness of the light guide 20t. On the other hand, the condensing lenses 10A, 10B, and 10C of the condensing device 1a of the first configuration example are all the same lens in which unit condensing lenses having the same focal length (for example, focal length f = 20 mm) are arranged in a matrix. An array. Therefore, in the condensing device 1a of the first configuration example, the height positions of the condensing lenses 10A, 10B, and 10C are changed in accordance with the difference in the height position of the condensing reflection surface (see FIG. 6). Incident light that enters the condensing optical elements 20A, 20B, and 20C via the optical lens is set to enter the condensing reflection surface 25 of each condensing unit 20s under the same conditions.

その結果、各集光光学素子の集光部20sに入射した光が、集光部の各素子ユニット200(201〜210)において集光反射面25、上面22,下面23,第1側面24a,第2側面24bで全反射されて素子ユニット200ごとに1行分(10か所)の光が集光され、各素子ユニットで集光された光が集合されて各集光光学素子の出射面26から取り出される。集光光学素子20A,20B,20Cの出射面26,26,26は上下に並んで配設されており、3組の集光レンズ及び集光光学素子により集光された光が、このように1か所にまとめられた出力部27から出射される。   As a result, the light incident on the condensing unit 20s of each condensing optical element is collected and reflected by the condensing reflection surface 25, the upper surface 22, the lower surface 23, the first side surface 24a in each element unit 200 (201 to 210) of the condensing unit. The light is totally reflected by the second side surface 24b, and the light for one row (10 places) is collected for each element unit 200, and the light condensed by each element unit is collected to be the exit surface of each condensing optical element 26. The exit surfaces 26, 26, and 26 of the condensing optical elements 20A, 20B, and 20C are arranged side by side, and the light condensed by the three condensing lenses and the condensing optical element is thus obtained. The light is emitted from the output unit 27 gathered in one place.

いま、集光レンズ10A,10B,10Cについて、各々10×10mmの単位集光レンズを10行×10列設けた100×100mmのレンズアレイとし、各集光光学素子の出射面26を厚さ1mm×幅100mmとすると、30000mm2の集光面に入射した光を集光効率100倍に集光し、厚さ3mm×幅100mmの1か所の出力部27から取り出すことができる。Now, for the condensing lenses 10A, 10B, and 10C, a 10 × 10 mm unit condensing lens is provided as a 100 × 100 mm lens array, and the exit surface 26 of each condensing optical element is 1 mm thick. If the width is 100 mm, the light incident on the 30000 mm 2 condensing surface can be condensed with a condensing efficiency of 100 times and taken out from one output section 27 having a thickness of 3 mm × width of 100 mm.

このような構成の集光装置1aによれば、簡明かつ薄型の構成で、殆ど損失がなく集光効率を高くすることができる。また、複数の集光光学素子20により集光された光を1か所の出力部27から取り出せるため、光電変換素子5や光熱変換装置等を集約して配置することができ、装置の小型化及び装置設計の自由度を向上させることができる。   According to the condensing device 1a having such a configuration, the condensing efficiency can be increased with a simple and thin configuration with almost no loss. Further, since the light condensed by the plurality of condensing optical elements 20 can be taken out from one output unit 27, the photoelectric conversion element 5, the photothermal conversion device, and the like can be collectively arranged, and the device can be downsized. In addition, the degree of freedom in device design can be improved.

なお、集光光学素子20及び集光レンズ10のレンズアレイは、例えば、低融点ガラスを用いたホットプレス成型や、PMMA等の樹脂を射出成型して構成することができ、良好な生産性で低価格に生産することができる。また、集光光学素子20A,20B,20Cは、集光光学素子20Cを集光部20sとして共通に用いることができ、集光光学素子20A,20Bについては、集光光学素子20Cの出射面26に適宜な長さの平板状の導光部20tを接着等により一体的に結合して構成することができる。また、上下に重なる集光光学素子20A,20B,20Cの重複部に、マッチングオイルや光学接着材等を滴下して3枚の集光光学素子を一体的に結合しても良い。   In addition, the lens array of the condensing optical element 20 and the condensing lens 10 can be comprised, for example, by hot press molding using low-melting glass or injection molding of a resin such as PMMA, etc., with good productivity. Can be produced at a low price. The condensing optical elements 20A, 20B, and 20C can use the condensing optical element 20C in common as the condensing unit 20s, and the condensing optical elements 20A and 20B have an exit surface 26 of the condensing optical element 20C. Further, a flat light guide portion 20t having an appropriate length can be integrally coupled by bonding or the like. Alternatively, the three condensing optical elements may be integrally coupled by dropping a matching oil, an optical adhesive, or the like onto the overlapping portion of the converging optical elements 20A, 20B, and 20C that overlap in the vertical direction.

次に、第1構成形態における第2構成例の集光装置1bについて、図11及び図12を参照して説明する。図11は図5に対応する集光装置1bの斜視図、図12は図6に対応する集光装置1bの側面図である。集光装置1bは、集光光学素子20(20A,20B,20C)について、既述した第1構成例の集光装置1aと同一構成である一方、集光レンズ10(10A,10B,10C)の構成が異なっている。   Next, the condensing device 1b of the second configuration example in the first configuration mode will be described with reference to FIGS. 11 is a perspective view of the light collecting device 1b corresponding to FIG. 5, and FIG. 12 is a side view of the light collecting device 1b corresponding to FIG. The condensing device 1b has the same configuration as the condensing device 1a of the first configuration example described above with respect to the condensing optical element 20 (20A, 20B, 20C), while the condensing lens 10 (10A, 10B, 10C). The configuration is different.

既述したように、集光装置1aでは、集光光学素子20A,20B,20Cは、集光反射面25が設けられた集光部20sが上下に重複しないように、集光光学素子20Aの導光部20tの上に集光光学素子20Bが配設され、集光光学素子20Bの導光部20tの上に集光光学素子20Cが配設される。このため、集光光学素子20Aの集光反射面25と、集光光学素子20Bの集光反射面25と、集光光学素子20Cの集光反射面25とは、z軸方向の高さ位置が導光部20tの厚さ分異なっている。   As described above, in the condensing device 1a, the condensing optical elements 20A, 20B, and 20C include the condensing optical element 20A so that the condensing portions 20s provided with the condensing reflection surfaces 25 do not overlap vertically. A condensing optical element 20B is disposed on the light guide 20t, and a condensing optical element 20C is disposed on the light guide 20t of the condensing optical element 20B. For this reason, the condensing reflection surface 25 of the condensing optical element 20A, the condensing reflection surface 25 of the condensing optical element 20B, and the condensing reflection surface 25 of the condensing optical element 20C are height positions in the z-axis direction. Are different by the thickness of the light guide 20t.

これに対して、第2構成例の集光装置1bでは、集光レンズ10A,10B,10Cについて、各集光レンズ(レンズアレイ)を構成する単位集光レンズの焦点距離fを、集光反射面25の高さ位置に対応して異なるものとしている。例えば、集光光学素子20A,20Bの厚さを1mmとしたときに、集光レンズ10Aを構成する単位集光レンズとしてf=21mmのレンズ、集光レンズ10Bを構成する単位集光レンズとしてf=20mmのレンズ、集光レンズ10Cを構成する単位集光レンズとしてf=19mmのレンズを用いる。   On the other hand, in the condensing device 1b of the second configuration example, the focal length f of the unit condensing lens constituting each condensing lens (lens array) is collected and reflected for the condensing lenses 10A, 10B, and 10C. The height is different depending on the height position of the surface 25. For example, when the thickness of the condensing optical elements 20A and 20B is 1 mm, f = 21 mm as a unit condensing lens constituting the condensing lens 10A, and f as a unit condensing lens constituting the condensing lens 10B. = 20 mm lens, f = 19 mm lens is used as the unit condenser lens constituting the condenser lens 10C.

このため、集光レンズ10A,10B,10Cを介して各集光光学素子20A,20B,20Cに入射する入射光は、各集光光学素子の集光部20sに同じ焦点位置関係で入射する。そして、集光部20sの素子ユニット200において集光反射面25、上面22,下面23及び第1側面24a,第2側面24bで全反射され、各素子ユニットで集光された光が集合されて各集光光学素子の出射面26から取り出される。集光光学素子20A,20B,20Cの出射面26,26,26は上下に並んで配設されており、3組の集光レンズ及び集光光学素子により集光された光が、このように1か所にまとめられた出力部27から出射される。   For this reason, incident light that enters the condensing optical elements 20A, 20B, and 20C via the condensing lenses 10A, 10B, and 10C enters the condensing unit 20s of each condensing optical element with the same focal position relationship. Then, in the element unit 200 of the condensing unit 20s, the light that is totally reflected by the condensing reflection surface 25, the upper surface 22, the lower surface 23, the first side surface 24a, and the second side surface 24b and collected by each element unit is collected. It is taken out from the exit surface 26 of each condensing optical element. The exit surfaces 26, 26, and 26 of the condensing optical elements 20A, 20B, and 20C are arranged side by side, and the light condensed by the three condensing lenses and the condensing optical element is thus obtained. The light is emitted from the output unit 27 gathered in one place.

従って、本構成の集光装置1bにおいても、簡明かつ薄型の構成で、殆ど損失がなく集光効率を高くすることができる。また、複数の集光光学素子20により集光された光を1か所の出力部27から取り出せるため、光電変換素子5や光熱変換装置等を集約して配置することができ、装置の小型化及び装置設計の自由度を向上させることができる。さらに、集光レンズ上面に段差が生じないため、雨水や塵挨等の停留や段差による影の影響を排除することができる。なお、集光レンズ10A,10B,10Cの焦点距離に応じて、集光反射面の傾斜角等が異なる(最適化した)集光光学素子20A,20B,20Cを用いて構成しても良い。   Therefore, the condensing device 1b of this configuration also has a simple and thin configuration with almost no loss and high condensing efficiency. Further, since the light condensed by the plurality of condensing optical elements 20 can be taken out from one output unit 27, the photoelectric conversion element 5, the photothermal conversion device, and the like can be collectively arranged, and the device can be downsized. In addition, the degree of freedom in device design can be improved. Furthermore, since no step is generated on the upper surface of the condensing lens, it is possible to eliminate the influence of the rain caused by rainwater, dust, etc. or the shadow caused by the step. In addition, you may comprise using the condensing optical elements 20A, 20B, and 20C from which the inclination angle etc. of a condensing reflective surface differ (optimized) according to the focal distance of the condensing lenses 10A, 10B, and 10C.

次に、第1構成形態における第3構成例の集光装置1cについて、図13及び図14を参照して説明する。ここで、図13は、図7に対応する集光光学素子の平面図、図14は図6に対応する集光装置1cの側面図である。集光装置1cは、集光レンズ10(10A,10B,10C)について、既述した第1構成例の集光装置1aと同一構成である一方、集光光学素子20(20A,20B,20C)の構成が異なっている。   Next, the condensing apparatus 1c of the 3rd structural example in a 1st structural form is demonstrated with reference to FIG.13 and FIG.14. Here, FIG. 13 is a plan view of the condensing optical element corresponding to FIG. 7, and FIG. 14 is a side view of the condensing device 1c corresponding to FIG. The condensing device 1c has the same configuration as the condensing device 1a of the first configuration example described above with respect to the condensing lens 10 (10A, 10B, 10C), while the condensing optical element 20 (20A, 20B, 20C). The configuration is different.

すなわち、第1構成例の集光装置1aでは、集光光学素子20A,20B,20Cの集光部20sは同一の集光部が用いられている。一方、第3構成例の集光装置1cでは、図7と図13とを対比して分かるように、集光光学素子20A,20Cと、集光光学素子20Bとで異なる集光部が用いられている。   That is, in the condensing device 1a of the first configuration example, the same condensing unit is used as the condensing unit 20s of the condensing optical elements 20A, 20B, and 20C. On the other hand, in the condensing device 1c of the third configuration example, different condensing portions are used for the condensing optical elements 20A and 20C and the condensing optical element 20B, as can be seen by comparing FIG. 7 and FIG. ing.

具体的には、集光光学素子20A,20Cの集光部と、集光光学素子20Bの集光部とは、x軸に対して左右方向に対称となるように形成されている。既述したように、集光部20sを形成する素子ユニット200には、10か所の集光反射面25,25,25…がx軸に沿って所定間隔で並んで形成されるが、これらの集光反射面25,25,25…は、各集光反射面で反射された光が他の集光反射面により遮られないように、集光反射面25、及び第1側面24a,第2側面24bがx軸から僅かに傾斜して(x軸に対して数度程度左右方向に傾斜して)形成される。   Specifically, the condensing portions of the condensing optical elements 20A and 20C and the condensing portion of the condensing optical element 20B are formed so as to be symmetrical in the left-right direction with respect to the x axis. As described above, the element unit 200 forming the light condensing part 20s is formed with ten condensing reflection surfaces 25, 25, 25... Arranged at predetermined intervals along the x axis. The light collecting / reflecting surfaces 25, 25, 25... Are arranged so that the light reflected by each light collecting / reflecting surface is not blocked by other light collecting / reflecting surfaces. Two side surfaces 24b are formed to be slightly inclined from the x axis (inclined in the left-right direction by several degrees with respect to the x axis).

集光装置1cでは、集光光学素子20A,20Cの集光部と、集光光学素子20Bの集光部とは、x軸に対して傾斜して形成される素子ユニット200の集光反射面25及び第1側面24a,第2側面24bの傾斜方向がx軸方向に左右逆方向になっており、集光光学素子20A,20Cの集光反射面25,25,25…で反射された光の進行方向と、集光光学素子20Bの集光反射面25,25,25…で反射された光の進行方向とがx軸方向に左右対称になるように構成される。   In the condensing device 1c, the condensing portions of the condensing optical elements 20A and 20C and the condensing portion of the condensing optical element 20B are formed so as to be inclined with respect to the x axis. 25 and the first side surface 24a and the second side surface 24b are inclined in directions opposite to the left and right in the x-axis direction, and are reflected by the condensing reflection surfaces 25, 25, 25... Of the condensing optical elements 20A, 20C. And the traveling direction of the light reflected by the condensing reflection surfaces 25, 25, 25,... Of the condensing optical element 20B are configured to be symmetrical in the x-axis direction.

このような構成の集光装置1cにおいても、簡明かつ薄型の構成で、殆ど損失がなく集光効率を高くすることができる。また、複数の集光光学素子20により集光された光を1か所の出力部27から取り出せるため、光電変換素子5や光熱変換装置等を集約して配置することができ、装置の小型化及び装置設計の自由度を向上させることができる。さらに、複数の集光光学素子からなる集光装置において、各集光光学素子により集光されて出射面26に向かう光の進行方向がx軸方向に左右対称になり、複数の集光光学素子の出射面26,26,…がまとめられた出力部27における集光光の照度分布を均一化することができる。これにより、光電変換素子5による電力への変換効率を高めることも可能になる。なお、傾斜方向が異なる集光光学素子の組数や配設順序等は任意である。   Also in the condensing device 1c having such a configuration, the condensing efficiency can be increased with a simple and thin configuration with almost no loss. Further, since the light condensed by the plurality of condensing optical elements 20 can be taken out from one output unit 27, the photoelectric conversion element 5, the photothermal conversion device, and the like can be collectively arranged, and the device can be downsized. In addition, the degree of freedom in device design can be improved. Further, in the condensing device composed of a plurality of condensing optical elements, the traveling direction of the light collected by each condensing optical element and traveling toward the exit surface 26 is symmetric in the x-axis direction. Can be made uniform in the illuminance distribution of the condensed light in the output unit 27 in which the output surfaces 26, 26,. Thereby, the conversion efficiency into electric power by the photoelectric conversion element 5 can be increased. It should be noted that the number and arrangement order of condensing optical elements having different inclination directions are arbitrary.

次に、第1構成形態における第3構成例の集光装置1dについて、図34を参照して説明する。図34(a)は集光装置1aの斜視図、図34(b)は集光光学素子20A,20B,20Cの平面図である。図34(a)は、この集光装置が、2行分の集光レンズとそれに対応する集光光学素子1個を一組として構成されていることを示している。図34(a)に示したように、集光部20sには両側に各10個ずつ、合計20個の集光反射面が設けられている。即ち、集光部20sの両側には、片側あたり10個、合計20個の集光反射面が形成されている。   Next, the condensing device 1d of the third configuration example in the first configuration mode will be described with reference to FIG. FIG. 34A is a perspective view of the condensing device 1a, and FIG. 34B is a plan view of the condensing optical elements 20A, 20B, and 20C. FIG. 34A shows that this condensing device is configured as a set of two rows of condensing lenses and one condensing optical element corresponding thereto. As shown in FIG. 34 (a), the condensing portion 20s is provided with a total of 20 condensing reflection surfaces, 10 on each side. That is, a total of 20 condensing reflection surfaces are formed on both sides of the light condensing unit 20s, 10 on each side.

集光光学素子20Aの集光反射面25と、集光光学素子20Bの集光反射面25と、集光光学素子20Cの集光反射面25とは、z軸方向の高さ位置が導光部20tの厚さ分異なっている。集光装置1aの集光レンズ10A,10B,10Cは、いずれも同じ焦点距離(例えば焦点距離f=20mm)の単位集光レンズをマトリクス状に配設した同一のレンズアレイである。このため、集光反射面の高さ位置の差異に対応して集光レンズ10A,10B,10Cの高さ位置を異ならせ、集光レンズを介して各集光光学素子20A,20B,20Cに入射する入射光が、各集光部20sの集光反射面25に同じ条件で入射するように設定している。   The condensing reflection surface 25 of the condensing optical element 20A, the condensing reflection surface 25 of the condensing optical element 20B, and the condensing reflection surface 25 of the condensing optical element 20C are guided in height in the z-axis direction. It differs by the thickness of the part 20t. The condensing lenses 10A, 10B, and 10C of the condensing device 1a are all the same lens array in which unit condensing lenses having the same focal length (for example, focal length f = 20 mm) are arranged in a matrix. For this reason, the height positions of the condensing lenses 10A, 10B, and 10C are made different according to the difference in the height position of the condensing and reflecting surfaces, and the condensing optical elements 20A, 20B, and 20C are arranged via the condensing lenses. Incident light is set so as to be incident on the condensing reflection surface 25 of each condensing unit 20s under the same conditions.

集光光学素子の集光部20sに入射した光は、集光反射面25、上面22,下面23,第1側面24a,第2側面24bで全反射されて、出射面26から取り出される。集光光学素子20A,20B,20Cの出射面26,26,26は上下に並んで配設されており、3組の集光レンズ及び集光光学素子により集光された光が、このように1か所にまとめられた出力部27から出射される。   The light incident on the condensing unit 20 s of the condensing optical element is totally reflected by the condensing reflection surface 25, the upper surface 22, the lower surface 23, the first side surface 24 a, and the second side surface 24 b, and is extracted from the emission surface 26. The exit surfaces 26, 26, and 26 of the condensing optical elements 20A, 20B, and 20C are arranged side by side, and the light condensed by the three condensing lenses and the condensing optical element is thus obtained. The light is emitted from the output unit 27 gathered in one place.

このように、両側に集光反射面を設けた集光部では、片側に集光反射面を設けた集光部に比べて、その先端部が比較的大きなサイズとなる。その結果、集光反射面の大きさが数ミリメートル程度の小さなサイズのものであっても、集光部の先端部は十分な大きさとすることができるので、集光部の先端形状が成形し易くなり、また、組み立て時の取り扱いも容易になることが期待できる。   As described above, in the condensing part provided with the condensing / reflecting surfaces on both sides, the tip part has a relatively large size as compared with the condensing part provided with the condensing / reflecting surface on one side. As a result, even if the size of the condensing reflection surface is as small as several millimeters, the tip of the condensing part can be made sufficiently large, so the tip shape of the condensing part is molded. It can be expected to be easier and easier to handle during assembly.

[第2構成形態の集光装置]
次に、第2構成形態の集光装置2について、図15及び図16を参照して集光光学素子の基本構成から説明する。ここで、図15は集光装置2における集光光学素子20IIの基本構成を説明するための模式図、図16は集光レンズにより集光されて入射する入射光と集光反射面との関係を説明するための説明図(側面図)である。なお、既述した第1構成形態の集光装置1(1a,1b,1c)と同様の構成要素には同一番号を付して重複説明を省略する。
[Condenser of Second Configuration]
Next, the condensing device 2 of the second configuration form will be described from the basic configuration of the condensing optical element with reference to FIGS. 15 and 16. Here, FIG. 15 is a schematic diagram for explaining a basic configuration of the condensing optical element 20II in the condensing device 2, and FIG. 16 is a relationship between incident light condensed by the condensing lens and incident and a condensing reflection surface. It is explanatory drawing (side view) for demonstrating. In addition, the same number is attached | subjected to the component similar to the condensing apparatus 1 (1a, 1b, 1c) of the 1st structure form mentioned already, and duplication description is abbreviate | omitted.

図15には、集光レンズ10により集光されて集光光学素子20IIに入射した光が、集光光学素子に形成された光学構造30の集光反射面35により反射されて素子内を伝播する様子が模式的に描かれている。   In FIG. 15, light collected by the condenser lens 10 and incident on the condensing optical element 20II is reflected by the condensing reflection surface 35 of the optical structure 30 formed on the condensing optical element and propagates through the element. The scene to do is drawn schematically.

集光光学素子20IIは、集光レンズ10により集光され基材21に入射する入射光を透過する上面22と、上面に対向して平行に延びる下面23と、上面22と下面23の間に入射光の光軸LAと交差して設けられ入射光を反射する集光反射面35と、集光反射面35の反対側に設けられた出射面26とを有して構成される。図示する形態は、透明なプレート状ないしシート状の集光光学素子の下面23に、基材21の内方に突出する光学構造30を設け、その内表面に集光反射面35を形成した構成を示す。   The condensing optical element 20II includes an upper surface 22 that transmits incident light that is collected by the condensing lens 10 and is incident on the base material 21, a lower surface 23 that extends parallel to the upper surface, and is disposed between the upper surface 22 and the lower surface 23. A condensing reflection surface 35 provided to intersect the optical axis LA of incident light and reflecting incident light and an exit surface 26 provided on the opposite side of the condensing reflection surface 35 are configured. In the illustrated form, an optical structure 30 protruding inward of the base material 21 is provided on the lower surface 23 of a transparent plate-like or sheet-like condensing optical element, and a condensing reflection surface 35 is formed on the inner surface thereof. Indicates.

光学構造30は、基材21の下面23に凹設された窪み状の構造体(換言すれば、下面23から基材21の内方に突出する突起状の中空構造体)である。光学構造単体を斜め上方から見た斜視図を図16中に示したように、光学構造30は、下面23から斜め上方に延びる集光反射面35、下面23から上方に延びて集光反射面35と繋がる背面36、下面23から上方に延び集光反射面35と背面36とを繋ぐ側面32,33などから構成される。   The optical structure 30 is a hollow structure that is recessed in the lower surface 23 of the base material 21 (in other words, a projecting hollow structure projecting inward from the lower surface 23 to the base material 21). As shown in FIG. 16 is a perspective view of the optical structure alone viewed from diagonally above, the optical structure 30 includes a condensing reflection surface 35 extending obliquely upward from the lower surface 23 and a condensing reflection surface extending upward from the lower surface 23. The rear surface 36 is connected to 35, and the side surfaces 32, 33 are connected to the condensing / reflecting surface 35 and the rear surface 36.

集光反射面35は、集光レンズ10により所定の集束角度または発散角度で入射する入射光の反射後の拡がり角を抑制する曲面状に形成される。集光反射面35に入射する入射光の集束角度または発散角度は、集光レンズ10の焦点距離fや有効径R、基材21の屈折率n、集光反射面35と焦点位置との位置関係などによって定まる。   The condensing reflection surface 35 is formed in a curved surface shape that suppresses the spread angle after reflection of incident light incident at a predetermined convergence angle or divergence angle by the condensing lens 10. The converging angle or divergence angle of the incident light incident on the condensing / reflecting surface 35 includes the focal length f and effective diameter R of the condensing lens 10, the refractive index n of the base material 21, and the position of the condensing / reflecting surface 35 and the focal position. It depends on the relationship.

集光反射面35に入射する入射光が集束光となるのは、焦点位置が集光反射面35の下方に位置するとき、入射光が発散光となるのは、焦点位置が集光反射面35の上方に位置するときである。集光光学素子20IIの集光反射面35は、このように所定の集束角度または発散角度で入射する入射光の反射後の拡がり角を抑制する(所定の集束角度または発散角度で入射する入射光をコリメートする)ような曲面状に形成される。   The incident light incident on the condensing reflection surface 35 is focused light. When the focal position is located below the condensing reflection surface 35, the incident light becomes divergent light. It is when it is located above 35. The condensing reflection surface 35 of the condensing optical element 20II suppresses the divergence angle after reflection of incident light incident at a predetermined focusing angle or divergence angle as described above (incident light incident at a predetermined focusing angle or divergence angle). It is formed in a curved surface shape such as collimating.

本構成形態においては、図16に示すように、入射光の焦点位置を集光反射面35よりも下方に設定して集束光を入射させる形態とし、集光反射面35を曲率半径rの球体の一部を切り出した凸の曲面とした構成を示す。この構成により、集光レンズ10を介して上面22から基材21内に入射し、所定の集束角度で集光反射面35に入射した入射光が、集光反射面35により拡がり角が抑制された反射光となって集光光学素子20内を伝播し、出射面26に導かれる。   In the present configuration, as shown in FIG. 16, the focal position of the incident light is set below the converging / reflecting surface 35 and the condensing light is incident, and the condensing / reflecting surface 35 is a sphere having a radius of curvature r. The structure made into the convex curved surface which cut out a part of is shown. With this configuration, incident light that has entered the base material 21 from the upper surface 22 through the condenser lens 10 and has entered the condensing / reflecting surface 35 at a predetermined converging angle has its divergence angle suppressed by the condensing / reflecting surface 35. The reflected light propagates through the condensing optical element 20 and is guided to the exit surface 26.

ここで、集光レンズ10を介して集光反射面35に集束入射する入射光は、光軸LA上(集光レンズ10の中心)を通って集光反射面35に入射する光線bの入射角(便宜的に「光軸入射角」という)θLAと、光軸LAから離れた位置(集光レンズの外周部)を通って集光反射面35の上部に入射する光線aの入射角と、集光反射面35の下部に入射する光線cの入射角とがそれぞれ異なった角度になる。Here, the incident light that converges and enters the condensing reflection surface 35 via the condensing lens 10 is incident on the light ray b that enters the condensing reflection surface 35 through the optical axis LA (the center of the condensing lens 10). The angle θ (for convenience, referred to as “optical axis incident angle”) θ LA and the incident angle of the light beam a incident on the upper part of the condensing reflection surface 35 through a position away from the optical axis LA (the outer periphery of the condensing lens) And the incident angle of the light beam c incident on the lower part of the condensing reflection surface 35 are different from each other.

集光光学素子20では、集光反射面35に集光入射する光線の最小入射角が、集光反射面35の全反射角以上となるように設定される。すなわち集光レンズ10の開口数NA、基材21の屈折率n、集光反射面35の位置形状(球面の曲率半径r、集光レンズの焦点位置に対する球心の位置)などの入射パラメータにより、集光反射面35に入射する光線の最小入射角が全反射角以上になるように設定される。具体的には、基材21の屈折率n及び集光レンズ10の開口数NAを所定値とし、集光レンズ10により所定の集束角度で入射する光線の最小入射角が集光反射面35における全反射角以上となるように、集光反射面35の位置形状を設定することができる。   In the condensing optical element 20, the minimum incident angle of the light beam that is collected and incident on the condensing reflection surface 35 is set to be equal to or greater than the total reflection angle of the condensing reflection surface 35. That is, depending on the incident parameters such as the numerical aperture NA of the condenser lens 10, the refractive index n of the base material 21, the position shape of the condensing reflection surface 35 (the radius of curvature r of the spherical surface, the position of the spherical center with respect to the focal position of the condensing lens). The minimum incident angle of light incident on the condensing reflection surface 35 is set to be equal to or greater than the total reflection angle. Specifically, the refractive index n of the base material 21 and the numerical aperture NA of the condenser lens 10 are set to predetermined values, and the minimum incident angle of light incident at a predetermined focusing angle by the condenser lens 10 is The position shape of the condensing reflection surface 35 can be set so as to be equal to or greater than the total reflection angle.

また、基材21の屈折率n及び集光反射面35の位置形状を所定値とし、所定の集束角度で入射する光線の最小入射角が集光反射面35における全反射角以上となるように、集光レンズ10の開口数NA(一般的には、集光レンズ10の焦点距離f及び有効径R)を設定することができる。あるいは、集光レンズ10の開口数NA及び集光反射面35の位置形状を所定値とし、所定の集束角度で入射する光線の最小入射角が集光反射面35における全反射角以上となるように、基材21の屈折率nを設定すること、具体的には基材21の材質や基材にドープする添加物等を選択することにより設定することができる。   Further, the refractive index n of the base material 21 and the position shape of the condensing reflection surface 35 are set to predetermined values so that the minimum incident angle of light incident at a predetermined converging angle is equal to or greater than the total reflection angle on the condensing reflection surface 35. The numerical aperture NA of the condenser lens 10 (generally, the focal length f and effective diameter R of the condenser lens 10) can be set. Alternatively, the numerical aperture NA of the condensing lens 10 and the position shape of the condensing reflection surface 35 are set to predetermined values so that the minimum incident angle of light incident at a predetermined converging angle is equal to or greater than the total reflection angle on the condensing reflection surface 35. In addition, the refractive index n of the base material 21 can be set, specifically, by selecting the material of the base material 21 or the additive to be doped into the base material.

さらに、集光光学素子20では、集光反射面35により拡がり角が抑制されて反射され、下面23及び上面22に入射する光線の最小入射角が、これらの面における全反射角以上となるように設定される。これらについても、上記入射パラメータにより、集光反射面35から上面及び下面に入射する光線の最小入射角が全反射角以上になるように設定される。従って、集光反射面35の位置形状、集光レンズ10の開口数NA、集光光学素子20の屈折率n等の入射パラメータは、集光反射面35、上面22及び下面23において全反射の条件を満たすように設定される。   Further, in the condensing optical element 20, the converging reflection surface 35 suppresses the divergence angle and reflects the light, and the minimum incident angle of light incident on the lower surface 23 and the upper surface 22 is equal to or greater than the total reflection angle on these surfaces. Set to These are also set so that the minimum incident angle of the light beam incident on the upper surface and the lower surface from the condensing reflection surface 35 is equal to or greater than the total reflection angle according to the incident parameters. Therefore, the incident parameters such as the position shape of the condensing reflection surface 35, the numerical aperture NA of the condensing lens 10 and the refractive index n of the condensing optical element 20 are totally reflected on the condensing reflection surface 35, the upper surface 22 and the lower surface 23. It is set to satisfy the conditions.

なお、上面22または下面23に、基材21と屈折率が異なる保護膜等の膜を形成した場合については、既述した第1構成形態の集光装置と同様であり、上面22及び下面23に入射する光の傾斜角が基材21と空気との界面における全反射角以上になっていれば、少なくとも膜と空気との界面において全反射条件が満たされされ、入射光が集光光学素子20の内部に閉じ込められる。   The case where a film such as a protective film having a refractive index different from that of the base material 21 is formed on the upper surface 22 or the lower surface 23 is the same as that of the light condensing device of the first configuration described above. If the inclination angle of the light incident on the substrate 21 is equal to or greater than the total reflection angle at the interface between the substrate 21 and air, the total reflection condition is satisfied at least at the interface between the film and air, and the incident light is collected into the condensing optical element. It is confined inside 20.

集光反射面35で全反射された光は、上面22,下面23で全反射されて光学素子20内をx軸方向に伝播し、出射面26から取り出される。出射面26はy−z平面に沿って形成されるとともに端面が研磨されてARコートが施されており、光学素子20内を伝播して出射面26に入射した光が、出射面26で反射されることなく出射して光電変換素子5に入射する。   The light totally reflected by the condensing reflection surface 35 is totally reflected by the upper surface 22 and the lower surface 23, propagates in the optical element 20 in the x-axis direction, and is extracted from the emission surface 26. The exit surface 26 is formed along the yz plane, and the end surface is polished and AR-coated. The light that has propagated through the optical element 20 and entered the exit surface 26 is reflected by the exit surface 26. The light is emitted without being incident on the photoelectric conversion element 5.

以上、第2構成形態の集光光学素子20IIの基本構成(単位構成)について説明した。集光光学素子20II(20A,20B,20C)の集光部20sは、m行×n列の単位集光レンズからなる集光レンズ10(10A,10B,10C)に対応し、m行×n列の集光反射面35を有して構成される。図17に集光部20s(集光光学素子20C)を斜め上方から見た斜視図を示す。また、図18(a)に光学構造30の拡大斜視図、図18(b)及び図18(c)に、集光反射面による反射光の配向構成例(ともに平面視の概念図)を示す。なお、図18(b)及び図18(c)は、10行×10列の集光レンズに対応し、基材21の下面側に10行×10列(B1〜B10行×A1〜A10列)の光学構造30をマトリクス状に形成した形態を例示し、基材21を透過して上面21側から視認される各光学構造30を実線で示している。   The basic configuration (unit configuration) of the condensing optical element 20II of the second configuration form has been described above. The condensing unit 20s of the condensing optical element 20II (20A, 20B, 20C) corresponds to the condensing lens 10 (10A, 10B, 10C) including unit condenser lenses of m rows × n columns, and m rows × n. It has a condensing reflection surface 35 in a row. FIG. 17 is a perspective view of the condensing unit 20s (condensing optical element 20C) as viewed obliquely from above. FIG. 18A shows an enlarged perspective view of the optical structure 30, and FIGS. 18B and 18C show examples of the alignment configuration of reflected light by the condensing reflection surface (both conceptual views in plan view). . 18B and 18C correspond to a 10 × 10 condensing lens, and 10 rows × 10 columns (B1 to B10 rows × A1 to A10 columns) on the lower surface side of the substrate 21. ) Of the optical structure 30 formed in a matrix shape is illustrated, and each optical structure 30 that is visible from the upper surface 21 side through the base material 21 is indicated by a solid line.

図17に示すように、集光光学素子20IIの集光部20sは、基材21の下面側に10行×10列=100か所の光学構造30がマトリクス状に形成されており、1枚の矩形プレート状になっている。集光光学素子20IIでは、上流側に位置する第1の光学構造30の集光反射面で反射された光が、下流側に位置する第2の光学構造30により遮られずに出射面26に向かうように構成される。   As shown in FIG. 17, the condensing unit 20 s of the condensing optical element 20 </ b> II has 10 rows × 10 columns = 100 optical structures 30 formed in a matrix on the lower surface side of the base material 21. It has a rectangular plate shape. In the condensing optical element 20II, the light reflected by the condensing reflection surface of the first optical structure 30 located on the upstream side is not blocked by the second optical structure 30 located on the downstream side and is emitted to the emission surface 26. Configured to head.

その手段として、第1構成例及び第2構成例の集光部20s1,20s2は、第1の光学構造30の集光反射面で反射された反射光が、第1の光学構造に隣接して出射面側に形成された第2の光学構造30の側方を通って伝播するように構成される。このような反射光の配向方式を、便宜的に「横パス方式」という。図18(b)及び図18(c)は、この横パス方式の二つの構成例を示したものである。As the means, the condensing portions 20s 1 and 20s 2 of the first configuration example and the second configuration example are such that the reflected light reflected by the condensing reflection surface of the first optical structure 30 is adjacent to the first optical structure. Then, it is configured to propagate through the side of the second optical structure 30 formed on the exit surface side. Such an alignment method of reflected light is referred to as a “lateral path method” for convenience. FIGS. 18B and 18C show two configuration examples of this horizontal path method.

図18(b)に示す第1構成例の集光部20s1は、B5行の各光学構造30,30,…による反射光の配向方向を矢印で示したように、A1列の第1の光学構造30の反射面により反射された反射光と、A2列の第2の光学構造30の反射面により反射された反射光とが、第2の光学構造に隣接して出射面26側に形成されたA3列の第3の光学構造30に対して同じ側(図において上側)側方を通って伝播するように構成される。In the first configuration example shown in FIG. 18B, the light condensing unit 20s 1 has the first direction of the A1 column as indicated by the arrow of the orientation direction of the reflected light by the optical structures 30, 30,. Reflected light reflected by the reflecting surface of the optical structure 30 and reflected light reflected by the reflecting surface of the second optical structure 30 in the A2 row are formed on the exit surface 26 side adjacent to the second optical structure. Is configured to propagate through the same side (upper side in the figure) side with respect to the third optical structure 30 in the A3 row.

具体的には、図18(a)に示す光学構造30を、各々z軸回りに同一方向に微小角度αだけ回転させて形成し、各集光反射面35により反射された反射光がx軸に対して微小角度α傾斜して出射面26から出射するようにして構成することができる。微小角度αは、集光反射面35により反射された反射光の拡がり角度と、隣接する光学構造の配設ピッチとに基づいて設定することができる。   Specifically, the optical structure 30 shown in FIG. 18A is formed by rotating the optical structure 30 around the z-axis by the minute angle α in the same direction, and the reflected light reflected by each condensing reflection surface 35 is the x-axis. However, the light can be emitted from the emission surface 26 at a slight angle α. The minute angle α can be set based on the spread angle of the reflected light reflected by the condensing reflection surface 35 and the arrangement pitch of the adjacent optical structures.

なお、図18(b)では、B1〜B10行とA1〜A10列とが直交する正方行列状に形成した構成例を示したが、B1〜B10行を微小角度αだけ傾けて(例えば図18(b)においてB1〜B10行を微小角度αだけ傾けての右端側が図で下側にずれるように)形成し、各集光反射面35により反射された反射光がx軸に沿って出射面26から出射するように構成しても良い。   FIG. 18B shows a configuration example in which B1 to B10 rows and A1 to A10 columns are formed in a square matrix shape orthogonal to each other, but B1 to B10 rows are inclined by a minute angle α (for example, FIG. 18). In (b), lines B1 to B10 are formed so that the right end side inclined by a minute angle α is shifted downward in the drawing), and the reflected light reflected by each condensing reflection surface 35 is an emission surface along the x axis. 26 may be configured to emit from 26.

このような構成の集光部20s1を有する集光光学素子20A,20B,20Cが集光レンズ10A,10B,10Cに対応して設けられる。このとき集光光学素子20A,20B,20Cは、集光反射面35,35,35…が上下に重複せず、各集光光学素子の出射面26が上下に並ぶように配設されて第1構成例の集光装置2aが構成される。The condensing optical elements 20A, 20B, and 20C having the condensing unit 20s 1 having such a configuration are provided corresponding to the condensing lenses 10A, 10B, and 10C. At this time, the condensing optical elements 20A, 20B, and 20C are arranged such that the condensing reflection surfaces 35, 35, 35... Do not overlap vertically, and the exit surfaces 26 of the respective condensing optical elements are arranged vertically. A condensing device 2a of one configuration example is configured.

具体的には、図7等に例示したと同様に、集光光学素子20A,20Bは、基材21がx軸方向に延設されて平板状の導光部20tが形成され、集光光学素子20Aの導光部20tの上に集光光学素子20Bが載置され、集光光学素子20Bの導光部20tの上に集光光学素子20Cが載置される。集光光学素子20A,20B,20Cの出射面26,26,26は上下に並んで配置され、これらの出射面が集約された出力部27が形成される(図6,図12を参照)。   Specifically, as illustrated in FIG. 7 and the like, in the condensing optical elements 20A and 20B, the base 21 is extended in the x-axis direction to form a flat light guide portion 20t, and the condensing optics. The condensing optical element 20B is placed on the light guide 20t of the element 20A, and the condensing optical element 20C is placed on the light guide 20t of the condensing optical element 20B. The exit surfaces 26, 26, and 26 of the condensing optical elements 20A, 20B, and 20C are arranged side by side, and an output unit 27 in which these exit surfaces are aggregated is formed (see FIGS. 6 and 12).

なお、集光光学素子20A,20B,20Cの各集光反射面35のz軸方向の高さ位置が、導光部20tの厚さ分異なっている点については、既述した第1構成形態の集光装置1a,1bと同様である。すなわち、集光レンズ10A,10B,10Cとして同一焦点距離の集光レンズを用い、集光反射面35の高さ位置の差異に対応して集光レンズ10A,10B,10Cの高さ位置を異ならせる構成(図6を参照)、あるいは、集光レンズ10A,10B,10Cとして、集光反射面35の高さ位置の差異に対応した異なる焦点距離の集光レンズを用いる構成(図12を参照)の何れをも適用することができる。   Note that the height positions in the z-axis direction of the respective condensing reflection surfaces 35 of the condensing optical elements 20A, 20B, and 20C are different by the thickness of the light guide portion 20t, as described in the first configuration. This is the same as the light collecting devices 1a and 1b. That is, a condensing lens having the same focal length is used as the condensing lenses 10A, 10B, and 10C, and the height positions of the condensing lenses 10A, 10B, and 10C are different according to the difference in the height position of the condensing reflection surface 35. Configuration (see FIG. 6) or a configuration using condensing lenses with different focal lengths corresponding to the difference in height position of the condensing reflection surface 35 as the condensing lenses 10A, 10B, and 10C (see FIG. 12). Any of the above can be applied.

図18(c)に示す第2構成例の集光部20s2は、B5行の各光学構造30,30,…による反射光の配向方向を矢印で示したように、A1列の第1の光学構造30の反射面により反射された反射光と、A2列の第2の光学構造30の反射面により反射された反射光とが、第2の光学構造に隣接して出射面26側に形成されたA3列の第3の光学構造30を挟んで反対側(図において上側と下側)の側方を通って伝播するように構成される。In the second configuration example shown in FIG. 18C, the condensing unit 20s 2 has the first direction of the A1 column as indicated by the arrow of the orientation direction of the reflected light by the optical structures 30, 30,. Reflected light reflected by the reflecting surface of the optical structure 30 and reflected light reflected by the reflecting surface of the second optical structure 30 in the A2 row are formed on the exit surface 26 side adjacent to the second optical structure. The third optical structure 30 of the A3 row is configured to propagate through the sides on the opposite side (upper side and lower side in the drawing).

具体的には、図18(a)に示す光学構造30を、z軸回りに順次反対方向に微小角度βだけ回転させて形成し、各集光反射面35により反射された反射光がx軸を挟んで微小角度β傾斜して出射面26から出射するようにして構成することができる。微小角度βは、上述した微小角度αと同様に、集光反射面35により反射された反射光の拡がり角度と、隣接する光学構造の配設ピッチとに基づいて設定することができる。一方、本構成例によれば行間のピッチを狭めることができる。   Specifically, the optical structure 30 shown in FIG. 18A is formed by sequentially rotating the optical structure 30 around the z axis in the opposite direction by a minute angle β, and the reflected light reflected by each condensing reflection surface 35 is the x axis. In this case, the light can be emitted from the emission surface 26 with an inclination of a small angle β. The minute angle β can be set based on the spread angle of the reflected light reflected by the condensing reflection surface 35 and the arrangement pitch of the adjacent optical structures, similarly to the minute angle α described above. On the other hand, according to this configuration example, the pitch between rows can be reduced.

このような構成の集光部20s2を有する集光光学素子20A,20B,20Cが、集光レンズ10A,10B,10Cに対応して設けられる。このとき集光光学素子20A,20B,20Cは、集光反射面35,35,35…が上下に重複せず、各集光光学素子の出射面26が上下に並ぶように配設されて第2構成例の集光装置2bが構成される。The condensing optical elements 20A, 20B, and 20C having the condensing unit 20s 2 having such a configuration are provided corresponding to the condensing lenses 10A, 10B, and 10C. At this time, the condensing optical elements 20A, 20B, and 20C are arranged such that the condensing reflection surfaces 35, 35, 35... Do not overlap vertically, and the exit surfaces 26 of the respective condensing optical elements are arranged vertically. A condensing device 2b of two configuration examples is configured.

集光光学素子20A,20Bは、基材21がx軸方向に延設されて平板状の導光部20tが形成され、集光光学素子20Aの導光部20tの上に集光光学素子20Bが載置され、集光光学素子20Bの導光部20tの上に集光光学素子20Cが載置される。集光光学素子20A,20B,20Cの出射面26,26,26は上下に並んで配置され、これらの出射面が集約された出力部27が形成される(図6,図12等を参照)。集光光学素子20A,20B,20Cの各集光反射面35のz軸方向の高さ位置と、集光レンズ10A,10B,10Cの焦点距離との関係は、第1構成例の集光装置2aと同様である。   In the condensing optical elements 20A and 20B, the base 21 is extended in the x-axis direction to form a flat light guide 20t, and the condensing optical element 20B is formed on the light guide 20t of the condensing optical element 20A. Is placed, and the condensing optical element 20C is placed on the light guide portion 20t of the condensing optical element 20B. The exit surfaces 26, 26, and 26 of the condensing optical elements 20A, 20B, and 20C are arranged side by side, and an output unit 27 in which these exit surfaces are aggregated is formed (see FIG. 6, FIG. 12, etc.). . The relationship between the height position in the z-axis direction of each of the condensing reflection surfaces 35 of the condensing optical elements 20A, 20B, and 20C and the focal length of the condensing lenses 10A, 10B, and 10C is as follows. Same as 2a.

このような横パス方式の集光部20s1,20s2を備えた集光光学素子20IIによれば、多数の光学構造30が矩形平板状の基材21に一体に形成され、各々光学構造の集光反射面35により拡がり角が抑制された反射光が隣接する光学構造により遮光されることなく側方を通って出射面26に取り出される。このため、このような構成の集光光学素子20IIを備えた集光装置2a,2bによれば、簡明かつ薄型の構成で、集光効率を高くすることができる。また、複数の集光光学素子20により集光された光を1か所の出力部27から取り出せるため、光電変換素子5や光熱変換装置等を集約して配置することができ、装置の小型化及び装置設計の自由度を向上させることができる。According to the condensing optical element 20II provided with such lateral path type condensing portions 20s 1 and 20s 2 , a large number of optical structures 30 are integrally formed on the rectangular plate-like base material 21, and each of the optical structures has an optical structure. The reflected light whose divergence angle is suppressed by the condensing reflection surface 35 is taken out to the emission surface 26 through the side without being blocked by the adjacent optical structure. For this reason, according to the condensing apparatuses 2a and 2b provided with the condensing optical element 20II having such a configuration, the condensing efficiency can be increased with a simple and thin configuration. Further, since the light condensed by the plurality of condensing optical elements 20 can be taken out from one output unit 27, the photoelectric conversion element 5, the photothermal conversion device, and the like can be collectively arranged, and the device can be downsized. In addition, the degree of freedom in device design can be improved.

次に、第3構成例の集光部20s3について、図19を参照して説明する。図19は、基材21にm行×n列の光学構造30,30…が設けられた集光部における任意の1行についてy軸方向から見たx−z断面の概念図である。 Next, the light collecting portion 20s 3 of the third configuration example will be described with reference to FIG. 19. FIG. 19 is a conceptual diagram of an xz cross section viewed from the y-axis direction with respect to an arbitrary row in a light condensing unit in which optical structures 30, 30.

第2構成形態の集光光学素子20IIにおける第3構成例の集光部20s3は、上流側に位置する第1の光学構造30により反射された反射光が、第1の光学構造より出射面26側に形成された第2の光学構造30の上方を通って伝播するように構成される。以下、このような反射光の配向方式を「縦パス方式」という。In the condensing unit 20s 3 of the third configuration example in the condensing optical element 20II of the second configuration form, the reflected light reflected by the first optical structure 30 located on the upstream side is emitted from the first optical structure. It is configured to propagate through the second optical structure 30 formed on the 26th side. Hereinafter, such an alignment method of reflected light is referred to as a “longitudinal pass method”.

図19に示すように、縦パス方式の集光部20s3は、第1の光学構造30の集光反射面35により拡がり角が抑制されて反射された反射光が、下面23及び上面22で順次全反射されて出射面26に伝播する過程において、出射面側に隣接する第2の光学構造30の上方を通って出射面方向に伝播するように構成される。As shown in FIG. 19, the vertical path type condensing unit 20 s 3 has reflected light reflected by the condensing reflection surface 35 of the first optical structure 30 with its divergence angle being suppressed at the lower surface 23 and the upper surface 22. In the process of sequentially being totally reflected and propagated to the exit surface 26, it is configured to propagate in the exit surface direction through the second optical structure 30 adjacent to the exit surface side.

このとき、出射面26に到達するまでに基材21内でどの様な経路を伝播させるかは、種々の構成形態があり、適当な構成を採用することができる。例えば図19に示すように、各行に並んだ光学構造30,30,…をひとつひとつ順次乗り越えるようにジグザグ状に伝播させる形態のほか、複数の光学構造をひとまとめにして乗り越え上面及び下面での反射回数を低減して伝播させる形態などがあり、光学構造30の列数や配設ピッチ、集光反射面35による反射光の拡がり角、基材21の厚さなどに応じて適宜設定することができる。   At this time, there are various types of configurations as to what kind of route is propagated in the substrate 21 before reaching the emission surface 26, and an appropriate configuration can be adopted. For example, as shown in FIG. 19, in addition to a form in which the optical structures 30, 30,. Can be set as appropriate according to the number of rows and arrangement pitch of the optical structures 30, the spread angle of the reflected light by the condensing reflection surface 35, the thickness of the substrate 21, and the like. .

このような構成の集光部20s3を有する集光光学素子20A,20B,20Cが、集光レンズ10A,10B,10Cに対応して設けられる。このとき集光光学素子20A,20B,20Cは、集光反射面35,35,35…が上下に重複せず、各集光光学素子の出射面26が上下に並ぶように配設されて第3構成例の集光装置2cが構成される。Converging optical element 20A having a collection portion 20s 3 having such a configuration, 20B, 20C is, the condenser lens 10A, 10B, provided in correspondence to 10C. At this time, the condensing optical elements 20A, 20B, and 20C are arranged such that the condensing reflection surfaces 35, 35, 35... Do not overlap vertically, and the exit surfaces 26 of the respective condensing optical elements are arranged vertically. A condensing device 2c having three configuration examples is configured.

集光光学素子20A,20Bは、基材21がx軸方向に延設されて平板状の導光部20tが形成され、集光光学素子20Aの導光部20tの上に集光光学素子20Bが載置され、集光光学素子20Bの導光部20tの上に集光光学素子20Cが載置される。集光光学素子20A,20B,20Cの出射面26,26,26は上下に並んで配置され、これらの出射面が集約された出力部27が形成される(図6,図12を参照)。集光光学素子20A,20B,20Cの各集光反射面35のz軸方向の高さ位置と、集光レンズ10A,10B,10Cの焦点距離との関係は、第1構成例及び第2構成例の集光装置2a,2bと同様である。   In the condensing optical elements 20A and 20B, the base 21 is extended in the x-axis direction to form a flat light guide 20t, and the condensing optical element 20B is formed on the light guide 20t of the condensing optical element 20A. Is placed, and the condensing optical element 20C is placed on the light guide portion 20t of the condensing optical element 20B. The exit surfaces 26, 26, and 26 of the condensing optical elements 20A, 20B, and 20C are arranged side by side, and an output unit 27 in which these exit surfaces are aggregated is formed (see FIGS. 6 and 12). The relationship between the height position in the z-axis direction of each of the condensing reflection surfaces 35 of the condensing optical elements 20A, 20B, and 20C and the focal length of the condensing lenses 10A, 10B, and 10C is the first configuration example and the second configuration. This is the same as the light collecting devices 2a and 2b in the example.

このような縦パス方式の集光部20s3を備えた集光光学素子20IIによれば、多数の光学構造30が矩形平板状の基材21に一体に形成され、各々光学構造の集光反射面35により拡がり角が抑制された反射光が隣接する光学構造により遮光されることなく上方を通って出射面26に取り出される。このため、このような構成の集光装置2cによれば、簡明かつ薄型の構成で、集光効率を高くすることができる。また、複数の集光光学素子20により集光された光を1か所の出力部27から取り出せるため、光電変換素子5や光熱変換装置等を集約して配置することができ、装置の小型化及び装置設計の自由度を向上させることができる。According to the condensing optical element 20II provided with the condensing part 20s 3 of such a vertical path method, a large number of optical structures 30 are integrally formed on the rectangular plate-like base material 21, and the converging reflections of the optical structures are respectively provided. The reflected light whose divergence angle is suppressed by the surface 35 is taken out to the exit surface 26 through the upper side without being shielded by the adjacent optical structure. For this reason, according to the condensing apparatus 2c of such a structure, condensing efficiency can be made high with a simple and thin structure. Further, since the light condensed by the plurality of condensing optical elements 20 can be taken out from one output unit 27, the photoelectric conversion element 5, the photothermal conversion device, and the like can be collectively arranged, and the device can be downsized. In addition, the degree of freedom in device design can be improved.

なお、以上説明した横パス方式の集光光学素子と縦パス方式の集光光学素子とを適宜組み合わせて集光装置を構成しても良い。また、集光反射面35の曲率半径を、集光光学素子20における光学構造30の形成位置(例えば列位置や行位置等)に応じて異なる曲率半径としてもよい。   The condensing device may be configured by appropriately combining the horizontal path type condensing optical element and the vertical path type condensing optical element described above. Further, the radius of curvature of the condensing reflection surface 35 may be different depending on the formation position (for example, column position, row position, etc.) of the optical structure 30 in the condensing optical element 20.

[実施例]
次に、太陽光を集光装置によって集光する場合のより具体的な実施例について、図24〜図32に示すシミュレーション結果を参照しながら説明する。
[Example]
Next, a more specific embodiment in the case where sunlight is collected by a light collecting device will be described with reference to simulation results shown in FIGS.

シミュレーションは、第1構成形態の集光装置1について、集光レンズ10(10A,10B,10C)及び集光光学素子20(20A,20B,20C)をPMMA(ポリメチルメタクリレート)により構成し、波長350nm〜1100nmの太陽光を集光する場合について、光学設計者に広く用いられている光線追跡ツールを利用して行った。このとき、PMMAの屈折率としては図20に示す表の値を直線補間したものを用い、入射光のスペクトル密度は図21に示す太陽光スペクトルに基づいた。   In the simulation, the condensing lens 10 (10A, 10B, 10C) and the condensing optical element 20 (20A, 20B, 20C) are composed of PMMA (polymethyl methacrylate) for the condensing device 1 of the first configuration form, and the wavelength The case of collecting sunlight of 350 nm to 1100 nm was performed using a ray tracing tool widely used by optical designers. At this time, the refractive index of PMMA was obtained by linearly interpolating the values in the table shown in FIG. 20, and the spectral density of incident light was based on the sunlight spectrum shown in FIG.

また、集光装置1a,1cについて、集光光学素子20A,20B,20Cの厚さは1mm、集光レンズ10A,10B,10Cを構成する各単位集光レンズの焦点距離f=20mm、集光反射面25の傾斜角θ25=52度とし、太陽光の視野角を0.52度とした。Further, regarding the condensing devices 1a and 1c, the thickness of the condensing optical elements 20A, 20B, and 20C is 1 mm, the focal length f of each unit condensing lens constituting the condensing lenses 10A, 10B, and 10C is 20 mm. an inclined angle theta 25 = 52 degrees of the reflecting surface 25, and the viewing angle of the sunlight and 0.52 degrees.

上記共通条件のもと、一組の集光レンズ10及び集光光学素子20I(集光部20s)からなる集光装置に太陽光を入射したときの、光線追跡(Ray-trace)シミュレーション結果を図22,図23に例示する。図22は、集光装置をy軸方向(側方)から見たシミュレーション結果、図23は斜め上方から見たシミュレーション結果であり、単位集光レンズと集光部の素子ユニットとの関係を示している。以下、三組の集光レンズ10及び集光光学素子20Iからなる集光装置1について実施例を説明する。   Under the above common conditions, a ray-trace simulation result when sunlight is incident on a condensing device including a pair of condensing lens 10 and condensing optical element 20I (condensing unit 20s). This is illustrated in FIG. 22 and FIG. FIG. 22 is a simulation result when the light collecting device is viewed from the y-axis direction (side), and FIG. 23 is a simulation result when the light collecting device is viewed obliquely from above, showing the relationship between the unit condensing lens and the element unit of the light converging unit. ing. Hereinafter, an embodiment of the condensing device 1 including the three condensing lenses 10 and the condensing optical element 20I will be described.

[第1実施例]
既述した第1構成例の集光装置1a(図5〜図7を参照)に太陽光を入射させたときのシミュレーション結果を図24〜図26に示す。このとき、相互に重ね合わされた集光光学素子20Aの上面22と集光光学素子20Bの下面23との界面、及び集光光学素子20Bの上面22と集光光学素子20Cの下面23との界面は共に結合されておらず、各界面に空気層が存在する状態、すなわち集光光学素子20A,20B,20Cは上下に重ね合わせて載置しただけの状態である。
[First embodiment]
The simulation results when sunlight is incident on the light collecting apparatus 1a of the first configuration example described above (see FIGS. 5 to 7) are shown in FIGS. At this time, the interface between the upper surface 22 of the condensing optical element 20A and the lower surface 23 of the condensing optical element 20B, and the interface between the upper surface 22 of the condensing optical element 20B and the lower surface 23 of the condensing optical element 20C are overlapped with each other. Are not coupled together, and there is an air layer at each interface, that is, the condensing optical elements 20A, 20B, and 20C are simply placed one above the other.

図24(a)は、集光装置1aを側方(y軸方向)から見たシミュレーションデータ、図24(b)は、集光光学素子20A,20B,20Cを上方(集光レンズ側)から見たシミュレーション結果である。図24(a)に示した1,11,21,30の数値は、集光光学素子20A,20B,20Cにおける集光反射面25の列数を、上流側(20A側)から順に付与したときの列番号であり、1〜10は集光光学素子20A、11〜20は集光光学素子20B、21〜30は集光光学素子20Cの集光反射面に該当する。   FIG. 24A shows simulation data of the condensing device 1a viewed from the side (y-axis direction), and FIG. 24B shows the condensing optical elements 20A, 20B, and 20C from above (condensing lens side). It is the simulation result that I saw. The numerical values 1, 11, 21, and 30 shown in FIG. 24A are obtained when the number of condensing reflection surfaces 25 in the condensing optical elements 20A, 20B, and 20C is given in order from the upstream side (20A side). 1-10 are the condensing optical element 20A, 11-20 are the condensing optical element 20B, and 21-30 are the condensing reflective surfaces of the condensing optical element 20C.

図25(a),(b),(c)は、それぞれ集光光学素子20A,20B,20Cを側方から見たシミュレーション結果の部分拡大図であり、図25(a)は、他の集光光学素子と重複部がない集光光学素子20Aの先端部分の部分拡大図、図25(b)は、集光光学素子20Aの導光部20tと重複する集光光学素子20Bの先端部分の部分拡大図、図25(c)は、集光光学素子20A及び集光光学素子20Bの導光部20tと重複する集光光学素子20Cの先端部分の部分拡大図である。図25に示した数値1〜4,11〜14,21〜24は、それぞれ上記同様に集光反射面25の列番号である。   25 (a), (b), and (c) are partially enlarged views of simulation results when the condensing optical elements 20A, 20B, and 20C are viewed from the side, respectively, and FIG. FIG. 25B is a partially enlarged view of the distal end portion of the condensing optical element 20A that does not overlap with the optical optical element. FIG. 25B is a front end portion of the condensing optical element 20B that overlaps the light guide portion 20t of the condensing optical element 20A. FIG. 25C is a partially enlarged view of the distal end portion of the condensing optical element 20C that overlaps the light guide portion 20t of the condensing optical element 20A and the condensing optical element 20B. The numerical values 1 to 4, 11 to 14, and 21 to 24 shown in FIG. 25 are the column numbers of the condensing / reflecting surface 25 as described above.

図26は、集光装置1aにより集光され出力部27から出射する光の照度分布を表している。図26における横軸はz軸方向の位置(下面からの距離)であり、3分割された縦長の領域が各集光光学素子20A,20B,20Cの出射面26,26,26に対応する。図26における縦軸はy軸方向の位置(図1,図5等を参照)であり、10行の素子ユニットで幅100mmとなる出射面を50分割している。そして、3×50=150メッシュに分割した領域について、各領域を通る光線本数に応じて10段階の照度(光線本数/メッシュ)に分類し、図26に光線本数/メッシュの照度分布として示した濃淡のグレースケールに応じて示したものである。グレースケールに示した※印は、本実施例におけるシミュレーション結果の照度の幅を示す。   FIG. 26 shows the illuminance distribution of the light collected by the light collecting device 1a and emitted from the output unit 27. The horizontal axis in FIG. 26 is the position in the z-axis direction (distance from the lower surface), and the vertically divided regions divided into three correspond to the exit surfaces 26, 26, 26 of the respective condensing optical elements 20A, 20B, 20C. The vertical axis in FIG. 26 is the position in the y-axis direction (see FIGS. 1, 5 and the like), and the output surface having a width of 100 mm is divided into 50 by 10 rows of element units. The regions divided into 3 × 50 = 150 meshes are classified into 10 levels of illuminance (number of light rays / mesh) according to the number of light rays passing through each region, and are shown in FIG. 26 as the illuminance distribution of the number of light rays / mesh. It is shown according to the gray scale of light and shade. The asterisk (*) shown in the gray scale indicates the width of the illuminance of the simulation result in this example.

図24から、各集光光学素子の集光部20sにおいて、集光反射面25,25…に集光入射した光線が、各素子ユニット200の集光反射面25、上面22,下面23、第1側面24a,第2側面24bで全反射されてx軸方向に導かれ、出射面26側に向かうにつれて光線密度が高くなっていくことがわかる。また、上記各面で全反射条件が満たされ、集光反射面25で素子内に反射された光線が集光光学素子20から殆ど漏出することなく出射面26に取り出されている様子もわかる。   From FIG. 24, in the condensing part 20s of each condensing optical element, the light rays condensed and incident on the condensing reflection surfaces 25, 25... It can be seen that the first side surface 24a and the second side surface 24b are totally reflected and guided in the x-axis direction, and the light beam density increases toward the exit surface 26 side. It can also be seen that the total reflection condition is satisfied on each of the surfaces, and the light beam reflected into the element by the condensing reflection surface 25 is extracted to the exit surface 26 with almost no leakage from the condensing optical element 20.

図25から、集光光学素子20A,20B,20Cに入射した光は、各集光光学素子の上面22,下面23で全反射されてx軸方向に導かれ、出射面26に向かうこと、各集光光学素子20A,20B,20Cが各々独立した集光光学素子として作用していることが分かる。   From FIG. 25, the light incident on the condensing optical elements 20A, 20B, and 20C is totally reflected on the upper surface 22 and the lower surface 23 of each condensing optical element, guided in the x-axis direction, and directed toward the emission surface 26. It can be seen that the condensing optical elements 20A, 20B, and 20C act as independent condensing optical elements.

図26から、出力部27のうち、集光光学素子20Cの出射面26ではy軸方向の位置に応じて照度が異なり、照度の幅が広いこと、集光光学素子20Bの出射面26ではy軸方向の照度の幅が狭くなり、集光光学素子20Aの出射面26ではy軸方向の位置によらず中間的な照度でほぼ均一になることが分かる。   From FIG. 26, in the output part 27, the illuminance differs on the exit surface 26 of the condensing optical element 20C depending on the position in the y-axis direction, and the illuminance width is wide. On the exit surface 26 of the condensing optical element 20B, y It can be seen that the width of the illuminance in the axial direction is narrowed, and the light exit surface 26 of the condensing optical element 20A is substantially uniform with an intermediate illuminance regardless of the position in the y-axis direction.

集光光学素子20Cの出射面26において、照度が高い値となる方向(図26においてy軸方向の数値が小さくなる方向)は、集光反射面25,第1側面24a,第2側面24bの傾斜方向と一致している。これは、各集光部20sにおいて上記傾斜方向に向かって光線密度が高くなるためと解される(図24bを参照)。一方、集光光学素子20Bの出射面26でy軸方向の照度の幅が狭くなり、集光光学素子20Aの出射面26でy軸方向の位置によらず照度がほぼ均一になるのは、傾斜方向に偏向された光線が、各素子ユニットの第1側面24a,第2側面24b、及び導光部20tの左右の側面で反射を繰り返すことにより、種々の方向に向かう光線密度が均等化されるためと解される。   On the exit surface 26 of the condensing optical element 20C, the direction in which the illuminance is high (the direction in which the numerical value in the y-axis direction is small in FIG. 26) is the condensing reflection surface 25, the first side surface 24a, and the second side surface 24b. It coincides with the tilt direction. This is understood because the light beam density increases in the inclined direction in each condensing unit 20s (see FIG. 24b). On the other hand, the width of the illuminance in the y-axis direction is narrowed on the exit surface 26 of the condensing optical element 20B, and the illuminance is almost uniform on the exit surface 26 of the condensing optical element 20A regardless of the position in the y-axis direction. The light beams deflected in the tilt direction are repeatedly reflected on the first side surface 24a, the second side surface 24b, and the left and right side surfaces of the light guide unit 20t of each element unit, so that the light beam densities in various directions are equalized. It is understood that.

[第2実施例]
次に、上述した第1構成例の集光装置1aにおいて、上下に重なる集光光学素子20A,20B,20Cを密着して配置するとともに、重複部にマッチングオイルまたは光学接着材を滴下して3枚の集光光学素子を一体的に接合する。その状態で、集光レンズ10A,10B,10Cを介して太陽光を入射させときのシミュレーション結果を図27〜図29に示す。なお、図中に付記する1〜4,11〜14,21〜24の数値は、前述した実施例と同様に集光反射面25の列番号である。
[Second Embodiment]
Next, in the condensing device 1a of the first configuration example described above, the condensing optical elements 20A, 20B, and 20C that overlap vertically are arranged in close contact with each other, and matching oil or an optical adhesive material is dropped on the overlapping portion. The light collecting optical elements are integrally joined. In this state, simulation results when sunlight is incident through the condenser lenses 10A, 10B, and 10C are shown in FIGS. In addition, the numerical value of 1-4, 11-14, 21-24 added in a figure is the column number of the condensing reflective surface 25 similarly to the Example mentioned above.

図27は図24に対応し、図27(a)は、集光装置1aを側方から見たシミュレーション結果、図27(b)は、集光光学素子20A,20B,20Cを上方から見たシミュレーション結果である。図28は図25に対応し、図28(a)は、他の集光光学素子と重複部がない集光光学素子20Aの先端部分の部分拡大図、図28(b)は、集光光学素子20Aの導光部20tと重複する集光光学素子20Bの先端部分の部分拡大図、図28(c)は、集光光学素子20A,20Bの導光部20tと重複する集光光学素子20Cの先端部分の部分拡大図である。   FIG. 27 corresponds to FIG. 24, FIG. 27 (a) shows a simulation result when the condensing device 1a is seen from the side, and FIG. 27 (b) shows the condensing optical elements 20A, 20B, and 20C as seen from above. It is a simulation result. 28 corresponds to FIG. 25, FIG. 28 (a) is a partially enlarged view of the tip portion of the condensing optical element 20A that does not overlap with other condensing optical elements, and FIG. 28 (b) is the condensing optics. FIG. 28C is a partially enlarged view of the tip portion of the condensing optical element 20B overlapping with the light guide portion 20t of the element 20A, and FIG. 28C shows the condensing optical element 20C overlapping with the light guide portion 20t of the condensing optical elements 20A and 20B. It is the elements on larger scale of the front-end | tip part.

図29は図26に対応し、集光装置1aにより集光され出力部27から出射する光の照度分布を表している。図29の縦軸及び横軸は図26と同様であり、縦軸はy軸方向の位置、横軸はz軸方向の位置(集光光学素子20A,20B,20Cの出射面26,26,26)である。そして、3×50=150メッシュに分割した領域について、各領域を通る光線本数に応じて10段階の照度(光線本数/メッシュ)に分類し、図29に光線本数/メッシュの照度分布として示した濃淡のグレースケールに応じて示したものである。グレースケールに示した※印は、本実施例におけるシミュレーション結果の照度の幅を示す。   FIG. 29 corresponds to FIG. 26 and shows the illuminance distribution of the light condensed by the condensing device 1 a and emitted from the output unit 27. 29, the vertical axis and the horizontal axis are the same as those in FIG. 26, the vertical axis is the position in the y-axis direction, and the horizontal axis is the position in the z-axis direction (the exit surfaces 26, 26, and 20C of the condensing optical elements 20A, 20B, and 20C). 26). Then, the regions divided into 3 × 50 = 150 meshes are classified into 10 levels of illuminance (number of light beams / mesh) according to the number of light beams passing through each region, and are shown in FIG. 29 as the illuminance distribution of the number of light beams / mesh. It is shown according to the gray scale of light and shade. The asterisk (*) shown in the gray scale indicates the width of the illuminance of the simulation result in this example.

図27から、各集光光学素子の集光部20sにおいて、集光反射面25,25…に集光入射した光線が、各素子ユニット200の集光反射面25、上面22,下面23、第1側面24a,第2側面24bで全反射されてx軸方向に導かれ、出射面26側に向かうにつれて光線密度が高くなっていくことがわかるまた、集光反射面25で素子内に反射された光線が集光光学素子20から殆ど漏出することなく出射面26に取り出されている様子もわかる。   From FIG. 27, in the condensing part 20s of each condensing optical element, the light rays condensed and incident on the condensing reflection surfaces 25, 25... It can be seen that the light is totally reflected by the first side surface 24a and the second side surface 24b and guided in the x-axis direction, and the light density increases toward the exit surface 26 side. It can also be seen that the reflected light is extracted to the exit surface 26 with almost no leakage from the condensing optical element 20.

図28(a)からは、重複部がない集光光学素子20Aの集光部20sでは、集光反射面25で反射された光が当該集光部の上面22,下面23で全反射されてx軸方向に導かれる様子が分かる。一方、図28(b)からは、集光光学素子20Bの集光部20sと集光光学素子20Aの導光部20tとが重複する領域では、集光光学素子20Bの集光反射面25で反射された光の一部が、界面を通って集光光学素子20Aの導光部20tに入射し、集光光学素子20Aの導光部20tを伝播する光の一部が、界面を通って集光光学素子20Bの上面で全反射される状況が認められる。同様に、図28(c)からは、集光光学素子20Cの集光部20sと集光光学素子20A,20Bの導光部20tとが重複する領域では、集光光学素子20Cの集光反射面25で反射された光の一部が、界面を通って集光光学素子20B,20Aの導光部20tに入射し、集光光学素子20B,20Aの導光部20tを伝播する光の一部が、界面を通って集光光学素子20Cの上面で全反射される状況が認められる。   From FIG. 28A, in the condensing part 20s of the condensing optical element 20A having no overlapping part, the light reflected by the condensing reflection surface 25 is totally reflected by the upper surface 22 and the lower surface 23 of the condensing part. You can see how it is guided in the x-axis direction. On the other hand, from FIG. 28B, in the region where the condensing part 20s of the condensing optical element 20B and the light guiding part 20t of the condensing optical element 20A overlap, the condensing reflection surface 25 of the condensing optical element 20B is used. Part of the reflected light enters the light guide 20t of the condensing optical element 20A through the interface, and part of the light propagating through the light guide 20t of the condensing optical element 20A passes through the interface. It is recognized that the light is totally reflected on the upper surface of the condensing optical element 20B. Similarly, from FIG. 28C, in the region where the condensing unit 20s of the condensing optical element 20C and the light guiding unit 20t of the condensing optical elements 20A and 20B overlap, the condensing reflection of the condensing optical element 20C. A part of the light reflected by the surface 25 enters the light guide 20t of the condensing optical elements 20B and 20A through the interface, and is a part of the light propagating through the light guide 20t of the condensing optical elements 20B and 20A. It is recognized that the part is totally reflected by the upper surface of the condensing optical element 20C through the interface.

図29から、出力部27において、全体的な傾向として、y軸方向の数値が小さくなる方向に照度が高くなることが分かる。すなわち、集光光学素子20A,20B,20Cの何れの出射面26,26,26についても、y軸方向の数値が小さくなる方向に照度が高くなっている。これは、第1実施例において検討したように、照度が高くなる方向が集光反射面25,第1側面24a,第2側面24bの傾斜方向と一致しており、各集光部20sにおいて上記傾斜方向に向かう光線密度が高くなるためと解される。   From FIG. 29, it can be seen that, as an overall trend, the output unit 27 increases the illuminance in the direction in which the numerical value in the y-axis direction decreases. In other words, the illuminance is high in the direction in which the numerical value in the y-axis direction decreases with respect to any of the exit surfaces 26, 26, 26 of the condensing optical elements 20A, 20B, 20C. As discussed in the first embodiment, this is because the direction in which the illuminance is high coincides with the inclination directions of the condensing reflection surface 25, the first side surface 24a, and the second side surface 24b. It is understood that the light density toward the tilt direction increases.

一方、図29と図26とを対比して明らかなように、本構成例においては、集光光学素子20Aの出射面26、集光光学素子20Bの出射面26、及び集光光学素子20Cの出射面26でy軸方向の照度分布がほぼ同一であり、z軸方向の照度は何れの位置でも一定である。また、図29のグレースケールに※印で示した照度の幅を図26の照度の幅と対比しても分かるように、照度が高い部分と照度が低い部分の照度の幅(ばらつき)が実施例1よりも小さいことが分かる。これは、上記のように偏向された光線が各素子ユニットの第1側面24a,第2側面24b、及び導光部20tの左右の側面で反射される効果と、複数の集光光学素子の重複部において光線が界面を通って立体的に伝播する効果とが相乗的に作用し、種々の方向に向かう光線密度が三次元的に均等化されるためと解される。   On the other hand, as apparent from the comparison between FIG. 29 and FIG. 26, in the present configuration example, the exit surface 26 of the condensing optical element 20A, the exit surface 26 of the condensing optical element 20B, and the condensing optical element 20C. The illuminance distribution in the y-axis direction is almost the same on the exit surface 26, and the illuminance in the z-axis direction is constant at any position. Also, the illuminance width (variation) between the high illuminance portion and the low illuminance portion is implemented, as can be seen by comparing the illuminance width indicated by * in the gray scale of FIG. 29 with the illuminance width of FIG. It can be seen that it is smaller than Example 1. This is because the light beam deflected as described above is reflected by the first side surface 24a, the second side surface 24b, and the left and right side surfaces of the light guide unit 20t, and the overlapping of the plurality of condensing optical elements. It is understood that the effect of the three-dimensional propagation of light rays through the interface in the part synergistically acts, and the light density toward various directions is equalized three-dimensionally.

[第3実施例]
次に、既述した第3構成例の集光装置1c(図13,図14を参照)において、上下に重なる集光光学素子20A,20B,20Cを密着して配置するとともに、重複部にマッチングオイルまたは光学接着材を滴下して3枚の集光光学素子を一体的に接合し、集光レンズ10A,10B,10Cを介して太陽光を入射したときのシミュレーションデータを図30〜図32に示す。図中に付記する1〜4,11〜14,21〜24の数値は、前述した各実施例と同様に集光反射面25の列番号である。
[Third embodiment]
Next, in the condensing device 1c of the third configuration example described above (see FIGS. 13 and 14), the condensing optical elements 20A, 20B, and 20C that overlap vertically are arranged in close contact with each other and matched to the overlapping portion. 30 to 32 show simulation data when oil or an optical adhesive is dropped and the three condensing optical elements are integrally joined, and sunlight is incident through the condensing lenses 10A, 10B, and 10C. Show. Numerical values 1 to 4, 11 to 14, and 21 to 24 added in the drawing are column numbers of the condensing reflection surface 25 as in the above-described embodiments.

図30は、図24及び図27に対応し、図30(a)は、集光装置1cを側方から見たシミュレーション結果、図30(b)は、集光光学素子20A,20B,20Cを上方から見たシミュレーション結果である。図31は、図25及び図28に対応し、図31(a)は、他の集光光学素子と重複部がない集光光学素子20Aの先端部分の部分拡大図、(b)集光光学素子20Aの導光部20tと重複する集光光学素子20Bの先端部分の部分拡大図、(c)集光光学素子20A,20Bの導光部20tと重複する集光光学素子20Cの先端部分の部分拡大図である。   FIG. 30 corresponds to FIG. 24 and FIG. 27, FIG. 30 (a) shows a simulation result when the condensing device 1c is viewed from the side, and FIG. 30 (b) shows the condensing optical elements 20A, 20B, and 20C. It is the simulation result seen from the top. FIG. 31 corresponds to FIG. 25 and FIG. 28, and FIG. 31 (a) is a partial enlarged view of the tip portion of the condensing optical element 20 </ b> A that does not overlap with other condensing optical elements, and (b) condensing optics. FIG. 7C is a partial enlarged view of the tip portion of the condensing optical element 20B overlapping with the light guide portion 20t of the element 20A, and FIG. It is a partial enlarged view.

図32(a)は、図26及び図29に対応し、集光装置1cにより集光され出力部27から出射する光の照度分布である。図32(a)の縦軸及び横軸は図26及び図29と同様であり、グレースケールに示した※印は、本実施例におけるシミュレーション結果の照度の幅を示す。なお、図32(b)は、集光装置1cを二組の集光レンズ10(10B,10C)と集光光学素子20(20B,20C)とから構成した場合の照度分布である。   FIG. 32A corresponds to FIG. 26 and FIG. 29, and shows the illuminance distribution of the light collected by the light collecting device 1 c and emitted from the output unit 27. The vertical axis and horizontal axis of FIG. 32A are the same as those of FIGS. 26 and 29, and the asterisk * shown in the gray scale indicates the width of the illuminance of the simulation result in this example. FIG. 32B shows the illuminance distribution in the case where the condensing device 1c is composed of two sets of condensing lenses 10 (10B, 10C) and condensing optical elements 20 (20B, 20C).

図30から、各集光光学素子の集光部20sにおいて、集光反射面25,25…に集光入射した光線が、各素子ユニット200の集光反射面25、上面22,下面23、第1側面24a,第2側面24bで全反射されてx軸方向に導かれ、出射面26側に向かうにつれて光線密度が高くなっていくことがわかる。また、集光反射面25で素子内に反射された光線が集光光学素子20から殆ど漏出することなく出射面26に取り出されている様子もわかる。また、図30(b)を、図24(b)及び図27(b)と対比すると、出力部27から出射する光線の光線密度及び出射方向が均等化されていることが分かる。   From FIG. 30, in the condensing part 20s of each condensing optical element, the light rays condensed and incident on the condensing reflection surfaces 25, 25... It can be seen that the first side surface 24a and the second side surface 24b are totally reflected and guided in the x-axis direction, and the light beam density increases toward the exit surface 26 side. It can also be seen that the light beam reflected into the element by the condensing reflection surface 25 is extracted to the emission surface 26 with almost no leakage from the condensing optical element 20. 30B is compared with FIGS. 24B and 27B, it can be seen that the light density and the emission direction of the light emitted from the output unit 27 are equalized.

図31から図27と同様の状況が認識される。すなわち図31(a)からは、他の集光光学素子と重複部がない集光光学素子20Aの集光部20sでは、集光反射面25で反射された光が当該集光部の上面22,下面23で全反射されてx軸方向に導かれる様子が分かる。また、図31(b)からは、集光光学素子20Bの集光部20sと集光光学素子20Aの導光部20tとが重複する領域において、また図31(c)からは、集光光学素子20Cの集光部20sと集光光学素子20A,20Bの導光部20tとが重複する領域において、集光反射面25で反射された光の一部が、界面を通って下層の集光光学素子の導光部20tに入射し、下層の集光光学素子の導光部20tを伝播する光の一部が、界面を通って最上層の集光光学素子の上面で全反射される状況が認められる。   The same situation as in FIGS. 31 to 27 is recognized. That is, from FIG. 31A, in the condensing unit 20s of the condensing optical element 20A that does not overlap with other condensing optical elements, the light reflected by the condensing reflection surface 25 is the upper surface 22 of the condensing unit. It can be seen that the light is totally reflected by the lower surface 23 and guided in the x-axis direction. Further, from FIG. 31B, in the region where the condensing part 20s of the condensing optical element 20B and the light guiding part 20t of the condensing optical element 20A overlap, and from FIG. 31C, the condensing optics. In the region where the light condensing unit 20s of the element 20C and the light guiding unit 20t of the condensing optical elements 20A and 20B overlap, a part of the light reflected by the condensing reflection surface 25 passes through the interface and collects light in the lower layer. A state in which a part of the light that enters the light guide 20t of the optical element and propagates through the light guide 20t of the lower-layer condensing optical element is totally reflected by the upper surface of the uppermost condensing optical element through the interface Is recognized.

図32(a)からは、出力部27における照度分布がほぼ均等になっていることが分かる。すなわち、集光光学素子20A,20B,20Cの何れの出射面26,26,26についても、y軸方向及びz軸方向に依存した照度変化の傾向を持たず、グレースケールに※a印で示す照度の幅は、図26及び図29の照度の幅と対比して明らかなように、照度が高い部分と照度が低い部分の照度の幅(ばらつき)が極めて小さいことが分かる。   FIG. 32A shows that the illuminance distribution in the output unit 27 is substantially uniform. That is, none of the exit surfaces 26, 26, 26 of the condensing optical elements 20A, 20B, 20C has a tendency of illuminance change depending on the y-axis direction and the z-axis direction, and is indicated by * a in gray scale. As is clear from the illuminance width shown in FIGS. 26 and 29, it can be seen that the illuminance width (variation) between the high illuminance portion and the low illuminance portion is extremely small.

これは、集光反射面25,第1側面24a,第2側面24bの傾斜方向が集光光学素子20A,20Cと集光光学素子20Bとでx軸に軸対称に形成されることで、光線の偏向方向が互いに逆の光線群が存在することになった効果(図30(b)を参照)と、各素子ユニットの第1側面24a,第2側面24b、及び導光部20tの左右の側面で反射される効果と、複数の集光光学素子の重複部において光線が界面を通って立体的に伝播する効果とが相乗的に作用し、種々の方向に向かう光線密度がさらに三次元的に均等化されるためと解される。   This is because the condensing reflection surfaces 25, the first side surface 24a, and the second side surface 24b are formed so that the inclination directions of the condensing optical elements 20A and 20C and the condensing optical element 20B are axisymmetric with respect to the x axis. The effect of the existence of the light beam groups whose deflection directions are opposite to each other (see FIG. 30B) and the left and right sides of the first side surface 24a, the second side surface 24b, and the light guide unit 20t of each element unit. The effect of reflection on the side surface and the effect of three-dimensional propagation of light rays through the interface at the overlapping part of multiple converging optical elements work synergistically, and the light density toward various directions is further three-dimensional. It is understood to be equalized.

このことは、図32(b)に示す集光レンズ10(10B,10C)と集光光学素子(20B,20C)とが二組の集光装置においても、照度分布が一定の傾向をもたずに均等となり、かつ※b印で示す照度の幅が、集光レンズと集光光学素子とが三組第2実施例の照度の幅よりも狭いことからも理解される。   This is because the illuminance distribution tends to be constant even in the case where the condenser lens 10 (10B, 10C) and the condenser optical element (20B, 20C) shown in FIG. Therefore, it is understood that the illuminance width indicated by the mark * b is narrower than the illuminance width of the triplet second embodiment.

[出力部からの光エネルギーの取り出し手法]
次に、集光装置1,2において、出力部27から出射する光のエネルギー取り出し手法について、図33を参照して簡潔に説明する。図33(a)は、集光光学素子20A,20B,20Cにより集光された光を出力部27からそのまま取り出し、光エネルギーとして利用する構成例の概念図である。ここでは、集光光学素子20の出射面26から出射する光を、シリンドリカルレンズ91や集光ロッド92等を介して集光し、集光された光を光ファイバー93により所望の位置まで導くような構成が例示される。
[Extraction method of light energy from output section]
Next, a method for extracting energy of light emitted from the output unit 27 in the light collecting apparatuses 1 and 2 will be briefly described with reference to FIG. FIG. 33A is a conceptual diagram of a configuration example in which light collected by the condensing optical elements 20A, 20B, and 20C is extracted as it is from the output unit 27 and used as light energy. Here, the light emitted from the emission surface 26 of the condensing optical element 20 is condensed through the cylindrical lens 91, the condensing rod 92, etc., and the condensed light is guided to a desired position by the optical fiber 93. The configuration is illustrated.

これにより、集光装置1,2により集光された光を、集光装置と離れた所望の場所で利用することができる。例えば、光電変換素子5を当該光電変換素子の過熱を防止するための冷却装置を備えたユニットボックス内に設置し、このユニットボックス内に光ファイバー93を介して伝送することができる。例えば、集光装置1,2により集光された光を、光ファイバー93で伝送し、集光装置から遠く離れた野菜工場等で利用することも可能である。集光装置1,2には、集光レンズ10と集光光学素子20とが複数組あって、これらにより集光された光が、複数の出射面26が上下に並ぶ出力部27から取り出されるため、簡明な装置構成で集光効率を向上させることができ、太陽光等の光エネルギーを効率的に利用することができる。   Thereby, the light condensed by the condensing devices 1 and 2 can be used in a desired place away from the condensing device. For example, the photoelectric conversion element 5 can be installed in a unit box provided with a cooling device for preventing overheating of the photoelectric conversion element, and can be transmitted through the optical fiber 93 into the unit box. For example, it is possible to transmit the light collected by the light collecting devices 1 and 2 through the optical fiber 93 and use it in a vegetable factory or the like far away from the light collecting device. The condensing devices 1 and 2 have a plurality of condensing lenses 10 and condensing optical elements 20, and the light condensed by them is taken out from an output unit 27 in which a plurality of emission surfaces 26 are arranged vertically. Therefore, the light collection efficiency can be improved with a simple device configuration, and light energy such as sunlight can be used efficiently.

図33(b)は、集光光学素子20A,20B,20Cにより集光され出力部27から出射する光を、電気エネルギーまたは熱エネルギーに変換して取り出す場合の概念図である。この図は、光電変換素子5を集光光学素子20の出射端部に結合し、電気エネルギーとして取り出す構成例を示す。集光装置1,2には、集光レンズ10と集光光学素子20とが複数組あって、これらにより集光された光が、複数の出射面26が上下に並ぶ出力部27から取り出されるため、簡明な装置構成で光電変換素子5に入射する光のパワーを増大させ、太陽光等の光エネルギーを効率的に利用することができる。さらに、第2実施例及び第3実施例に示したような構成によれば、光電変換素子5の各部に入射する光のパワー密度(照度分布)を均等化することができ、光電変換素子5による電気エネルギーへの変換効率を大幅に向上させることができる。   FIG. 33B is a conceptual diagram in the case where light collected by the condensing optical elements 20A, 20B, and 20C and emitted from the output unit 27 is converted into electric energy or heat energy and extracted. This figure shows a configuration example in which the photoelectric conversion element 5 is coupled to the emission end of the condensing optical element 20 and is taken out as electric energy. The condensing devices 1 and 2 have a plurality of condensing lenses 10 and condensing optical elements 20, and the light condensed by them is taken out from an output unit 27 in which a plurality of emission surfaces 26 are arranged vertically. Therefore, the power of light incident on the photoelectric conversion element 5 can be increased with a simple device configuration, and light energy such as sunlight can be efficiently used. Furthermore, according to the configuration shown in the second and third embodiments, the power density (illuminance distribution) of light incident on each part of the photoelectric conversion element 5 can be equalized, and the photoelectric conversion element 5 The conversion efficiency into electrical energy can be greatly improved.

なお、集光光学素子20A,20B,20Cにより集光され出力部27から出射する光を熱エネルギーとして取り出す光熱変換装置とする場合には、光エネルギーを熱エネルギーに光熱変換する光熱変換素子として、例えば、光吸収体付きのヒートパイプ等が好適に用いられる。   In the case of a photothermal conversion device that takes out the light collected by the condensing optical elements 20A, 20B, and 20C and emitted from the output unit 27 as heat energy, as a photothermal conversion element that converts light energy into heat energy, For example, a heat pipe with a light absorber is preferably used.

なお、実施形態では、説明簡明化のため、集光光学素子をシート状ないしプレート状として二層または三層重ねた形態を例示し、また集光光学素子の作用を説明するため、基材21に具体的な物質を適用した構成例を説明したが、本発明はこれらの構成形態や構成例に限定されるものではない。例えば、集光光学素子20は四層以上(20A,20B,20C,20D…)重ね合わせた形態としても良く、基材21の材質は、種々の樹脂材料や無機材料等を適宜選択して構成することができる。   In the embodiment, for the sake of simplicity of explanation, the condensing optical element is illustrated as a sheet-like or plate-like form in which two or three layers are stacked, and in order to explain the action of the condensing optical element, the substrate 21 However, the present invention is not limited to these configuration forms and configuration examples. For example, the condensing optical element 20 may have a form in which four or more layers (20A, 20B, 20C, 20D...) Are overlapped, and the base material 21 is configured by appropriately selecting various resin materials, inorganic materials, and the like. can do.

以上説明したように、集光装置1,2においては、集光レンズ10と集光光学素子20が複数組あって、これらによって集光された光が、集光反射面25、上面22、下面23、第1側面24a,第2側面24bで全反射され、出射面26が上下に並ぶ出力部27から取り出される。従って、本発明の態様の集光装置1,2によれば、薄型かつ簡明な構成で、太陽光等の光エネルギーを効率的に利用可能な、新たな集光装置を提供することができる。また、このような集光装置1を光発電装置PVSや光熱変換装置は、光軸方向の厚さが薄く小型軽量であり、新たな太陽光発電装置または太陽光集熱装置として好適である。   As described above, in the condensing devices 1 and 2, there are a plurality of sets of the condensing lens 10 and the condensing optical element 20, and the light condensed by these includes the condensing reflection surface 25, the upper surface 22, and the lower surface. 23, the light is totally reflected by the first side surface 24a and the second side surface 24b, and the output surface 26 is taken out from the output unit 27 arranged vertically. Therefore, according to the condensing apparatuses 1 and 2 of the aspect of the present invention, it is possible to provide a new condensing apparatus that can efficiently use light energy such as sunlight with a thin and simple configuration. In addition, the light condensing device 1 such as the photovoltaic power generation device PVS and the photothermal conversion device has a small thickness in the optical axis direction and is small and lightweight, and is suitable as a new photovoltaic power generation device or a solar heat collecting device.

上記の通り、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術思想の範囲内で考えられるその他の態様も本発明の範囲に含まれる。   As described above, various embodiments and modifications have been described, but the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.

次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国出願2010年第255350号(2010年11月15日)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Application 2010 No. 255350 (November 15, 2010)

Claims (13)

第1の集光レンズ、及び透明材料により形成され前記第1の集光レンズにより集光されて入射する入射光を導く第1の集光光学素子と、第2の集光レンズ、及び透明材料により形成され前記第2の集光レンズにより集光されて入射する入射光を導く第2の集光光学素子とを備え、
前記第1の集光光学素子及び前記第2の集光光学素子は、各々、前記入射光を透過する上面及び前記上面と対向して延びる下面と、前記上面と下面の間に前記入射光の光軸と交差して設けられ前記入射光を反射する反射面と、前記反射面の反対側に設けられた出射面とを有し、
前記第1の集光光学素子の反射面と前記第2の集光光学素子の反射面とが上下に重複せず前記第1の集光光学素子の出射面と前記第2の集光光学素子の出射面とが上下に並ぶように前記第1の集光光学素子と前記第2の集光光学素子とが上下に重ねて配設され、
前記第1の集光レンズ及び前記第2の集光レンズにより集光され各々前記反射面により反射された光が、前記第1の集光光学素子及び前記第2の集光光学素子の前記出射面に導かれるように構成した集光装置。
A first condensing optical element that is formed of a first condensing lens, a transparent material, and that guides incident light that is condensed by the first condensing lens and incident thereon, a second condensing lens, and a transparent material And a second condensing optical element that guides incident light that is condensed by the second condensing lens and is incident,
The first condensing optical element and the second condensing optical element respectively include an upper surface that transmits the incident light, a lower surface that extends opposite to the upper surface, and the incident light between the upper surface and the lower surface. A reflecting surface provided to intersect the optical axis and reflecting the incident light; and an exit surface provided on the opposite side of the reflecting surface;
The reflecting surface of the first condensing optical element and the reflecting surface of the second condensing optical element do not overlap vertically, and the exit surface of the first condensing optical element and the second condensing optical element The first condensing optical element and the second condensing optical element are arranged so as to overlap each other so that their emission surfaces are aligned vertically.
The light collected by the first condenser lens and the second condenser lens and reflected by the reflecting surface is emitted from the first condenser optical element and the second condenser optical element. Concentrator configured to be guided to a surface.
前記反射面は、前記集光レンズにより所定の集束角度または発散角度で前記反射面に入射する光線の最小入射角が、前記反射面と空気との界面における全反射角以上となるように設定される請求項1に記載の集光装置。   The reflecting surface is set so that a minimum incident angle of light incident on the reflecting surface at a predetermined focusing angle or diverging angle by the condenser lens is equal to or greater than a total reflection angle at the interface between the reflecting surface and air. The light collecting device according to claim 1. 前記反射面は、前記集光レンズにより所定の集束角度または発散角度で入射した前記入射光の反射後の拡がり角を抑制する曲面状に形成される請求項1または2に記載の集光装置。   The condensing device according to claim 1, wherein the reflection surface is formed in a curved surface shape that suppresses a spread angle after reflection of the incident light incident at a predetermined convergence angle or divergence angle by the condensing lens. 前記反射面は、当該反射面で反射されて前記下面及び/または前記上面に入射する光線の最小入射角が、これらの面と空気との界面における全反射角以上となるように設定される請求項1〜3のいずれか一項に記載の集光装置。   The reflection surface is set so that a minimum incident angle of a light beam reflected by the reflection surface and incident on the lower surface and / or the upper surface is equal to or greater than a total reflection angle at an interface between these surfaces and air. Item 4. The light collecting device according to any one of Items 1 to 3. 前記第1の集光光学素子及び前記第2の集光光学素子は、前記上面と下面の間を繋ぎ前記出射面を挟んで相互に対向する第1側面及び第2側面を有し、
前記上面から入射して前記反射面により反射された光が、前記上面、前記下面、前記第1側面及び前記第2側面により全反射されて、前記出射面に導かれるように構成した請求項1〜4のいずれか一項に記載の集光装置。
The first condensing optical element and the second condensing optical element have a first side surface and a second side surface that connect the upper surface and the lower surface and face each other across the emission surface,
The light incident from the upper surface and reflected by the reflecting surface is totally reflected by the upper surface, the lower surface, the first side surface, and the second side surface and guided to the emitting surface. The condensing device as described in any one of -4.
前記上下に重ねて配設される前記第1の集光光学素子と前記第2の集光光学素子とは上下に密着して配設され、密着する上面と下面がマッチングにより一体的に結合される請求項1〜5のいずれか一項に記載の集光装置。   The first condensing optical element and the second condensing optical element, which are arranged so as to be stacked one above the other, are arranged in close contact with each other, and the adhering upper and lower surfaces are integrally coupled by matching. The condensing device according to any one of claims 1 to 5. 前記第1の集光レンズ及び前記第2の集光レンズは、各々光を集光する複数の単位集光レンズからなり、
前記第1の集光光学素子及び前記第2の集光光学素子は、各前記単位集光レンズにより集光されて入射する各入射光に対応して設けられた複数の前記反射面を有して一体に形成される請求項1〜6のいずれか一項に記載の集光装置。
The first condenser lens and the second condenser lens are each composed of a plurality of unit condenser lenses that collect light.
The first condensing optical element and the second condensing optical element have a plurality of reflecting surfaces provided corresponding to incident light incident after being condensed by the unit condensing lenses. The light collecting device according to any one of claims 1 to 6, which is integrally formed.
前記第1側面は、個々の前記反射面に対応して複数設けられ、
前記第2側面は、複数の前記反射面に共通して一体に設けられる請求項7に記載の集光装置。
A plurality of the first side surfaces are provided corresponding to the individual reflection surfaces,
The light collecting device according to claim 7, wherein the second side surface is provided integrally with the plurality of reflection surfaces.
前記第1の集光光学素子と前記第2の集光光学素子とは、
前記第1側面及び前記第2側面が、出射方向に延びる軸に対して軸対称に形成される請求項8に記載の集光装置。
The first condensing optical element and the second condensing optical element are:
The condensing device according to claim 8, wherein the first side surface and the second side surface are formed to be axially symmetric with respect to an axis extending in an emission direction.
前記第1の集光レンズ及び前記第2の集光レンズは、各々複数の単位集光レンズがマトリクス状に配設されてレンズアレイが形成され、
前記第1の集光光学素子及び前記第2の集光光学素子は、各行の前記単位集光レンズに対応して前記反射面及び前記第1側面及び前記第2側面が形成された素子ユニットが複数列設けられて一体に形成される請求項7〜9のいずれか一項に記載の集光装置。
Each of the first condenser lens and the second condenser lens has a plurality of unit condenser lenses arranged in a matrix to form a lens array,
The first condensing optical element and the second condensing optical element include an element unit in which the reflecting surface, the first side surface, and the second side surface are formed corresponding to the unit condensing lens in each row. The light collecting device according to any one of claims 7 to 9, which is provided in a plurality of rows and formed integrally.
前記反射面と前記出射面とを結ぶ方向の大きさが前記上面と下面を結ぶ厚さ方向の大きさに対して充分に大きいプレート状またはシート状に形成される請求項1〜10のいずれか一項に記載の集光装置。   11. The plate or sheet according to any one of claims 1 to 10, wherein a size in a direction connecting the reflecting surface and the output surface is sufficiently larger than a size in a thickness direction connecting the upper surface and the lower surface. The light collecting device according to one item. 請求項1〜11のいずれか一項に記載の集光装置と、
前記集光装置により前記出射面に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
The light collecting device according to any one of claims 1 to 11,
A photovoltaic device comprising: a photoelectric conversion element that photoelectrically converts light guided to the emission surface by the light collecting device.
請求項1〜11のいずれか一項に記載の集光装置と、
前記集光装置により前記出射面に導かれた光を光熱変換する光熱変換素子とを備えた光熱変換装置。
The light collecting device according to any one of claims 1 to 11,
A photothermal conversion device comprising: a photothermal conversion element for photothermal conversion of light guided to the emission surface by the condensing device.
JP2012544247A 2010-11-15 2011-11-15 Condensing device, photovoltaic power generation device, and photothermal conversion device Pending JPWO2012067082A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010255350 2010-11-15
JP2010255350 2010-11-15
PCT/JP2011/076239 WO2012067082A1 (en) 2010-11-15 2011-11-15 Condenser device, photovoltaic power generator, and light-heat converter

Publications (1)

Publication Number Publication Date
JPWO2012067082A1 true JPWO2012067082A1 (en) 2014-05-12

Family

ID=46084009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012544247A Pending JPWO2012067082A1 (en) 2010-11-15 2011-11-15 Condensing device, photovoltaic power generation device, and photothermal conversion device

Country Status (2)

Country Link
JP (1) JPWO2012067082A1 (en)
WO (1) WO2012067082A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201806159PA (en) * 2018-07-18 2020-02-27 Kong Mun Chew Angled Solar Refracting Surface

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164631A (en) * 2003-11-28 2005-06-23 Canon Inc Light converging optical system, method for manufacturing light converging optical system, and light convergence type solar battery
TW200720589A (en) * 2005-09-19 2007-06-01 Koninkl Philips Electronics Nv Luminaire with stack of flat panel light guides
GB2431513B (en) * 2005-10-21 2008-06-04 Imp College Innovations Ltd Solar concentrators
JP2008015034A (en) * 2006-07-03 2008-01-24 Fuji Xerox Co Ltd Optical transmitter, optical module, and optical transmission system
US20090126792A1 (en) * 2007-11-16 2009-05-21 Qualcomm Incorporated Thin film solar concentrator/collector
JP5279244B2 (en) * 2007-12-03 2013-09-04 株式会社 光エネルギー研究所 Condensing device and condensing method
WO2011074108A1 (en) * 2009-12-18 2011-06-23 サン電子株式会社 Light gathering apparatus

Also Published As

Publication number Publication date
WO2012067082A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
WO2013147008A1 (en) Secondary lens, solar cell mounting body, light gathering solar energy unit, light gathering solar energy device, and light gathering solar energy module
US20060191566A1 (en) Solar concentrator system using photonic engineered materials
EP2519978B1 (en) Photovoltaic concentrator with optical stepped lens and method for designing the same
US9477071B2 (en) Method and device for concentrating, collimating, and directing light
US20130247960A1 (en) Solar-light concentration apparatus
US8791355B2 (en) Homogenizing light-pipe for solar concentrators
Pham et al. Design of curved Fresnel lens with high performance creating competitive price concentrator photovoltaic
US20160133771A1 (en) Tir concentrator optics
KR100933213B1 (en) Concentration lens for solar power generation
JP2013537004A (en) Multi-band concentrator / energy conversion module
JP2013211487A (en) Secondary lens, solar battery mounting body, condensing type photovoltaic power generation unit, and condensing type photovoltaic power generation module
JP5620212B2 (en) Concentrator and concentrator
WO2012026572A1 (en) Light-condensing device, light power generation device, and photothermal conversion device
TWI574043B (en) A light collecting device, a photovoltaic device and a light and heat conversion device
JP2016138911A (en) Fresnel lens, light-condensing type solar power generation module and light-condensing type solar power generation device
JP6091883B2 (en) Concentrator and solar cell
WO2012067082A1 (en) Condenser device, photovoltaic power generator, and light-heat converter
KR101007649B1 (en) Light guider having multiple channels
JP2014010251A (en) Secondary lens, solar-cell mounting body, condensing type photovoltaic power generation system and condensing type photovoltaic power generation module
US9310593B2 (en) Holographic solar coupler
WO2012033132A1 (en) Light condenser, photovoltaic system, and photothermal converter
JP2009122146A (en) Beam converter and light-receiving device
JPH11266031A (en) Condenser type solarlight power generator and generator module having diffracting surface
JP5655146B2 (en) Condensing lens array and solar cell including the same
JP2013088690A (en) Light collecting device and photovoltaic device using the same