WO2011074108A1 - Light gathering apparatus - Google Patents

Light gathering apparatus Download PDF

Info

Publication number
WO2011074108A1
WO2011074108A1 PCT/JP2009/071105 JP2009071105W WO2011074108A1 WO 2011074108 A1 WO2011074108 A1 WO 2011074108A1 JP 2009071105 W JP2009071105 W JP 2009071105W WO 2011074108 A1 WO2011074108 A1 WO 2011074108A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light receiving
light guide
mirror
Prior art date
Application number
PCT/JP2009/071105
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 誠
Original Assignee
サン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サン電子株式会社 filed Critical サン電子株式会社
Priority to PCT/JP2009/071105 priority Critical patent/WO2011074108A1/en
Publication of WO2011074108A1 publication Critical patent/WO2011074108A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/06Roasters; Grills; Sandwich grills
    • A47J37/07Roasting devices for outdoor use; Barbecues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • G02B6/0048Tapered light guide, e.g. wedge-shaped light guide with stepwise taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a technology for collecting light.
  • a solar cell that enters sunlight into a solar cell panel formed of a semiconductor and causes a photoelectric effect in the semiconductor to generate a pair of electrons and holes, thereby obtaining electric energy from sunlight.
  • Photovoltaic technology has been actively developed.
  • a technique has been developed in which water is heated using the heat of sunlight, or an iron plate or the like is heated with sunlight to be used for cooking food.
  • the proposed technology has a problem that the optical system for collecting light becomes large. That is, since the condensing lens condenses light at the focal point of the lens, it is necessary to install the solar cell panel at a position separated from the condensing lens by a distance corresponding to the focal length of the condensing lens. Then, if the area of the condensing lens is increased in order to increase the amount of received light, the focal length of the condensing lens is increased accordingly, so a large space must be provided between the solar battery panel and the condensing lens, As a result, the optical system becomes large. Such a problem is not limited to photovoltaic power generation, and can generally occur in technologies that collect energy by collecting light.
  • the present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a technique that can collect light from a wide range without increasing the size of the apparatus.
  • the light condensing device of the present invention employs the following configuration. That is, A condensing device that condenses the light received by the light receiving surface, A light receiving member formed in a substantially plate shape by a transparent material having a refractive index larger than that of air, and one surface of which is used as the light receiving surface; A plurality of condensing lenses arranged along the light receiving surface; Provided for each of the condensing lenses at a position until the light condensed by the condensing lens and incident on the light receiving member from the light receiving surface reaches the surface facing the light receiving surface, A plurality of reflecting parts for reflecting the light collected by the condenser lens, The plurality of reflecting portions are provided with their orientations aligned with respect to the light receiving surface, and the light collected by the condensing lens is entirely directed to the light receiving surface or the surface facing the light receiving surface.
  • the gist of the present invention is that it is a reflecting part that reflects at an angle
  • a plurality of condensing lenses are provided along the light receiving surface of the light receiving member, and light is received by the light receiving member through the condensing lens.
  • a reflection part is provided for each condenser lens inside the light receiving member, and the light collected by each condenser lens is reflected by this reflection part.
  • each of the reflecting portions is provided in the same direction with respect to the light receiving surface, and is provided in a direction that reflects light at an angle that satisfies the condition of total reflection with respect to the light receiving surface or the surface facing the light receiving surface. It has been.
  • total reflection is a constant incident angle of light from the high refractive index material side to the low refractive index material side at the boundary (boundary surface) between two types of materials having different refractive indexes. This is a phenomenon in which all incident light is reflected at the boundary (boundary surface) when incident at a larger incident angle.
  • the received light is confined inside the light receiving member without escaping from the surface of the light receiving member, and the inside of the light receiving member is received. It is possible to advance in the direction along the surface of the member. Also, if the direction of each reflecting part is aligned, all the light received through each condensing lens can be guided in the same direction. As a result, the light received by the entire light receiving surface is received. It becomes possible to collect within the plate thickness of the member. In this way, it is possible to collect the light received by the entire light receiving surface at a high light collection magnification corresponding to the ratio between the area of the light receiving surface and the area corresponding to the thickness of the light receiving member.
  • the condensing device of the present invention it is possible to increase the amount of collected light only by increasing the area of the light receiving surface (without changing the size of the light receiving member in the thickness direction).
  • the reflection part when the reflection part is provided inside the light receiving member in this way, if the light traveling while totally reflecting inside the light receiving member hits the reflection part, the traveling direction of the light changes and the total reflection condition is not satisfied. The light escapes from the inside of the light receiving member, and as a result, the light collection efficiency may decrease.
  • the reflection part since the light reflected by the reflection part is preliminarily condensed by the condenser lens, the reflection part can be made small. As a result, in reality, the probability that light traveling through the light receiving member will hit the reflecting portion is small, so that the light received on the light receiving surface can be condensed with high efficiency without significant loss.
  • the light-receiving surface of the light-receiving member and the surface facing the light-receiving surface may be any surface as long as the light can be totally reflected, and does not necessarily need to be a flat surface.
  • each reflecting portion only needs to be able to guide the light reflected by the reflecting portion in the same direction along the surface of the light receiving member, and therefore the directions of the reflecting portions do not need to be completely matched.
  • the light collected by the light collecting device is not necessarily limited to light traveling in parallel (so-called parallel light), and may be light traveling in any manner. For example, it may be light that travels while spreading radially, such as light emitted from a light source having a finite area.
  • the traveling direction of light at each condensing lens position is different, and accordingly, the direction of each reflecting portion is provided differently. It may be a thing. In this way, even when the traveling directions of the light incident on the respective condensing lenses are greatly different from each other, each light can be reflected at the angle satisfying the condition of total reflection on the surface of the light receiving member.
  • the light receiving member may be provided in a curved shape according to the traveling direction of light at the position of each condenser lens. For example, when condensing light emitted from a light source having a finite area, the light receiving member is curved and the light receiving surface faces the light source. By doing so, the direction of each condensing lens (and hence the direction of the light receiving surface) can be made uniform with respect to the light source, so that the light emitted from the light source can be efficiently collected.
  • the direction of the light is different at each position of the light receiving surface, so that depending on the location on the light receiving surface, the incident angle of light on the light receiving surface increases and the surface of the light receiving surface There is a possibility that the light is totally reflected and cannot be received inside the light receiving member.
  • the light receiving member is curved in this way and the light receiving surface faces the light source, the incident angle of light with respect to the light receiving surface can be reduced. It is possible to avoid the possibility of being unacceptable.
  • the light receiving member may be provided with a concave portion from the surface facing the light receiving surface toward the inside of the light receiving member, and the flat portion of the concave portion may be used as the reflecting portion.
  • the transparent material of the light receiving member and air (or vacuum) are in contact with each other, so that it is a boundary surface between two substances having different refractive indexes.
  • the flat portion of the concave portion is used, at least a part of the light collected by the condenser lens can be reflected. It is. If the planar portion of the concave portion is used as the reflective portion in this way, the reflective portion can be formed simply by providing the concave portion on the surface of the light receiving member (the surface facing the light receiving surface). Therefore, the reflective portion can be easily provided. .
  • the direction of the flat portion of the concave portion can be set appropriately.
  • the light from the condensing lens can be totally reflected at the flat portion of the recess. In this way, more light can be reflected.
  • the light from the condensing lens cannot be totally reflected by the flat portion of the recess, a part of the light leaks to the outside of the light receiving member, so that the amount of condensed light is reduced.
  • the amount of collected light can be recovered simply by increasing the area of the light receiving surface.
  • a condensing device can be realized.
  • a mirror surface may be formed on the flat portion of the recess by using various methods such as metal vapor deposition. Even in such a case, it is only necessary to deposit a metal or the like from the outside of the light receiving member, so that the reflecting portion can be easily formed. In addition, if the mirror surface is formed in this way, even when the light from the condenser lens is incident on the flat portion of the concave portion at an angle that does not satisfy the total reflection condition, the light can be reliably reflected. It becomes possible. On the other hand, when the mirror surface is not formed on the flat portion of the concave portion, there is no possibility that the mirror surface is deteriorated by receiving the light from the condensing lens for a long time. Thus, it is possible to extend the life of the light collecting device.
  • the concave portion provided in the light receiving member has a shape having a first inner surface that functions as a reflecting portion and a second inner surface that is parallel to the first inner surface. It may be.
  • the light traveling inside the light receiving member reaches the recess while being totally reflected on the surface of the light receiving member, the light refracts on the surface of the recess and exits from the light receiving member.
  • the light enters the light receiving member from the surface.
  • the light that has crossed the concave portion in this way is refracted once on the inner surface of the concave portion when it exits from the light receiving member (inside the concave portion) and enters the light receiving member from the outside (inside the concave portion). .
  • the light returning to the light receiving member does not always satisfy the condition of total reflection with respect to the surface of the light receiving member.
  • the concave portion has a shape having a first inner surface functioning as a reflecting portion and a second inner surface parallel to the first inner surface.
  • the refraction angle when light is transmitted through one inner surface to the outside of the transparent material and the refraction angle when light is transmitted through the other inner surface and returned to the inside of the transparent material are equal.
  • the angle with respect to the surface of the light receiving member does not change (total Condition of reflection).
  • the shape of the concave portion may be a shape having a third inner surface parallel to the light receiving surface.
  • the incident angle when the light traveling inside the light receiving member is incident on the light receiving surface is equal to the incident angle when the light is totally reflected by the light receiving surface and then incident on the third inner surface.
  • the light totally reflected by the light receiving surface can be surely totally reflected even by the third inner surface.
  • the light can be collected without loss.
  • the condensing may be stopped by changing the relative position of the condensing lens and the light receiving member.
  • Condensation can be stopped by changing the relative position between the condensing lens and the light receiving member so that the reflecting portion is removed from the position where the light is collected by the condensing lens.
  • light collection can be stopped by simply changing the relative position, for example, in the case of an emergency such as excessive heat generated by the light collected by the light collecting device, light collection is quickly stopped. Is possible. Thus, it becomes possible to improve the safety
  • the condensing device can be moved from the place where the light hits, or the direction of the condensing device can be changed from the incident direction of the light. There is no need to deviate.
  • condensing can be stopped while light is incident on the light receiving member and the condensing lens. Therefore, when the condensing is resumed, the condensing can be easily resumed only by returning the relative position between the condensing lens and the light receiving member to the original position.
  • the average amount of light collection is controlled by controlling the ratio of the length of the light collection state and the length of the light collection stop state while frequently switching between the light collection state and the light collection stop state. It is also possible to do.
  • the relative position between the condensing lens and the light receiving member is provided so as to be changeable.
  • the relative position may be changed.
  • the position where the light is condensed by the condenser lens also changes accordingly. Therefore, if the relative position between the condensing lens and the light receiving member is changed, the reflecting portion can be moved to a position where the light is collected by the condensing lens. It is possible to continue collecting light with high efficiency. Further, since it is only necessary to change the relative position between the condensing lens and the light receiving member, a large-scale mechanism such as tilting the entire condensing device so that light enters the condensing device from the same direction becomes unnecessary. .
  • this invention can also be grasped
  • a large amount of light collected by the above-described condensing device can be received by the photoelectric conversion element, so that high power can be obtained. Further, as described above, it is possible to increase the amount of collected light only by increasing the area of the light receiving surface of the light collecting device, and it is not necessary to increase the size of the light receiving member in the thickness direction. For this reason, it is possible to keep the apparatus configuration compact while obtaining high power.
  • FIG. 1 is an explanatory diagram showing a general structure of a solar power generation apparatus on which the light collecting apparatus of the present embodiment is mounted.
  • the solar power generation device 1 is roughly composed of a surface panel 2 formed of a transparent glass plate, a light collecting device 10 disposed below the surface panel 2, and a light collecting device 10. It is comprised from the electric power generation part 20 etc. which were connected to the side surface. Sunlight incident from the front panel 2 is collected by the light collecting device 10 provided below the front panel 2 and then guided to the power generation unit 20 connected to the light collecting device 10.
  • the power generation unit 20 includes a solar cell panel 22 that converts sunlight into a pair of electrons and holes to generate electric energy. The sunlight collected by the light collector 10 is reflected on the surface of the solar cell panel 22. By receiving it, it is possible to generate electrical energy.
  • the sunlight can be collected from an area larger than the area of the surface of the solar cell panel 22.
  • Large electric energy can be generated as compared with a solar power generation apparatus of a type in which sunlight is directly incident on the battery panel 22.
  • the optical system for collecting light tends to be large and the entire solar power generation device tends to be large. There is.
  • the solar power generation device 1 of the present embodiment has the following configuration, so that the solar power generation device 1 can be solarized from a wide range without increasing the size of the device configuration. It is possible to collect light.
  • FIG. 2 is an explanatory view showing a detailed structure of the light collecting apparatus of the present embodiment.
  • the light collecting device 10 of the present embodiment includes a plurality of cylindrical lenses 12 made of a substantially semi-cylindrical transparent acrylic member, and these cylindrical lenses 12 are provided on the front panel 2. Are arranged along the surface of the surface panel 2 (see FIG. 1).
  • a light guide plate 14 made of a transparent acrylic plate is provided below the cylindrical lens 12, and a solar cell panel 22 is provided on the end surface of the light guide plate 14. It has been.
  • mirrors 16 are respectively provided at positions where the respective cylindrical lenses 12 collect light, and these mirrors 16 are provided on the light guide plate 14 provided with the solar cell panel 22. It is installed in an inclined state toward the end face.
  • the light collecting device 10 applies the sunlight that has passed through the surface panel 2 and entered the cylindrical lenses 12 to the end surface of the light guide plate 14 provided with the solar cell panel 22. It collects like
  • FIG. 3 is an explanatory diagram conceptually showing a state in which sunlight is condensed on the end face of the light guide plate by using the condensing device of the present embodiment.
  • FIG. 3 (a) when sunlight enters the cylindrical lens 12, first, the sunlight is guided into the light guide plate 14 while collecting the sunlight by the cylindrical lens 12 (in the figure). (See the light beam indicated by the solid arrows.)
  • the mirror 16 is provided in the light guide plate 14 at a position where the sunlight is collected. For this reason, the sunlight guided into the light guide plate 14 is incident on the mirror 16. It is possible to reflect sunlight in the direction of the end face of the light guide plate 14 provided with the solar cell panel 22 (left direction in FIG. 3A).
  • Incident sunlight enters the mirror 16 from the upper right direction in the figure.
  • the incident direction of sunlight with respect to the mirror 16 is different depending on the position where the sunlight is incident on the cylindrical lens 12, the direction in which the sunlight is reflected is also different.
  • the reflected sunlight is reflected in the mirror 16
  • the light travels through the light guide plate 14 while spreading around (see the light beam indicated by the solid arrow in FIG. 3B). Therefore, even if the mirror 16 reflects sunlight toward the end face of the light guide plate 14, most of the reflected sunlight does not travel toward the end face of the light guide plate 14, but the end face of the light guide plate 14.
  • the light travels toward the surface of the light guide plate 14 (upper surface 15a or lower surface 15b) and enters the surface of the light guide plate 14.
  • the mirror 16 is provided in the light guide plate 14, when the reflected sunlight is incident on the surface of the light guide plate 14, it is natural that the light guide plate 14 Sunlight is incident on the outside.
  • sunlight is made of a material having a high refractive index (acrylic material forming the light guide plate 14 in this embodiment) and a material having a low refractive index (in this embodiment, the light guide plate 14). It turns out that it injects toward the outside air. Then, in general, when light enters from a material having a high refractive index toward a material having a low refractive index at a large incident angle, a phenomenon in which light is reflected at the boundary between the materials (so-called total reflection) occurs.
  • the mirror 16 is provided to be inclined toward the end surface of the light guide plate 14 so that sunlight can be incident on the surface of the light guide plate 14 at a large incident angle.
  • the sunlight totally reflected on one surface of the light guide plate 14 is surely totally reflected on the other surface. It can be reflected. That is, if the surfaces of the light guide plate 14 are formed in parallel with each other, when the sunlight totally reflected on one surface of the light guide plate 14 enters the opposite surface (“B” in FIG. 3B). ”)), And sunlight can be incident at an incident angle equal to the incident angle when the light is totally reflected (see the portion indicated as“ A ”in FIG. 3B). . For this reason, the sunlight totally reflected on one surface of the light guide plate 14 can be surely totally reflected on the other surface.
  • the sunlight incident on the light guide plate 14 is reflected by the mirror 16 provided in the light guide plate 14, the sunlight can be advanced through the light guide plate 14 having a high refractive index. Since the incident angle of sunlight with respect to the surfaces of the light guide plate 14 (the upper surface 15a and the lower surface 15b) can be increased, the sunlight can be totally reflected on the surface of the light guide plate 14 as a result. Become. If the upper surface 15 a and the lower surface 15 b of the light guide plate 14 are formed in parallel with each other, the sunlight totally reflected by one surface of the light guide plate 14 is totally reflected on the opposite surface of the light guide plate 14.
  • the sunlight can be reliably guided to the end surface of the light guide plate 14 while being totally reflected between the surfaces of the light guide plate 14.
  • the sunlight received by the cylindrical lens 12 is confined in the light guide plate 14 and advanced toward the end face of the light guide plate 14, so that the sunlight incident on the cylindrical lens 12 is reliably collected on the end face of the light guide plate 14. It becomes possible to shine.
  • the cylindrical lenses 12 are arranged in a direction away from the end surface of the light guide plate 14 (the end surface on which the solar cell panel 22 is provided) (the right direction in FIG. 3A), the light will enter the light guide plate 14. As the light travels toward the end face, the light confined in the light guide plate 14 by the cylindrical lenses 12 merges one after another, so that the light traveling through the light guide plate 14 gradually increases. A large amount of sunlight can be collected on the end face of the light guide plate 14 provided with the battery panel 22.
  • the light incident on each cylindrical lens 12 is totally reflected on the surface of the light guide plate 14 to confine the light in the light guide plate 14 and the light guide plate 14
  • the light incident from each cylindrical lens 12 is collected while the light is advanced. In this way, light can be collected from a wide area corresponding to the surface area of the light guide plate 14 on which the cylindrical lenses 12 are arranged.
  • the condensing apparatus 10 of a present Example it is possible to suppress the thickness of the light-guide plate 14 and to keep the apparatus size compact. Since light incident on a large area corresponding to the surface area of the light guide plate 14 can be collected in a narrow area corresponding to the end face of the light guide plate 14, sunlight can be condensed at a high concentration ratio. Is possible. Thereby, in the condensing device 10 of a present Example, it can condense sunlight with high condensing magnification, keeping the size of the condensing device 10 compact.
  • the plurality of cylindrical lenses 12 and the plurality of mirrors 16 are provided in this way, when the light reflected by the mirror 16 travels through the light guide plate 14 toward the end surface, a part of the light is transmitted to the other mirror 16. May hit. In such a case, if the angle of the light changes due to the light being reflected or scattered by the mirror 16, the light may escape from the light guide plate 14 without being totally reflected on the surface of the light guide plate 14. Therefore, in order to reduce the amount of light that escapes and collect more light, it is important to reduce the risk that light traveling in the light guide plate 14 will hit other mirrors 16.
  • the light collecting apparatus 10 of the present embodiment since the light is collected by the cylindrical lens 12 and is incident on the mirror 16, there is a possibility that light traveling through the light guide plate 14 may hit another mirror 16. It can be greatly reduced. This point will be described with reference to FIG.
  • FIG. 4 is an explanatory view conceptually showing how the light traveling in the light guide plate can reduce the possibility of hitting other mirrors in the light collecting apparatus of the present embodiment.
  • the cylindrical lens 12 is provided above the light guide plate 14, and light enters the light guide plate 14 through the cylindrical lens 12. For this reason, the light incident on the light guide plate 14 is gradually condensed while traveling through the light guide plate 14 (see the light beam indicated by the solid line arrow in the figure). The light is collected in the narrowest range (refer to the position indicated as “condensing position” in the figure).
  • the light is collected while being advanced through the light guide plate 14, so that the position where the light is collected in the narrowest range (light collection position) is set in the light guide plate 14. Is located. If the condensing position is thus positioned in the light guide plate 14, the mirror 16 provided in the light guide plate 14 can be provided at the condensing position. Since the light is condensed in a narrow range, even the small mirror 16 can reflect light. By using the small mirror 16 in this way, it becomes possible to secure a sufficient space above the mirror 16 or between the mirror 16 and the mirror 16, as indicated by the white arrow in the figure. As a result, it is possible to greatly reduce the possibility that light traveling in the light guide plate 14 toward the end face of the light guide plate 14 will hit the mirror 16.
  • the light collecting apparatus 10 of the present embodiment by providing such a cylindrical lens 12, it is possible to reflect a wide range of light while keeping the size of the mirror 16 small, and as a result, it proceeds toward the end face of the light guide plate 14. While sufficiently reducing the possibility that the light will hit the mirror 16, the sunlight incident on a wide area can be reflected.
  • the light collecting apparatus 10 it is possible to sufficiently reduce the possibility that the light traveling in the light guide plate 14 hits the mirror 16. Therefore, the light enters the respective cylindrical lenses 12. It is possible to condense on the end surface of the light guide plate 14 with high efficiency without losing the sunlight. Thereby, sunlight can be efficiently condensed from a wide area corresponding to the surface area of the front panel 2 to a narrow area corresponding to the area of the end face of the light guide plate 14, and as a result, the sunlight can be concentrated at a very high magnification. It is possible to collect light.
  • the device configuration of the condensing device 10 can be kept simple. . This point will be supplementarily described.
  • the part obstructs the light. Etc. cannot be provided.
  • the optical role that such a member can play is limited to the role of guiding light to a predetermined place.
  • the small mirror 16 that is less likely to interfere with the light can be installed by entering the light guide plate 14 while collecting the light, and the mirror 16 is installed.
  • the light guide plate plays a role of receiving light from the surface of the light guide plate 14 and reflecting it in the direction of the end face. 14 can be carried.
  • the light guide plate 14 has two roles of receiving light from the surface of the light guide plate 14 and guiding the received light to a target location, the light receiving member and the received light There is no need to separately provide a member that leads to the target location. From this, in the condensing apparatus 10 of a present Example, it becomes possible to condense sunlight with the simple structure which consists of the light-guide plate 14 and the cylindrical lens 12 without requiring many members. ing.
  • the cylindrical lens 12 is provided above the light-guide plate 14, it is possible to suppress the size of the condensing apparatus 10 in the thickness direction for the following reason. That is, the cylindrical lens 12 is provided apart from the mirror 16 by a distance necessary for condensing light (see FIG. 3A).
  • a plurality of cylindrical lenses are provided. Since sunlight is received in a large area by arranging 12, the area of each cylindrical lens 12 may be small. Then, since the distance (focal length) necessary for condensing light is short in the cylindrical lens 12 having a small area, the distance from the cylindrical lens 12 to the mirror 16 can be shortened. For this reason, in the condensing apparatus 10 of a present Example, although the cylindrical lens 12 is provided, it is possible to suppress the size of the condensing apparatus 10 in the thickness direction small.
  • the sunlight that has entered the cylindrical lens is reflected by the mirror 16 provided in the light guide plate 14, so that the sunlight is reflected on the surface of the light guide plate 14. It is possible to condense sunlight onto the end face of the light guide plate 14 by total reflection.
  • the mirror 16 can be reduced in size by collecting the sunlight while concentrating the sunlight. As a result, it is possible to reduce the possibility that the sunlight traveling through the light guide plate 14 will hit the mirror 16 and guide the sunlight. It is possible to efficiently guide to the end face of the optical plate 14.
  • FIG. 5 is an explanatory diagram showing a state in which sunlight can be collected even when the sunlight is incident on the light collecting device obliquely by moving the position of the mirror.
  • FIG. 5A when sunlight is incident on the light collecting device 10 at an angle, the cylindrical lens 12 collects light from the oblique direction, so that the light is collected. The position moves laterally from a position directly below the cylindrical lens 12. Therefore, the actuator 40 is connected to the light guide plate 14 and the actuator 40 is driven to move the light guide plate 14 and move the mirror 16 to the light collecting position. In this way, since sunlight can be reflected in the direction of the end face of the light guide plate 14 even when the sunlight enters from an oblique direction, the sunlight can be collected on the end face of the light guide plate 14.
  • the position of the light guide plate 14 may be moved following the change in the position of the sun. For example, when the sun rises from the position shown in FIG. 5 (a) with a change in time, the light guide plate 14 is moved following the sun (see FIG. 5 (b)), and further time elapses. When the sun falls, the light guide plate is further moved following this (see FIG. 5C). If it carries out like this, since it can continue condensing sunlight in the daytime, it will become possible to obtain electric power stably through the daytime.
  • the entire photovoltaic power generation apparatus 1 is inclined in the direction of sunlight so that the sunlight is incident vertically. There is no need. Therefore, it is not necessary to provide a large mechanism for tilting the entire photovoltaic power generation device 1 toward the sun.
  • the condensing position of the cylindrical lens 12 changes. However, since the amount of change in the condensing position is about the diameter of the cylindrical lens 12, the light guide plate 14 is moved over a long distance. There is no need to move it. For this reason, it is possible to continue condensing sunlight only by providing a simple drive mechanism that moves the light guide plate 14 by a short distance.
  • the condensing position of the cylindrical lens 12 has been described as moving in the horizontal direction in the figure, but strictly speaking, not only in the horizontal direction in the figure but also in the vertical direction. .
  • the light guide plate 14 may be moved manually instead of using the power of the actuator 40 or the like.
  • the arm unit 42 connected to the light guide plate 14 may be grasped and moved manually.
  • the position of the sun during the day can be predicted in advance based on the calendar and time
  • the position (condensing position) where sunlight is collected by the cylindrical lens 12 is also predicted in advance. Is possible. Therefore, the condensing position of the cylindrical lens 12 may be predicted based on the calendar and time, and the mirror 16 may be moved to the predicted position. In this way, the mirror 16 can be moved to an accurate position based on the calendar and time, so that it is possible to reliably collect sunlight. Moreover, it is good also as what detects the position of the sun instead of estimating the position of the sun.
  • the position of the sun is detected by detecting sunlight using an optical sensor such as a CdS element, and the mirror 16 is moved to a condensing position corresponding to the position of the sun.
  • an optical sensor such as a CdS element
  • the mirror 16 is described as being provided at a position in contact with the lower surface 15b of the light guide plate 14 (see FIG. 2 or FIG. 3). However, the mirror 16 may be provided at a position away from the lower surface 15 b of the light guide plate 14.
  • FIG. 6 is an explanatory view illustrating a condensing device of a modified example in which a mirror is provided at a position away from the lower surface 15b of the light guide plate.
  • the mirror 16 is provided at a position away from the lower surface 15b of the light guide plate 14, and in response to this, the cylindrical lens 12 is The sunlight is condensed at a position away from the lower surface 15 b of the light guide plate 14.
  • the light condensing position is located away from the lower surface 15b of the light guide plate 14, even if the light condensing position is deviated for some reason, the light condensing position can be reliably ensured. Can be located inside.
  • High energy is generated by concentrating the light at the light condensing position. In this way, even if the light cannot be reflected by the mirror 16 for some reason, the light passing through the light guide plate 14 is outside the light guide plate 14. It will not collect light. As a result, it is possible to reliably avoid the possibility of damaging the device or the like due to the light condensing at a position of another device or the like provided outside the light guide plate 14.
  • FIG. 7 is an explanatory view showing a modified light collecting device in which the size of the mirror is reduced as it approaches the solar battery panel.
  • the size of the mirror 16 provided in the light guide plate 14 gradually decreases as it approaches the end surface of the light guide plate 14 provided with the solar cell panel 22. ing.
  • the mirror 16 is a barrier for light traveling in the light guide plate 14 in the direction of the solar cell panel 22, so it is desirable to make it as small as possible.
  • a large amount of light collected by each cylindrical lens 12 travels in the light guide plate 14.
  • the size of the mirror 16 is gradually reduced toward the downstream side of the light guide plate 14, and the mirror 16 is enlarged on the upstream side. In this way, it is possible to reduce the risk of hitting the mirror 16 on the downstream side where much light traveling in the light guide plate 14 is present, and on the upstream side where the light traveling in the light guide plate 14 is not so much, light from the cylindrical lens 12 is obtained. As a result, more light can be collected in the solar cell panel 22.
  • the amount of light that can be reflected by the mirror 16 is reduced in the mirror 16 on the downstream side in the light guide plate 14.
  • the amount of light that is possible is greater. For this reason, it becomes possible to collect more light in the solar cell panel 22 by reducing the mirror 16 on the downstream side.
  • the mirror 16 and the light guide plate 14 are described as being formed of separate members. However, it is also possible to form the mirror 16 and the light guide plate 14 with a single member.
  • FIG. 8 is an explanatory view illustrating a light guide plate of a fourth modified example in which a mirror and a light guide plate are formed from a single member.
  • a groove is formed in a part of the lower surface 15b of the light guide plate 14 (see the portion indicated by the arrow in the figure), and the inclined plane of this groove (
  • the mirror 16 is formed by evaporating metal from the outside of the light guide plate 14 to form a mirror surface on the surface of the groove on the plane indicated as “16” in the drawing.
  • the mirror 16 can be formed easily by providing the groove on the lower surface 15b of the light guide plate 14 and providing the mirror surface on the surface of the groove.
  • the groove is made transparent without forming a mirror surface in the groove as described above, a part of the light traveling in the end face direction in the light guide plate 14 hits the mirror 16 as described below. However, it is possible to further advance the light through the light guide plate 14 without completely losing the hit light.
  • FIG. 9 shows a state in which the surface of the groove provided on the lower surface 15b of the light guide plate can be made transparent so that it can be advanced through the light guide plate without losing the light hitting the mirror.
  • FIG. 9A when a groove is provided on the lower surface 15b of the light guide plate 14, the light traveling toward the mirror 16 is reflected by the light beam indicated by the solid arrow in the figure. (Refer to the portion indicated by “D” in the figure).
  • the side surface of the groove is inclined with respect to the lower surface 15b of the light guide plate 14, light can be incident at a small incident angle, so that the light is not totally reflected by the side surface of the groove.
  • the side surface of the groove can be passed out of the light guide plate 14.
  • the light emitted from the light guide plate 14 is then incident on the surface of the mirror 16 (see the portion indicated by “E” in the figure).
  • light enters from the outside of the light guide plate 14 having a low refractive index toward the inside of the light guide plate 14 having a high refractive index.
  • light enters from a material having a low refractive index toward a material having a high refractive index. In this case, total reflection does not occur even if the incident angle of light is large. Therefore, if the mirror 16 is made transparent, the mirror 16 is inclined so that light enters the mirror 16 at a large incident angle. However, the light is transmitted through the mirror 16 without totally reflecting the light, and the light guide plate 14. It becomes possible to return light into the interior.
  • the light directed to the mirror 16 is emitted to the outside of the light guide plate 14, when the light strikes the mirror 16, the light is incident from a material having a low refractive index toward a material having a high refractive index. Therefore, it is possible to avoid total reflection of light by the mirror 16. Therefore, if the mirror 16 is made transparent, light can be transmitted through the mirror 16 because the total reflection of light is avoided. As a result, the light hitting the mirror 16 passes through the light guide plate 14. It can be further advanced and guided to the end face of the light guide plate 14.
  • the refractive index is different between the inside of the light guide plate 14 and the outside of the light guide plate 14, when light passes through the mirror 16 and enters the light guide plate 14 ("E" in FIG. 9A).
  • the angle of light changes in a direction approaching perpendicular to the surface of the mirror 16. In such a case, the incident angle when the light is incident on the surface of the light guide plate 14 (refer to the angle indicated as “F” in the drawing) is reduced, so that the light is not totally reflected on the surface of the light guide plate 14.
  • the side surface of the groove may be inclined and formed.
  • the side surface of the groove may be inclined and formed.
  • the side surface of the groove may be formed in parallel with the surface of the mirror 16. In this way, the angle when the light returns into the light guide plate 14 can be kept the same as the angle before the light exits from the light guide plate 14, so that the possibility of the light not being totally reflected can be reliably avoided. Thus, it is possible to more reliably collect light on the end face of the light guide plate 14.
  • the bottom surface of the groove (see the portion indicated as “H” in the drawing) is formed in parallel with the surface of the light guide plate 14, the light totally reflected on the surface of the light guide plate 14 is reflected in the groove. It is possible to totally reflect on the bottom surface. By doing so, it is possible to further advance the light in the light guide plate 14 with respect to the light hitting the groove and collect more light on the end face of the light guide plate 14.
  • the mirror 16 only needs to reflect light at an angle that allows total reflection on the surface of the light guide plate 14. Instead of reflecting the light toward the light, it is also possible to intentionally reflect the light toward the surface of the light guide plate 14.
  • the mirror 16 is not provided at an angle of about 45 degrees with respect to the lower surface 15b of the light guide plate 14 as shown in FIG.
  • the light incident on the mirror 16 may be reflected toward the lower surface 15 b of the light guide plate 14.
  • the light can be totally reflected by the lower surface 15b and the upper surface 15a of the light guide plate 14, so that the light can be guided to the end surface of the light guide plate 14.
  • the mirror 16 when the mirror 16 is provided at a large angle with respect to the surface of the light guide plate 14 in this way, when light enters the mirror 16 from the surface of the light guide plate 14, the light is incident on the mirror 16 at a large incident angle. Can be made incident. Therefore, even when the mirror 16 that does not form a mirror surface is used, most of the incident light can be easily totally reflected by the mirror 16, and more light can be collected on the end surface of the light guide plate 14. In addition, if the mirror 16 that reflects light by using such total reflection is used, the mirror surface of the mirror 16 is not deteriorated by receiving light. It is also possible to extend the period.
  • the mirror 16 is provided in the light guide plate 14 so that light can be easily reflected at an angle satisfying the condition of total reflection on the surface of the light guide plate 14. . That is, if the light is reflected by the mirror 16 in the light guide plate 14, the light can be incident on the surface of the light guide plate 14 from the light guide plate 14 to the outside of the light guide plate 14. The light can be totally reflected on the surface of the light guide plate 14 only by making the incident angle of light with respect to the surface of the light guide plate larger than a predetermined incident angle (so-called critical angle).
  • the incident angle of the light is larger than the critical angle, the light can be totally reflected at any incident angle, so that it is not necessary to enter the light at an accurate angle. Therefore, it is possible to easily totally reflect the light without providing the mirror 16 at an accurate angle, and as described above, the mirror 16 is at a large angle with respect to the surface of the light guide plate 14 as described above. It can also be provided.
  • the light reflection direction is changed by changing the incident angle of light with respect to the mirror 16
  • the light can be totally reflected on the surface of the light guide plate 14. Even when light is incident obliquely (see FIG. 5 (a) or FIG. 5 (b)), a large amount of light is totally reflected on the surface of the light guide plate 14 and condensed on the end surface of the light guide plate 14. Is possible.
  • the lower surface 15b of the light guide plate 14 may be formed in a staircase shape. In this way, it is possible to more reliably avoid the possibility that light traveling in the end face direction in the light guide plate 14 hits the mirror 16.
  • FIG. 10 is an explanatory view illustrating a light guide plate of a sixth modified example in which the lower surface of the light guide plate is formed in a step shape.
  • the lower surface 15 b of the light guide plate 14 is formed in a stepped shape with the mirror 16 as a boundary.
  • the mirror 16 is also arranged in a step shape, and accordingly, the light is condensed on the mirror 16 correspondingly.
  • the cylindrical lens 12 is also arranged stepwise.
  • the thickness of the light guide plate 14 gradually decreases as the distance from the end surface on which the solar cell panel 22 is provided as shown in the figure. .
  • the number of mirrors 16 that is, the number of cylindrical lenses 12
  • the mirror 16 can be reduced in size by condensing the light with the cylindrical lens 12 and entering the mirror 16. It is possible to suppress the step of the side surface 15b to be small, and therefore it is possible to increase the number of steps in the step shape and provide more cylindrical lenses 12. This makes it possible to more reliably avoid the situation where the light hits the mirror 16 by forming the lower surface 15b of the light guide plate 14 in a stepped manner, while providing many cylindrical lenses 12 to emit light from a larger area. It is possible to collect light.
  • FIG. 11 is an explanatory view showing a light condensing device of a seventh modified example in which light is incident on the light guide plate using a circular lens.
  • circular circular lenses 18 are provided above the light guide plate 14 along the surface of the light guide plate 14.
  • a mirror 16 is provided at a position where each circular lens 18 condenses light.
  • the mirror 16 may be provided only at one point below the circular lens 18. In this way, a large space can be provided between the mirror 16 and the mirror 16, so that light can easily pass between the mirror 16 and the mirror 16. As a result, the light reflected by the mirror 16 can be reflected. The possibility of hitting another mirror 16 can be further reduced.
  • the light reflected by the mirror 16 travels while spreading in the light guide plate 14, so that the reflected light gradually increases as the distance from the mirror 16 increases. It passes over many mirrors 16. In general, if the number of mirrors 16 through which light passes is large, there is a greater risk that the light will hit the mirrors 16. However, in the light collecting apparatus 10, the light will be emitted even if the number of mirrors 16 that pass through increases. There is no significant increase in the chance of hitting the mirror. That is, since light travels while spreading, when passing through each mirror 16, the ratio of the width of the mirror 16 to the spread of light hardly changes. For example, in the example shown in FIG.
  • both end faces adjacent to the end face on which the solar cell panel 22 is provided (upper end face and lower end face in FIG. 11B). In some cases, light may enter. In such a case, if a mirror surface is provided by, for example, depositing metal on the end face, it is possible to reflect light and guide the light to the end face where the solar cell panel 22 is provided. Further, as described above, the light reflected by the mirror 16 spreads because the light is incident on the mirror 16 while being condensed by the lens.
  • the range (lens aperture) in which the circular lens 18 condenses light is adjusted, it is possible to adjust the extent of the light spread, and thus the end surface on which the solar cell panel 22 is provided. It is possible to adjust the incident angle of the light with respect to the end faces adjacent to each other. Therefore, if the aperture angle of the circular lens 18 is adjusted to increase the incident angle of the light with respect to the end face, the light can be totally reflected at both end faces. As a result, a mirror surface is provided on the end face of the light guide plate 14. The light can be easily guided to the solar cell panel 22 without processing such as.
  • the solar cell panel 22 is provided on the end surface of the light guide plate 14.
  • the solar cell panel 22 may be provided anywhere as long as it can irradiate the solar cell panel 22 with sunlight condensed on the end surface of the light guide plate 14, and the solar cell panel 22 is not necessarily provided on the end surface of the light guide plate 14.
  • a solar cell panel is provided at a position distant from the light guide plate 14, and the light collected on the end face of the light guide plate 14 is guided to the solar cell panel 22 through an optical path to irradiate the solar cell panel 22. It is good.
  • the condensing device 10 since it is only necessary to irradiate the collected light to the solar cell panel 22, it is also possible to use the condensing device 10 as an auxiliary device for a normal solar power generation device as will be described below.
  • FIG. 12 is an explanatory diagram illustrating a modification in which the light collecting device is used as an auxiliary device for a normal solar power generation device.
  • a normal solar power generation device 30 the solar cell panel 22 is provided over the entire surface under the front panel 2, and the solar cell panel 22 directly receives sunlight to generate electric power energy. Is generated.
  • the light collecting device 10 is installed beside such a normal solar power generation device 30, and the reflecting mirror 50 is provided on the end surface of the light guide plate 14. Since the light condensed on the end surface of the light guide plate 14 is emitted from the end surface of the light guide plate 14 to the outside of the light guide plate 14, in this way, the light collected by the light collector 10 is reflected by the reflecting mirror 50 to generate sunlight.
  • the power generation device 30 can be irradiated.
  • the solar power generation device 30 can collect sunlight not only from the surface of the solar power generation device 30 itself but also from the surface of the light collecting device 10, and collects light from a larger area to generate larger electric energy. Can be obtained.
  • the condensing device 10 is used as an auxiliary device of the normal solar power generation device 30, it is possible to obtain large electrical energy with the normal solar power generation device 30.
  • FIG. 13 is an explanatory view showing the appearance of a solar cooking utensil using the light collecting apparatus of the present embodiment.
  • the solar cooking utensil 100 includes a metal hot plate 110 and two light collectors 10 provided on both sides of the hot plate 110.
  • the light collecting device 10 irradiates the condensed sunlight toward the hot plate 110 from the end face of the light guide plate 14 as indicated by an arrow in the drawing. If it carries out like this, since sunlight can be collected on the hot plate 110 from the wide area equivalent to the surface area of the condensing device 10, the hot plate 110 can fully be heated. Thereby, it becomes possible to heat-cook ingredients on the hot plate 110.
  • the condensing apparatus 10 of a present Example As mentioned above, by driving the light-guide plate 14 and moving the position of the mirror 16, sunlight is not incident on the condensing apparatus 10 perpendicularly. Can be condensed (see FIG. 5). Therefore, in the solar cooking utensil 100 using the condensing device 10 of the present embodiment, the hot plate 110 is overheated and the food is heated and cooked even in the time zone where the sun does not enter from directly above, such as in the morning or evening. Is possible.
  • the solar cooking appliance 100 of the present embodiment since the size of the light collecting device 10 in the thickness direction is kept small as described above, the area receiving the wind from the side is kept small. It is possible to reduce the risk of moving or falling down due to cross wind. Further, as described above, even when sunlight does not enter from directly above, the sunlight can be collected by moving the light guide plate 14, so that it is not necessary to tilt the light collector 10 toward the sun. For this reason, it is possible to always keep the light collecting apparatus 10 horizontal regardless of the incident direction of the sun, and to reduce the possibility that the solar cooking utensil 100 moves due to the cross wind in any time zone. It is possible.
  • the heating of the hot plate 110 can be stopped by moving the mirror 16 from the condensing position of the cylindrical lens 12. This point will be briefly described with reference to FIG.
  • FIG. 14 is an explanatory view conceptually showing a state where heating of the hot plate is stopped by moving the light guide plate.
  • FIG. 14A shows an optical path of sunlight when the hot plate 110 is heated.
  • the sunlight collected by each of the plurality of cylindrical lenses 12 is reflected in the direction of the end surface of the light guide plate 14 so as to be reflected on the end surface of the light guide plate 14.
  • the hot plate 110 is heated by irradiating the hot plate 110 with the concentrated sunlight from the end face of the light guide plate 14.
  • the light guide plate 14 is driven to intentionally shift the mirror 16 from the condensing position of the cylindrical lens 12.
  • the sunlight passes through the lower surface 15 b of the light guide plate 14, so that the sunlight does not collect on the end face of the light guide plate 14.
  • heating of the hot plate 110 is stopped by moving the light guide plate 14 in this way, the light collector 10 is not tilted or the light collector 10 is not tilted so that sunlight does not enter the light collector 10.
  • the heating of the hot plate 110 can be easily stopped simply by moving the light guide plate 14.
  • the mirror 16 is shifted from the condensing position, the sunlight will not be collected even if the sunlight is incident on the condensing device 10. Even when incident by chance, the hot plate 110 does not become hot. Thereby, the safety of the solar cooking utensil 100 can be increased.
  • the mirror 16 can be shifted from the condensing position by moving the mirror 16 a little. For this reason, it is possible to stop the light collection by an easy operation that only slightly changes the position of the light guide plate 14, and it is possible to stop the light collection quickly.
  • the concentrating device of this embodiment and the modification has been described above.
  • the present invention is not limited to all the above embodiments and modifications, and can be implemented in various modes without departing from the scope of the invention. Is possible.
  • sunlight is collected.
  • the condensable light is not limited to visible light, and for example, it is possible to collect light having a wavelength other than visible light such as ultraviolet light and infrared light.
  • the light guide plate 14 is described as being formed of an acrylic material.
  • any material may be used as long as it has a refractive index higher than air and is transparent. . If the light guide plate 14 is formed of such a member, the light can be totally reflected on the surface of the light guide plate 14 to collect the light on the end surface of the light guide plate 14.
  • the light received on the light receiving surface can be condensed at a high magnification without increasing the size of the condensing device. For this reason, it is possible to apply to various techniques using condensed light, such as a solar power generation device and a solar cooking utensil.

Abstract

Provided is a light gathering apparatus which gathers light from a wide range without increasing the size of the apparatus. A plurality of condenser lenses are provided along a light receiving surface of a light receiving member which receives light through the condenser lenses. Reflector portions which are oriented in the same direction with respect to the light receiving surface are provided for the respective condenser lenses in the light receiving member, to reflect the light toward the light receiving surface at an angle at which the light can be totally reflected. Consequently, as the light which is received by the light receiving member through the light condenser lenses can be guided in the same direction while being confined in the light receiving member, it is possible to gather the light with a high gathering efficiency into a narrow area corresponding to the thickness of the light receiving member from the entire light receiving surface. Moreover, if the area of the light receiving surface (area of the light receiving member) is increased, it is not necessary to increase the thickness of the light receiving member because the light which is transmitted in the direction along the surface of the light receiving member can be gathered. Thus, it is possible to gather the light from a wide range without increasing the size of the light gathering apparatus in the thickness direction.

Description

集光装置Concentrator
 本発明は、光を集光する技術に関する。 The present invention relates to a technology for collecting light.
 近年では、光のエネルギーを利用して電気エネルギーや熱エネルギーを得る技術が開発されている。例えば、太陽光を半導体で形成された太陽電池パネルに入射し、半導体内で光電効果を起こさせて電子と正孔との対を発生させることにより、太陽光から電気エネルギーを得ようとする太陽光発電技術が盛んに開発されている。また、太陽光の熱を用いて水を温めたり、あるいは、太陽光の熱で鉄板等を熱して食材の調理に用いようとする技術も開発されている。 In recent years, technologies for obtaining electrical energy and thermal energy using light energy have been developed. For example, a solar cell that enters sunlight into a solar cell panel formed of a semiconductor and causes a photoelectric effect in the semiconductor to generate a pair of electrons and holes, thereby obtaining electric energy from sunlight. Photovoltaic technology has been actively developed. In addition, a technique has been developed in which water is heated using the heat of sunlight, or an iron plate or the like is heated with sunlight to be used for cooking food.
 こうした光のエネルギーを用いる技術では、石油やガスなどの燃料からエネルギーを得る技術とは異なり、燃焼により発生するガス等の有害な物質を出さずにエネルギーを得ることが可能である。もっとも、光のエネルギーは、石油やガスなどを燃焼して得られるエネルギーに比べると大きくないので、十分なエネルギーを得るためには、広い範囲からより多くの光を集めることが重要である。そこで、太陽光発電技術の分野では、集光レンズを用いて広い範囲から光を集め、集めた光を太陽電池パネルに入射することで、より多くの電気エネルギーを得ようとする技術が提案されている(特許文献1)。 In such a technology using light energy, energy can be obtained without producing harmful substances such as gas generated by combustion, unlike the technology for obtaining energy from fuel such as oil or gas. However, since the energy of light is not large compared to the energy obtained by burning oil or gas, it is important to collect more light from a wide range in order to obtain sufficient energy. Therefore, in the field of photovoltaic power generation technology, a technology has been proposed in which light is collected from a wide range using a condensing lens, and the collected light is incident on a solar cell panel to obtain more electric energy. (Patent Document 1).
特開2009-147155号公報JP 2009-147155 A
 しかし、提案されている技術では、光を集めるための光学系が大型化してしまうという問題があった。すなわち、集光レンズは光をレンズの焦点に集光することから、集光レンズの焦点距離に相当する距離だけ集光レンズから離した位置に太陽電池パネルを設置する必要がある。すると、受光光量を増やすために集光レンズの面積を大きくすると、それにつれて集光レンズの焦点距離が長くなるので、太陽光電池パネルと集光レンズとの間に大きなスペースを設けなければならず、その結果、光学系が大型化してしまう。こうした問題は太陽光発電に限らず、光を集光してエネルギーを得る技術では一般に生じ得る。 However, the proposed technology has a problem that the optical system for collecting light becomes large. That is, since the condensing lens condenses light at the focal point of the lens, it is necessary to install the solar cell panel at a position separated from the condensing lens by a distance corresponding to the focal length of the condensing lens. Then, if the area of the condensing lens is increased in order to increase the amount of received light, the focal length of the condensing lens is increased accordingly, so a large space must be provided between the solar battery panel and the condensing lens, As a result, the optical system becomes large. Such a problem is not limited to photovoltaic power generation, and can generally occur in technologies that collect energy by collecting light.
 この発明は、従来の技術が有する上述した課題を解決するためになされたものであり、装置構成を大型化することなく広い範囲から光を集めることを可能とする技術の提供を目的とする。 The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a technique that can collect light from a wide range without increasing the size of the apparatus.
 上述した課題の少なくとも一部を解決するために、本発明の集光装置は以下の構成を採用した。すなわち、
 受光面で受けた光を集光する集光装置であって、
 空気よりも屈折率の大きな透明材料によって略板状に形成されて、一方の表面が前記受光面として用いられる受光部材と、
 前記受光面に沿って配列された複数の集光レンズと、
 前記集光レンズによって集光されて前記受光面から前記受光部材の内部に入射した光が該受光面と向き合う側の表面に達するまでの間の位置に、該集光レンズ毎に設けられ、該集光レンズによって集光された光を反射させる複数の反射部と
 を備え、
 前記複数の反射部は、前記受光面に対して向きを揃えて設けられるとともに、前記集光レンズによって集光された光を、該受光面または該受光面と向き合う側の表面に対して、全反射の条件を満たす角度で反射させる反射部であることを要旨とする。
In order to solve at least a part of the problems described above, the light condensing device of the present invention employs the following configuration. That is,
A condensing device that condenses the light received by the light receiving surface,
A light receiving member formed in a substantially plate shape by a transparent material having a refractive index larger than that of air, and one surface of which is used as the light receiving surface;
A plurality of condensing lenses arranged along the light receiving surface;
Provided for each of the condensing lenses at a position until the light condensed by the condensing lens and incident on the light receiving member from the light receiving surface reaches the surface facing the light receiving surface, A plurality of reflecting parts for reflecting the light collected by the condenser lens,
The plurality of reflecting portions are provided with their orientations aligned with respect to the light receiving surface, and the light collected by the condensing lens is entirely directed to the light receiving surface or the surface facing the light receiving surface. The gist of the present invention is that it is a reflecting part that reflects at an angle that satisfies the conditions of reflection.
 かかる本発明の集光装置では、受光部材の受光面に沿って複数の集光レンズが設けられており、この集光レンズを介して受光部材に光を受ける。また、受光部材の内部には、集光レンズごとに反射部が設けられており、この反射部によって、各々の集光レンズが集光した光をそれぞれ反射させる。ここで、各反射部は、受光面に対して向きを揃えて設けられているとともに、受光面または受光面と向き合う表面に対して、全反射の条件を満たす角度で光を反射させる向きに設けられている。尚、「全反射」とは、屈折率が互いに異なる2種類の物質の境目(境界面)に、屈折率の高い物質の側から屈折率の低い物質の側に向かって光が一定の入射角よりも大きな入射角で入射した際に、入射した全ての光が境目(境界面)で反射する現象をいう。 In the condensing device of the present invention, a plurality of condensing lenses are provided along the light receiving surface of the light receiving member, and light is received by the light receiving member through the condensing lens. In addition, a reflection part is provided for each condenser lens inside the light receiving member, and the light collected by each condenser lens is reflected by this reflection part. Here, each of the reflecting portions is provided in the same direction with respect to the light receiving surface, and is provided in a direction that reflects light at an angle that satisfies the condition of total reflection with respect to the light receiving surface or the surface facing the light receiving surface. It has been. Note that “total reflection” is a constant incident angle of light from the high refractive index material side to the low refractive index material side at the boundary (boundary surface) between two types of materials having different refractive indexes. This is a phenomenon in which all incident light is reflected at the boundary (boundary surface) when incident at a larger incident angle.
 受光部材の内部に受光した光を、受光部材の表面で全反射させてやれば、受光した光を受光部材の表面から外に逃がさずに受光部材の内部に閉じ込めるとともに、受光部材の内部を受光部材の表面に沿う方向に進ませることが可能となる。また、各々の反射部の向きを揃えて設けておけば、各々の集光レンズを介して受光した光を全て同じ方向に導くことができるので、結果として、受光面全体で受光した光を受光部材の板厚内に集めることが可能となる。こうすれば、受光面全体で受けた光を、受光面の面積と、受光部材の厚さに対応する面積との比率に相当する高い集光倍率で集光することが可能となる。また、集光光量をより高めるためには、受光面の面積を大きくするだけでよく、受光部材の厚さ方向に受光部材を大きくする必要はない。反射鏡や集光レンズを用いた一般的な集光装置では、集光光量を高めるために、反射鏡や集光レンズの大きさを大きくすると、それにつれて焦点距離が長くなり、結果として集光装置が大型化してしまう。これに対して、本発明の集光装置では、受光面の面積を大きくするだけで(受光部材の厚さ方向の大きさは変えることなく)、集光光量を増やすことが可能となる。 If the light received inside the light receiving member is totally reflected by the surface of the light receiving member, the received light is confined inside the light receiving member without escaping from the surface of the light receiving member, and the inside of the light receiving member is received. It is possible to advance in the direction along the surface of the member. Also, if the direction of each reflecting part is aligned, all the light received through each condensing lens can be guided in the same direction. As a result, the light received by the entire light receiving surface is received. It becomes possible to collect within the plate thickness of the member. In this way, it is possible to collect the light received by the entire light receiving surface at a high light collection magnification corresponding to the ratio between the area of the light receiving surface and the area corresponding to the thickness of the light receiving member. Further, in order to increase the amount of condensed light, it is only necessary to increase the area of the light receiving surface, and it is not necessary to increase the light receiving member in the thickness direction of the light receiving member. In a general condensing device using a reflecting mirror or a condensing lens, if the size of the reflecting mirror or condensing lens is increased in order to increase the amount of condensed light, the focal length increases accordingly, resulting in condensing. The device becomes large. On the other hand, in the condensing device of the present invention, it is possible to increase the amount of collected light only by increasing the area of the light receiving surface (without changing the size of the light receiving member in the thickness direction).
 もちろん、このように受光部材の内部に反射部を設けた場合、受光部材の内部を全反射しながら進む光が反射部に当たると、光の進行方向が変化して全反射の条件を満たさなくなって光が受光部材の内部から逃げてしまい、結果として集光効率が低下する虞がある。しかし、反射部で反射される光は、集光レンズによって予め集光されているので、反射部は小さくすることができる。その結果、実際には、受光部材の中を進む光が反射部に当たる確率は小さなものとなるため、受光面に受光した光を大幅に失うことなく高い効率で集光することが可能となる。 Of course, when the reflection part is provided inside the light receiving member in this way, if the light traveling while totally reflecting inside the light receiving member hits the reflection part, the traveling direction of the light changes and the total reflection condition is not satisfied. The light escapes from the inside of the light receiving member, and as a result, the light collection efficiency may decrease. However, since the light reflected by the reflection part is preliminarily condensed by the condenser lens, the reflection part can be made small. As a result, in reality, the probability that light traveling through the light receiving member will hit the reflecting portion is small, so that the light received on the light receiving surface can be condensed with high efficiency without significant loss.
 尚、受光部材の受光面および受光面と向き合う表面は、光を全反射させることが可能であればどのような形状の表面であってもよく、必ずしも平面である必要はない。また、各々の反射部は、それぞれが反射させた光を受光部材の表面に沿って同じ方向に導くことができればよいので、各々の反射部の向きが完全に一致している必要はない。 Note that the light-receiving surface of the light-receiving member and the surface facing the light-receiving surface may be any surface as long as the light can be totally reflected, and does not necessarily need to be a flat surface. In addition, each reflecting portion only needs to be able to guide the light reflected by the reflecting portion in the same direction along the surface of the light receiving member, and therefore the directions of the reflecting portions do not need to be completely matched.
 また、集光装置で集光する光は、平行に進む光(いわゆる平行光)に必ずしも限られず、どのように進む光であってもよい。例えば、有限な面積を有する光源から出る光のように、放射状に広がりながら進む光であってもよい。更に、このような平行光ではない光を集光する場合、各々の集光レンズの位置における光の進行方向がそれぞれ異なるので、これに対応して、各々の反射部の向きを異ならせて設けるものとしてもよい。こうすれば、各々の集光レンズに入射する光の進行方向が互いに大きく異なる場合でも、それぞれの光を、受光部材の表面で全反射の条件を満たす角度で反射させることが可能となる。あるいは、各集光レンズの位置における光の進行方向に応じて、受光部材を湾曲させた形状に設けるものとしてもよい。例えば、有限の面積を有する光源から放射される光を集光する場合、受光部材を湾曲させて受光面を光源に向ける。こうすれば、各々の集光レンズの向き(従って、受光面の向き)を、光源に対して揃えることができるので、光源から放射される光を効率よく集光することが可能となる。 Further, the light collected by the light collecting device is not necessarily limited to light traveling in parallel (so-called parallel light), and may be light traveling in any manner. For example, it may be light that travels while spreading radially, such as light emitted from a light source having a finite area. Furthermore, when condensing light that is not parallel light, the traveling direction of light at each condensing lens position is different, and accordingly, the direction of each reflecting portion is provided differently. It may be a thing. In this way, even when the traveling directions of the light incident on the respective condensing lenses are greatly different from each other, each light can be reflected at the angle satisfying the condition of total reflection on the surface of the light receiving member. Alternatively, the light receiving member may be provided in a curved shape according to the traveling direction of light at the position of each condenser lens. For example, when condensing light emitted from a light source having a finite area, the light receiving member is curved and the light receiving surface faces the light source. By doing so, the direction of each condensing lens (and hence the direction of the light receiving surface) can be made uniform with respect to the light source, so that the light emitted from the light source can be efficiently collected.
 また、平行光でない光を受光する場合、受光面の各々の位置で光の向きが異なることから、受光面上の場所によっては、受光面に対する光の入射角が大きくなって受光面の表面で光が全反射してしまい、受光部材の内部に光を受けられなくなる虞がある。この点、このように受光部材を湾曲させて受光面を光源に向ければ、受光面に対する光の入射角を小さくすることができるので、受光面で光が全反射して光を受光部材の内部に受けられなくなる虞を回避することが可能となる。 Also, when receiving light that is not parallel light, the direction of the light is different at each position of the light receiving surface, so that depending on the location on the light receiving surface, the incident angle of light on the light receiving surface increases and the surface of the light receiving surface There is a possibility that the light is totally reflected and cannot be received inside the light receiving member. In this respect, if the light receiving member is curved in this way and the light receiving surface faces the light source, the incident angle of light with respect to the light receiving surface can be reduced. It is possible to avoid the possibility of being unacceptable.
 また、上述した本発明の集光装置では、受光部材に、受光面と向き合う表面の側から受光部材の内部に向けて凹部を設けておき、この凹部の平面部分を反射部として用いてもよい。 Further, in the above-described light collecting device of the present invention, the light receiving member may be provided with a concave portion from the surface facing the light receiving surface toward the inside of the light receiving member, and the flat portion of the concave portion may be used as the reflecting portion. .
 凹部の平面部分では、受光部材の透明材料と空気(あるいは真空)とが接していることから、屈折率の異なる2つの物質の境界面となっている。一般に、こうした境界面に光が入射した際には光の少なくとも一部が反射するので、凹部の平面部分を用いれば、集光レンズによって集光された光の少なくとも一部を反射することが可能である。こうして凹部の平面部分を反射部として用いれば、受光部材の表面(受光面と向き合う表面)に凹部を設けるだけで反射部を形成することができるので、反射部を容易に設けることが可能となる。更に、集光レンズからの光は、屈折率の高い受光部材の内部から、屈折率の低い外部に向かって凹部の平面部分に入射するので、凹部の平面部分の向きを適切に設定しておけば、凹部の平面部分で集光レンズからの光を全反射させることが可能である。こうすれば、より多くの光を反射させることが可能となる。尚、集光レンズからの光を凹部の平面部分で全反射させることができない場合、一部の光が受光部材の外部に漏れてしまうので、集光光量が低下する。しかし、たとえ集光光量が低下したとしても、受光面の面積を増やすだけで集光光量を回復させることができるので、一般的な集光装置に比べれば、依然として集光光量が多く、小型な集光装置を実現することができる。 In the flat part of the concave portion, the transparent material of the light receiving member and air (or vacuum) are in contact with each other, so that it is a boundary surface between two substances having different refractive indexes. Generally, when light enters such a boundary surface, at least a part of the light is reflected. Therefore, if the flat portion of the concave portion is used, at least a part of the light collected by the condenser lens can be reflected. It is. If the planar portion of the concave portion is used as the reflective portion in this way, the reflective portion can be formed simply by providing the concave portion on the surface of the light receiving member (the surface facing the light receiving surface). Therefore, the reflective portion can be easily provided. . Furthermore, since the light from the condensing lens enters the flat portion of the concave portion from the inside of the light receiving member having a high refractive index toward the outside having a low refractive index, the direction of the flat portion of the concave portion can be set appropriately. For example, the light from the condensing lens can be totally reflected at the flat portion of the recess. In this way, more light can be reflected. In addition, when the light from the condensing lens cannot be totally reflected by the flat portion of the recess, a part of the light leaks to the outside of the light receiving member, so that the amount of condensed light is reduced. However, even if the amount of collected light is reduced, the amount of collected light can be recovered simply by increasing the area of the light receiving surface. A condensing device can be realized.
 また、凹部の平面部分には、金属蒸着などの種々の方法を用いて、鏡面を形成しておくものとしてもよい。こうした場合も、受光部材の外側から金属等を蒸着するだけでよいので、反射部を容易に形成することが可能である。また、このように鏡面を形成しておけば、集光レンズからの光が、凹部の平面部分に対して全反射の条件を満たさない角度で入射した場合でも、光を確実に反射させることが可能となる。これに対して、凹部の平面部分に鏡面を形成しない場合には、集光レンズからの光を鏡面が長時間に渡って受けることで劣化してしまう虞がないので、集光装置の耐久性を向上させて集光装置の寿命を長期化することが可能となる。 Further, a mirror surface may be formed on the flat portion of the recess by using various methods such as metal vapor deposition. Even in such a case, it is only necessary to deposit a metal or the like from the outside of the light receiving member, so that the reflecting portion can be easily formed. In addition, if the mirror surface is formed in this way, even when the light from the condenser lens is incident on the flat portion of the concave portion at an angle that does not satisfy the total reflection condition, the light can be reliably reflected. It becomes possible. On the other hand, when the mirror surface is not formed on the flat portion of the concave portion, there is no possibility that the mirror surface is deteriorated by receiving the light from the condensing lens for a long time. Thus, it is possible to extend the life of the light collecting device.
 また、上述した本発明の集光装置では、受光部材に設ける凹部を、反射部として機能する第1の内表面と、第1の内表面に対して平行な第2の内表面とを有する形状にしてもよい。 Further, in the above-described light collecting device of the present invention, the concave portion provided in the light receiving member has a shape having a first inner surface that functions as a reflecting portion and a second inner surface that is parallel to the first inner surface. It may be.
 受光部材の表面で全反射しながら受光部材の内部を進む光が凹部に達すると、凹部の表面で屈折して受光部材の外部に出た後、大部分の光は凹部を横切って、再び凹部の表面から受光部材に入射する。しかし、このように凹部を横切った光は、受光部材から外部(凹部内)に出る際と、外部(凹部内)から受光部材に入る際に、凹部の内表面で1回ずつ屈折している。このため、受光部材に戻った光は、受光部材の表面に対して全反射の条件を満足するとは限らない。そこで、凹部を、反射部として機能する第1の内表面と、第1の内表面に対して平行な第2の内表面とを有する形状にしておく。こうすれば、一方の内表面を透過して透明材料の外部に光が出る際の屈折角と、もう一方の内表面を透過して透明材料の内部に光が戻る際の屈折角とが等しくなる。従って、受光部材の表面で全反射しながら受光部材の内部を進む光が、凹部に達してその凹部を横切って再び受光部材の内部に戻った時に、受光部材の表面に対する角度が変わらない(全反射の条件を満たす)ようにすることができる。その結果、凹部に衝突して失われる光を抑制することができるので、より多くの光をより確実に集めることが可能となる。 When the light traveling inside the light receiving member reaches the recess while being totally reflected on the surface of the light receiving member, the light refracts on the surface of the recess and exits from the light receiving member. The light enters the light receiving member from the surface. However, the light that has crossed the concave portion in this way is refracted once on the inner surface of the concave portion when it exits from the light receiving member (inside the concave portion) and enters the light receiving member from the outside (inside the concave portion). . For this reason, the light returning to the light receiving member does not always satisfy the condition of total reflection with respect to the surface of the light receiving member. Therefore, the concave portion has a shape having a first inner surface functioning as a reflecting portion and a second inner surface parallel to the first inner surface. In this way, the refraction angle when light is transmitted through one inner surface to the outside of the transparent material and the refraction angle when light is transmitted through the other inner surface and returned to the inside of the transparent material are equal. Become. Therefore, when the light traveling inside the light receiving member while totally reflecting on the surface of the light receiving member reaches the concave portion, crosses the concave portion and returns to the inside of the light receiving member again, the angle with respect to the surface of the light receiving member does not change (total Condition of reflection). As a result, it is possible to suppress the light that is lost by colliding with the concave portion, so that it is possible to collect more light more reliably.
 また、上述した本発明の集光装置では、凹部の形状を、受光面に対して平行な第3の内表面を有する形状にしてもよい。 In the above-described light collecting device of the present invention, the shape of the concave portion may be a shape having a third inner surface parallel to the light receiving surface.
 こうすれば、受光部材の内部を進む光が受光面に入射する際の入射角と、その光が受光面で全反射した後に第3の内表面に入射する際の入射角とが等しくなるので、受光面で全反射させた光を第3の内表面でも確実に全反射させることが可能となる。その結果、受光部材の表面で全反射しながら受光部材の内部を進む光が、第3の内表面で凹部に当たった場合でも、光も損失することなく集光することが可能となる。 In this way, the incident angle when the light traveling inside the light receiving member is incident on the light receiving surface is equal to the incident angle when the light is totally reflected by the light receiving surface and then incident on the third inner surface. The light totally reflected by the light receiving surface can be surely totally reflected even by the third inner surface. As a result, even when light traveling inside the light receiving member while totally reflecting on the surface of the light receiving member hits the concave portion on the third inner surface, the light can be collected without loss.
 また、上述した本発明の集光装置では、集光レンズと受光部材との相対位置を変更することにより、集光を中止するものとしてもよい。 In the above-described condensing device of the present invention, the condensing may be stopped by changing the relative position of the condensing lens and the light receiving member.
 集光レンズと受光部材との相対位置を変更して集光レンズによって光が集光される位置から反射部が外れるようにすれば、集光を中止することができる。また、相対位置を変更するだけで集光を中止可能なことから、例えば、集光装置が集光した光によって過剰な発熱が生じた場合などの緊急の場合にも、集光を迅速に中止することが可能である。このように、集光を容易に中止可能とすることで、集光装置の安全性を高めることも可能となる。 Condensation can be stopped by changing the relative position between the condensing lens and the light receiving member so that the reflecting portion is removed from the position where the light is collected by the condensing lens. In addition, since light collection can be stopped by simply changing the relative position, for example, in the case of an emergency such as excessive heat generated by the light collected by the light collecting device, light collection is quickly stopped. Is possible. Thus, it becomes possible to improve the safety | security of a condensing device by making it easy to stop condensing.
 更に、集光レンズと受光部材との相対位置を変更することで集光を中止可能とすれば、光が当たる場所から集光装置を移動させたり、光の入射方向から集光装置の向きを逸らせる必要がない。換言すれば、受光部材や集光レンズに光が入射している状態のまま集光を中止することができる。従って、集光を再開する際には、集光レンズと受光部材との相対位置を元の位置に戻すだけで容易に集光を再開することが可能となる。更に、集光の中止と再開とを容易に行えることから、集光と集光の中止とを繰り返すことで、光を断続的に集光することも可能となる。従って、集光状態と、集光中止状態とを頻繁に切り換えながら、集光状態の期間の長さと、集光中止状態の期間の長さとの比率を制御することによって、平均の集光量を制御することも可能となる。 Furthermore, if the condensing can be stopped by changing the relative position between the condensing lens and the light receiving member, the condensing device can be moved from the place where the light hits, or the direction of the condensing device can be changed from the incident direction of the light. There is no need to deviate. In other words, condensing can be stopped while light is incident on the light receiving member and the condensing lens. Therefore, when the condensing is resumed, the condensing can be easily resumed only by returning the relative position between the condensing lens and the light receiving member to the original position. Furthermore, since it is possible to easily stop and resume the light collection, it is possible to collect light intermittently by repeating the light collection and the light collection stop. Therefore, the average amount of light collection is controlled by controlling the ratio of the length of the light collection state and the length of the light collection stop state while frequently switching between the light collection state and the light collection stop state. It is also possible to do.
 また、上述した本発明の集光装置では、集光レンズと受光部材との相対位置を変更可能に設けておき、集光レンズに対する光の入射方向が変化したら、集光レンズと受光部材との相対位置を変更するものとしてもよい。 Moreover, in the condensing device of the present invention described above, the relative position between the condensing lens and the light receiving member is provided so as to be changeable. The relative position may be changed.
 集光レンズに対する光の入射方向が変化すると、それに伴い、集光レンズによって光が集光される位置も変化する。そこで、集光レンズと受光部材との相対位置を変化させてやれば、集光レンズによって光が集光される位置に反射部を移動させることができるので、光の入射方向が変化しても、高い効率で光を集光し続けることが可能となる。また、集光レンズと受光部材との相対位置を変化させるだけでよいので、集光装置に対して光が同じ方向から入射するように集光装置全体を傾ける等の大掛かりな機構も不要となる。 When the incident direction of light with respect to the condenser lens changes, the position where the light is condensed by the condenser lens also changes accordingly. Therefore, if the relative position between the condensing lens and the light receiving member is changed, the reflecting portion can be moved to a position where the light is collected by the condensing lens. It is possible to continue collecting light with high efficiency. Further, since it is only necessary to change the relative position between the condensing lens and the light receiving member, a large-scale mechanism such as tilting the entire condensing device so that light enters the condensing device from the same direction becomes unnecessary. .
 また、上述した集光装置を用いて集光した光を、光から電力を発生する光電変換素子で受ければ、高い電力を得ることが可能である。したがって、本発明は、上述した集光装置を備える光発電装置として把握することも可能である。 Moreover, if the light condensed using the above-described condensing device is received by a photoelectric conversion element that generates electric power from the light, high electric power can be obtained. Therefore, this invention can also be grasped | ascertained as a photovoltaic device provided with the condensing apparatus mentioned above.
 かかる本発明の光発電装置では、上述した集光装置によって集められた多くの量の光を光電変換素子で受けることができるので、高い電力を得ることが可能である。また、上述した様に、集光装置の受光面の面積を大きくするだけで集光光量を増やすことが可能であり、受光部材の厚さ方向の大きさを大型化する必要がない。このため、高い電力を得ながらも装置構成をコンパクトに保つことが可能である。 In such a photovoltaic device of the present invention, a large amount of light collected by the above-described condensing device can be received by the photoelectric conversion element, so that high power can be obtained. Further, as described above, it is possible to increase the amount of collected light only by increasing the area of the light receiving surface of the light collecting device, and it is not necessary to increase the size of the light receiving member in the thickness direction. For this reason, it is possible to keep the apparatus configuration compact while obtaining high power.
 また、このような光発電装置では、集光レンズに対する光の入射方向が変化したら、それに応じて、集光レンズと受光部材との相対位置を変更するものとしてもよい。 Further, in such a photovoltaic device, when the incident direction of light with respect to the condenser lens changes, the relative position between the condenser lens and the light receiving member may be changed accordingly.
 こうすれば、光の入射方向が変化しても高い効率で光を集光し続けることができるので、光の入射方向が変化する場合でも高い電力を得続けることが可能となる。また、集光レンズと受光部材との相対位置を変化させるだけでよいので、集光装置全体を傾ける等の大掛かりな機構が不要であり、光発電装置の装置構成を簡素に保つことが可能である。 In this way, since the light can be continuously collected with high efficiency even if the incident direction of the light is changed, it is possible to continue to obtain a high electric power even when the incident direction of the light is changed. In addition, since it is only necessary to change the relative position between the condensing lens and the light receiving member, a large-scale mechanism such as tilting the entire condensing device is unnecessary, and the device configuration of the photovoltaic device can be kept simple. is there.
本実施例の集光装置を搭載した太陽光発電装置のおおまかな構造を示した説明図である。It is explanatory drawing which showed the rough structure of the solar power generation device carrying the condensing device of a present Example. 本実施例の集光装置の詳細な構造を示した説明図である。It is explanatory drawing which showed the detailed structure of the condensing apparatus of a present Example. 本実施例の集光装置を用いて太陽光を導光板の端面に集光する様子を概念的に示した説明図である。It is explanatory drawing which showed notionally that a sunlight was condensed on the end surface of a light-guide plate using the condensing apparatus of a present Example. 本実施例の集光装置において導光板の中を進む光が他の鏡に当たる虞を低減可能となる様子を概念的に示した説明図である。It is explanatory drawing which showed notionally the mode that the possibility that the light which progresses in a light-guide plate may hit another mirror in the condensing apparatus of a present Example can be reduced. 鏡の位置を移動させることにより太陽光が集光装置に対して斜めに入射した場合についても太陽光を集光可能とする様子を示した説明図である。It is explanatory drawing which showed a mode that sunlight can be condensed also when the sunlight injects diagonally with respect to the condensing apparatus by moving the position of a mirror. 鏡を導光板の下側の表面から離れた位置に設けた第2変形例の集光装置を例示した説明図である。It is explanatory drawing which illustrated the condensing apparatus of the 2nd modification which provided the mirror in the position away from the lower surface of the light-guide plate. 太陽電池パネルに近づくにつれて鏡の大きさを小さくした第3変形例の集光装置を示した説明図である。It is explanatory drawing which showed the condensing apparatus of the 3rd modification which made the magnitude | size of a mirror small as it approached a solar cell panel. 鏡と導光板とを一つの部材で形成した第4変形例の導光板を例示した説明図である。It is explanatory drawing which illustrated the light guide plate of the 4th modification which formed the mirror and the light guide plate with one member. 導光板の下側の表面に設けた溝の表面を透明にしておくことにより鏡に当たった光を導光板の中を進ませることが可能となる様子を概念的に示した説明図である。It is explanatory drawing which showed notionally the mode that the light which hit the mirror can be advanced in a light guide plate by making the surface of the groove | channel provided in the lower surface of the light guide plate transparent. 導光板の下側の表面15を階段状に形成した第6変形例の導光板を例示した説明図である。It is explanatory drawing which illustrated the light-guide plate of the 6th modification which formed the lower surface 15 of the light-guide plate in the step shape. 円形状のレンズを用いて導光板内に光を入射する第7変形例の集光装置を示した説明図である。It is explanatory drawing which showed the condensing apparatus of the 7th modification which injects light in a light-guide plate using a circular lens. 集光装置を通常の太陽光発電装置の補助装置として用いた変形例を例示した説明図である。It is explanatory drawing which illustrated the modification which used the condensing device as an auxiliary | assistant apparatus of a normal solar power generation device. 本実施例の集光装置を用いた太陽光調理器具の外観を示した説明図である。It is explanatory drawing which showed the external appearance of the solar cooking utensil using the condensing apparatus of a present Example. 導光板を移動させることによりホットプレートの加熱を停止する様子を概念的に示した説明図である。It is explanatory drawing which showed notionally the mode that the heating of a hotplate was stopped by moving a light-guide plate.
 以下では、上述した本願発明の内容を明確にするために、次のような順序に従って実施例を説明する。
 A.太陽光発電装置の装置構成:
 B.本実施例の集光装置:
 C.変形例:
   C-1.第1変形例:
   C-2.第2変形例:
   C-3.第3変形例:
   C-4.第4変形例:
   C-5.第5変形例:
   C-6.第6変形例:
   C-7.第7変形例:
   C-8.第8変形例:
 D.本実施例の集光装置を用いた太陽光調理器具:
Hereinafter, in order to clarify the contents of the present invention described above, examples will be described in the following order.
A. Device configuration of the solar power generator:
B. Concentrator of this example:
C. Variations:
C-1. First modification:
C-2. Second modification:
C-3. Third modification:
C-4. Fourth modification:
C-5. Fifth modification:
C-6. Sixth modification:
C-7. Seventh modification:
C-8. Eighth modification:
D. Solar cooking utensils using the light collecting device of the present embodiment:
A.太陽光発電装置の装置構成 :
 図1は、本実施例の集光装置を搭載した太陽光発電装置のおおまかな構造を示した説明図である。図示されているように、太陽光発電装置1は、おおまかには、透明なガラス板で形成された表面パネル2と、表面パネル2の下方に配置された集光装置10と、集光装置10の側面に接続された発電部20などから構成されている。表面パネル2から入射した太陽光は、表面パネル2の下方に設けられた集光装置10によって集光された後、集光装置10に接続された発電部20へと導かれる。発電部20は、太陽光を電子と正孔との対に変換して電気エネルギーを発生させる太陽電池パネル22を備えており、集光装置10が集光した陽光を太陽電池パネル22の表面で受けることにより、電気エネルギーを発生させることが可能となっている。
A. Device configuration of solar power generation device:
FIG. 1 is an explanatory diagram showing a general structure of a solar power generation apparatus on which the light collecting apparatus of the present embodiment is mounted. As shown in the figure, the solar power generation device 1 is roughly composed of a surface panel 2 formed of a transparent glass plate, a light collecting device 10 disposed below the surface panel 2, and a light collecting device 10. It is comprised from the electric power generation part 20 etc. which were connected to the side surface. Sunlight incident from the front panel 2 is collected by the light collecting device 10 provided below the front panel 2 and then guided to the power generation unit 20 connected to the light collecting device 10. The power generation unit 20 includes a solar cell panel 22 that converts sunlight into a pair of electrons and holes to generate electric energy. The sunlight collected by the light collector 10 is reflected on the surface of the solar cell panel 22. By receiving it, it is possible to generate electrical energy.
 こうした太陽光を集光してから太陽電池パネル22へと導くいわゆる集光タイプの太陽光発電装置では、太陽電池パネル22の表面の面積よりも広い面積から太陽光を集めることができることから、太陽電池パネル22に太陽光を直接入射するタイプの太陽光発電装置に比べて大きな電気エネルギーを発生させることが可能である。もっとも、前述した様に、集光タイプの太陽光発電装置では、広い範囲から太陽光を集めようとすると、光を集める為の光学系が大型化して太陽光発電装置全体が大型化してしまう傾向がある。こうした点に鑑みて、本実施例の太陽光発電装置1では、集光装置10を次の様な構成とすることにより、太陽光発電装置1の装置構成を大型化することなく広い範囲から太陽光を集めることを可能としている。 In a so-called concentrating solar power generation apparatus that collects such sunlight and then directs it to the solar cell panel 22, the sunlight can be collected from an area larger than the area of the surface of the solar cell panel 22. Large electric energy can be generated as compared with a solar power generation apparatus of a type in which sunlight is directly incident on the battery panel 22. However, as described above, in a concentrating solar power generation device, when trying to collect sunlight from a wide range, the optical system for collecting light tends to be large and the entire solar power generation device tends to be large. There is. In view of such a point, in the solar power generation device 1 of the present embodiment, the solar power generation device 1 of the present embodiment has the following configuration, so that the solar power generation device 1 can be solarized from a wide range without increasing the size of the device configuration. It is possible to collect light.
B.本実施例の集光装置 :
 図2は、本実施例の集光装置の詳細な構造を示した説明図である。図示されている様に、本実施例の集光装置10は、略半円柱形状の透明なアクリル部材で作られた複数の円柱レンズ12を備えており、これらの円柱レンズ12は、表面パネル2の下方に表面パネル2の表面に沿って並べられている(図1を参照)。また、図2に示されている様に、円柱レンズ12の下方には、透明なアクリル板で作られた導光板14が設けられており、この導光板14の端面に太陽電池パネル22が設けられている。更に、導光板14の内部には、各々の円柱レンズ12が光を集光する位置に鏡16がそれぞれ設けられており、これらの鏡16は、太陽電池パネル22が設けられた導光板14の端面に向けて傾けた状態で設置されている。こうした構成を用いて、本実施例の集光装置10は、表面パネル2を通過して各円柱レンズ12に入射した太陽光を、太陽電池パネル22が設けられた導光板14の端面に、次のように集光する。
B. Concentrator of this example:
FIG. 2 is an explanatory view showing a detailed structure of the light collecting apparatus of the present embodiment. As shown in the drawing, the light collecting device 10 of the present embodiment includes a plurality of cylindrical lenses 12 made of a substantially semi-cylindrical transparent acrylic member, and these cylindrical lenses 12 are provided on the front panel 2. Are arranged along the surface of the surface panel 2 (see FIG. 1). As shown in FIG. 2, a light guide plate 14 made of a transparent acrylic plate is provided below the cylindrical lens 12, and a solar cell panel 22 is provided on the end surface of the light guide plate 14. It has been. Further, inside the light guide plate 14, mirrors 16 are respectively provided at positions where the respective cylindrical lenses 12 collect light, and these mirrors 16 are provided on the light guide plate 14 provided with the solar cell panel 22. It is installed in an inclined state toward the end face. Using such a configuration, the light collecting device 10 according to the present embodiment applies the sunlight that has passed through the surface panel 2 and entered the cylindrical lenses 12 to the end surface of the light guide plate 14 provided with the solar cell panel 22. It collects like
 図3は、本実施例の集光装置を用いて太陽光を導光板の端面に集光する様子を概念的に示した説明図である。図3(a)に示されている様に、円柱レンズ12に太陽光が入射すると、まず、円柱レンズ12によって太陽光を集光しながら導光板14の中に太陽光を導く(図中に実線の矢印で示された光線を参照)。前述した様に、導光板14の中には、太陽光が集光する位置に鏡16が設けられており、このため、導光板14の中に導いた太陽光を鏡16に入射して、太陽電池パネル22が設けられた導光板14の端面の方向(図3(a)の左方向)に太陽光を反射させることが可能である。 FIG. 3 is an explanatory diagram conceptually showing a state in which sunlight is condensed on the end face of the light guide plate by using the condensing device of the present embodiment. As shown in FIG. 3 (a), when sunlight enters the cylindrical lens 12, first, the sunlight is guided into the light guide plate 14 while collecting the sunlight by the cylindrical lens 12 (in the figure). (See the light beam indicated by the solid arrows.) As described above, the mirror 16 is provided in the light guide plate 14 at a position where the sunlight is collected. For this reason, the sunlight guided into the light guide plate 14 is incident on the mirror 16. It is possible to reflect sunlight in the direction of the end face of the light guide plate 14 provided with the solar cell panel 22 (left direction in FIG. 3A).
 もっとも、導光板14の端面の方向に太陽光を反射させるといっても、次の理由から、太陽光の大半は、導光板14の端面に向かう方向に反射されるのではなく、導光板14の端面から逸れた方向に反射されることになる。すなわち、太陽光を鏡16で反射させる際には、太陽光を集光しながら鏡16に入射することから、円柱レンズ12の表面上に太陽光が入射した位置によって、鏡16に対して太陽光が入射する方向が異なる。例えば、図3(a)の例では、円柱レンズ12の中心よりも左側に入射した太陽光は、図の左上の方向から鏡16に入射し、逆に、円柱レンズ12の中心よりも右側に入射した太陽光は、図の右上の方向から鏡16に入射する。このように、円柱レンズ12に太陽光が入射する位置によって鏡16に対する太陽光の入射方向が異なるので、太陽光が反射される方向もそれぞれ異なり、その結果、反射された太陽光は、鏡16を中心に広がりながら導光板14の中を進むことになる(図3(b)に実線の矢印で示された光線を参照)。このため、鏡16によって太陽光を導光板14の端面の方向に反射させるといっても、反射された太陽光の大半は導光板14の端面に向かって進むのではなく、導光板14の端面から逸れて導光板14の表面(上側の表面15aまたは下側の表面15b)に向かって進み、導光板14の表面に入射することになる。 However, even if sunlight is reflected in the direction of the end face of the light guide plate 14, most of the sunlight is not reflected in the direction toward the end face of the light guide plate 14 for the following reason. It will be reflected in the direction deviated from the end face of. That is, when the sunlight is reflected by the mirror 16, it is incident on the mirror 16 while concentrating the sunlight. Therefore, depending on the position where the sunlight is incident on the surface of the cylindrical lens 12, The direction in which light is incident is different. For example, in the example of FIG. 3A, sunlight that has entered the left side of the center of the cylindrical lens 12 enters the mirror 16 from the upper left direction of the figure, and conversely, on the right side of the center of the cylindrical lens 12. Incident sunlight enters the mirror 16 from the upper right direction in the figure. Thus, since the incident direction of sunlight with respect to the mirror 16 is different depending on the position where the sunlight is incident on the cylindrical lens 12, the direction in which the sunlight is reflected is also different. As a result, the reflected sunlight is reflected in the mirror 16 The light travels through the light guide plate 14 while spreading around (see the light beam indicated by the solid arrow in FIG. 3B). Therefore, even if the mirror 16 reflects sunlight toward the end face of the light guide plate 14, most of the reflected sunlight does not travel toward the end face of the light guide plate 14, but the end face of the light guide plate 14. The light travels toward the surface of the light guide plate 14 (upper surface 15a or lower surface 15b) and enters the surface of the light guide plate 14.
 ここで、鏡16は導光板14の中に設けられていることから、反射された太陽光が導光板14の表面に入射する際には、当然ながら、導光板14の内側から導光板14の外側に向かって太陽光が入射することになる。このことを光学的な観点から見ると、太陽光は、屈折率の高い物質(本実施例では導光板14を形成するアクリル材)から、屈折率が低い物質(本実施例では導光板14の外側の空気)に向かって入射することが分かる。すると、一般に、屈折率の高い物質から屈折率の低い物質に向かって光が大きな入射角で入射すると、物質と物質との境目で光が反射する現象(いわゆる全反射)が起こる。したがって、本実施例では、鏡16で反射させた太陽光を導光板14の表面に対して大きな入射角で入射してやれば、太陽光を導光板14の表面で全反射させることが可能となる。そこで、本実施例の集光装置10では、鏡16を導光板14の端面に向けて傾けて設けておくことにより、太陽光を導光板14の表面に対して大きな入射角で入射可能とする。すなわち、鏡16を傾けて設けておけば、鏡16で反射した太陽光の大半が導光板14の端面に向かう正確な方向(導光板14の表面に沿う方向)から逸れるとしても、おおまかには導光板14の表面に沿って太陽光を進ませることができるので、太陽光を導光板14の表面に対して大きな入射角で入射することが可能である。その結果、導光板14の表面で太陽光を全反射させることができる。こうすれば、導光板14の端面に向かう方向から太陽光が逸れても、導光板14の表面で太陽光を全反射させて太陽光の進行方向を変えることができるので、太陽光を導光板14の端面の方向に向かわせることが可能となる。 Here, since the mirror 16 is provided in the light guide plate 14, when the reflected sunlight is incident on the surface of the light guide plate 14, it is natural that the light guide plate 14 Sunlight is incident on the outside. From an optical point of view, sunlight is made of a material having a high refractive index (acrylic material forming the light guide plate 14 in this embodiment) and a material having a low refractive index (in this embodiment, the light guide plate 14). It turns out that it injects toward the outside air. Then, in general, when light enters from a material having a high refractive index toward a material having a low refractive index at a large incident angle, a phenomenon in which light is reflected at the boundary between the materials (so-called total reflection) occurs. Therefore, in this embodiment, if the sunlight reflected by the mirror 16 is incident on the surface of the light guide plate 14 at a large incident angle, the sunlight can be totally reflected on the surface of the light guide plate 14. Therefore, in the light collecting apparatus 10 according to the present embodiment, the mirror 16 is provided to be inclined toward the end surface of the light guide plate 14 so that sunlight can be incident on the surface of the light guide plate 14 at a large incident angle. . That is, if the mirror 16 is inclined, even if most of the sunlight reflected by the mirror 16 deviates from an accurate direction toward the end face of the light guide plate 14 (a direction along the surface of the light guide plate 14), roughly Since sunlight can be advanced along the surface of the light guide plate 14, the sunlight can be incident on the surface of the light guide plate 14 at a large incident angle. As a result, sunlight can be totally reflected on the surface of the light guide plate 14. In this way, even if the sunlight deviates from the direction toward the end face of the light guide plate 14, the sunlight can be totally reflected on the surface of the light guide plate 14 to change the traveling direction of the sunlight. It becomes possible to make it face in the direction of 14 end surfaces.
 また、導光板14の上側の表面15aと下側の表面15bとを並行に形成しておけば、導光板14の一方の表面で全反射させた太陽光を、他方の表面においても確実に全反射させることが可能となる。すなわち、導光板14の表面を互いに並行に形成しておくと、導光板14の一方の表面で全反射した太陽光が反対側の表面に入射する際には(図3(b)に「B」と示された箇所を参照)、先に全反射した際(図3(b)に「A」と示された箇所を参照)の入射角と等しい入射角で太陽光を入射することができる。このため、導光板14の一方の表面で全反射させた太陽光は、他方の表面においても確実に全反射させることが可能となり、その結果、導光板14の上側の表面15aと下側の表面15bとの間で全反射を繰り返させることが可能となる。こうすることで、太陽光を導光板14の中に閉じ込めて導光板14の端面の方向に確実に導くことが可能となる。 Further, if the upper surface 15a and the lower surface 15b of the light guide plate 14 are formed in parallel, the sunlight totally reflected on one surface of the light guide plate 14 is surely totally reflected on the other surface. It can be reflected. That is, if the surfaces of the light guide plate 14 are formed in parallel with each other, when the sunlight totally reflected on one surface of the light guide plate 14 enters the opposite surface (“B” in FIG. 3B). ”)), And sunlight can be incident at an incident angle equal to the incident angle when the light is totally reflected (see the portion indicated as“ A ”in FIG. 3B). . For this reason, the sunlight totally reflected on one surface of the light guide plate 14 can be surely totally reflected on the other surface. As a result, the upper surface 15a and the lower surface of the light guide plate 14 are reflected. It becomes possible to repeat total reflection between 15b. In this way, sunlight can be confined in the light guide plate 14 and reliably guided in the direction of the end face of the light guide plate 14.
 このように、導光板14に入射した太陽光を導光板14の中に設けた鏡16で反射させれば、太陽光を屈折率の高い導光板14の中を進ませることが可能となり、更に、導光板14の表面(上側の表面15aおよび下方の表面15b)に対する太陽光の入射角を大きくすることができるので、結果として、太陽光を導光板14の表面で全反射させることが可能となる。そして、導光板14の上側の表面15aと下方の表面15bとを互いに平行に形成しておけば、導光板14の一方の表面で全反射させた太陽光を導光板14の反対の表面でも全反射させることができるので、太陽光を導光板14の表面の間で全反射させながら導光板14の端面まで確実に導くことが可能となる。こうして円柱レンズ12で受けた太陽光を、導光板14の中に閉じ込めながら導光板14の端面の方向に進ませることにより、円柱レンズ12に入射した太陽光を導光板14の端面に確実に集光することが可能となる。 As described above, if the sunlight incident on the light guide plate 14 is reflected by the mirror 16 provided in the light guide plate 14, the sunlight can be advanced through the light guide plate 14 having a high refractive index. Since the incident angle of sunlight with respect to the surfaces of the light guide plate 14 (the upper surface 15a and the lower surface 15b) can be increased, the sunlight can be totally reflected on the surface of the light guide plate 14 as a result. Become. If the upper surface 15 a and the lower surface 15 b of the light guide plate 14 are formed in parallel with each other, the sunlight totally reflected by one surface of the light guide plate 14 is totally reflected on the opposite surface of the light guide plate 14. Since the light can be reflected, the sunlight can be reliably guided to the end surface of the light guide plate 14 while being totally reflected between the surfaces of the light guide plate 14. In this way, the sunlight received by the cylindrical lens 12 is confined in the light guide plate 14 and advanced toward the end face of the light guide plate 14, so that the sunlight incident on the cylindrical lens 12 is reliably collected on the end face of the light guide plate 14. It becomes possible to shine.
 そこで、図3(a)に示されているように、導光板14の上方に、導光板14の端面(太陽電池パネル22が設けられた端面)から離れる方向(図3(a)の右方向)に向かって複数の円柱レンズ12を並べるとともに、各々の円柱レンズ12の集光位置に鏡16を設けておく。こうすれば、それぞれの円柱レンズ12を介して導光板14に入射した太陽光を導光板14の中に閉じ込めることができるので、導光板14の表面の面積に相当する広い範囲に入射した光を導光板14の中に閉じ込めることが可能となる。更に、円柱レンズ12を、導光板14の端面(太陽電池パネル22が設けられた端面)から離れる方向(図3(a)の右方向)に向かって並べておけば、光が導光板14の中を端面に向かって進むのにつれて、各円柱レンズ12によって導光板14内に閉じ込められた光が次々と合流してくるので、導光板14の中を進む光が次第に増えていき、その結果、太陽電池パネル22が設けられた導光板14の端面に多くの太陽光を集めることが可能となる。 Therefore, as shown in FIG. 3A, above the light guide plate 14, the direction away from the end surface of the light guide plate 14 (the end surface on which the solar cell panel 22 is provided) (the right direction in FIG. 3A). ), A plurality of cylindrical lenses 12 are arranged, and a mirror 16 is provided at the condensing position of each cylindrical lens 12. In this way, sunlight incident on the light guide plate 14 via the respective cylindrical lenses 12 can be confined in the light guide plate 14, so that light incident on a wide range corresponding to the surface area of the light guide plate 14 can be obtained. It becomes possible to confine in the light guide plate 14. Furthermore, if the cylindrical lenses 12 are arranged in a direction away from the end surface of the light guide plate 14 (the end surface on which the solar cell panel 22 is provided) (the right direction in FIG. 3A), the light will enter the light guide plate 14. As the light travels toward the end face, the light confined in the light guide plate 14 by the cylindrical lenses 12 merges one after another, so that the light traveling through the light guide plate 14 gradually increases. A large amount of sunlight can be collected on the end face of the light guide plate 14 provided with the battery panel 22.
 このように、本実施例の集光装置では、各円柱レンズ12に入射した光を導光板14の表面で全反射させることで導光板14の中に光を閉じ込めるとともに、導光板14の中を光を進ませながら、各円柱レンズ12から入射してくる光を集めていく。こうすれば、円柱レンズ12を並べた導光板14の表面の面積に相当する広い面積から、光を集めることが可能となる。また、導光板14の中を光を進ませながら光を集めていくことができるので、導光板14の他に特別な光学系を設けることなく、こうした広い範囲から光を集めることが可能である。もちろん、導光板14の厚さを厚くする必要がない。このため、本実施例の集光装置10では、導光板14の厚さを抑えて装置のサイズをコンパクトに保つことが可能となっている。そして、導光板14の表面積に相当する広い面積に入射した光を、導光板14の端面に相当する狭い面積に光を集めることができるので、太陽光を高い集光倍率で集光することが可能である。これにより本実施例の集光装置10では、集光装置10のサイズをコンパクトに保ちながらも、太陽光を高い集光倍率で集光可能としている。 Thus, in the condensing device of the present embodiment, the light incident on each cylindrical lens 12 is totally reflected on the surface of the light guide plate 14 to confine the light in the light guide plate 14 and the light guide plate 14 The light incident from each cylindrical lens 12 is collected while the light is advanced. In this way, light can be collected from a wide area corresponding to the surface area of the light guide plate 14 on which the cylindrical lenses 12 are arranged. In addition, since light can be collected while the light travels through the light guide plate 14, it is possible to collect light from such a wide range without providing a special optical system in addition to the light guide plate 14. . Of course, it is not necessary to increase the thickness of the light guide plate 14. For this reason, in the condensing apparatus 10 of a present Example, it is possible to suppress the thickness of the light-guide plate 14 and to keep the apparatus size compact. Since light incident on a large area corresponding to the surface area of the light guide plate 14 can be collected in a narrow area corresponding to the end face of the light guide plate 14, sunlight can be condensed at a high concentration ratio. Is possible. Thereby, in the condensing device 10 of a present Example, it can condense sunlight with high condensing magnification, keeping the size of the condensing device 10 compact.
 尚、このように複数の円柱レンズ12および複数の鏡16を設ける場合、鏡16によって反射された光が導光板14の中を端面に向かって進む際に、光の一部が他の鏡16に当たることがある。こうした場合、光が鏡16に反射されたり散乱されたりすることで光の角度が変わると、その光は導光板14の表面で全反射せずに導光板14から外に逃げることがある。したがって、逃げる光の量を減らしてより多くの光を集光するためには、導光板14内を進む光が他の鏡16に当たる虞を低減することが重要である。この点、本実施例の集光装置10では、円柱レンズ12によって光を集光した状態で鏡16に入射していることから、導光板14の中を進む光が他の鏡16に当たる虞を大幅に低減することが可能である。この点について、図4を参照しながら説明する。 In the case where the plurality of cylindrical lenses 12 and the plurality of mirrors 16 are provided in this way, when the light reflected by the mirror 16 travels through the light guide plate 14 toward the end surface, a part of the light is transmitted to the other mirror 16. May hit. In such a case, if the angle of the light changes due to the light being reflected or scattered by the mirror 16, the light may escape from the light guide plate 14 without being totally reflected on the surface of the light guide plate 14. Therefore, in order to reduce the amount of light that escapes and collect more light, it is important to reduce the risk that light traveling in the light guide plate 14 will hit other mirrors 16. In this respect, in the light collecting apparatus 10 of the present embodiment, since the light is collected by the cylindrical lens 12 and is incident on the mirror 16, there is a possibility that light traveling through the light guide plate 14 may hit another mirror 16. It can be greatly reduced. This point will be described with reference to FIG.
 図4は、本実施例の集光装置において、導光板の中を進む光が他の鏡に当たる虞を低減可能となる様子を概念的に示した説明図である。前述した様に、本実施例の集光装置10では、導光板14の上方に円柱レンズ12を設けており、円柱レンズ12を通してから光を導光板14の中に入射している。このため、導光板14に入射した光は、導光板14の中を進みながら次第に集光していき(図中に実線の矢印で示した光線を参照)、その結果、光は導光板14の中で最も狭い範囲に集まることになる(図中に「集光位置」と示した位置を参照)。このように、本実施例の集光装置10では、光を導光板14の中を進ませながら集光することにより、光が最も狭い範囲に集まる位置(集光位置)を導光板14の中に位置させている。こうして集光位置を導光板14の中に位置させておけば、導光板14の中に設ける鏡16を、集光位置に設けることが可能となり、鏡16を集光位置に設ければ、光が狭い範囲に集光していることから、小さな鏡16であっても光を反射させることが可能となる。こうして小さな鏡16を用いることで、図中に白抜きの矢印で示されている様に、鏡16の上方や鏡16と鏡16との間に十分なスペースを確保することが可能となり、その結果、導光板14の中を導光板14の端面に向かって進む光が鏡16に当たる虞を大幅に低減することが可能となる。 FIG. 4 is an explanatory view conceptually showing how the light traveling in the light guide plate can reduce the possibility of hitting other mirrors in the light collecting apparatus of the present embodiment. As described above, in the light collecting apparatus 10 of the present embodiment, the cylindrical lens 12 is provided above the light guide plate 14, and light enters the light guide plate 14 through the cylindrical lens 12. For this reason, the light incident on the light guide plate 14 is gradually condensed while traveling through the light guide plate 14 (see the light beam indicated by the solid line arrow in the figure). The light is collected in the narrowest range (refer to the position indicated as “condensing position” in the figure). As described above, in the light collecting apparatus 10 according to the present embodiment, the light is collected while being advanced through the light guide plate 14, so that the position where the light is collected in the narrowest range (light collection position) is set in the light guide plate 14. Is located. If the condensing position is thus positioned in the light guide plate 14, the mirror 16 provided in the light guide plate 14 can be provided at the condensing position. Since the light is condensed in a narrow range, even the small mirror 16 can reflect light. By using the small mirror 16 in this way, it becomes possible to secure a sufficient space above the mirror 16 or between the mirror 16 and the mirror 16, as indicated by the white arrow in the figure. As a result, it is possible to greatly reduce the possibility that light traveling in the light guide plate 14 toward the end face of the light guide plate 14 will hit the mirror 16.
 また、このことは、見方を変えると次の様に捉えることも可能である。すなわち、小さな鏡を用いた場合、鏡の面積が小さいことから光を反射させることができる範囲が必然的に狭くなるが、鏡の面積よりも大きな面積を持つレンズを鏡の前に設けておけば、鏡の面積よりも広い範囲の光を反射させることが可能となる。本実施例の集光装置10では、こうした円柱レンズ12を備えることで、鏡16のサイズを小さく保ちながらも広い範囲の光を反射可能としており、その結果、導光板14の端面に向かって進む光が鏡16に光が当たってしまう虞を十分に低減しながらも、広い面積に入射した太陽光を反射可能としている。 Also, this can be grasped as follows if the view is changed. That is, when a small mirror is used, the area that can reflect light is inevitably narrow because the area of the mirror is small, but a lens having an area larger than the area of the mirror can be provided in front of the mirror. In this case, it is possible to reflect light in a wider range than the area of the mirror. In the light collecting apparatus 10 of the present embodiment, by providing such a cylindrical lens 12, it is possible to reflect a wide range of light while keeping the size of the mirror 16 small, and as a result, it proceeds toward the end face of the light guide plate 14. While sufficiently reducing the possibility that the light will hit the mirror 16, the sunlight incident on a wide area can be reflected.
 このように、本実施例の集光装置10では、導光板14の中を進む光が鏡16に当たる虞を十分に低減することが可能となっており、このため、それぞれの円柱レンズ12に入射した太陽光を損失することなく高い効率で導光板14の端面に集光することが可能である。これにより、表面パネル2の表面積に相当する広い面積から、導光板14の端面の面積に相当する狭い面積に太陽光を効率よく集光することができ、その結果、太陽光を極めて高い倍率で集光することが可能である。 As described above, in the light collecting apparatus 10 according to the present embodiment, it is possible to sufficiently reduce the possibility that the light traveling in the light guide plate 14 hits the mirror 16. Therefore, the light enters the respective cylindrical lenses 12. It is possible to condense on the end surface of the light guide plate 14 with high efficiency without losing the sunlight. Thereby, sunlight can be efficiently condensed from a wide area corresponding to the surface area of the front panel 2 to a narrow area corresponding to the area of the end face of the light guide plate 14, and as a result, the sunlight can be concentrated at a very high magnification. It is possible to collect light.
 更に、本実施例の集光装置10では、このように光が鏡16に当たる虞を低減可能なことから、延いては、集光装置10の装置構成を簡素に保つことも可能となっている。この点について補足して説明する。 Furthermore, in the condensing device 10 of the present embodiment, since the possibility that the light hits the mirror 16 can be reduced as described above, the device configuration of the condensing device 10 can be kept simple. . This point will be supplementarily described.
 一般に、導光板14などの部材の中に光を通して所定の場所まで光を導く場合、その部材の中に何らかの部品を設けると、その部品が光を妨げてしまうので、部材の中には光学部品などを設けることはできない。このため、こうした部材が担える光学的な役割は、光を所定の場所に導く役割に限定されてしまうという制約がある。この点、本実施例の集光装置10では、光を集光しながら導光板14内に入射することにより、光を妨げる虞が少ない小さな鏡16を設置可能としており、鏡16を設置することで、光を目的の場所(本実施例の太陽光発電装置1では太陽電池パネル22)に導く役割に加えて、導光板14の表面から光を受けて端面の方向に反射させる役割を導光板14に担わせることが可能となっている。このように、導光板14の表面から光を受け取る役割と、受け取った光を目的の場所に導く役割との二つの役割を導光板14に担わせれば、光を受け取る部材と、受け取った光を目的の場所まで導く部材とを別々に設ける必要がない。このことから、本実施例の集光装置10では、多数の部材を必要とすることがなく、導光板14と円柱レンズ12とからなる簡素な構成で太陽光を集光することが可能となっている。 In general, when light is guided to a predetermined place through light into a member such as the light guide plate 14, if any part is provided in the member, the part obstructs the light. Etc. cannot be provided. For this reason, there is a restriction that the optical role that such a member can play is limited to the role of guiding light to a predetermined place. In this respect, in the light collecting apparatus 10 of the present embodiment, the small mirror 16 that is less likely to interfere with the light can be installed by entering the light guide plate 14 while collecting the light, and the mirror 16 is installed. Thus, in addition to the role of guiding light to the target location (solar cell panel 22 in the photovoltaic power generation device 1 of the present embodiment), the light guide plate plays a role of receiving light from the surface of the light guide plate 14 and reflecting it in the direction of the end face. 14 can be carried. As described above, if the light guide plate 14 has two roles of receiving light from the surface of the light guide plate 14 and guiding the received light to a target location, the light receiving member and the received light There is no need to separately provide a member that leads to the target location. From this, in the condensing apparatus 10 of a present Example, it becomes possible to condense sunlight with the simple structure which consists of the light-guide plate 14 and the cylindrical lens 12 without requiring many members. ing.
 尚、本実施例の集光装置10では、導光板14の上方に円柱レンズ12を設けるものの、次の理由から、集光装置10の厚さ方向のサイズを抑えることが可能となっている。すなわち、円柱レンズ12は、光を集光するのに必要な距離の分だけ鏡16から離して設けるが(図3(a)を参照)、本実施例の集光装置10では複数の円柱レンズ12を並べることによって大きな面積で太陽光を受光するので、個々の円柱レンズ12の面積は小さくてよい。すると、面積が小さい円柱レンズ12では、光を集光するのに必要な距離(焦点距離)が短いので、円柱レンズ12から鏡16までの距離を短くすることができる。このため、本実施例の集光装置10では、円柱レンズ12を設けるものの、集光装置10の厚さ方向のサイズを小さく抑えることが可能である。 In addition, in the condensing apparatus 10 of a present Example, although the cylindrical lens 12 is provided above the light-guide plate 14, it is possible to suppress the size of the condensing apparatus 10 in the thickness direction for the following reason. That is, the cylindrical lens 12 is provided apart from the mirror 16 by a distance necessary for condensing light (see FIG. 3A). However, in the condensing device 10 of this embodiment, a plurality of cylindrical lenses are provided. Since sunlight is received in a large area by arranging 12, the area of each cylindrical lens 12 may be small. Then, since the distance (focal length) necessary for condensing light is short in the cylindrical lens 12 having a small area, the distance from the cylindrical lens 12 to the mirror 16 can be shortened. For this reason, in the condensing apparatus 10 of a present Example, although the cylindrical lens 12 is provided, it is possible to suppress the size of the condensing apparatus 10 in the thickness direction small.
 以上に説明した様に、本実施例の集光装置10では、円柱レンズに入射した太陽光を導光板14の中に設けた鏡16で反射させることにより、導光板14の表面で太陽光を全反射させて導光板14の端面に太陽光を集光可能としている。また、太陽光を集光しながら鏡16に入射することによって鏡16を小型化可能としており、その結果、導光板14の中を進む太陽光が鏡16に当たる虞を低減して太陽光を導光板14の端面に効率よく導くことを可能としている。これにより、導光板14の表面の面積に相当する広い面積から、導光板14の端面の面積に相当する狭い面積に、高い集光倍率で太陽光を集光することが可能となっている。また、太陽光を導光板14の端面に向かって進ませながら太陽光を集光することから、導光板14の面積を大きくして広い範囲から太陽光を集光しても、導光板14の他に光学部品を設けたり、導光板14を厚くする必要はないので、集光装置10の厚さ方向のサイズを小さく抑えることが可能である。加えて、焦点距離が短い小型の円柱レンズ12を用いることができるので、円柱レンズ12のために集光装置10の厚さ方向のサイズが大型化することもない。これにより、本実施例の集光装置10では、太陽光を高い集光倍率で効率よく集光可能としながらも、装置のサイズをコンパクトに保つことが可能となっている。 As described above, in the light collecting apparatus 10 according to the present embodiment, the sunlight that has entered the cylindrical lens is reflected by the mirror 16 provided in the light guide plate 14, so that the sunlight is reflected on the surface of the light guide plate 14. It is possible to condense sunlight onto the end face of the light guide plate 14 by total reflection. In addition, the mirror 16 can be reduced in size by collecting the sunlight while concentrating the sunlight. As a result, it is possible to reduce the possibility that the sunlight traveling through the light guide plate 14 will hit the mirror 16 and guide the sunlight. It is possible to efficiently guide to the end face of the optical plate 14. Thereby, it is possible to condense sunlight with a high concentration ratio from a wide area corresponding to the surface area of the light guide plate 14 to a narrow area corresponding to the area of the end face of the light guide plate 14. Moreover, since sunlight is condensed while advancing sunlight toward the end face of the light guide plate 14, even if the area of the light guide plate 14 is increased and sunlight is condensed from a wide range, the light guide plate 14 Since there is no need to provide other optical components or thicken the light guide plate 14, the size of the light collecting device 10 in the thickness direction can be kept small. In addition, since the small cylindrical lens 12 having a short focal length can be used, the size of the light collecting device 10 in the thickness direction is not increased due to the cylindrical lens 12. Thereby, in the condensing apparatus 10 of a present Example, it is possible to keep the size of an apparatus compact, enabling it to condense sunlight efficiently with high condensing magnification.
C.変形例 :
C-1.第1変形例 :
 前述した実施例の太陽光発電装置1では、太陽光が集光装置10に対して垂直に入射するものとして説明した(図3(a)を参照)。しかし、太陽光が集光装置10に対して斜めに入射する場合であっても、鏡16の位置を移動させることで、太陽光を導光板14の端面に集光することが可能である。
C. Modified example:
C-1. First modification:
In the solar power generation device 1 of the above-described embodiment, it has been described that sunlight is incident on the light collecting device 10 perpendicularly (see FIG. 3A). However, even when sunlight is incident on the light collector 10 at an angle, the sunlight can be condensed on the end face of the light guide plate 14 by moving the position of the mirror 16.
 図5は、鏡の位置を移動させることにより、太陽光が集光装置に対して斜めに入射した場合についても太陽光を集光可能とする様子を示した説明図である。図5(a)に示されている様に、太陽光が集光装置10に対して斜めに入射する場合、円柱レンズ12が斜め方向からの光を集光することから、太陽光の集光位置は円柱レンズ12の真下の位置から横方向に移動する。そこで、導光板14にアクチュエーター40を接続しておき、アクチュエーター40を駆動することで、導光板14を動かして鏡16を集光位置に移動させる。こうすれば、太陽光が斜め方向から入射しても太陽光を導光板14の端面方向に反射させることができるので、導光板14の端面に太陽光を集光することが可能となる。 FIG. 5 is an explanatory diagram showing a state in which sunlight can be collected even when the sunlight is incident on the light collecting device obliquely by moving the position of the mirror. As shown in FIG. 5A, when sunlight is incident on the light collecting device 10 at an angle, the cylindrical lens 12 collects light from the oblique direction, so that the light is collected. The position moves laterally from a position directly below the cylindrical lens 12. Therefore, the actuator 40 is connected to the light guide plate 14 and the actuator 40 is driven to move the light guide plate 14 and move the mirror 16 to the light collecting position. In this way, since sunlight can be reflected in the direction of the end face of the light guide plate 14 even when the sunlight enters from an oblique direction, the sunlight can be collected on the end face of the light guide plate 14.
 また、太陽の位置は日中に変化するので、それにともなって太陽光の入射方向も変化する。そこで、太陽の位置の変化に追随させて、導光板14の位置を移動させることとしてもよい。例えば、太陽が図5(a)に示されている位置から時刻の変化とともに上昇したら、太陽に追随させて導光板14を移動させ(図5(b)を参照)、更に時間が経過して太陽が降下したら、これに追随させて導光板を更に移動させる(図5(c)を参照)。こうすれば、日中に太陽光を集光し続けることができるので、日中を通して電力を安定して得ることが可能となる。 Also, since the position of the sun changes during the day, the incident direction of sunlight also changes accordingly. Therefore, the position of the light guide plate 14 may be moved following the change in the position of the sun. For example, when the sun rises from the position shown in FIG. 5 (a) with a change in time, the light guide plate 14 is moved following the sun (see FIG. 5 (b)), and further time elapses. When the sun falls, the light guide plate is further moved following this (see FIG. 5C). If it carries out like this, since it can continue condensing sunlight in the daytime, it will become possible to obtain electric power stably through the daytime.
 加えて、このように導光板14を移動することで斜めから入射する太陽光を集光可能とすれば、太陽光が垂直に入射するように太陽光発電装置1全体を太陽光の方向に傾ける必要がない。したがって、太陽光発電装置1全体を太陽に向けて傾ける大掛かりな機構を設ける必要がない。また、前述した様に、太陽の位置が変わると円柱レンズ12の集光位置が変化するが、集光位置の変化量は円柱レンズ12の直径の程度なので、導光板14を長い距離に亘って移動させる必要がない。このため、導光板14を短い距離だけ移動させる簡素な駆動機構を備えるだけで太陽光を集光し続けることが可能である。 In addition, if the sunlight incident from an oblique direction can be collected by moving the light guide plate 14 in this way, the entire photovoltaic power generation apparatus 1 is inclined in the direction of sunlight so that the sunlight is incident vertically. There is no need. Therefore, it is not necessary to provide a large mechanism for tilting the entire photovoltaic power generation device 1 toward the sun. As described above, when the position of the sun changes, the condensing position of the cylindrical lens 12 changes. However, since the amount of change in the condensing position is about the diameter of the cylindrical lens 12, the light guide plate 14 is moved over a long distance. There is no need to move it. For this reason, it is possible to continue condensing sunlight only by providing a simple drive mechanism that moves the light guide plate 14 by a short distance.
 尚、図5では、円柱レンズ12の集光位置は図の横方向に移動するものとして説明したが、厳密には、図の横方向に移動するだけでなく、縦方向に移動する場合もある。こうした場合は、導光板14を横方向に移動させるだけでなく縦方向にも移動させることで、太陽光を集光し続けることが可能である。また、導光板14を移動させる際には、アクチュエーター40などの動力を用いるのではなく、手動で移動させるものとしてもよい。例えば、導光板14に接続されたアーム部42を握って手動で動かすものとしてもよい。こうした場合でも、円柱レンズ12の集光位置に鏡16を移動させるだけで導光板14の端面方向に光を反射させることができるので、導光板14や集光装置10全体を傾ける必要がなく、簡素な装置構成で太陽光を集光し続けることが可能である。 In FIG. 5, the condensing position of the cylindrical lens 12 has been described as moving in the horizontal direction in the figure, but strictly speaking, not only in the horizontal direction in the figure but also in the vertical direction. . In such a case, it is possible to continue collecting sunlight by moving the light guide plate 14 not only in the horizontal direction but also in the vertical direction. Further, when the light guide plate 14 is moved, it may be moved manually instead of using the power of the actuator 40 or the like. For example, the arm unit 42 connected to the light guide plate 14 may be grasped and moved manually. Even in such a case, light can be reflected in the direction of the end face of the light guide plate 14 simply by moving the mirror 16 to the condensing position of the cylindrical lens 12, so there is no need to tilt the light guide plate 14 or the entire light collecting device 10, It is possible to continue collecting sunlight with a simple device configuration.
 また、日中の太陽の位置は、暦や時刻に基づいて予め予測することが可能であるから、円柱レンズ12によって太陽光が集光される位置(集光位置)についても、予め予測することが可能である。そこで、暦や時刻に基づいて円柱レンズ12の集光位置を予測し、予測した位置に鏡16を移動させるものとしてもよい。こうすれば、暦や時刻に基づいて正確な位置に鏡16を移動させることができるので、太陽光を確実に集光することが可能となる。また、太陽の位置を予測するのではなく、太陽の位置を検出するものとしてもよい。例えば、CdS素子などの光センサーを用いて太陽光を検出することで太陽の位置を検出し、太陽の位置に対応する集光位置に鏡16を移動させる。こうすれば、暦や時刻を把握するための時計等を備えなくてもよいので、太陽光発電装置1の装置構成を簡素に保つことが可能である。 Further, since the position of the sun during the day can be predicted in advance based on the calendar and time, the position (condensing position) where sunlight is collected by the cylindrical lens 12 is also predicted in advance. Is possible. Therefore, the condensing position of the cylindrical lens 12 may be predicted based on the calendar and time, and the mirror 16 may be moved to the predicted position. In this way, the mirror 16 can be moved to an accurate position based on the calendar and time, so that it is possible to reliably collect sunlight. Moreover, it is good also as what detects the position of the sun instead of estimating the position of the sun. For example, the position of the sun is detected by detecting sunlight using an optical sensor such as a CdS element, and the mirror 16 is moved to a condensing position corresponding to the position of the sun. In this way, since it is not necessary to provide a clock or the like for grasping the calendar or time, the device configuration of the solar power generation device 1 can be kept simple.
C-2.第2変形例 :
 前述した実施例の集光装置10では、鏡16を導光板14の下側の表面15bに接する位置に設けるものとして説明した(図2または図3を参照)。しかし、鏡16を導光板14の下側の表面15bから離れた位置に設けるものとしてもよい。
C-2. Second modification:
In the light collecting apparatus 10 of the above-described embodiment, the mirror 16 is described as being provided at a position in contact with the lower surface 15b of the light guide plate 14 (see FIG. 2 or FIG. 3). However, the mirror 16 may be provided at a position away from the lower surface 15 b of the light guide plate 14.
 図6は、鏡を導光板の下側の表面15bから離れた位置に設けた変形例の集光装置を例示した説明図である。図示されている様に、変形例の集光装置10では、鏡16が導光板14の下側の表面15bから離れた位置に設けられており、このことに対応して、円柱レンズ12は、導光板14の下側の表面15bから離れた位置に太陽光を集光するようになっている。このように集光位置を導光板14の下側の表面15bから離れた位置にしてやれば、光の集光位置が何らかの理由によってズレてしまった場合でも、集光位置を確実に導光板14の中に位置させることができる。光の集光位置では光が集中することによって高いエネルギーが生じるが、こうすれば、何らかの理由によって鏡16で光を反射できなかった場合でも、導光板14を通り抜けた光が導光板14の外部で集光してしまうことはない。これにより、導光板14の外部に設けられた他の装置等の位置で光が集光することで装置等に損傷を与えてしまう虞を確実に回避することが可能となる。 FIG. 6 is an explanatory view illustrating a condensing device of a modified example in which a mirror is provided at a position away from the lower surface 15b of the light guide plate. As shown in the drawing, in the condensing device 10 of the modified example, the mirror 16 is provided at a position away from the lower surface 15b of the light guide plate 14, and in response to this, the cylindrical lens 12 is The sunlight is condensed at a position away from the lower surface 15 b of the light guide plate 14. Thus, if the light condensing position is located away from the lower surface 15b of the light guide plate 14, even if the light condensing position is deviated for some reason, the light condensing position can be reliably ensured. Can be located inside. High energy is generated by concentrating the light at the light condensing position. In this way, even if the light cannot be reflected by the mirror 16 for some reason, the light passing through the light guide plate 14 is outside the light guide plate 14. It will not collect light. As a result, it is possible to reliably avoid the possibility of damaging the device or the like due to the light condensing at a position of another device or the like provided outside the light guide plate 14.
C-3.第3変形例 :
 前述した実施例および変形例では、導光板14内に設ける各々の鏡16の大きさは、同じであるものとして説明した。しかし、太陽電池パネル22に近づくにつれて鏡16の大きさを小さくするものとしてもよい。
C-3. Third modification:
In the above-described embodiments and modifications, it has been described that the size of each mirror 16 provided in the light guide plate 14 is the same. However, the size of the mirror 16 may be reduced as it approaches the solar cell panel 22.
 図7は、太陽電池パネルに近づくにつれて鏡の大きさを小さくした変形例の集光装置を示した説明図である。図示されているように、変形例の集光装置10では、導光板14内に設けられた鏡16のサイズが、太陽電池パネル22が設けられた導光板14の端面に近づくにつれて、次第に小さくなっている。 FIG. 7 is an explanatory view showing a modified light collecting device in which the size of the mirror is reduced as it approaches the solar battery panel. As shown in the drawing, in the light collecting device 10 of the modified example, the size of the mirror 16 provided in the light guide plate 14 gradually decreases as it approaches the end surface of the light guide plate 14 provided with the solar cell panel 22. ing.
 前述した様に、鏡16は、導光板14内を太陽電池パネル22の方向に進む光の障壁になるので、できるだけ小さくすることが望ましい。特に、導光板14内の光の進行方向の下流側(図7の左側)では、各々の円柱レンズ12によって集められた多くの光が導光板14内を進んでいるので、鏡16を大きくすると、これら多くの光が鏡16に当たる可能性が生じて多くの光が失われてしまう虞がある。もっとも、その一方では、円柱レンズ12からの光をできるだけ多く反射させるために、鏡16のサイズを大きくしたい。このように、導光板14内に鏡16を設ける場合、鏡16のサイズについて相反する要請がある。そこで、図7に示されている様に、導光板14の下流に向かって鏡16のサイズを次第に小さくし、上流側では鏡16を大きくしておく。こうすれば、導光板14内を進む光が多い下流側では、鏡16に当たる虞を低減させることができるとともに、導光板14内を進む光がそれほど多くない上流側では、円柱レンズ12からの光をより多く反射させることができるので、結果として、太陽電池パネル22により多くの光を集めることが可能となる。 As described above, the mirror 16 is a barrier for light traveling in the light guide plate 14 in the direction of the solar cell panel 22, so it is desirable to make it as small as possible. In particular, on the downstream side of the light traveling direction in the light guide plate 14 (the left side in FIG. 7), a large amount of light collected by each cylindrical lens 12 travels in the light guide plate 14. There is a possibility that a lot of light hits the mirror 16 and a lot of light is lost. However, on the other hand, in order to reflect as much light from the cylindrical lens 12 as possible, it is desired to increase the size of the mirror 16. Thus, when the mirror 16 is provided in the light guide plate 14, there is a conflicting request regarding the size of the mirror 16. Therefore, as shown in FIG. 7, the size of the mirror 16 is gradually reduced toward the downstream side of the light guide plate 14, and the mirror 16 is enlarged on the upstream side. In this way, it is possible to reduce the risk of hitting the mirror 16 on the downstream side where much light traveling in the light guide plate 14 is present, and on the upstream side where the light traveling in the light guide plate 14 is not so much, light from the cylindrical lens 12 is obtained. As a result, more light can be collected in the solar cell panel 22.
 もちろん、こうした場合、導光板14内の下流側の鏡16では、鏡16で反射可能な光の量が低下してしまう。しかし、導光板14の下流側では、沢山の光が集まっているので、鏡16で反射させることができなくなる光の量よりも、鏡16を小さくすることによって太陽電池パネル22に到達することが可能となる光の量の方が多い。このため、下流側で鏡16を小さくすることにより、より多くの光を太陽電池パネル22に集めることが可能となる。 Of course, in such a case, the amount of light that can be reflected by the mirror 16 is reduced in the mirror 16 on the downstream side in the light guide plate 14. However, since a lot of light is gathered on the downstream side of the light guide plate 14, it can reach the solar cell panel 22 by making the mirror 16 smaller than the amount of light that cannot be reflected by the mirror 16. The amount of light that is possible is greater. For this reason, it becomes possible to collect more light in the solar cell panel 22 by reducing the mirror 16 on the downstream side.
C-4.第4変形例 :
 前述した実施例および変形例では、鏡16と導光板14とが別々の部材で形成されているものとして説明した。しかし、鏡16と導光板14とを一つの部材で形成することも可能である。
C-4. Fourth modification:
In the above-described embodiments and modification examples, the mirror 16 and the light guide plate 14 are described as being formed of separate members. However, it is also possible to form the mirror 16 and the light guide plate 14 with a single member.
 図8は、鏡と導光板とを一つの部材で形成した第4変形例の導光板を例示した説明図である。第4変形例の導光板14では、導光板14の下側の表面15bの一部に溝が形成されており(図中に矢印で示された部分を参照)、この溝の傾斜した平面(図中に「16」と示された平面)に導光板14の外側から金属を蒸着して溝の表面に鏡面を形成することにより、鏡16を形成している。こうすれば、導光板14の下側の表面15bに溝を設けて溝の表面に鏡面を設けるだけで鏡16を形成することができるので、鏡16を容易に形成することが可能である。 FIG. 8 is an explanatory view illustrating a light guide plate of a fourth modified example in which a mirror and a light guide plate are formed from a single member. In the light guide plate 14 of the fourth modified example, a groove is formed in a part of the lower surface 15b of the light guide plate 14 (see the portion indicated by the arrow in the figure), and the inclined plane of this groove ( The mirror 16 is formed by evaporating metal from the outside of the light guide plate 14 to form a mirror surface on the surface of the groove on the plane indicated as “16” in the drawing. In this case, the mirror 16 can be formed easily by providing the groove on the lower surface 15b of the light guide plate 14 and providing the mirror surface on the surface of the groove.
C-5.第5変形例 :
 また、溝の表面に鏡面を形成せずに鏡16を構成することも可能である。すなわち、鏡16は傾けて設けられていることから、円柱レンズ12が集光した光は、鏡16に対して大きな入射角で入射する(図3(b)を参照)。このため、溝の表面に金属を蒸着するなどして鏡面を形成しておかなくても、入射した光の大半を鏡16の表面で全反射させることが可能である。こうすれば、金属を蒸着する等の鏡面を形成する工程を省略して鏡16の製造工程をより簡素化することが可能である。更には、このように溝に鏡面を形成せずに溝を透明にしておくことで、以下に説明するように、導光板14中を端面方向に進む光の一部が鏡16に当たった場合でも、当たった光を完全に失うことなく、光を導光板14の中を更に進ませることが可能となる。
C-5. Fifth modification:
It is also possible to configure the mirror 16 without forming a mirror surface on the surface of the groove. That is, since the mirror 16 is provided at an angle, the light collected by the cylindrical lens 12 enters the mirror 16 at a large incident angle (see FIG. 3B). Therefore, most of the incident light can be totally reflected by the surface of the mirror 16 without forming a mirror surface by evaporating metal on the surface of the groove. In this way, it is possible to simplify the manufacturing process of the mirror 16 by omitting a process of forming a mirror surface such as vapor deposition of metal. Furthermore, when the groove is made transparent without forming a mirror surface in the groove as described above, a part of the light traveling in the end face direction in the light guide plate 14 hits the mirror 16 as described below. However, it is possible to further advance the light through the light guide plate 14 without completely losing the hit light.
 図9は、導光板の下側の表面15bに設けた溝の表面を透明にしておくことにより、鏡に当たった光を失わずに導光板の中を進ませることが可能となる様子を示した説明図である。図9(a)に示されている様に、導光板14の下側の表面15bに溝を設けた場合、鏡16に向かって進む光は(図中に実線の矢印で示された光線を参照)、鏡16を構成する溝の側面に入射する(図中に「D」と示した部分を参照)。ここで、溝の側面を導光板14の下側の表面15bに対して傾けて設けておけば、光を小さな入射角で入射させることができるので、光を溝の側面で全反射させずに溝の側面を通過させて導光板14の外に出すことができる。導光板14の外に出た光は、今度は鏡16の表面に入射する(図中に「E」と示した部分を参照)。 FIG. 9 shows a state in which the surface of the groove provided on the lower surface 15b of the light guide plate can be made transparent so that it can be advanced through the light guide plate without losing the light hitting the mirror. FIG. As shown in FIG. 9A, when a groove is provided on the lower surface 15b of the light guide plate 14, the light traveling toward the mirror 16 is reflected by the light beam indicated by the solid arrow in the figure. (Refer to the portion indicated by “D” in the figure). Here, if the side surface of the groove is inclined with respect to the lower surface 15b of the light guide plate 14, light can be incident at a small incident angle, so that the light is not totally reflected by the side surface of the groove. The side surface of the groove can be passed out of the light guide plate 14. The light emitted from the light guide plate 14 is then incident on the surface of the mirror 16 (see the portion indicated by “E” in the figure).
 ここで、光は屈折率の低い導光板14の外側から屈折率の高い導光板14の内側に向かって入射するが、一般に、屈折率の低い物質から屈折率の高い物質に向かって光が入射する際には、光の入射角が大きくても全反射が起こることはない。そこで、鏡16を透明にしておけば、鏡16を傾けて設けることから鏡16に対して光が大きな入射角で入射するものの、光を全反射させずに鏡16を透過させて導光板14の中に光を戻すことが可能となる。 Here, light enters from the outside of the light guide plate 14 having a low refractive index toward the inside of the light guide plate 14 having a high refractive index. Generally, light enters from a material having a low refractive index toward a material having a high refractive index. In this case, total reflection does not occur even if the incident angle of light is large. Therefore, if the mirror 16 is made transparent, the mirror 16 is inclined so that light enters the mirror 16 at a large incident angle. However, the light is transmitted through the mirror 16 without totally reflecting the light, and the light guide plate 14. It becomes possible to return light into the interior.
 このように、鏡16に向かう光を導光板14の外側に一旦出しておけば、鏡16に光が当たる際には、屈折率の低い物質から屈折率の高い物質に向かって光を入射することができるので、鏡16で光が全反射するのを回避することが可能となる。したがって、鏡16を透明にしておけば、光の全反射を回避していることから光は鏡16を透過することが可能となり、その結果、鏡16に当たった光を導光板14の中を更に進ませて、導光板14の端面に導くことが可能となる。 As described above, once the light directed to the mirror 16 is emitted to the outside of the light guide plate 14, when the light strikes the mirror 16, the light is incident from a material having a low refractive index toward a material having a high refractive index. Therefore, it is possible to avoid total reflection of light by the mirror 16. Therefore, if the mirror 16 is made transparent, light can be transmitted through the mirror 16 because the total reflection of light is avoided. As a result, the light hitting the mirror 16 passes through the light guide plate 14. It can be further advanced and guided to the end face of the light guide plate 14.
 尚、導光板14の内側と導光板14の外側とでは屈折率が異なることから、光が鏡16を透過して導光板14の中に入射する際には(図9(a)に「E」と示した部分を参照)、光の角度が鏡16の表面に対して垂直に近づく方向に変化する。こうした場合、光が導光板14の表面に入射する際の入射角(図中に「F」と示した角度を参照)が小さくなることで導光板14の表面で光が全反射しなくなったり、あるいは、導光板14の表面で全反射した光が再び溝の側面に入射する際に、溝の側面に対する入射角が大きくなることで光が溝の側面から外に出なくなることも考えられる。そこで、図9(b)に図示されている様に、溝の側面を傾けて形成しておくものとしてもよい。こうすると、導光板14の内側から導光板14の外側に光が出る際には、溝の側面が傾いている分だけ導光板14の外側で光が傾くので(図中に「G」と示した光線を参照)、再び導光板14に入射した際に光の角度が変わっても、導光板14から出る前と角度が大きく変わることがない。これにより、導光板14の表面で光が全反射しなくなる等の虞を回避することが可能となる。更には、溝の側面を、鏡16の表面と平行に形成しておくこととしてもよい。こうすれば、導光板14の中に光が戻った際の角度を、導光板14から出る前の角度と同じ角度を保つことができるので、光が全反射しなくなる等の虞を確実に回避して導光板14の端面に光をより確実に集光することが可能となる。 Since the refractive index is different between the inside of the light guide plate 14 and the outside of the light guide plate 14, when light passes through the mirror 16 and enters the light guide plate 14 ("E" in FIG. 9A). The angle of light changes in a direction approaching perpendicular to the surface of the mirror 16. In such a case, the incident angle when the light is incident on the surface of the light guide plate 14 (refer to the angle indicated as “F” in the drawing) is reduced, so that the light is not totally reflected on the surface of the light guide plate 14. Alternatively, when the light totally reflected by the surface of the light guide plate 14 is incident on the side surface of the groove again, it is conceivable that the incident angle with respect to the side surface of the groove is increased so that the light does not come out from the side surface of the groove. Therefore, as shown in FIG. 9B, the side surface of the groove may be inclined and formed. In this way, when light is emitted from the inside of the light guide plate 14 to the outside of the light guide plate 14, the light is inclined outside the light guide plate 14 by an amount corresponding to the inclination of the side surface of the groove (indicated as “G” in the drawing). Even if the angle of the light changes when the light enters the light guide plate 14 again, the angle does not change significantly before the light exits from the light guide plate 14. As a result, it is possible to avoid the possibility that light is not totally reflected on the surface of the light guide plate 14. Furthermore, the side surface of the groove may be formed in parallel with the surface of the mirror 16. In this way, the angle when the light returns into the light guide plate 14 can be kept the same as the angle before the light exits from the light guide plate 14, so that the possibility of the light not being totally reflected can be reliably avoided. Thus, it is possible to more reliably collect light on the end face of the light guide plate 14.
 加えて、溝の底面(図中に「H」と示した箇所を参照)を導光板14の表面と平行に形成しておけば、導光板14の表面で全反射させた光を、溝の底面で全反射させることが可能となる。こうすることで、溝に当たる光についても導光板14内を更に進ませて、より多くの光を導光板14の端面に集めることが可能となる。 In addition, if the bottom surface of the groove (see the portion indicated as “H” in the drawing) is formed in parallel with the surface of the light guide plate 14, the light totally reflected on the surface of the light guide plate 14 is reflected in the groove. It is possible to totally reflect on the bottom surface. By doing so, it is possible to further advance the light in the light guide plate 14 with respect to the light hitting the groove and collect more light on the end face of the light guide plate 14.
 また、上述した実施例および変形例の集光装置10においては、鏡16は光を導光板14の表面で全反射可能な角度に反射すればよいことから、鏡16は、導光板14の端面に向けて光を反射させるのではなく、意図的に導光板14の表面に向けて光を反射させることとしてもよい。例えば、図3(a)に図示されている例のように、鏡16を導光板14の下側の表面15bに対して約45度の角度で設けるのではなく、より大きな角度で設けることにより、鏡16に入射した光を導光板14の下側の表面15bに向けて反射させてもよい。こうした場合も、導光板14の下側の表面15bおよび上側の表面15aで光を全反射させることができるので、導光板14の端面に光を導くことが可能である。また、このように鏡16を導光板14の表面に対して大きな角度で設ければ、導光板14の表面から鏡16に光が入射する際には、鏡16に対して光を大きな入射角で入射させることができる。したがって、鏡面を形成しない鏡16を用いた場合でも、入射した光の大半を鏡16で容易に全反射させることが可能となり、導光板14の端面により多くの光を集めることが可能となる。加えて、こうした全反射を用いて光を反射させる鏡16を用いれば、鏡16の鏡面が光を受けることによって劣化してしまうことがないので、集光装置10の耐久性を向上させて寿命を長期化させることも可能となる。 Moreover, in the concentrating device 10 according to the above-described embodiment and the modified example, the mirror 16 only needs to reflect light at an angle that allows total reflection on the surface of the light guide plate 14. Instead of reflecting the light toward the light, it is also possible to intentionally reflect the light toward the surface of the light guide plate 14. For example, the mirror 16 is not provided at an angle of about 45 degrees with respect to the lower surface 15b of the light guide plate 14 as shown in FIG. The light incident on the mirror 16 may be reflected toward the lower surface 15 b of the light guide plate 14. Also in such a case, the light can be totally reflected by the lower surface 15b and the upper surface 15a of the light guide plate 14, so that the light can be guided to the end surface of the light guide plate 14. In addition, when the mirror 16 is provided at a large angle with respect to the surface of the light guide plate 14 in this way, when light enters the mirror 16 from the surface of the light guide plate 14, the light is incident on the mirror 16 at a large incident angle. Can be made incident. Therefore, even when the mirror 16 that does not form a mirror surface is used, most of the incident light can be easily totally reflected by the mirror 16, and more light can be collected on the end surface of the light guide plate 14. In addition, if the mirror 16 that reflects light by using such total reflection is used, the mirror surface of the mirror 16 is not deteriorated by receiving light. It is also possible to extend the period.
 尚、本実施例および変形例の集光装置10では、鏡16を導光板14の中に設けることにより、導光板14の表面で全反射の条件を満たす角度に光を容易に反射可能としている。すなわち、導光板14の中の鏡16で光を反射させれば、導光板14の中から導光板14の外に向かって光を導光板14の表面に入射することができるので、導光板14の表面に対する光の入射角を、所定の入射角(いわゆる臨界角)よりも大きくするだけで、導光板14の表面で光を全反射させることができる。このとき、光の入射角が臨界角よりも大きければ、どのような入射角でも光を全反射させることができるので、光を正確な角度で入射する必要がない。このことから、鏡16を正確な角度に設けなくても光を容易に全反射させることが可能であり、延いては、前述した様に鏡16を導光板14の表面に対して大きな角度で設けることも可能となる。加えて、鏡16に対する光の入射角が変化することによって光の反射方向が変化した場合でも、導光板14の表面で光を全反射させることが可能なことから、導光板14に対して光が斜めに入射する場合であっても(図5(a)または図5(b)を参照)、多くの光を導光板14の表面で全反射させて導光板14の端面に集光することが可能となっている。 In the light collecting device 10 according to the present embodiment and the modification, the mirror 16 is provided in the light guide plate 14 so that light can be easily reflected at an angle satisfying the condition of total reflection on the surface of the light guide plate 14. . That is, if the light is reflected by the mirror 16 in the light guide plate 14, the light can be incident on the surface of the light guide plate 14 from the light guide plate 14 to the outside of the light guide plate 14. The light can be totally reflected on the surface of the light guide plate 14 only by making the incident angle of light with respect to the surface of the light guide plate larger than a predetermined incident angle (so-called critical angle). At this time, if the incident angle of the light is larger than the critical angle, the light can be totally reflected at any incident angle, so that it is not necessary to enter the light at an accurate angle. Therefore, it is possible to easily totally reflect the light without providing the mirror 16 at an accurate angle, and as described above, the mirror 16 is at a large angle with respect to the surface of the light guide plate 14 as described above. It can also be provided. In addition, even when the light reflection direction is changed by changing the incident angle of light with respect to the mirror 16, the light can be totally reflected on the surface of the light guide plate 14. Even when light is incident obliquely (see FIG. 5 (a) or FIG. 5 (b)), a large amount of light is totally reflected on the surface of the light guide plate 14 and condensed on the end surface of the light guide plate 14. Is possible.
C-6.第6変形例 :
 また、導光板14の下側の表面15bを階段形状に形成することとしてもよい。こうすると、導光板14中を端面方向に進む光が鏡16に当たる虞をより確実に回避することが可能である。
C-6. Sixth modification:
Alternatively, the lower surface 15b of the light guide plate 14 may be formed in a staircase shape. In this way, it is possible to more reliably avoid the possibility that light traveling in the end face direction in the light guide plate 14 hits the mirror 16.
 図10は、導光板の下側の表面を階段状に形成した第6変形例の導光板を例示した説明図である。図示されている様に、第6変形例の導光板14では、導光板14の下側の表面15bが、鏡16を境目とする階段形状に形成されている。また、導光板14の下側の表面15bが階段状に形成されていることに対応して鏡16も階段状に配置されているので、これに対応して、鏡16に光を集光する円柱レンズ12も階段状に配置されている。こうすると、他の鏡16で反射された光が鏡16の方向に進んでも(図中に実線の矢印で示された光線を参照)、導光板14の下側の表面15bで光が遮られて鏡16の方向から逸れることになる(図中に「I」と示した箇所を参照)。このように導光板14の下側の表面15bによって鏡16を他の鏡16から隠しておけば、鏡16に光が当たる事態を確実に回避することが可能である。 FIG. 10 is an explanatory view illustrating a light guide plate of a sixth modified example in which the lower surface of the light guide plate is formed in a step shape. As shown in the drawing, in the light guide plate 14 of the sixth modified example, the lower surface 15 b of the light guide plate 14 is formed in a stepped shape with the mirror 16 as a boundary. Further, since the lower surface 15b of the light guide plate 14 is formed in a step shape, the mirror 16 is also arranged in a step shape, and accordingly, the light is condensed on the mirror 16 correspondingly. The cylindrical lens 12 is also arranged stepwise. In this way, even if the light reflected by the other mirror 16 travels in the direction of the mirror 16 (see the light beam indicated by the solid line arrow in the figure), the light is blocked by the lower surface 15b of the light guide plate 14. Thus, the mirror 16 deviates from the direction of the mirror 16 (see the portion indicated by “I” in the figure). Thus, if the mirror 16 is concealed from the other mirror 16 by the lower surface 15b of the light guide plate 14, it is possible to reliably avoid a situation where light hits the mirror 16.
 尚、導光板14の下側の表面15bを階段状に形成する場合、図示されているように、太陽電池パネル22が設けられた端面から離れるにしたがって導光板14の厚さが次第に減っていく。このため、導光板14に設置できる鏡16の数(すなわち円柱レンズ12の数)には限りがある。この点、変形例の集光装置10では、前述した様に、円柱レンズ12で光を集光しながら鏡16に入射することで鏡16を小型化することが可能なので、導光板14の下側の表面15bの段差を小さく抑えることが可能であり、したがって、階段形状の段数を増やしてより多くの円柱レンズ12を設けることが可能である。これにより、導光板14の下側の表面15bを階段状に形成することで光が鏡16に当たる事態をより確実に回避可能としながらも、多くの円柱レンズ12を設けてより大きな面積から光を集光することが可能となる。 When the lower surface 15b of the light guide plate 14 is formed in a stepped shape, the thickness of the light guide plate 14 gradually decreases as the distance from the end surface on which the solar cell panel 22 is provided as shown in the figure. . For this reason, the number of mirrors 16 (that is, the number of cylindrical lenses 12) that can be installed on the light guide plate 14 is limited. In this respect, in the condensing device 10 of the modified example, as described above, the mirror 16 can be reduced in size by condensing the light with the cylindrical lens 12 and entering the mirror 16. It is possible to suppress the step of the side surface 15b to be small, and therefore it is possible to increase the number of steps in the step shape and provide more cylindrical lenses 12. This makes it possible to more reliably avoid the situation where the light hits the mirror 16 by forming the lower surface 15b of the light guide plate 14 in a stepped manner, while providing many cylindrical lenses 12 to emit light from a larger area. It is possible to collect light.
C-7.第7変形例 :
 前述した実施例では、半円柱形状のレンズを用いて導光板14内に太陽光を入射するものとして説明した。しかし、半円柱形状のレンズではなく、円形状のレンズを用いるものとしてもよい。
C-7. Seventh modification:
In the above-described embodiment, it has been described that sunlight enters the light guide plate 14 using a semi-cylindrical lens. However, instead of a semi-cylindrical lens, a circular lens may be used.
 図11は、円形状のレンズを用いて導光板内に光を入射する第7変形例の集光装置を示した説明図である。図11(a)に示されている様に、第7変形例の集光装置10では、円形状の円形レンズ18が導光板14の上方に導光板14の表面に沿って並べて設けられており、また、導光板14の中には、それぞれの円形レンズ18が光を集光する位置に鏡16が設けられている。 FIG. 11 is an explanatory view showing a light condensing device of a seventh modified example in which light is incident on the light guide plate using a circular lens. As shown in FIG. 11A, in the light condensing device 10 of the seventh modified example, circular circular lenses 18 are provided above the light guide plate 14 along the surface of the light guide plate 14. In the light guide plate 14, a mirror 16 is provided at a position where each circular lens 18 condenses light.
 ここで、円形レンズ18を用いた場合、各円形レンズ18に入射した光はそれぞれの円形レンズ18の下の一点に集光する。このため、鏡16は、円形レンズ18の下の一点にだけ設けておけばよい。こうすれば、鏡16と鏡16との間を大きく空けることができるので、光が鏡16と鏡16との間を容易に通ることが可能となり、その結果、鏡16に反射された光が他の鏡16に当たる虞をより低減することが可能となる。 Here, when the circular lens 18 is used, the light incident on each circular lens 18 is collected at one point below each circular lens 18. For this reason, the mirror 16 may be provided only at one point below the circular lens 18. In this way, a large space can be provided between the mirror 16 and the mirror 16, so that light can easily pass between the mirror 16 and the mirror 16. As a result, the light reflected by the mirror 16 can be reflected. The possibility of hitting another mirror 16 can be further reduced.
 尚、図11(b)に実線の矢印で示されている様に、鏡16に反射された光は導光板14の中を広がりながら進むので、反射された光は鏡16から離れるにしたがって次第に多くの鏡16の上を通過していく。一般に、光が通過する鏡16の数が多ければその分だけ光が鏡16に当たる虞が大きくなるが、集光装置10では、次の理由から、通過する鏡16の数が増えても光が鏡に当たる虞が大きく増えることはない。すなわち、光が広がりながら進むことから、それぞれの鏡16を通過する際には、光の広がりに対して鏡16の幅が占める割合がほとんど変わらない。例えば、図11(b)に示された例では、図中に「16a」と示された一枚の鏡を通過する際には、図中に「J」と示された範囲まで光が広がっているが、これに対して、「16b」と示された鏡と「16c」と示された鏡の二枚の鏡を通過する際には、図中に「K」と示されたより広い範囲に光が広がっている。このため、二枚の鏡を通過する場合でも、鏡16に当たる虞がある光(鏡16上を通過する光)の光全体に対する割合は、一枚の鏡を通過する場合とほとんど変わらない。同様に、光がより多数の鏡16を通過する場合でも、光の広がりに対して鏡の幅が占める割合はほとんど変わらないので、鏡16に当たる虞はほとんど変わらない。したがって、光が通過する鏡16の数が増えても鏡16に光が当たってしまう虞が増大することはなく、鏡16で反射させた光の大半を導光板14の端面に導くことが可能となっている。 Note that, as indicated by solid arrows in FIG. 11B, the light reflected by the mirror 16 travels while spreading in the light guide plate 14, so that the reflected light gradually increases as the distance from the mirror 16 increases. It passes over many mirrors 16. In general, if the number of mirrors 16 through which light passes is large, there is a greater risk that the light will hit the mirrors 16. However, in the light collecting apparatus 10, the light will be emitted even if the number of mirrors 16 that pass through increases. There is no significant increase in the chance of hitting the mirror. That is, since light travels while spreading, when passing through each mirror 16, the ratio of the width of the mirror 16 to the spread of light hardly changes. For example, in the example shown in FIG. 11B, when passing through one mirror indicated as “16a” in the drawing, the light spreads to the range indicated as “J” in the drawing. On the other hand, when passing through two mirrors, a mirror indicated by “16b” and a mirror indicated by “16c”, a wider range indicated by “K” in the figure. The light spreads out. For this reason, even when passing through two mirrors, the ratio of light that may strike the mirror 16 (light passing through the mirror 16) to the entire light is almost the same as when passing through one mirror. Similarly, even when light passes through a larger number of mirrors 16, the ratio of the width of the mirrors to the spread of the light hardly changes, so that the possibility of hitting the mirrors 16 hardly changes. Therefore, even if the number of mirrors 16 through which light passes increases, there is no increase in the risk of light hitting the mirrors 16, and most of the light reflected by the mirrors 16 can be guided to the end face of the light guide plate 14. It has become.
 また、鏡16で反射させた光は導光板14の中を広がりながら進むことから、太陽電池パネル22が設けられた端面の両隣の端面(図11(b)の上方の端面および下方の端面)にも光が入射することがある。こうした場合、その端面に金属を蒸着するなどして鏡面を設けておけば、光を反射させて太陽電池パネル22が設けられた端面に光を導くことが可能である。また、前述した様に、鏡16で反射させた光が広がるのは、光をレンズで集光しながら鏡16に入射することに起因する。このため、円形レンズ18が光を集光する範囲(レンズの口径)を調整すれば、光の広がりの程度を調節することが可能であり、延いては、太陽電池パネル22が設けられた端面の両隣の端面に対する光の入射角を調節することが可能である。したがって、円形レンズ18の口径を調整して端面に対する光の入射角を大きくしておけば、両隣の端面で光を全反射させることが可能となり、その結果、導光板14の端面に鏡面を設ける等の加工をすることなく、光を太陽電池パネル22に容易に導くことが可能となる。 Further, since the light reflected by the mirror 16 travels while spreading in the light guide plate 14, both end faces adjacent to the end face on which the solar cell panel 22 is provided (upper end face and lower end face in FIG. 11B). In some cases, light may enter. In such a case, if a mirror surface is provided by, for example, depositing metal on the end face, it is possible to reflect light and guide the light to the end face where the solar cell panel 22 is provided. Further, as described above, the light reflected by the mirror 16 spreads because the light is incident on the mirror 16 while being condensed by the lens. For this reason, if the range (lens aperture) in which the circular lens 18 condenses light is adjusted, it is possible to adjust the extent of the light spread, and thus the end surface on which the solar cell panel 22 is provided. It is possible to adjust the incident angle of the light with respect to the end faces adjacent to each other. Therefore, if the aperture angle of the circular lens 18 is adjusted to increase the incident angle of the light with respect to the end face, the light can be totally reflected at both end faces. As a result, a mirror surface is provided on the end face of the light guide plate 14. The light can be easily guided to the solar cell panel 22 without processing such as.
C-8.第8変形例 :
 前述した実施例の太陽光発電装置1では、導光板14の端面に太陽電池パネル22が設けられているものとして説明した。しかし、導光板14の端面に集光した太陽光を太陽電池パネル22に照射可能であれば、太陽電池パネル22をどこに設けてもよく、必ずしも導光板14の端面に設けておく必要はない。例えば、導光板14から離れた位置に太陽電池パネルを設けておき、導光板14の端面に集まった光を光学的な経路を介して太陽電池パネル22まで導いて太陽電池パネル22に照射するものとしてもよい。更に、集光した光を太陽電池パネル22に照射できればよいことから、次に説明するように、集光装置10を通常の太陽光発電装置の補助装置として用いることも可能である。
C-8. Eighth modification:
In the solar power generation device 1 of the above-described embodiment, it has been described that the solar cell panel 22 is provided on the end surface of the light guide plate 14. However, the solar cell panel 22 may be provided anywhere as long as it can irradiate the solar cell panel 22 with sunlight condensed on the end surface of the light guide plate 14, and the solar cell panel 22 is not necessarily provided on the end surface of the light guide plate 14. For example, a solar cell panel is provided at a position distant from the light guide plate 14, and the light collected on the end face of the light guide plate 14 is guided to the solar cell panel 22 through an optical path to irradiate the solar cell panel 22. It is good. Furthermore, since it is only necessary to irradiate the collected light to the solar cell panel 22, it is also possible to use the condensing device 10 as an auxiliary device for a normal solar power generation device as will be described below.
 図12は、集光装置を通常の太陽光発電装置の補助装置として用いた変形例を例示した説明図である。図示されているように、通常の太陽光発電装置30では、太陽電池パネル22が表面パネル2の下に全面に渡って設けられており、太陽光を太陽電池パネル22に直接受けることで電力エネルギーを発生させる。こうした通常の太陽光発電装置30の横に集光装置10を設置し、更に、導光板14の端面に反射鏡50を設けておく。導光板14の端面に集光した光は導光板14の端面から導光板14の外に放出されるので、こうすると、集光装置10が集光した光を反射鏡50で反射させて太陽光発電装置30に照射することができる。その結果、太陽光発電装置30は太陽光発電装置30自身の表面だけでなく、集光装置10の表面からも太陽光を集めることが可能となり、より広い面積から光を集めてより大きな電気エネルギーを得ることが可能となる。このように集光装置10を通常の太陽光発電装置30の補助装置として用いれば、通常の太陽光発電装置30で大きな電気エネルギーを得ることも可能である。 FIG. 12 is an explanatory diagram illustrating a modification in which the light collecting device is used as an auxiliary device for a normal solar power generation device. As shown in the figure, in a normal solar power generation device 30, the solar cell panel 22 is provided over the entire surface under the front panel 2, and the solar cell panel 22 directly receives sunlight to generate electric power energy. Is generated. The light collecting device 10 is installed beside such a normal solar power generation device 30, and the reflecting mirror 50 is provided on the end surface of the light guide plate 14. Since the light condensed on the end surface of the light guide plate 14 is emitted from the end surface of the light guide plate 14 to the outside of the light guide plate 14, in this way, the light collected by the light collector 10 is reflected by the reflecting mirror 50 to generate sunlight. The power generation device 30 can be irradiated. As a result, the solar power generation device 30 can collect sunlight not only from the surface of the solar power generation device 30 itself but also from the surface of the light collecting device 10, and collects light from a larger area to generate larger electric energy. Can be obtained. Thus, if the condensing device 10 is used as an auxiliary device of the normal solar power generation device 30, it is possible to obtain large electrical energy with the normal solar power generation device 30.
D.本実施例の集光装置を用いた太陽光調理器具 :
 上述した実施例および変形例の集光装置は、太陽光発電装置だけでなく、太陽光を用いた調理器具に用いることも可能である。
D. Solar cooking utensils using the light collecting device of this example:
The concentrating device of the embodiment and the modification described above can be used not only for the solar power generation device but also for cooking utensils using sunlight.
 図13は、本実施例の集光装置を用いた太陽光調理器具の外観を示した説明図である。図示されている様に、太陽光調理器具100は、金属製のホットプレート110と、ホットプレート110の両側に設けられた2つの集光装置10とから構成されている。集光装置10は、太陽光を集光すると、図中に矢印で示されている様に、集光した太陽光を導光板14の端面からホットプレート110に向けて照射する。こうすると、集光装置10の表面の面積に相当する広い面積からホットプレート110に太陽光を集めることができるので、ホットプレート110を十分に加熱することが可能となる。これにより、ホットプレート110の上で食材を加熱調理することが可能となる。 FIG. 13 is an explanatory view showing the appearance of a solar cooking utensil using the light collecting apparatus of the present embodiment. As illustrated, the solar cooking utensil 100 includes a metal hot plate 110 and two light collectors 10 provided on both sides of the hot plate 110. When the sunlight is condensed, the light collecting device 10 irradiates the condensed sunlight toward the hot plate 110 from the end face of the light guide plate 14 as indicated by an arrow in the drawing. If it carries out like this, since sunlight can be collected on the hot plate 110 from the wide area equivalent to the surface area of the condensing device 10, the hot plate 110 can fully be heated. Thereby, it becomes possible to heat-cook ingredients on the hot plate 110.
 また、本実施例の集光装置10では、前述した様に、導光板14を駆動して鏡16の位置を移動させることによって、太陽光が集光装置10に垂直に入射しない場合でも太陽光を集光することが可能である(図5を参照)。したがって、本実施例の集光装置10を用いた太陽光調理器具100では、朝方や夕方などの太陽が真上から入射しない時間帯であっても、ホットプレート110を過熱して食材を加熱調理することが可能である。 Moreover, in the condensing apparatus 10 of a present Example, as mentioned above, by driving the light-guide plate 14 and moving the position of the mirror 16, sunlight is not incident on the condensing apparatus 10 perpendicularly. Can be condensed (see FIG. 5). Therefore, in the solar cooking utensil 100 using the condensing device 10 of the present embodiment, the hot plate 110 is overheated and the food is heated and cooked even in the time zone where the sun does not enter from directly above, such as in the morning or evening. Is possible.
 尚、一般に、太陽光調理器具は屋外で利用するので、風が強い場合には横から風を受けることにより太陽光調理器具が動いてしまったり倒れてしまう等の虞がある。この点、本実施例の太陽光調理器具100では、前述した様に集光装置10の厚さ方向のサイズを小さく抑えていることから、横からの風を受ける面積が小さく抑えられているので、横風によって動いてしまったり倒れてしまう虞を低減することが可能となっている。また、前述した様に、太陽光が真上から入射しない場合でも、導光板14を動かすことで太陽光を集光することができるので、集光装置10を太陽に向けて傾ける必要がない。このため、太陽の入射方向によらずに集光装置10を常に水平に保つことが可能であり、どのような時間帯においても太陽光調理器具100が横風で動いてしまう虞を低減することが可能となっている。 In general, since the solar cooking utensils are used outdoors, when the wind is strong, there is a risk that the solar cooking utensils may move or fall over due to the wind from the side. In this respect, in the solar cooking appliance 100 of the present embodiment, since the size of the light collecting device 10 in the thickness direction is kept small as described above, the area receiving the wind from the side is kept small. It is possible to reduce the risk of moving or falling down due to cross wind. Further, as described above, even when sunlight does not enter from directly above, the sunlight can be collected by moving the light guide plate 14, so that it is not necessary to tilt the light collector 10 toward the sun. For this reason, it is possible to always keep the light collecting apparatus 10 horizontal regardless of the incident direction of the sun, and to reduce the possibility that the solar cooking utensil 100 moves due to the cross wind in any time zone. It is possible.
 また、本実施例の太陽光調理器具100では、鏡16を円柱レンズ12の集光位置から移動させることにより、ホットプレート110の加熱を停止することも可能である。この点について図14を参照しながら簡単に説明する。 In the solar cooking appliance 100 of the present embodiment, the heating of the hot plate 110 can be stopped by moving the mirror 16 from the condensing position of the cylindrical lens 12. This point will be briefly described with reference to FIG.
 図14は、導光板を移動させることによりホットプレートの加熱を停止する様子を概念的に示した説明図である。図14(a)には、ホットプレート110を加熱する際の太陽光の光路が示されている。図示されている様に、ホットプレート110を加熱する際には、複数の円柱レンズ12の各々が集光した太陽光を導光板14の端面方向にそれぞれ反射させて導光板14の端面に太陽光を集光し、集光した太陽光を導光板14の端面からホットプレート110に照射することでホットプレート110を加熱する。ここで、図14(b)に示されている様に、導光板14を駆動して鏡16を円柱レンズ12の集光位置から意図的にずらす。こうすると、太陽光は導光板14の下側の表面15bを通り抜けていくので、導光板14の端面に太陽光が集光しなくなる。これにより、ホットプレート110への太陽光の照射を止めてホットプレート110の加熱を停止することが可能となる。 FIG. 14 is an explanatory view conceptually showing a state where heating of the hot plate is stopped by moving the light guide plate. FIG. 14A shows an optical path of sunlight when the hot plate 110 is heated. As shown in the figure, when the hot plate 110 is heated, the sunlight collected by each of the plurality of cylindrical lenses 12 is reflected in the direction of the end surface of the light guide plate 14 so as to be reflected on the end surface of the light guide plate 14. The hot plate 110 is heated by irradiating the hot plate 110 with the concentrated sunlight from the end face of the light guide plate 14. Here, as shown in FIG. 14B, the light guide plate 14 is driven to intentionally shift the mirror 16 from the condensing position of the cylindrical lens 12. In this way, the sunlight passes through the lower surface 15 b of the light guide plate 14, so that the sunlight does not collect on the end face of the light guide plate 14. As a result, it is possible to stop the application of sunlight to the hot plate 110 and stop the heating of the hot plate 110.
 このように導光板14を動かすことでホットプレート110の加熱を停止すれば、集光装置10に太陽光が入射しないように集光装置10を傾けたり、集光装置10を傾けたりしなくても、導光板14を動かすだけでホットプレート110の加熱を簡単に停止することが可能である。また、鏡16を集光位置からずらしておけば、集光装置10に太陽光が入射しても太陽光が集光することはないので、太陽光調理器具100を使用しない間に太陽光が偶然に入射した場合であっても、ホットプレート110が高温になることがない。これにより、太陽光調理器具100の安全性を高めることが可能となる。更に、導光板14を動かすだけで、加熱を停止したり過熱を再開することが容易に可能なので、ホットプレート110の加熱と加熱の停止とを繰り返すことでホットプレート110の温度を適切に調節することも可能となる。 If heating of the hot plate 110 is stopped by moving the light guide plate 14 in this way, the light collector 10 is not tilted or the light collector 10 is not tilted so that sunlight does not enter the light collector 10. However, the heating of the hot plate 110 can be easily stopped simply by moving the light guide plate 14. Further, if the mirror 16 is shifted from the condensing position, the sunlight will not be collected even if the sunlight is incident on the condensing device 10. Even when incident by chance, the hot plate 110 does not become hot. Thereby, the safety of the solar cooking utensil 100 can be increased. Furthermore, it is possible to easily stop heating or restart overheating only by moving the light guide plate 14. Therefore, the temperature of the hot plate 110 is appropriately adjusted by repeatedly heating the hot plate 110 and stopping the heating. It is also possible.
 また、鏡16で反射させる光は円柱レンズ12によって集光されていることから、鏡16を少し移動させるだけで鏡16を集光位置からずらすことができる。このため、導光板14の位置を僅かに変更するだけの容易な操作によって集光を中止することが可能であり、集光を迅速に中止することが可能である。 Further, since the light reflected by the mirror 16 is condensed by the cylindrical lens 12, the mirror 16 can be shifted from the condensing position by moving the mirror 16 a little. For this reason, it is possible to stop the light collection by an easy operation that only slightly changes the position of the light guide plate 14, and it is possible to stop the light collection quickly.
 以上、本実施例および変形例の集光装置について説明したが、本発明は上記すべての実施例および変形例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。例えば、上記の実施例および変形例では、太陽光を集光するものとして説明したが、太陽光に限らず、月の光や照明装置の光などの種々の光を集光することが可能である。加えて、集光可能な光は可視光に限られず、例えば紫外光や赤外光などの可視光以外の波長の光であっても集光することが可能である。また、本実施例および変形例では、導光板14はアクリル材で形成されているものとして説明したが、空気よりも屈折率が高く透明な材質であれば、どのような材質を用いてもよい。このような部材で導光板14を形成しておけば、導光板14の表面で光を全反射させて導光板14の端面に光を集光することが可能である。 The concentrating device of this embodiment and the modification has been described above. However, the present invention is not limited to all the above embodiments and modifications, and can be implemented in various modes without departing from the scope of the invention. Is possible. For example, in the above-described embodiments and modifications, it has been described that sunlight is collected. However, it is not limited to sunlight, and various kinds of light such as moon light and lighting device light can be collected. is there. In addition, the condensable light is not limited to visible light, and for example, it is possible to collect light having a wavelength other than visible light such as ultraviolet light and infrared light. In the present embodiment and the modification, the light guide plate 14 is described as being formed of an acrylic material. However, any material may be used as long as it has a refractive index higher than air and is transparent. . If the light guide plate 14 is formed of such a member, the light can be totally reflected on the surface of the light guide plate 14 to collect the light on the end surface of the light guide plate 14.
 集光装置を大型化することなく、受光面に受けた光を高い倍率で集光することができる。このため、太陽光発電装置や太陽光調理器具などの、集光した光を利用する種々の技術に適用することが可能である。

 
The light received on the light receiving surface can be condensed at a high magnification without increasing the size of the condensing device. For this reason, it is possible to apply to various techniques using condensed light, such as a solar power generation device and a solar cooking utensil.

Claims (8)

  1.  受光面で受けた光を集光する集光装置であって、
     空気よりも屈折率の大きな透明材料によって略板状に形成されて、一方の表面が前記受光面として用いられる受光部材と、
     前記受光面に沿って配列された複数の集光レンズと、
     前記集光レンズによって集光されて前記受光面から前記受光部材の内部に入射した光が該受光面と向き合う側の表面に達するまでの間の位置に該集光レンズ毎に設けられて、該集光レンズによって集光された光を反射させる複数の反射部と
     を備え、
     前記複数の反射部は、前記受光面に対して向きを揃えて設けられるとともに、前記集光レンズによって集光された光を、該受光面または該受光面と向き合う表面の何れかに対して、全反射の条件を満たす角度で反射させる反射部である集光装置。
    A condensing device that condenses the light received by the light receiving surface,
    A light receiving member formed in a substantially plate shape by a transparent material having a refractive index larger than that of air, and one surface of which is used as the light receiving surface;
    A plurality of condensing lenses arranged along the light receiving surface;
    The light collected by the condensing lens and provided to the inside of the light receiving member from the light receiving surface is provided for each of the condensing lenses at a position until reaching the surface on the side facing the light receiving surface, A plurality of reflecting parts for reflecting the light collected by the condenser lens,
    The plurality of reflecting portions are provided with their orientations aligned with respect to the light receiving surface, and the light collected by the condensing lens with respect to either the light receiving surface or the surface facing the light receiving surface, A condensing device that is a reflecting portion that reflects at an angle that satisfies the condition of total reflection.
  2.  請求項1に記載の集光装置であって、
     前記受光部材には、前記受光面と向き合う表面の側から前記受光部材の内部に向けて、前記集光レンズ毎に凹部が形成されており、
     前記反射部は、前記凹部に形成された平面部分である集光装置。
    The light collecting device according to claim 1,
    In the light receiving member, a concave portion is formed for each condenser lens from the surface side facing the light receiving surface toward the inside of the light receiving member.
    The said reflection part is a condensing device which is a plane part formed in the said recessed part.
  3.  前記凹部は、前記反射部を構成する前記平面部分である第1の内表面と、該第1の内表面に対し平行な平面部分である第2の内表面とを有する凹部である請求項2に記載の集光装置。 The concave portion is a concave portion having a first inner surface that is the planar portion constituting the reflecting portion and a second inner surface that is a planar portion parallel to the first inner surface. The light collecting device described in 1.
  4.  前記凹部は、前記第1の内表面および前記第2の内表面に加えて、前記受光面に対して平行な平面部分である第3の内表面を有する請求項3に記載の集光装置。 The condensing device according to claim 3, wherein the concave portion has a third inner surface which is a plane portion parallel to the light receiving surface in addition to the first inner surface and the second inner surface.
  5.  前記複数の集光レンズと前記受光部材とは、前記受光面に沿った方向に相対位置を変更することで、前記集光を中止可能に設けられている請求項1ないし請求項4のいずれか一項に記載の集光装置。 The said several condensing lens and the said light-receiving member are provided so that the said condensing can be stopped by changing a relative position in the direction along the said light-receiving surface. The light collecting device according to one item.
  6.  前記複数の集光レンズと前記受光部材とは、該複数の集光レンズに対する光の入射方向の変化に応じて、前記受光面に沿った方向に相対位置を変更可能に設けられている請求項1ないし請求項4のいずれか一項に記載の集光装置。 The plurality of condensing lenses and the light receiving member are provided such that relative positions can be changed in a direction along the light receiving surface in accordance with a change in an incident direction of light with respect to the plurality of condensing lenses. The condensing device according to any one of claims 1 to 4.
  7.  請求項1ないし請求項5のいずれか一項に記載の集光装置と、
     前記集光装置が集光した光を受けて電力を発生する光電変換素子と
     を備える光発電装置。
    The light collecting device according to any one of claims 1 to 5,
    A photovoltaic device comprising: a photoelectric conversion element that receives light collected by the light collecting device and generates electric power.
  8.  請求項6に記載の集光装置と、
     前記集光装置が集光した光を受けて電力を発生する光電変換素子と、
     前記複数の集光レンズに対する光の入射方向の変化に応じて、前記集光レンズと前記受光部材との相対位置を変更する相対位置変更手段と
     を備える光発電装置。

     
    A light collecting device according to claim 6;
    A photoelectric conversion element that receives light collected by the light collecting device and generates electric power;
    A photovoltaic power generation apparatus comprising: a relative position changing unit that changes a relative position between the condenser lens and the light receiving member in accordance with a change in a light incident direction with respect to the plurality of condenser lenses.

PCT/JP2009/071105 2009-12-18 2009-12-18 Light gathering apparatus WO2011074108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071105 WO2011074108A1 (en) 2009-12-18 2009-12-18 Light gathering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071105 WO2011074108A1 (en) 2009-12-18 2009-12-18 Light gathering apparatus

Publications (1)

Publication Number Publication Date
WO2011074108A1 true WO2011074108A1 (en) 2011-06-23

Family

ID=44166900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071105 WO2011074108A1 (en) 2009-12-18 2009-12-18 Light gathering apparatus

Country Status (1)

Country Link
WO (1) WO2011074108A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033132A1 (en) * 2010-09-07 2012-03-15 株式会社ニコン Light condenser, photovoltaic system, and photothermal converter
WO2012067082A1 (en) * 2010-11-15 2012-05-24 株式会社ニコン Condenser device, photovoltaic power generator, and light-heat converter
WO2013058381A1 (en) * 2011-10-19 2013-04-25 株式会社ニコン Optical condenser device, optical power generation device and photothermal conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173202U (en) * 1987-04-28 1988-11-10
JPH0479316U (en) * 1990-11-26 1992-07-10
JP2001289515A (en) * 2000-04-07 2001-10-19 Masahiro Nishikawa Planar solar ray concentrating device
JP2008251468A (en) * 2007-03-30 2008-10-16 Kyocera Corp Condensing element, and light-collecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173202U (en) * 1987-04-28 1988-11-10
JPH0479316U (en) * 1990-11-26 1992-07-10
JP2001289515A (en) * 2000-04-07 2001-10-19 Masahiro Nishikawa Planar solar ray concentrating device
JP2008251468A (en) * 2007-03-30 2008-10-16 Kyocera Corp Condensing element, and light-collecting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033132A1 (en) * 2010-09-07 2012-03-15 株式会社ニコン Light condenser, photovoltaic system, and photothermal converter
WO2012067082A1 (en) * 2010-11-15 2012-05-24 株式会社ニコン Condenser device, photovoltaic power generator, and light-heat converter
WO2013058381A1 (en) * 2011-10-19 2013-04-25 株式会社ニコン Optical condenser device, optical power generation device and photothermal conversion device
US9046279B2 (en) 2011-10-19 2015-06-02 Nikon Corporation Light condensing device, photovoltaic power generation device and photo-thermal conversion device
TWI574043B (en) * 2011-10-19 2017-03-11 尼康股份有限公司 A light collecting device, a photovoltaic device and a light and heat conversion device

Similar Documents

Publication Publication Date Title
KR101455892B1 (en) Compact Optics for Concentration, Aggregation and Illumination of Light Energy
JP5944400B2 (en) Compact optical components for heat collection and lighting systems
JP5944398B2 (en) Turning optics for heat collection and lighting systems
US20110079267A1 (en) Lens system with directional ray splitter for concentrating solar energy
WO2005043049A1 (en) A device for collecting and use solar energy
KR20130128406A (en) Solar collector having a concentrator arrangement formed from several sections
JPWO2009057552A1 (en) Sunlight collection system
WO2009133883A1 (en) Solar energy absorber
WO2009063416A2 (en) Thin and efficient collecting optics for solar system
KR100933213B1 (en) Concentration lens for solar power generation
WO2011074108A1 (en) Light gathering apparatus
GB2490389A (en) Homogenizing light-pipe with non-planar entrance surface used in photovoltaic solar concentrators
CN104849844A (en) Dish type Fresnel reflection concentration method and apparatus thereof
JP5135202B2 (en) Sunlight collection system
WO2015061909A1 (en) Optical concentrator/diffuser using graded index waveguide
TWI574043B (en) A light collecting device, a photovoltaic device and a light and heat conversion device
KR100909444B1 (en) The small size photovoltaic module having fly eye lens for sunlight generate electricity system
KR20210033028A (en) Angled solar refractive surface
KR20110123922A (en) Solar concentrator
KR101282197B1 (en) Solar condensing module system for utilizing lens
JP2006010292A (en) Waste incineration system using solar heat obtained by condensing sunlight
US20110067689A1 (en) Primary concentrator with adjusted etendue combined with secondaries associated to multiple receivers and with convection reduction
KR101480565B1 (en) Apparatus for solar power generation
CN201935417U (en) Solar heating device
CN220792907U (en) Suspended ceiling electric appliance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP