JPWO2012043484A1 - Method of melting glass raw material, method of manufacturing molten glass, method of manufacturing glass product, and in-air melting apparatus and glass beads - Google Patents

Method of melting glass raw material, method of manufacturing molten glass, method of manufacturing glass product, and in-air melting apparatus and glass beads Download PDF

Info

Publication number
JPWO2012043484A1
JPWO2012043484A1 JP2012536441A JP2012536441A JPWO2012043484A1 JP WO2012043484 A1 JPWO2012043484 A1 JP WO2012043484A1 JP 2012536441 A JP2012536441 A JP 2012536441A JP 2012536441 A JP2012536441 A JP 2012536441A JP WO2012043484 A1 JPWO2012043484 A1 JP WO2012043484A1
Authority
JP
Japan
Prior art keywords
glass
raw material
melting
glass raw
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012536441A
Other languages
Japanese (ja)
Other versions
JP5920218B2 (en
Inventor
知之 辻村
知之 辻村
宮崎 誠司
誠司 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2012043484A1 publication Critical patent/JPWO2012043484A1/en
Application granted granted Critical
Publication of JP5920218B2 publication Critical patent/JP5920218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • C03B1/02Compacting the glass batches, e.g. pelletising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/026Pelletisation or prereacting of powdered raw materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Discharge Heating (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

本発明は、泡の少ない泡品質の高いガラスを提供することを目的とする。本発明は、複数の成分からなるガラス原料を造粒してなるガラス原料粒子を用い、このガラス原料粒子を加熱気相雰囲気中に送ることによりガラス原料を溶融する際、前記ガラス原料粒子をヘリウムガスとネオンガスの少なくとも一方とともに前記加熱気相雰囲気中に送るガラス原料の溶融方法に関する。It is an object of the present invention to provide a glass having a high bubble quality with few bubbles. The present invention uses glass raw material particles obtained by granulating a glass raw material composed of a plurality of components, and when the glass raw material is melted by sending the glass raw material particles into a heated gas phase atmosphere, the glass raw material particles are converted into helium. The present invention relates to a method for melting a glass material to be sent into the heated gas phase atmosphere together with at least one of gas and neon gas.

Description

本発明は、ガラス原料の溶融方法、溶融ガラスの製造方法、ガラス製品の製造方法、ガラスビーズの製造方法および気中溶融装置とガラスビーズに関する。   The present invention relates to a glass raw material melting method, a molten glass manufacturing method, a glass product manufacturing method, a glass bead manufacturing method, an air melting apparatus, and a glass bead.

現在、板ガラス、瓶ガラス、繊維ガラスを始めとして表示装置用ガラスに至るまで、量産規模のガラスの多くはガラス原料を溶融炉にて溶融するというF.シーメンスが開発したシーメンス窯に基づき生産されている。しかしながら、ガラス溶融炉は大量のエネルギーを必要とするため、産業エネルギー消費構造改革の面からガラス溶融炉の消費エネルギー削減が望まれている。しかし、最近では、表示装置用途のガラス板として高品質、高付加価値化ガラスの需要が増大の一途にあり、エネルギー消費も増大しており、ガラスの製造にかかる省エネルギー技術の開発は重要かつ緊急の課題とされている。
このような背景から、省エネルギー型ガラス製造技術の一例として、酸素燃焼炎あるいは熱プラズマアークを用いたガラス製造技術が研究されている。
例えば、特許文献1、2には、高温の気相雰囲気中でガラス原料粒子を溶融し、集積して溶融ガラスを製造するガラス溶融炉として、ガラス溶融炉の天井部にガラス原料粒子投入部とガラス原料粒子を溶融するための高温の気相雰囲気を形成する加熱手段とを備えたガラス溶融炉が開示されている。
At present, most glass on a mass production scale, including plate glass, bottle glass, and fiberglass, is used for melting glass materials in a melting furnace. Produced based on the Siemens kiln developed by Siemens. However, since a glass melting furnace requires a large amount of energy, it is desired to reduce the energy consumption of the glass melting furnace from the aspect of industrial energy consumption structural reform. Recently, however, the demand for high-quality, high-value-added glass as a glass plate for display devices has been increasing, and energy consumption has been increasing, so the development of energy-saving technology for glass production is important and urgent. It is considered as an issue.
Against this background, glass production techniques using oxyfuel flames or thermal plasma arcs have been studied as examples of energy-saving glass production techniques.
For example, in Patent Documents 1 and 2, as a glass melting furnace that melts and accumulates glass raw material particles in a high-temperature gas-phase atmosphere to produce molten glass, A glass melting furnace provided with a heating means for forming a high-temperature gas phase atmosphere for melting glass raw material particles is disclosed.

上述のガラス溶融炉は、ガラス原料粒子を高温の気相雰囲気中で溶融して溶融ガラス粒子を形成し、溶融ガラス粒子をガラス溶融炉底部に集積させて溶融ガラスを形成する装置である。このガラス原料粒子を高温の気相雰囲気中で溶融する製法は、ガラスの気中溶融法として知られている。この気中溶融法によれば、従来のシーメンス窯による溶融法と比較して、ガラス溶融工程の消費エネルギーを1/3程度まで低減できると言われており、短時間で溶融が可能になり、溶融炉の小型化、蓄熱室の省略、品質の向上、COの削減、ガラス品種の変更時間の短縮化を図ることができる技術として注目されている。The glass melting furnace described above is an apparatus for forming molten glass by melting glass raw material particles in a high-temperature gas phase atmosphere to form molten glass particles, and accumulating the molten glass particles at the bottom of the glass melting furnace. A manufacturing method in which the glass raw material particles are melted in a high-temperature gas phase atmosphere is known as an air melting method of glass. According to this in-air melting method, it is said that the energy consumption of the glass melting step can be reduced to about 1/3 compared to the conventional Siemens kiln melting method, which enables melting in a short time, It is attracting attention as a technology that can reduce the size of the melting furnace, omit the heat storage chamber, improve the quality, reduce CO 2 , and shorten the time for changing the glass type.

ガラス原料粒子は、ガラス原料の混合物の集合物からなり、粒径を1mm以下に造粒したものが開示されている。ガラス溶融炉に投入されたガラス原料粒子は、高温の気相雰囲気中を下降(または飛翔)する間に溶融されてその一粒一粒が溶融ガラス粒子となり、溶融ガラス粒子は下方に落下してガラス溶融炉底部に集積し、溶融ガラスを形成する。このガラス原料粒子から生成する溶融ガラス粒子は、ガラス液滴とも表現されるものである。高温の気相雰囲気中で短時間にガラス原料粒子から溶融ガラス粒子を生成させるためには、ガラス原料粒子の粒径は上記のように小さくする必要がある。   The glass raw material particles are made of an aggregate of a mixture of glass raw materials, and those having a particle diameter of 1 mm or less are disclosed. The glass raw material particles put into the glass melting furnace are melted while descending (or flying) in a high-temperature gas phase atmosphere, and each particle becomes molten glass particles, and the molten glass particles fall downward. Accumulate at the bottom of the glass melting furnace to form molten glass. The molten glass particles generated from the glass raw material particles are also expressed as glass droplets. In order to generate molten glass particles from glass raw material particles in a high-temperature gas phase atmosphere in a short time, the particle size of the glass raw material particles needs to be reduced as described above.

また、ガラス原料粒子が溶融ガラス粒子となるときに発生する分解ガス成分は、ガラス原料粒子と溶融ガラス粒子がともに小さなサイズであるため、生成する溶融ガラス粒子の内部に閉じ込められることなく、そのほとんどが溶融ガラス粒子外部に放出される。このため、シーメンス窯によって得られる溶融ガラスに比べ、気中溶融法により得られる溶融ガラス中には泡が生じるおそれが少ない。
さらに、各ガラス原料粒子は、構成原料成分がほぼ均一な粒子であり、それから生じる各溶融ガラス粒子のガラス組成も相互に均一であることが好ましい。溶融ガラス粒子間のガラス組成の相違が少ないことによって、多数の溶融ガラス粒子が堆積して形成される溶融ガラス内に、ガラス組成が異なる部分が生じるおそれは少ない。
In addition, the decomposition gas component generated when the glass raw material particles become molten glass particles, since both the glass raw material particles and the molten glass particles are small in size, most of them are not confined inside the generated molten glass particles. Is released outside the molten glass particles. For this reason, compared with the molten glass obtained by a Siemens kiln, there is little possibility that a bubble will arise in the molten glass obtained by an in-air melting method.
Furthermore, it is preferable that each glass raw material particle is a particle with substantially uniform constituent raw material components, and the glass composition of each molten glass particle resulting therefrom is also uniform. Since the difference in the glass composition between the molten glass particles is small, there is little possibility that a portion having a different glass composition is generated in the molten glass formed by depositing a large number of molten glass particles.

このため、従来のガラス溶融炉に必要とされていた溶融ガラスのガラス組成を均質化するための均質化手段が、気中溶融法ではほとんど必要とされない。たとえ少数の溶融ガラス粒子が他の大部分の溶融ガラス粒子とガラス組成が異なる場合が生じたとしても、溶融ガラス中のガラス組成の異質領域は小さく、この異質領域は短時間で容易に均質化して消失する。このように、気中溶融法においては溶融ガラスの均質化に必要とする熱エネルギーを低減し、均質化に要する時間を短くできるとされている。   For this reason, the homogenization means for homogenizing the glass composition of the molten glass required for the conventional glass melting furnace is hardly required in the air melting method. Even if a small number of molten glass particles may have a glass composition different from that of most other molten glass particles, the heterogeneous region of the glass composition in the molten glass is small, and this heterogeneous region is easily homogenized in a short time. Disappear. Thus, in the air melting method, it is said that the heat energy required for homogenization of molten glass can be reduced and the time required for homogenization can be shortened.

日本特開2007−297239号公報Japanese Unexamined Patent Publication No. 2007-297239 日本特開2008−290921号公報Japanese Unexamined Patent Publication No. 2008-290921

前述の気中溶融法により製造されるガラスは、従来のシーメンス窯によるバッチ式の溶融法に比較すると溶融ガラス中に含まれる泡を少なくできる利点を有する。ここでいうバッチ式の溶融法とは、各ガラス原料を混合したものを、先に溶融したガラス融液面上に投入し、それが塊(バッチ山、batch pileともいう。)となったものをバーナーなどによって加熱し、その塊の表面から融解が進み、徐々にガラス融液となるものである。従来のバッチ式の溶融法であると、硫酸塩、ハロゲン化物、Sb、As化合物などの清澄剤を添加し、泡の除去を行うことが必須とされているが、気中溶融法によれば泡の少ないガラス製品(本明細書において、泡の少ないガラス製品を泡品質の高いガラス製品ともいう。)を得ることが可能であるため、清澄剤を特に添加しなくとも泡品質の高いガラス製品を得ることが可能であると考えられる。   The glass produced by the above-described air melting method has an advantage that bubbles contained in the molten glass can be reduced as compared with the batch-type melting method using a conventional Siemens kiln. The batch-type melting method referred to here is a method in which a mixture of glass raw materials is added onto the previously melted glass melt surface to form a lump (also called a batch pile or batch pile). Is heated by a burner or the like, melting proceeds from the surface of the lump, and gradually becomes a glass melt. In the conventional batch-type melting method, it is essential to add fining agents such as sulfates, halides, Sb, and As compounds, and to remove bubbles, but according to the in-air melting method, Since it is possible to obtain a glass product with less foam (in this specification, a glass product with less foam is also referred to as a glass product with high foam quality), it is possible to obtain a glass product with high foam quality without adding a clarifier. Is considered possible.

しかし、近年要求される高付加価値化ガラス、例えば、より泡品質の高いガラス製品を製造するにあたり、気中溶融後のガラスに対し更に高い清澄効果も望まれる。従来から使用されている硝酸塩、ハロゲン化物、Sb、As酸化物などの清澄剤を気中溶融法で用いるガラス原料に仮に混合したとしても気相雰囲気中でガラス原料とともにこれら清澄剤の大部分が揮発する恐れがあり、溶融後において清澄効果を十分に発揮することが難しい場合があると考えられる。また、Sb、As酸化物は比較的揮発しにくいが毒性があり、環境面からその使用は控えるべきである。よって、気中溶融法により得られるガラスであっても、より泡品質の高いガラスを製造できる技術の登場が望まれている。   However, in the production of high value-added glass that has been required in recent years, for example, glass products with higher foam quality, a higher clarification effect is also desired for glass after being melted in the air. Even if clarifiers such as nitrates, halides, Sb, and As oxides conventionally used are mixed with glass raw materials used in the air melting method, most of these clarifiers together with the glass raw materials in the gas phase atmosphere. There is a risk of volatilization, and it is considered that it may be difficult to fully exhibit the clarification effect after melting. In addition, Sb and As oxides are relatively difficult to volatilize but are toxic, and their use should be avoided from the environmental viewpoint. Therefore, even if it is a glass obtained by an in-flight melting method, the advent of a technique capable of producing a glass with higher bubble quality is desired.

また、液晶表示装置用ガラス基板にあっては、従来よりも高温熱処理耐性に優れたガラス基板が必要とされている。例えば、液晶を駆動するためのスイッチング素子がアモルファスシリコン(a−Si)型のTFT(薄膜トランジスタ)からポリシリコン型のTFTとされ、更にこれらよりも高速のスイッチング素子の導入も検討されている。しかし、高速のスイッチング素子ほど素子形成時の熱処理温度が高くなる傾向があるため、液晶表示装置用ガラス基板には更に高温の熱処理に耐えること、例えば、トランジスタ回路を形成する過程で700℃を超える高温度で熱処理しても変形と歪が生じ難い、歪点の高いガラスが要求されている。   Moreover, in the glass substrate for liquid crystal display devices, the glass substrate excellent in high temperature heat processing tolerance than before is required. For example, the switching element for driving the liquid crystal is changed from an amorphous silicon (a-Si) type TFT (thin film transistor) to a polysilicon type TFT, and introduction of a switching element at a higher speed than these is also being studied. However, since a high-speed switching element tends to have a higher heat treatment temperature during element formation, the glass substrate for liquid crystal display devices can withstand higher temperature heat treatment, for example, exceeds 700 ° C. in the process of forming a transistor circuit. There is a demand for a glass having a high strain point, which is not easily deformed or strained even when heat-treated at a high temperature.

このような背景から本発明者らは、表示装置用途などのガラス基板について高い熱処理温度に耐える組成のものを研究開発している。しかし、ガラス基板の耐熱性を向上するために組成を吟味して開発すると、耐熱性は向上するものの、ガラス原料が難溶性となってしまうことがある。また、ガラスの組成によっては現状のガラスよりも溶融時に更に泡を生じ易く、泡が抜けにくい問題を生じることもある。従って、これまでのガラスよりも難溶性のガラスあるいは泡を生じ易く、泡が抜けにくいガラスであっても、支障なく溶融することができ、より泡品質の高いガラスを製造できる技術の登場が望まれている。   From such a background, the present inventors have been researching and developing a glass substrate having a composition that can withstand a high heat treatment temperature for a display device or the like. However, if the composition is examined in order to improve the heat resistance of the glass substrate, the glass raw material may become hardly soluble although the heat resistance is improved. In addition, depending on the composition of the glass, bubbles are more likely to be generated when melted than the current glass, and bubbles may not easily escape. Therefore, it is hoped that a technology that can produce glass with higher foam quality can be melted without hindrance even if it is less soluble than conventional glass or glass that tends to form bubbles and is difficult to remove bubbles. It is rare.

以上のような背景から本発明は、省エネルギー操業が可能な気中溶融法によりガラス原料粒子を溶融して溶融ガラス粒子とする際、泡が少なく泡品質が高いガラスを得ようとする技術の提供を目的とする。また、本発明は、泡が少なく泡品質が高いとともに、700℃を超える歪点を示すガラス製品を実現する技術の提供を目的とする。
さらに、本発明は、気中溶融法に限らず、高温の気相雰囲気でガラス原料粒子を溶融する溶融法に対して、泡が少なく泡品質が高いガラスを得ようとする技術の提供を目的とする。
From the background as described above, the present invention provides a technique for obtaining a glass having a small amount of bubbles and a high bubble quality when the glass raw material particles are melted into molten glass particles by an air melting method capable of energy-saving operation. With the goal. Another object of the present invention is to provide a technique for realizing a glass product having a low foam and high foam quality and exhibiting a strain point exceeding 700 ° C.
Furthermore, the present invention is not limited to the air melting method, and provides a technique for obtaining a glass having a small amount of bubbles and a high bubble quality with respect to a melting method in which glass raw material particles are melted in a high-temperature gas phase atmosphere. And

本発明に係るガラス原料の溶融方法は、複数の成分からなるガラス原料を造粒してなるガラス原料粒子を用い、このガラス原料粒子を加熱気相雰囲気中に送ることにより加熱溶融させる際、前記ガラス原料粒子をヘリウムガスとネオンガスの少なくとも一方とともに前記加熱気相雰囲気中に送ることを特徴とする。
本発明において、前記加熱気相雰囲気中で、前記ガラス原料粒子を溶融して溶融ガラス粒子とすることができる。
本発明において、前記加熱気相雰囲気として酸素燃焼炎と熱プラズマアークの少なくとも一方を用いることができる。
The glass raw material melting method according to the present invention uses glass raw material particles obtained by granulating a glass raw material comprising a plurality of components, and when the glass raw material particles are heated and melted by sending them into a heated gas phase atmosphere, Glass raw material particles are sent into the heated gas phase atmosphere together with at least one of helium gas and neon gas.
In the present invention, the glass raw material particles can be melted into molten glass particles in the heated gas phase atmosphere.
In the present invention, at least one of an oxyfuel flame and a thermal plasma arc can be used as the heating gas phase atmosphere.

本発明において、溶融後のガラス組成を酸化物基準の質量百分率表示で、SiO2:61.5〜66.0%、Al23:19〜24%、B23:0〜1.2%、MgO:3〜8%、CaO:0〜7%、SrO:0〜9%、BaO:0〜1%未満、MgO+CaO+SrO+BaO:10〜19%であり、アルカリ金属酸化物を実質的に含有しない組成とすることができる。この組成は、難溶融性のガラスを気中溶融する場合の組成として好ましい。In the present invention, the glass composition after melting by mass percentage based on oxides, SiO 2: 61.5~66.0%, Al 2 O 3: 19~24%, B 2 O 3: 0~1. 2%, MgO: 3 to 8%, CaO: 0 to 7%, SrO: 0 to 9%, BaO: 0 to less than 1%, MgO + CaO + SrO + BaO: 10 to 19%, substantially containing an alkali metal oxide It can be set as the composition which does not. This composition is preferable as a composition in the case of melting an infusible glass in the air.

本発明において、前記ガラス原料粒子を前記ヘリウムガスとネオンガスの少なくとも一方と酸素燃焼炎形成用の燃料ガスとともに加熱気相雰囲気に送ることができる。
本発明において、前記ガラス原料粒子とガラスカレット微粉とを混合して加熱気相雰囲気に送ることができる。
In the present invention, the glass raw material particles can be sent to a heated gas phase atmosphere together with at least one of the helium gas and neon gas and a fuel gas for forming an oxyfuel flame.
In the present invention, the glass raw material particles and the glass cullet fine powder can be mixed and sent to a heated gas phase atmosphere.

本発明に係る溶融ガラスの製造方法は、先のいずれかに記載のガラス原料の溶融方法を用いて前記ガラス原料粒子を加熱気相雰囲気中で溶融ガラス粒子とすることにより溶融ガラスとし該溶融ガラスを貯留することを特徴とする。
本発明に係るガラスビーズの製造方法は、先のいずれかに記載のガラス原料の溶融方法を用いて前記ガラス原料粒子を加熱気相雰囲気中で溶融ガラス粒子とした後、冷却することによりガラスビーズとすることを特徴とする。
本発明に係るガラス製品の製造方法は、先のいずれかに記載のガラス原料の溶融方法を用いて前記ガラス原料粒子を加熱して溶融ガラスとするガラス溶融工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程を含むことを特徴とする。
本発明において、前記したガラス原料粒子を溶融ガラスとするガラス溶融工程が、前記ガラス原料粒子を、気相雰囲気中で溶融させて溶融ガラス粒子とする工程と、前記溶融ガラス粒子を集積してガラス融液とする工程と、を含むこともできる。
A method for producing a molten glass according to the present invention is a method for producing a molten glass by using the glass raw material melting method described in any one of the above to make the glass raw material particles into molten glass particles in a heated gas phase atmosphere. It is characterized by storing.
The glass bead manufacturing method according to the present invention is a method for producing glass beads by cooling the glass raw material particles into molten glass particles in a heated gas phase atmosphere using the glass raw material melting method described above. It is characterized by.
The method for producing a glass product according to the present invention includes a glass melting step in which the glass raw material particles are heated to form molten glass using the glass raw material melting method described in any one of the above, and a step of forming the molten glass And a step of gradually cooling the glass after molding.
In the present invention, the glass melting step using the glass raw material particles as molten glass includes a step of melting the glass raw material particles in a gas phase atmosphere to obtain molten glass particles, and a glass obtained by accumulating the molten glass particles. And a step of forming a melt.

本発明に係る気中溶融装置は、複数の成分からなるガラス原料を造粒してなるガラス原料粒子を加熱溶融して溶融ガラス粒子にする気中溶融装置であって、前記ガラス原料粒子を加熱溶融する加熱気相雰囲気を形成する原料加熱部と、前記加熱気相雰囲気に前記ガラス原料粒子を供給するための原料供給部と、前記原料加熱部に供給されるガラス原料粒子と前記溶融ガラス粒子にヘリウムガスとネオンガスの少なくとも一方を供給する供給部を具備してなる。
本発明の気中溶融装置において、前記加熱気相雰囲気を形成する原料加熱部を造粒体溶融バーナーと熱プラズマアーク発生装置の少なくとも一方とすることができる。
本発明の気中溶融装置において、前記原料加熱部に連通するように溶融ガラス粒子の貯留部が設けられてなる構成としてもよい。
本発明の気中溶融装置において、前記原料加熱部に連通するように冷却部とガラスビーズの貯留部が設けられてなる構成としてもよい。
An air melting apparatus according to the present invention is an air melting apparatus that heats and melts glass raw material particles formed by granulating a glass raw material composed of a plurality of components into molten glass particles, and heats the glass raw material particles. A raw material heating part for forming a heated gas phase atmosphere to melt, a raw material supply part for supplying the glass raw material particles to the heated gas phase atmosphere, glass raw material particles supplied to the raw material heating part, and the molten glass particles And a supply unit for supplying at least one of helium gas and neon gas.
In the air melting apparatus of the present invention, the raw material heating part that forms the heated gas phase atmosphere can be at least one of a granulated melt burner and a thermal plasma arc generator.
In the in-flight melting apparatus of the present invention, a configuration in which a storage unit for molten glass particles is provided so as to communicate with the raw material heating unit may be employed.
In the air melting apparatus of the present invention, a cooling part and a glass bead storage part may be provided so as to communicate with the raw material heating part.

本発明に係るガラスビーズは、複数の成分からなるガラス原料を造粒してなるガラス原料粒子を用い、このガラス原料粒子を加熱気相雰囲気中にヘリウムガスとネオンガスの少なくとも一方とともに送ることにより、前記加熱気相雰囲気中で前記ガラス原料粒子を溶融して溶融ガラス粒子とし、溶融後に加熱気相雰囲気からガラスビーズとして取り出すことにより得られるガラスビーズであって、ヘリウムとネオンの少なくとも一方を含むことを特徴とする。
本発明に係るガラスビーズは、前記ヘリウムおよび/またはネオンが昇温脱離分析におけるピークカウントから存在確認されるものである。
The glass bead according to the present invention uses glass raw material particles formed by granulating a glass raw material composed of a plurality of components, and sends the glass raw material particles together with at least one of helium gas and neon gas in a heated gas phase atmosphere. Glass beads obtained by melting the glass raw material particles in the heated gas phase atmosphere to form molten glass particles, and taking out from the heated gas phase atmosphere as glass beads after melting, including at least one of helium and neon It is characterized by.
In the glass beads according to the present invention, the helium and / or neon is confirmed from the peak count in the temperature programmed desorption analysis.

本発明によれば、ガラス原料粒子及びそれが溶融した溶融ガラス粒子の周囲にヘリウムガスとネオンガスの少なくとも一方を存在させつつ、高温の気相雰囲気中でガラス原料粒子を溶融させるので、気中溶融法に限らず、泡の少ない泡品質の高い溶融ガラスを得ることができる。
本発明によれば、ガラス原料粒子及びそれが溶融した溶融ガラス粒子の周囲にヘリウムガスとネオンガスの少なくとも一方を存在させつつ気中溶融法によりガラス原料粒子を溶融させるので、シーメンス窯を用いてバッチ式で溶融ガラスを得る製造方法よりも遙かに省エネルギー操業が可能な気中溶融法を用いて、さらに泡の少ない泡品質の高い溶融ガラスを得ることができる。具体的には、ガラス原料粒子をヘリウムガスとネオンガスの少なくとも一方の存在下で気中溶融するならば、ヘリウムおよび/またはネオンが溶融ガラス粒子に、より一層効率よく取り込まれ、その清澄効果によって泡の少ない泡品質の高い溶融ガラスを得ることができる。
加熱気相雰囲気として、熱プラズマアークおよび/または酸素燃焼炎を適用することにより、ガラス原料粒子を効率良く確実に溶融させて溶融ガラス粒子とすることができる。
加熱気相雰囲気においてガラス原料粒子を溶融させて溶融ガラス粒子とした後、冷却することで、泡の少ない泡品質の高いガラスビーズを得ることができる。
According to the present invention, the glass raw material particles are melted in a high-temperature gas phase atmosphere while at least one of helium gas and neon gas is present around the glass raw material particles and the molten glass particles in which the glass raw material particles are melted. Not only the method but also a molten glass having a low bubble quality and high foam quality can be obtained.
According to the present invention, since the glass raw material particles are melted by the air melting method in the presence of at least one of helium gas and neon gas around the glass raw material particles and the molten glass particles in which the glass raw material particles are melted, batch processing is performed using a Siemens kiln. By using an in-air melting method capable of energy-saving operation far more than the manufacturing method for obtaining molten glass by a formula, a molten glass having a higher bubble quality with less bubbles can be obtained. Specifically, if glass raw material particles are melted in the air in the presence of at least one of helium gas and neon gas, helium and / or neon are more efficiently taken into the molten glass particles, and the clarification effect causes bubbles to be generated. It is possible to obtain a molten glass having a low bubble quality and a low foam quality.
By applying a thermal plasma arc and / or an oxyfuel flame as the heated gas phase atmosphere, the glass raw material particles can be efficiently and reliably melted into molten glass particles.
By melting glass raw material particles in a heated gas phase atmosphere to form molten glass particles, and then cooling, glass beads having high foam quality with few bubbles can be obtained.

本発明の気中溶融装置によれば、ガラス原料粒子と溶融ガラス粒子の周囲にヘリウムガスとネオンガスの少なくとも一方を存在させつつ、気中溶融法によりガラス原料粒子を溶融できるので、シーメンス窯を用いてガラス原料から溶融ガラスを得る製造方法よりも遙かに省エネルギー操業ができ、泡の少ない泡品質の高い溶融ガラスを得ることができる。
本発明のガラスビーズの製造方法によれば、ガラス原料粒子の周囲にヘリウムガスとネオンガスの少なくとも一方を存在させる気中溶融法により得られ、内部にヘリウムおよび/またはネオンを含んでいるので、ヘリウムおよび/またはネオンの清澄効果により泡の少ない泡品質の高いガラスビーズを得ることができる。
本発明のガラス製品の製造方法によれば、本発明のガラス原料の溶融方法及び溶融ガラスの製造方法によって、泡の少ない泡品質の高いガラス製品を得ることができる。
According to the air melting apparatus of the present invention, since the glass raw material particles can be melted by the air melting method while at least one of helium gas and neon gas is present around the glass raw material particles and the molten glass particles, the Siemens kiln is used. Thus, energy-saving operation can be performed far more than the manufacturing method for obtaining molten glass from glass raw material, and a molten glass having high bubble quality with few bubbles can be obtained.
According to the glass bead manufacturing method of the present invention, since it is obtained by an air melting method in which at least one of helium gas and neon gas is present around the glass raw material particles, helium and / or neon is contained therein. Further, glass beads having high foam quality with few bubbles can be obtained due to the clarification effect of neon.
According to the method for producing a glass product of the present invention, a glass product having high foam quality with few bubbles can be obtained by the method for melting a glass raw material and the method for producing a molten glass of the present invention.

図1は本発明に係るガラス原料の気中溶融方法を実施して溶融ガラスを製造している状態の一例を示す説明図。FIG. 1 is an explanatory view showing an example of a state in which molten glass is manufactured by carrying out the in-air melting method of a glass raw material according to the present invention. 図2は同気中溶融方法を実施するための気中溶融装置の一構成例を示す概略断面図。FIG. 2 is a schematic cross-sectional view showing a configuration example of an air melting apparatus for carrying out the same air melting method. 図3は同気中溶融装置に適用される造粒体溶融バーナーの一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a granule melting burner applied to the in-air melting apparatus. 図4は同気中溶融装置に適用される造粒体溶融バーナーの他の例を示す断面図。FIG. 4 is a cross-sectional view showing another example of a granulated material melting burner applied to the in-air melting device. 図5は本発明に係るガラス製品の製造方法の一例を示すフロー図。FIG. 5 is a flowchart showing an example of a glass product manufacturing method according to the present invention. 図6は本発明に係るガラス原料の溶融方法を実施してガラスビーズを製造している状態と同ガラスビーズの製造装置の一例を示す構成図。FIG. 6 is a configuration diagram showing an example of a glass bead manufacturing apparatus and a state in which glass beads are manufactured by carrying out the glass raw material melting method according to the present invention. 図7は本発明に係るガラス原料の溶融方法を実施して溶融ガラスを製造している状態と同溶融ガラスの製造装置の他の例を示す構成図。FIG. 7: is a block diagram which shows the other example of the state which implements the melting method of the glass raw material which concerns on this invention, and the state which manufactures molten glass, and the same molten glass. 図8は本発明のガラス原料の溶融方法の一例により得られたガラスの泡個数を示すもので、図8(A)は空気搬送しつつ気中溶融した場合の無アルカリガラス(A)の顕微鏡写真と試験結果、図8(B)はヘリウム搬送しつつ気中溶融した場合の無アルカリガラス(A)の顕微鏡写真と試験結果、図8(C)は空気搬送しつつ気中溶融した場合の無アルカリガラス(B)の顕微鏡写真と試験結果、図8(D)はヘリウム搬送しつつ気中溶融した場合の無アルカリガラス(B)の顕微鏡写真と試験結果。FIG. 8 shows the number of glass bubbles obtained by an example of the glass raw material melting method of the present invention. FIG. 8 (A) shows a microscope of alkali-free glass (A) when melted in the air while being conveyed by air. 8B is a micrograph of the alkali-free glass (A) when it is melted in air while transporting helium, and FIG. 8C is a case when it is melted in air while transporting air. Micrograph and test result of alkali-free glass (B), FIG. 8D shows a microscope photo and test result of alkali-free glass (B) when melted in the air while carrying helium. 図9は気中溶融した場合に得られた無アルカリガラス(B)のガラスサンプルの昇温脱離ガスプロファイル。FIG. 9 shows a temperature desorption gas profile of a glass sample of non-alkali glass (B) obtained when melted in the air. 図10はヘリウムガス雰囲気下の通常の溶融で得られた無アルカリガラス(B)のガラスサンプルの昇温脱離ガスプロファイル。FIG. 10 shows a temperature desorption gas profile of a glass sample of alkali-free glass (B) obtained by normal melting in a helium gas atmosphere.

以下、添付図面に従って本発明に係るガラス原料の溶融方法、溶融ガラスの製造方法、ガラスビーズの製造方法、ガラス製品の製造、および気中溶融装置の好ましい一実施形態について説明する。なお、本発明のガラス原料粒子の溶融法は、以下に説明する気中溶融法の各実施形態に制限されるものではなく、ガラス原料粒子を高温の気相雰囲気中で溶融した場合で、同様の効果が得られる限りは本発明の範囲である。
本発明においては、後述するガラス原料粒子を高温の加熱気相雰囲気中で加熱し溶融ガラス粒子とした後、溶融ガラスを製造する。ガラス原料粒子を加熱するための加熱気相雰囲気としては、ガラス原料粒子を溶融しうるものであれば特に制限されず、各種の加熱手段を使用できるが、好適には移送式直流プラズマ、非移送式直流プラズマ、多相プラズマ、高周波誘導プラズマ等の熱プラズマアーク、および酸水素炎、天然ガス−酸素燃焼炎等の酸素燃焼炎、などの少なくとも一つが使用できる。これらの中でも、効率が高く、大出力が得やすく、設備費が比較的安価で、大気圧下での加熱を行なうことができ、技術的に確立され、長時間安定的に使用できるという理由から、特に、酸水素炎あるいは天然ガス−酸素燃焼炎の酸素燃焼炎および熱プラズマアークの少なくとも一種の加熱手段を使用することが好ましい。
Hereinafter, preferred embodiments of a glass raw material melting method, a molten glass manufacturing method, a glass bead manufacturing method, a glass product manufacturing, and an air melting apparatus according to the present invention will be described with reference to the accompanying drawings. In addition, the melting method of the glass raw material particles of the present invention is not limited to each embodiment of the air melting method described below, and the same applies when the glass raw material particles are melted in a high-temperature gas phase atmosphere. It is within the scope of the present invention as long as the above effect can be obtained.
In the present invention, glass raw material particles described later are heated in a high-temperature heated gas phase atmosphere to form molten glass particles, and then molten glass is produced. The heating gas phase atmosphere for heating the glass raw material particles is not particularly limited as long as the glass raw material particles can be melted, and various heating means can be used. At least one of a thermal plasma arc such as a direct current type plasma, a multiphase plasma, a high frequency induction plasma, and an oxyfuel flame such as an oxyhydrogen flame or a natural gas-oxygen flame can be used. Among these, because of high efficiency, easy to obtain a large output, relatively low equipment cost, heating under atmospheric pressure, technically established, stable use for a long time In particular, it is preferable to use at least one heating means of an oxyhydrogen flame or an oxyfuel flame of a natural gas-oxygen flame and a thermal plasma arc.

図1と図2は本発明に係るガラス原料の溶融方法のうち、酸素燃焼炎または熱プラズマアークを用いる気中溶融装置を用いて溶融ガラスを製造している状態の一例を示す説明図である。
図1を基に以下に説明する気中溶融法を実施するための気中溶融装置の一例として、本実施形態の気中溶融装置1は、ガラス原料粒子2を噴出するとともに酸素燃焼炎3aを形成するために下向きに配置された、ガラス原料粒子を溶融する造粒体溶融バーナー(原料加熱部)3と、この造粒体溶融バーナー3の噴射方向先端側(図1、図2では下方側)に順次設けられた加熱気相雰囲気形成領域5および溶融ガラスGの貯留部6と、前記加熱気相雰囲気形成領域5を取り囲むように設置された複数本のアーク電極7とを備えて構成されている。
FIG. 1 and FIG. 2 are explanatory views showing an example of a state in which molten glass is manufactured using an air melting apparatus using an oxyfuel flame or a thermal plasma arc in the glass raw material melting method according to the present invention. .
As an example of an air melting apparatus for carrying out the air melting method described below with reference to FIG. 1, an air melting apparatus 1 according to the present embodiment ejects glass raw material particles 2 and generates an oxyfuel flame 3a. A granule melting burner (raw material heating unit) 3 for melting glass raw material particles, which is disposed downward to form, and a front end side in the injection direction of the granule melting burner 3 (the lower side in FIGS. 1 and 2) ) And a storage portion 6 for the molten glass G, and a plurality of arc electrodes 7 installed so as to surround the heated gas-phase atmosphere forming region 5. ing.

図1に示す気中溶融装置1は、実際には図2に示す如き中空箱型の炉体8を有してなり、炉体8の天井部8Aを貫通するように造粒体溶融バーナー3が取り付けられ、この造粒体溶融バーナー3に対して原料供給部9から供給管10を介して後述するガラス原料粒子2を供給できるように構成されている。また、気中溶融装置1は、原料供給部9に接続されたガス供給源(供給部)11から原料供給部9にヘリウムガスとネオンガスの少なくとも一方を送り、これらのガスを、キャリアガスとして酸素または空気とともにガラス原料粒子2を造粒体溶融バーナー3に供給できるように構成されている。なお、図1においては気中溶融法を説明するために気中溶融装置1の主要部分とガラス原料粒子2を主として示している。   The in-flight melting apparatus 1 shown in FIG. 1 actually has a hollow box type furnace body 8 as shown in FIG. 2, and the granulated body melting burner 3 penetrates the ceiling 8A of the furnace body 8. The glass raw material particles 2 to be described later can be supplied from the raw material supply unit 9 through the supply pipe 10 to the granulated body melting burner 3. The in-flight melting apparatus 1 sends at least one of helium gas and neon gas from a gas supply source (supply unit) 11 connected to the material supply unit 9 to the material supply unit 9 and uses these gases as oxygen as a carrier gas. Or it is comprised so that the glass raw material particle | grains 2 can be supplied to the granule fusion | melting burner 3 with air. In FIG. 1, the main part of the air melting apparatus 1 and the glass raw material particles 2 are mainly shown in order to explain the air melting method.

前記炉体8の内部において造粒体溶融バーナー3の下方側に加熱気相雰囲気形成領域5が形成されるとともに、この加熱気相雰囲気形成領域5を取り囲む炉体8の側壁を斜め方向下向きに貫通した複数のアーク電極7(図1の例では4本)が配置され、各アーク電極7の先端部が加熱気相雰囲気形成領域5の周囲を取り囲むように配置されている。また、前記造粒体溶融バーナー3が後述の如く酸素燃焼炎3aを発生させることで加熱気相雰囲気4を生成できるようになっている。また、アーク電極7が放電することで炉体8の中心部に熱プラズマアークによる加熱気相雰囲気4を生成できるようになっている。ここで用いる加熱気相雰囲気4については、造粒体溶融バーナー3による酸素燃焼炎3aあるいはアーク電極7の放電による熱プラズマアークのいずれか、あるいは、両方を用いて形成してもよい。
前記炉体8の底部側は、溶融ガラスGの貯留部6とされており、炉体8の側壁底部側に形成された排出口12を介して炉体8から溶融ガラスGを外部に排出できるように構成されている。なお、炉体8から溶融ガラスGを排出する方向の下流側には、一例として、成形装置14などが接続され、形成した溶融ガラスGを成形装置14により目的の形状に成形してガラス製品を得ることができるように構成されている。なお、泡品質によっては、成形装置14の前に、減圧脱泡装置を設ける場合もありうる。
A heated gas-phase atmosphere forming region 5 is formed in the furnace body 8 below the granule melting burner 3, and a side wall of the furnace body 8 surrounding the heated gas-phase atmosphere forming region 5 is inclined obliquely downward. A plurality of penetrating arc electrodes 7 (four in the example of FIG. 1) are arranged, and the tip of each arc electrode 7 is arranged so as to surround the periphery of the heated vapor phase atmosphere forming region 5. Further, the granulated body melting burner 3 can generate a heated gas phase atmosphere 4 by generating an oxyfuel flame 3a as described later. Further, the discharge of the arc electrode 7 can generate a heated gas phase atmosphere 4 by a thermal plasma arc at the center of the furnace body 8. The heated gas phase atmosphere 4 used here may be formed by using either or both of the oxyfuel flame 3a by the granulated melt burner 3 and the thermal plasma arc by the discharge of the arc electrode 7.
The bottom side of the furnace body 8 is a storage part 6 for molten glass G, and the molten glass G can be discharged from the furnace body 8 through the discharge port 12 formed on the side wall bottom side of the furnace body 8. It is configured as follows. As an example, a molding device 14 or the like is connected to the downstream side in the direction in which the molten glass G is discharged from the furnace body 8, and the formed molten glass G is molded into a desired shape by the molding device 14. It is configured so that it can be obtained. Depending on the foam quality, a vacuum degassing device may be provided before the molding device 14.

本実施形態において炉体8に設けられる造粒体溶融バーナー3は、燃料ガスと燃焼用ガスが供給され、酸素燃焼炎3aを発生でき、キャリアガスによりガラス原料粒子2を噴出できるように構成されたものであれば具体的構造は特に問わないが、具体的構造の一例を図3に示す。
図3に示す実施形態の造粒体溶融バーナー3は、ガラス原料粒子2を通過させる供給路21を有した筒型のノズル本体22と、このノズル本体22の周囲を取り囲むように配置された被覆管23と、この被覆管23の周囲を囲むように配置された外管24とからなる3重構造とされている。そして、ノズル本体22と被覆管23との間の流路が燃料ガス供給路25とされ、被覆管23と外管24との間の流路が燃焼用ガス供給路26とされている。図3においてノズル本体22の出口側には造粒体分散板27が設けられている。
本実施形態の造粒体溶融バーナー3において、プロパン、ブタン、メタン、LPGなどの燃料ガスが図3の矢印28に示す如く燃料ガス供給路25に導入され、Oガスなどの燃焼用ガスが図3の矢印29に示す如く燃焼用ガス供給路26に導入される。また、上述のガラス原料粒子2が、ヘリウムガスとネオンガスの少なくとも一方からなるキャリアガスガス、またはかかるガスと酸素、または空気を含むキャリアガスとともに搬送されてノズル本体22に供給される。そして、造粒体溶融バーナー3の先端から噴射される酸素燃焼炎3aとともに、ガラス原料粒子2を吹き出すことができる。本実施形態で使用される加熱気相雰囲気4の中心部の温度は、燃焼炎3aが例えば水素酸素燃焼炎の場合は、約2000〜3000℃であり、熱プラズマアークの場合は、5000〜20000℃である。
In this embodiment, the granulated melt burner 3 provided in the furnace body 8 is configured to be supplied with a fuel gas and a combustion gas, generate an oxyfuel flame 3a, and eject glass raw material particles 2 with a carrier gas. However, the specific structure is not particularly limited, but an example of the specific structure is shown in FIG.
The granulated material melting burner 3 of the embodiment shown in FIG. 3 includes a cylindrical nozzle body 22 having a supply path 21 through which the glass raw material particles 2 pass, and a coating disposed so as to surround the nozzle body 22. A triple structure including a tube 23 and an outer tube 24 arranged so as to surround the periphery of the cladding tube 23 is adopted. A flow path between the nozzle body 22 and the cladding tube 23 is a fuel gas supply path 25, and a flow path between the cladding pipe 23 and the outer pipe 24 is a combustion gas supply path 26. In FIG. 3, a granule dispersion plate 27 is provided on the outlet side of the nozzle body 22.
In the granulated melt burner 3 of the present embodiment, fuel gas such as propane, butane, methane, LPG is introduced into the fuel gas supply path 25 as shown by an arrow 28 in FIG. 3, and combustion gas such as O 2 gas is introduced. It is introduced into the combustion gas supply path 26 as indicated by an arrow 29 in FIG. The glass raw material particles 2 described above are transported together with a carrier gas comprising at least one of helium gas and neon gas, or a carrier gas containing such gas and oxygen or air, and supplied to the nozzle body 22. And the glass raw material particle | grains 2 can be blown out with the oxyfuel flame 3a injected from the front-end | tip of the granulated body fusion burner 3. FIG. The temperature of the central portion of the heated gas phase atmosphere 4 used in the present embodiment is about 2000 to 3000 ° C. when the combustion flame 3a is, for example, a hydrogen-oxygen combustion flame, and 5000 to 20000 in the case of a thermal plasma arc. ° C.

本実施形態の気中溶融装置1を用いて製造する溶融ガラスGは、気中溶融法により製造できるガラスである限り、組成的には制約されない。従って、ソーダライムガラス、混合アルカリ系ガラス、ホウケイ酸ガラス、あるいは、無アルカリガラスのいずれであってもよい。   The molten glass G manufactured using the air melting apparatus 1 of the present embodiment is not limited in terms of composition as long as it is a glass that can be manufactured by an air melting method. Therefore, any of soda lime glass, mixed alkali glass, borosilicate glass, or alkali-free glass may be used.

建築用または車両用の板ガラスに使用されるソーダライムガラスの場合には、酸化物基準の質量百分率表示で、SiO2:65〜75%、Al23:0〜3%、CaO:5〜15%、MgO:0〜15%、Na2O:10〜20%、K2O:0〜3%、Li2O:0〜5%、Fe23:0〜3%、TiO2:0〜5%、CeO2:0〜3%、BaO:0〜5%、SrO:0〜5%、B23:0〜5%、ZnO:0〜5%、ZrO2:0〜5%、SnO2:0〜3%、SO3:0〜0.5%、という組成を有することが好ましい。In the case of soda lime glass used for building or vehicle plate glass, it is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 to 5%. 15%, MgO: 0~15%, Na 2 O: 10~20%, K 2 O: 0~3%, Li 2 O: 0~5%, Fe 2 O 3: 0~3%, TiO 2: 0~5%, CeO 2: 0~3% , BaO: 0~5%, SrO: 0~5%, B 2 O 3: 0~5%, ZnO: 0~5%, ZrO 2: 0~5 %, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.

液晶ディスプレイ用の基板に使用される無アルカリガラスの場合には、酸化物基準の質量百分率表示で、SiO2:39〜75%、Al23:3〜27%、B2:0〜20%、MgO:0〜13%、CaO:0〜17%、SrO:0〜20%、BaO:0〜30%、という組成を有することが好ましい。In the case of alkali-free glass used for a substrate for a liquid crystal display, SiO 2 : 39 to 75%, Al 2 O 3 : 3 to 27%, B 2 O 3 : 0 in terms of mass percentage based on oxide. It is preferable to have a composition of -20%, MgO: 0-13%, CaO: 0-17%, SrO: 0-20%, BaO: 0-30%.

プラズマディスプレイ用の基板に使用される混合アルカリ系ガラスの場合には、酸化物基準の質量百分率表示で、SiO2:50〜75%、Al23:0〜15%、MgO+CaO+SrO+BaO+ZnO:6〜24%、Na2O+K2O:6〜24%、という組成を有することが好ましい。In the case of a mixed alkali glass used for a substrate for a plasma display, it is expressed in terms of mass percentage on the basis of oxide, and SiO 2 : 50 to 75%, Al 2 O 3 : 0 to 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24 %, Na 2 O + K 2 O: 6 to 24%.

その他の用途として、耐熱容器または理化学用器具等に使用されるホウケイ酸ガラスの場合には、酸化物基準の質量百分率表示で、SiO2:60〜85%、Al23:0〜5%、B2:5〜20%、Na2O+K2O:2〜10%、という組成を有することが好ましい。As other applications, in the case of borosilicate glass used in heat-resistant containers or physics and chemistry instruments, etc., the oxide percentage-based mass percentage display is SiO 2 : 60 to 85%, Al 2 O 3 : 0 to 5%. B 2 O 3 : 5 to 20%, Na 2 O + K 2 O: 2 to 10%.

本実施形態の気中溶融装置1を用いて製造する難溶融組成の溶融ガラスは、溶融後のガラス組成を酸化物基準の質量百分率表示で、SiO2:61.5〜66.0%、Al23:19〜24%、B23:0〜1.2%、MgO:3〜8%、CaO:0〜7%、SrO:0〜9%、BaO:0〜1%、MgO+CaO+SrO+BaO:10〜19%であり、アルカリ金属酸化物を実質的に含有しない組成とすることができる。上記のガラス組成は、一般的なソーダ石灰ガラスと比較して難溶融ガラスであり、気中溶融方法で、高い効果を奏する。難溶融ガラスは、溶融することが出来ても泡を削減することが難しいが、本実施形態の気中溶融装置を利用すれば、溶融出来るのみならず泡の削減もできるので、好ましい。The molten glass having a hardly-melted composition manufactured using the in-flight melting apparatus 1 of the present embodiment is obtained by expressing the glass composition after melting in terms of mass percentage on the basis of oxide, SiO 2 : 61.5 to 66.0%, Al 2 O 3: 19~24%, B 2 O 3: 0~1.2%, MgO: 3~8%, CaO: 0~7%, SrO: 0~9%, BaO: 0~1%, MgO + CaO + SrO + BaO : 10 to 19%, and the composition can be made substantially free of alkali metal oxide. Said glass composition is a hard-to-melt glass compared with a general soda-lime glass, and has a high effect by an air melting method. Although it is difficult to reduce bubbles even if it can be melted, it is preferable to use the in-flight melting device of this embodiment because it can not only melt but also reduce bubbles.

本実施形態の気中溶融装置1を用いて製造する難溶融組成の溶融ガラスは、溶融後のガラス組成を酸化物基準の質量百分率表示で、SiO2:61.5〜64.0%、Al23:20〜23%、B23:0〜1%、MgO:3〜8%、CaO:1〜7%、SrO:3〜9%、BaO:0〜1%、MgO+CaO+SrO+BaO:12〜18%であり、アルカリ金属酸化物を実質的に含有しない組成とすることができる。上記のガラス組成は、ディスプレイ用ガラスとしての物性、生産性、その他の観点から、より好ましい。The molten glass having a hardly-melted composition manufactured using the in-air melting apparatus 1 of the present embodiment has a glass composition after melting, expressed in mass percentage on the basis of oxide, SiO 2 : 61.5 to 64.0%, Al 2 O 3 : 20 to 23%, B 2 O 3 : 0 to 1%, MgO: 3 to 8%, CaO: 1 to 7%, SrO: 3 to 9%, BaO: 0 to 1%, MgO + CaO + SrO + BaO: 12 It is -18% and can be set as the composition which does not contain an alkali metal oxide substantially. Said glass composition is more preferable from the physical property as display glass, productivity, and another viewpoint.

本実施形態の気中溶融装置1を用いて製造する難溶融組成の溶融ガラスは、溶融後のガラス組成を酸化物基準の質量百分率表示で、SiO2:61.5〜64.0%、Al23:20〜23%、B23:0〜1%、MgO:4〜8%、CaO:2〜6%、SrO:3〜9%、BaO:0〜1%、MgO+CaO+SrO+BaO:13〜18%であり、アルカリ金属酸化物を実質的に含有しない組成とすることができる。上記のガラス組成は、ディスプレイ用ガラスとしての物性、生産性、その他の観点から、とくに好ましい。The molten glass having a hardly-melted composition manufactured using the in-air melting apparatus 1 of the present embodiment has a glass composition after melting, expressed in mass percentage on the basis of oxide, SiO 2 : 61.5 to 64.0%, Al 2 O 3 : 20 to 23%, B 2 O 3 : 0 to 1%, MgO: 4 to 8%, CaO: 2 to 6%, SrO: 3 to 9%, BaO: 0 to 1%, MgO + CaO + SrO + BaO: 13 It is -18% and can be set as the composition which does not contain an alkali metal oxide substantially. The above glass composition is particularly preferable from the viewpoints of physical properties, productivity and other aspects as display glass.

本実施形態で行う気中溶融法においては、前記いずれかの組成のガラスの原料、例えば上述の各成分の粒子状のガラス原料を目的のガラスの組成比に合わせて混合し、造粒体としたガラス原料粒子2を用意する。
基本的に気中溶融法は、複数(通常3成分以上)の成分から成るガラスを製造するためにガラス原料粒子2を溶融してガラスを製造する方法である。
In the air melting method performed in the present embodiment, the glass raw material of any one of the above compositions, for example, the particulate glass raw material of each component described above is mixed according to the composition ratio of the target glass, and the granulated body and Prepared glass raw material particles 2 are prepared.
Basically, the air melting method is a method of manufacturing glass by melting glass raw material particles 2 in order to manufacture glass composed of a plurality of (usually three or more components) components.

また、例えば、前述のガラス原料粒子2の一例として、無アルカリガラスの一例を適用する場合、珪砂、アルミナ(Al)、ホウ酸(HBO)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、ジルコン(ZrSiO)、弁柄(Fe)、塩化ストロンチウム(SrCl)などのガラス原料を目的のガラスの組成比に合致するように調合し、例えばスプレードライ造粒法により30〜1000μm程度の造粒体として、ガラス原料粒子2を得ることができる。For example, when an example of an alkali-free glass is applied as an example of the glass raw material particle 2 described above, silica sand, alumina (Al 2 O 3 ), boric acid (H 3 BO 3 ), magnesium hydroxide (Mg (OH 2 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), zircon (ZrSiO 4 ), stalk (Fe 2 O 3 ), strontium chloride (SrCl 2 ) and other glass raw materials for the composition ratio of the target glass The glass raw material particles 2 can be obtained as a granulated body of about 30 to 1000 μm, for example, by a spray dry granulation method.

前記ガラス原料からガラス原料粒子2を調製する方法としては、スプレードライ造粒法などの方法が使用でき、ガラス原料を分散溶解させた水溶液を高温雰囲気中に噴霧させて乾燥固化させる造粒法が好ましい。また、この造粒体は目的とするガラスの成分組成に対応する混合比の原料のみで構成してもよいが、その造粒体に更に同一組成のガラスカレット微粉を混合して、これをガラス原料粒子と合わせて用いることもできる。   As a method for preparing the glass raw material particles 2 from the glass raw material, a method such as a spray dry granulation method can be used, and a granulation method in which an aqueous solution in which the glass raw material is dispersed and dissolved is sprayed in a high temperature atmosphere and dried and solidified. preferable. Further, this granulated body may be composed only of raw materials having a mixing ratio corresponding to the target glass component composition, but the granulated body is further mixed with glass cullet powder having the same composition, and this is mixed with glass. It can also be used in combination with raw material particles.

スプレードライ造粒によりガラス原料粒子2を得るための方法の一例として、上述の各成分のガラス原料として2μm〜500μmの範囲のガラス原料を蒸留水などの溶媒中に分散してスラリーを構成し、このスラリーをボールミルなどの攪拌装置で所定時間攪拌し、混合し、粉砕することで上述の各成分のガラス原料がほぼ均一に分散されたガラス原料粒子2が得られる。
なお、前述のスラリーを攪拌装置で攪拌する際、ガラス原料の均一分散と造粒原料の強度を向上させる目的で2−アミノエタノール、PVA(ポリビニルアルコール)などのバインダーを混合してから攪拌することが好ましい。
本実施形態において用いるガラス原料粒子2は、上述のスプレードライ造粒法の他に、転動造粒法、攪拌造粒法などの乾式造粒法により形成することもできる。
As an example of a method for obtaining glass raw material particles 2 by spray-dry granulation, a glass raw material in the range of 2 μm to 500 μm is dispersed in a solvent such as distilled water as a glass raw material for each of the above components to form a slurry, The slurry is stirred for a predetermined time by a stirring device such as a ball mill, mixed, and pulverized to obtain glass raw material particles 2 in which the glass raw materials of the above-described components are dispersed almost uniformly.
In addition, when stirring the above-mentioned slurry with a stirrer, the binder such as 2-aminoethanol and PVA (polyvinyl alcohol) is mixed and stirred for the purpose of improving the uniform dispersion of the glass raw material and the strength of the granulated raw material. Is preferred.
The glass raw material particles 2 used in the present embodiment can be formed by a dry granulation method such as a tumbling granulation method or a stirring granulation method in addition to the spray dry granulation method described above.

前記ガラス原料粒子2の平均粒径(重量平均)は30〜1000μmが好ましい。より好ましくは、平均粒径(重量平均)が50〜500μmの範囲内のガラス原料粒子2が使用され、さらに70〜300μmの範囲内のガラス原料粒子2が好ましい。このガラス原料粒子2の一例の拡大した図1の点線の円内に示す。このガラス原料粒子は、1つのガラス原料粒子2において最終目的とするガラスの組成比にほぼ合致するか近似した組成比となっていることが好ましい。
ガラス原料粒子2が溶融した溶融ガラス粒子の平均粒径(重量平均)は、通常ガラス原料粒子の平均粒径の80%程度となることが多い。ガラス原料粒子2の粒径は、短時間で加熱でき、発生ガスの放散が容易である点から、粒子間の組成変動の低減の点から、前述の範囲を選択することが好ましい。
As for the average particle diameter (weight average) of the said glass raw material particle 2, 30-1000 micrometers is preferable. More preferably, glass raw material particles 2 having an average particle diameter (weight average) in the range of 50 to 500 μm are used, and glass raw material particles 2 in the range of 70 to 300 μm are more preferable. An example of this glass raw material particle 2 is shown in a dotted circle in FIG. The glass raw material particles preferably have a composition ratio that substantially matches or approximates the composition ratio of the final target glass in one glass raw material particle 2.
The average particle size (weight average) of the molten glass particles obtained by melting the glass material particles 2 is usually about 80% of the average particle size of the glass material particles in many cases. The particle diameter of the glass raw material particles 2 is preferably selected from the above-mentioned range from the viewpoint of being able to heat in a short time and facilitating the diffusion of the generated gas, from the viewpoint of reducing the composition variation between the particles.

また、これらのガラス原料粒子2は、必要に応じて、副原料として清澄剤、着色剤、溶融助剤、乳白剤等を含むことができる。また、これらのガラス原料粒子2中のホウ酸などは、高温時の蒸気圧が比較的高いため加熱により蒸発しやすいことから、最終製品であるガラスの組成よりも余分に混合しておくことができる。
本実施形態において、副原料として清澄剤を含有する場合、塩素(Cl)、イオウ(S)、フッ素(F)の中から1種または2種以上の元素を選択して含む清澄剤を必要量添加することができる。
また、従来から用いられているSb、As酸化物などの清澄剤は、泡削減効果が生じたとしても、これら清澄剤の元素は環境負荷低減の面で望ましくない元素であり、それらの利用は環境負荷低減の方向性から見て削減することが好ましい。
Moreover, these glass raw material particles 2 can contain a clarifying agent, a coloring agent, a melting aid, an opacifier, etc. as an auxiliary raw material as needed. In addition, boric acid and the like in these glass raw material particles 2 have a relatively high vapor pressure at a high temperature, and are thus easily evaporated by heating. Therefore, it may be mixed in excess of the composition of the glass as the final product. it can.
In this embodiment, when a clarifier is contained as an auxiliary material, a necessary amount of a clarifier containing one or more elements selected from chlorine (Cl), sulfur (S), and fluorine (F) is required. Can be added.
Also, conventionally used fining agents such as Sb and As oxides, even if the effect of reducing bubbles is generated, these fining elements are undesirable elements in terms of reducing environmental impact, and their use is It is preferable to reduce in view of the direction of reducing the environmental load.

本実施形態の気中溶融装置1において、原料供給部9から供給管10を介しヘリウムなどのキャリアガスとともに供給されるガラス原料粒子2は、一例として図1に示すように、加熱気相雰囲気4中を通過し、加熱され、溶融ガラス粒子Uを形成し、貯留部6に滞留する溶融ガラスG上に降下する。ここで加熱気相雰囲気4中において高熱でガラス原料粒子2が溶融されて溶融ガラス粒子Uとなる場合、ガラス原料粒子2の周囲にヘリウムガスあるいはネオンガスが存在しているが、これらのガスが存在することにより清澄効果が発揮され、生成する溶融ガラス粒子Uの内部に泡が生成し難くなり、泡の少ない溶融ガラス粒子Uを生成できる。
なお、前記ガラス原料粒子を加熱気相雰囲気中で溶融ガラス粒子とするにあたっては、前記ガラス原料粒子を、少なくとも後述するガラス原料粒子にする前のガラス原料であるガラス原料混合物の溶融開始温度以上にすればよい。例えば、後述する実施例で示す難溶融性ガラス組成のガラス原料粒子は、少なくとも1300℃以上に加熱されることが好ましく、さらにガラス原料粒子が加熱気相雰囲気中でその温度に達し溶融するために、ガラス原料粒子の熱容量と加熱気相雰囲気中の滞在時間を考慮して、加熱温度を調整する。
In the in-flight melting apparatus 1 of the present embodiment, glass raw material particles 2 supplied together with a carrier gas such as helium from a raw material supply unit 9 through a supply pipe 10 are, as an example, shown in FIG. It passes through the inside, is heated, forms molten glass particles U, and descends onto the molten glass G staying in the reservoir 6. Here, when the glass raw material particles 2 are melted with high heat in the heated gas phase atmosphere 4 to become the molten glass particles U, helium gas or neon gas is present around the glass raw material particles 2, but these gases are present. By doing so, a clarification effect is exhibited, and it becomes difficult to generate bubbles inside the generated molten glass particles U, and it is possible to generate molten glass particles U with less bubbles.
In making the glass raw material particles into molten glass particles in a heated gas phase atmosphere, the glass raw material particles are at least equal to or higher than the melting start temperature of the glass raw material mixture which is a glass raw material before making the glass raw material particles described later. do it. For example, it is preferable that the glass raw material particles having a hardly fusible glass composition shown in the examples described later are heated to at least 1300 ° C. or higher, and further because the glass raw material particles reach that temperature and melt in a heated gas phase atmosphere. The heating temperature is adjusted in consideration of the heat capacity of the glass raw material particles and the residence time in the heated gas phase atmosphere.

本発明では、各ガラス原料を集合して造粒化したガラス原料粒子2の一粒一粒の周りの高温の気相雰囲気にヘリウムガスあるいはネオンガスが存在し、それらのガスの存在下で、ガラス原料粒子2の一粒一粒が短時間で溶融ガラス粒子となるため、これらのガスを効果的に溶融ガラス中に取り込めるものと予想される。
なお、このような現象は、シーメンス窯を含む従来の溶融方法においても、ガラス原料粒子を用いて溶融しても実現可能である。たとえば、シーメンス窯のバッチ式の原料を加熱するバーナーにかえて、ガラス原料粒子を窯に投入し、それがバーナーなどによる気相雰囲気中で溶融できるバーナーとすれば、同様の効果を奏しうる。
しかし、上記した従来のバッチ式の溶融方法によると、比較的大きい各ガラス原料を混合した塊(バッチ山)の表面から融解が進むため、雰囲気に導入したこれらのガスはこの塊の表面の層を通過して溶融ガラスに供給されること、また、この塊の内部の温度、すなわち溶融されるべきガラス原料の温度が低いため、物理的な溶解ガスの溶解度が低い。このため、従来の溶融方法では、本発明のようにヘリウムガスあるいはネオンガスを効果的に溶融ガラス中に取り込めないと予想される。
すなわち、上記したような各原料を単に混合したものを溶融する場合に比べ、あるいは溶融後のガラスにヘリウムガスなどを接触させる場合に比べ、本発明によれば、上記した本発明の特有な方法により、ヘリウムガスあるいはネオンガスをガラス原料粒子の周囲に取り込むことができ、清澄効果を発揮させることができ、泡の少ない溶融ガラス粒子を生成できるという、本発明特有な作用、効果が得られる。
In the present invention, helium gas or neon gas exists in a high-temperature gas phase atmosphere around each glass raw material particle 2 obtained by collecting and granulating the glass raw materials, and in the presence of these gases, Since each grain of the raw material particles 2 becomes molten glass particles in a short time, it is expected that these gases can be effectively taken into the molten glass.
Such a phenomenon can be realized even in a conventional melting method including a Siemens kiln, even by melting using glass raw material particles. For example, the same effect can be obtained if glass raw material particles are put into a kiln instead of a burner that heats a batch type raw material of a Siemens kiln, and is a burner that can be melted in a gas phase atmosphere such as a burner.
However, according to the conventional batch-type melting method described above, melting proceeds from the surface of the lump (batch crest) in which each relatively large glass raw material is mixed, so these gases introduced into the atmosphere are layered on the surface of this lump. In addition, since the temperature inside the lump, that is, the temperature of the glass raw material to be melted is low, the solubility of the physical dissolved gas is low. For this reason, in the conventional melting method, it is expected that helium gas or neon gas cannot be effectively taken into the molten glass as in the present invention.
That is, compared with the case where a mixture obtained by simply mixing the raw materials as described above is melted or compared with the case where helium gas or the like is brought into contact with the glass after melting, according to the present invention, the method unique to the present invention described above is used. Thus, helium gas or neon gas can be taken into the periphery of the glass raw material particles, a clarification effect can be exhibited, and molten glass particles with less bubbles can be produced.

また、上述した本発明による気中溶融法により生成した溶融ガラス粒子Uでは、気泡が多少入っていたとしても、その泡径を大きくできるので、さらに溶融する際に泡径の小さな泡よりも除去が容易となる特徴がある。これに対し酸素または空気をキャリアガスとする従来の造粒体溶融バーナーで搬送し、気中溶融して得られる溶融ガラス粒子には、ヘリウムガスあるいはネオンガスを、またはヘリウムガスあるいはネオンガスと酸素または空気を含むガスを、キャリアガスとする本発明の実施形態で生成した溶融ガラスよりも泡径の小さな泡が含まれるようになり、泡の総量自体も多くなる傾向となるので、除去が難しい径の小さな泡が多く含まれる傾向がある。   Moreover, in the molten glass particle U produced | generated by the air melting method by the above-mentioned this invention, even if there are some bubbles, since the bubble diameter can be enlarged, it removes from the bubble with a small bubble diameter when further melting. There is a feature that makes it easy. On the other hand, the molten glass particles obtained by transporting with a conventional granule melting burner using oxygen or air as a carrier gas and melting in the air include helium gas or neon gas, or helium gas or neon gas and oxygen or air. As the carrier gas is used as the carrier gas, bubbles with a smaller bubble diameter than the molten glass produced in the embodiment of the present invention are included, and the total amount of bubbles tends to increase. There is a tendency to contain many small bubbles.

前記ガス供給源11から送出するヘリウムガスとネオンガスの少なくとも一方からなるキャリアガスは、ガラス原料粒子2の周囲に十分に存在する必要があるため、100%ヘリウムガスあるいは100%ネオンガスが好ましい。ただし、ヘリウムガスとネオンガスの少なくとも一方からなるキャリアガスは、燃料ガスと燃焼ガスとともに供給されるので、気相雰囲気中での濃度は100%である必要はない。たとえば、後述する実施例からは、これらのガスの体積の搬送ガスの全体積に対する割合は、これらのガスの含有量の増加に伴って清澄の効果が増加し、少なくとも10%以上で有意な効果が認められる。
本発明でのヘリウムガスやネオンガスの導入量は、ガラス原料粒子のサイズ、高温の気相雰囲気へのガラス原料粒子の投入速度、高温の気相雰囲気の領域の大きさ、溶融ガラスの粘性、1日当たりのガラスの溶融量によっても、当然変わるものである。このため、それらの条件に応じて適宜決定されるべきものである。たとえば、後述する実験結果からは、ガラス原料粒子2の溶融時に清澄効果を十分に発生させるため、ガラス原料粒子2の投入速度が70g/分の場合、これらのガスの投入は5L/分以上の量であることが好ましい。この範囲の中でも、10〜100L/分の範囲が好ましい。
また、本発明においては、各ガラス原料粒子の一粒一粒の周りにヘリウムまたはネオンが存在するので、ヘリウムおよびネオンの分圧は高い必要はない。むしろ、雰囲気中の圧力の上限は、これらのガスを利用するコストとの関係により決定されるべきである。
Since the carrier gas composed of at least one of helium gas and neon gas sent from the gas supply source 11 needs to be sufficiently present around the glass raw material particles 2, 100% helium gas or 100% neon gas is preferable. However, since the carrier gas composed of at least one of helium gas and neon gas is supplied together with the fuel gas and the combustion gas, the concentration in the gas phase atmosphere need not be 100%. For example, from the examples described later, the ratio of the volume of these gases to the total volume of the carrier gas increases the clarification effect as the content of these gases increases, and a significant effect is obtained at least 10% or more. Is recognized.
The amount of helium gas or neon gas introduced in the present invention is the size of the glass raw material particles, the rate of introduction of the glass raw material particles into the high temperature gas phase atmosphere, the size of the region of the high temperature gas phase atmosphere, the viscosity of the molten glass, Naturally, it also varies depending on the amount of glass melted per day. For this reason, it should be determined appropriately according to these conditions. For example, from the experimental results to be described later, in order to sufficiently generate a clarification effect when the glass raw material particles 2 are melted, when the glass raw material particles 2 are charged at a rate of 70 g / min, the input of these gases is 5 L / min or more. An amount is preferred. Among these ranges, a range of 10 to 100 L / min is preferable.
In the present invention, since helium or neon exists around each glass raw material particle, the partial pressure of helium and neon does not need to be high. Rather, the upper limit of atmospheric pressure should be determined by relationship to the cost of using these gases.

なお、ガラス原料粒子2の気中溶融開始時に貯留部6に溶融ガラスGは滞留していないが、加熱気相雰囲気4を通過して降下する溶融ガラス粒子Uは、貯留部に堆積した後も、加熱気相雰囲気4および炉体8からの輻射熱によって加熱され、さらに必要に応じて貯留部6に設けられた補助加熱手段などによって溶融するために望ましい温度に加熱されて溶融し、溶融ガラスGを形成する。なお、この溶融ガラスGとなって貯留部6に滞留している状態において上述の如く溶融ガラス粒子に泡を多少含んでいたとしても、泡を大きくできる。径の大きな泡は貯留部6に滞留中に浮上されて除去され易いので、ガラス製品とするまでの間に径の大きな泡は除去し易い。   The molten glass G does not stay in the reservoir 6 when the glass raw material particles 2 start to be melted in the air, but the molten glass particles U that pass through the heated gas phase atmosphere 4 and descend are deposited in the reservoir. The heated glass atmosphere 4 and the radiant heat from the furnace body 8 are heated to a desired temperature for melting by auxiliary heating means or the like provided in the storage unit 6 if necessary, and the molten glass G Form. Even if the molten glass particles contain some bubbles as described above in a state where the molten glass G is retained in the storage portion 6, the bubbles can be enlarged. Since bubbles having a large diameter are easily floated and removed during the retention in the storage unit 6, bubbles having a large diameter are easily removed before the glass product is made.

以後、溶融ガラスGの上に順次降下する加熱された溶融ガラス粒子Uは、溶融ガラスGを形成する。そして、溶融ガラスGは所定の速度で炉体8の排出口12から排出され、さらに高い泡品質が要求される場合は、必要に応じ減圧脱泡装置に導入され、減圧状態で強制的に更に脱泡された後、成形装置14に移送されて目的の形状に成形され、ガラス製品が製造される。
以上のように製造されたガラス製品は、気泡の特に少ない泡品質の高い溶融ガラスGを元に製造されているので、泡の少ない高品質なガラス製品となる。
Thereafter, the heated molten glass particles U that sequentially descend onto the molten glass G form the molten glass G. And when the molten glass G is discharged | emitted from the discharge port 12 of the furnace body 8 with a predetermined | prescribed speed | rate, and further higher bubble quality is requested | required, it introduce | transduces into a pressure reduction degassing apparatus as needed, and is forced further in a pressure reduction state. After defoaming, it is transferred to the molding device 14 to be molded into a desired shape, and a glass product is manufactured.
Since the glass product manufactured as described above is manufactured based on the molten glass G having a high bubble quality with few bubbles, the glass product is a high-quality glass product with few bubbles.

図4は先の実施形態の炉体8に備えられていた造粒体溶融バーナー3の他の実施形態を示す断面図である。この実施形態の造粒体溶融バーナー30は、ガラス原料粒子2とヘリウムガスあるいはネオンガスを通過させるための供給路31aを有した筒型のノズル本体31と、このノズル本体31の外方にノズル本体31を取り囲むように順次配置された第1の外管32と第2の外管33と第3の外管34と第4の外管35と第5の外管36からなる6重管構造とされている。
ノズル本体31と第1の外管32との間に燃料ガス供給路32aが形成され、第1の外管32と第2の外管33との間に1次酸素供給路33aが形成され、第2の外管33と第3の外管34との間に2次酸素供給路34aが形成されている。また、第3の外管34と第4の外管35との間に冷却水路35aが形成され、第4の外管35と第5の外管36との間に冷却水路36aが形成されている。
前記ノズル本体32の先端部にはノズル本体32の先端側を閉じるように拡散板32Aが形成され、拡散板32Aの先方にラッパ型の隔壁37に囲まれて燃焼室37aが形成されている。また、前記拡散板32Aにはノズル本体31と燃焼室37aを連通する原料噴出口32bが形成され、燃焼室37aの隔壁37には、それぞれ燃料ガス供給路32aに連通するための第1噴射口32bと、1次酸素供給路33aに連通するための第2噴射口33bと、2次酸素供給路34aに連通するための第3噴射口34bとがそれぞれ燃焼室37aを取り囲むように複数形成されている。前記冷却水路35a、36aは第3の外管34の先端部手前側と第5の外管36の先端部手前の部分において折り返し状態で接続連通され、冷却水などの冷媒を両水路間で循環できるように構成されている。
FIG. 4 is a cross-sectional view showing another embodiment of the granulated body melting burner 3 provided in the furnace body 8 of the previous embodiment. The granulation melt burner 30 of this embodiment includes a cylindrical nozzle body 31 having a supply path 31a for allowing glass raw material particles 2 and helium gas or neon gas to pass therethrough, and a nozzle body outside the nozzle body 31. A six-pipe structure comprising a first outer tube 32, a second outer tube 33, a third outer tube 34, a fourth outer tube 35, and a fifth outer tube 36, which are sequentially arranged so as to surround 31; Has been.
A fuel gas supply path 32a is formed between the nozzle body 31 and the first outer pipe 32, and a primary oxygen supply path 33a is formed between the first outer pipe 32 and the second outer pipe 33, A secondary oxygen supply path 34 a is formed between the second outer tube 33 and the third outer tube 34. Further, a cooling water channel 35 a is formed between the third outer tube 34 and the fourth outer tube 35, and a cooling water channel 36 a is formed between the fourth outer tube 35 and the fifth outer tube 36. Yes.
A diffusion plate 32A is formed at the tip of the nozzle body 32 so as to close the tip of the nozzle body 32, and a combustion chamber 37a is formed at the tip of the diffusion plate 32A surrounded by a trumpet type partition wall 37. Further, the diffusion plate 32A is formed with a raw material jet 32b that communicates the nozzle body 31 and the combustion chamber 37a, and the partition 37 of the combustion chamber 37a has a first injection port for communicating with the fuel gas supply path 32a, respectively. 32b, a second injection port 33b for communicating with the primary oxygen supply path 33a, and a plurality of third injection ports 34b for communicating with the secondary oxygen supply path 34a are respectively formed so as to surround the combustion chamber 37a. ing. The cooling water passages 35a and 36a are connected in communication in a folded state between the front end portion of the third outer pipe 34 and the front end portion of the fifth outer pipe 36, and a coolant such as cooling water is circulated between the two water passages. It is configured to be able to.

本実施形態の造粒体溶融バーナー30においても、先の実施形態の造粒体溶融バーナー3と同様に酸素燃焼炎を生成することができ、先の図2に示す造粒体溶融バーナー3と同様に天井部8Aを貫通するように炉体8に取り付けられ、造粒体溶融バーナー30の先端から先の実施形態と同様、酸素燃焼炎を吹き出しできるようになっている。   Also in the granulated melt burner 30 of the present embodiment, an oxyfuel flame can be generated in the same manner as the granulated melt burner 3 of the previous embodiment, and the granulated melt burner 3 shown in FIG. Similarly, it is attached to the furnace body 8 so as to penetrate the ceiling portion 8A, and an oxygen combustion flame can be blown out from the tip of the granulated body melting burner 30 as in the previous embodiment.

本実施形態の造粒体溶融バーナー30であっても、燃焼炎からなる加熱気相雰囲気を生成させて、そこにヘリウムガスあるいはネオンガスのキャリアガスにて搬送された状態のガラス原料粒子2をノズル本体31から供給し、溶融させて溶融ガラス粒子Uを生成し、溶融ガラスGを生成することができる。   Even in the granulated melt burner 30 of the present embodiment, a heated gas phase atmosphere composed of a combustion flame is generated, and the glass raw material particles 2 in a state of being conveyed by a carrier gas of helium gas or neon gas are nozzleed therein. It can be supplied from the main body 31 and melted to generate the molten glass particles U, and the molten glass G can be generated.

図5は本発明に係る気中溶融法を用いてガラス製品を製造する方法の一例を示すフロー図である。
図5に示す方法に従い、ガラス製品15を製造するには、上述の気中溶融装置1を用いた上述のガラス溶融工程S1により溶融ガラスGを得たならば、溶融ガラスGを成形装置14に送って目的の形状に成形する成形工程S2を経た後、徐冷工程S3にて徐冷し、切断工程S4において必要な長さに切断することでガラス製品15を得ることができる。
なお、必要に応じて、成形後の溶融ガラスを研磨する工程を設けて、ガラス製品を製造できる。
上記したガラス製品の製造方法によれば、例えば、建築用ガラス板、車両用ガラス板、液晶ディスプレイ用ガラス基板、プラズマディスプレイ用ガラス基板等を製造することができる。
FIG. 5 is a flowchart showing an example of a method for producing a glass product using the air melting method according to the present invention.
In order to manufacture the glass product 15 according to the method shown in FIG. 5, if the molten glass G is obtained by the glass melting step S <b> 1 using the above-described air melting apparatus 1, the molten glass G is transferred to the molding apparatus 14. The glass product 15 can be obtained by passing through a molding step S2 for feeding into a desired shape, followed by slow cooling in the slow cooling step S3 and cutting to a required length in the cutting step S4.
In addition, the process of grind | polishing the molten glass after shaping | molding is provided as needed, and a glass product can be manufactured.
According to the above-described glass product manufacturing method, for example, architectural glass plates, vehicle glass plates, liquid crystal display glass substrates, plasma display glass substrates, and the like can be manufactured.

図6は本発明に係る気中溶融法を実施してガラスビーズ(ガラス粒体)を製造する装置の一実施形態を示すもので、本実施形態の製造装置40は、プラズマ発生コイル41とその上部側に配置された造粒体溶融バーナー(原料加熱部)42と、プラズマ発生コイル41の下側に設置された収容部43とを備えて構成されている。
プラズマ発生コイル41は、縦筒型のフレーム45の外周部に沿って配置され、このフレーム45の上部側に造粒体溶融バーナー42が鉛直に支持され、造粒体溶融バーナー42がその下端をフレーム45の上部側の中心部を望むように下向きに配置されている。
造粒体溶融バーナー42の上端部には供給管46を介してガラス原料粒子2を収容したホッパからなる原料供給器47が接続される。また、造粒体溶融バーナー42にはプロパンガスなどの燃料ガス、酸素ガスなどの燃焼用ガスを供給するためのガス供給源48が供給管49a、49bを介し接続されるとともに、前記供給管46の途中にヘリウムガスとネオンガスの少なくとも一方を供給可能なガス供給源(供給部)50が供給管51を介し接続されている。
FIG. 6 shows one embodiment of an apparatus for manufacturing glass beads (glass particles) by carrying out the air melting method according to the present invention. The manufacturing apparatus 40 of the present embodiment includes a plasma generating coil 41 and its A granule melting burner (raw material heating unit) 42 disposed on the upper side and a storage unit 43 installed on the lower side of the plasma generating coil 41 are configured.
The plasma generating coil 41 is disposed along the outer periphery of a vertical cylindrical frame 45, and a granule melting burner 42 is vertically supported on the upper side of the frame 45, and the granule melting burner 42 has a lower end thereof. It arrange | positions downward so that the center part of the upper part side of the flame | frame 45 may be desired.
A raw material supplier 47 composed of a hopper containing the glass raw material particles 2 is connected to the upper end portion of the granulated body melting burner 42 through a supply pipe 46. A gas supply source 48 for supplying a fuel gas such as propane gas and a combustion gas such as oxygen gas is connected to the granulated melt burner 42 via supply pipes 49a and 49b. A gas supply source (supply unit) 50 capable of supplying at least one of helium gas and neon gas is connected through a supply pipe 51 in the middle of the above.

この実施形態の装置において、原料供給器47から供給管46を介して造粒体溶融バーナー42にガラス原料粒子2を供給できるように構成されている。また、供給管46の一部に接続された供給管51を介しガス供給源50からのヘリウムガスとネオンガスの少なくとも一方を供給し、これらのガスをキャリアガスとしてガラス原料粒子2を造粒体溶融バーナー42に供給できるように構成されている。
造粒体溶融バーナー42は先の実施形態において説明した造粒体溶融バーナー3と同等の3重構造の造粒体溶融バーナーでも良いし、先に説明した造粒体溶融バーナー30と同等の6重構造の造粒体溶融バーナーでも良い。いずれの構造であっても、バーナーの中心側にヘリウムガスとネオンガスの少なくとも一方のキャリアガスにより搬送される状態でガラス原料粒子2を供給することができ、その外周側に燃料ガスあるいは燃焼ガスを供給することができ、造粒体溶融バーナー42が発生させる酸素燃焼炎42aにガラス原料粒子2を連続供給できるように構成されている。
なお、ガラス原料粒子2を3重構造あるいは6重構造の造粒体溶融バーナー42の中心側の流路に供給しても良いし、また、外周側の流路に供給しても良いのは勿論である。いずれの側の流路に対し供給しても、生成する燃焼炎にガラス原料粒子2を確実に供給できる構成であれば、造粒体溶融バーナー42の中心側と外部側の流路に対するガラス原料粒子2の供給ルートは問わない。
In the apparatus of this embodiment, the glass raw material particles 2 can be supplied from the raw material supplier 47 to the granulated body melting burner 42 via the supply pipe 46. Further, at least one of helium gas and neon gas from a gas supply source 50 is supplied through a supply pipe 51 connected to a part of the supply pipe 46, and the glass raw material particles 2 are melted by using these gases as a carrier gas. The burner 42 can be supplied.
The granulated melt burner 42 may be a granulated melt burner having a triple structure equivalent to the granulated melt burner 3 described in the previous embodiment, or 6 equivalent to the granulated melt burner 30 described above. A granulated melt burner with a heavy structure may be used. Regardless of the structure, the glass raw material particles 2 can be supplied to the center side of the burner while being transported by at least one carrier gas of helium gas and neon gas. The glass raw material particles 2 can be continuously supplied to the oxyfuel flame 42a generated by the granulated molten burner 42.
The glass raw material particles 2 may be supplied to the flow path on the center side of the granulated melt burner 42 having a triple structure or a 6-fold structure. Of course. As long as the glass raw material particles 2 can be reliably supplied to the generated combustion flame regardless of the flow path on either side, the glass raw material for the central and external flow paths of the granulated melt burner 42 is used. The supply route of the particle | grains 2 is not ask | required.

前記プラズマ発生コイル41が取り付けられている縦筒型のフレーム45の上部には、供給管52を介しアルゴンガスまたは空気の供給源53が接続され、プラズマ発生コイル41にプラズマ発振器55と操作盤56とが接続されている。
本実施形態の製造装置40においてプラズマ発生コイル41とフレーム45と供給源53とプラズマ発振器55と操作盤56とを具備して高周波プラズマ装置(熱プラズマアーク発生装置)57が構成されている。そして、高周波プラズマ装置57を作動させること、即ち、プラズマ発振器55からプラズマ発生コイル41に高周波を印加することで、フレーム45の内部に高周波熱プラズマアークを生成できるように構成されている。
前記フレーム45の下部側は、下向きラッパ型の接続壁58を介し収容部43の天井部43Aの開口部に接続され、フレーム45の内部空間が貯留部43の内部空間に連通されている。貯留部43の内部には、ステンレス製のバケツ状の貯留部61を備えた搬送台車62が収容されている。また、図示されていないが、貯留部43の筐体表面は冷却水で冷却されている。更に、前記収容部43の側壁部に排気管63を介し排ガス処理装置65が接続されている。
An argon gas or air supply source 53 is connected to the upper portion of the vertical cylindrical frame 45 to which the plasma generating coil 41 is attached via a supply pipe 52, and a plasma oscillator 55 and an operation panel 56 are connected to the plasma generating coil 41. And are connected.
The manufacturing apparatus 40 of the present embodiment includes a plasma generating coil 41, a frame 45, a supply source 53, a plasma oscillator 55, and an operation panel 56 to constitute a high frequency plasma apparatus (thermal plasma arc generating apparatus) 57. The high-frequency plasma apparatus 57 is operated, that is, a high-frequency thermal plasma arc is generated inside the frame 45 by applying a high frequency from the plasma oscillator 55 to the plasma generating coil 41.
The lower side of the frame 45 is connected to the opening of the ceiling portion 43 </ b> A of the accommodating portion 43 through a downward trumpet-shaped connecting wall 58, and the internal space of the frame 45 is communicated with the internal space of the storage portion 43. Inside the storage unit 43, a transport carriage 62 including a bucket-shaped storage unit 61 made of stainless steel is accommodated. Moreover, although not shown in figure, the housing | casing surface of the storage part 43 is cooled with the cooling water. Further, an exhaust gas treatment device 65 is connected to the side wall portion of the housing portion 43 via an exhaust pipe 63.

なお、図6では略しているが、収容部43の側壁部には収容部43を密閉状態とすることが可能な開閉扉が形成されていて、搬送台車62は開閉扉を開けることで収容部43の外部に移動できるようになっている。
また、プラズマ発生コイル41を備えたフレーム45とその下の接続壁58とその下の貯留部43は、一体に連続形成されていて、供給源53からフレーム45の内側にアルゴンガスなどの作動ガスを供給し、プラズマ発生コイル41から高周波を印加し、作動ガスを電離してプラズマ点火することで、フレーム45の中心側に高周波熱プラズマアーク(プラズマフレーム)を発生できるように構成されている。
Although omitted in FIG. 6, an opening / closing door capable of sealing the accommodation portion 43 is formed on the side wall portion of the accommodation portion 43, and the transport carriage 62 opens the opening / closing door to open the accommodation portion. 43 can be moved to the outside.
Further, the frame 45 including the plasma generating coil 41, the connection wall 58 below it, and the storage portion 43 below it are integrally formed continuously, and working gas such as argon gas is supplied from the supply source 53 to the inside of the frame 45. Is supplied, a high frequency is applied from the plasma generating coil 41, the working gas is ionized and plasma ignition is performed, so that a high frequency thermal plasma arc (plasma flame) can be generated on the center side of the frame 45.

図6に示す製造装置40は、必要に応じ造粒体溶融バーナー42から発生させる酸素燃焼炎42aと、プラズマ発生コイル41で発生させる高周波熱プラズマアークを使い分け、いずれかからなる加熱気相雰囲気を用いてガラス原料粒子2を溶融し、溶融ガラス粒子とすることができるように構成されている。   The manufacturing apparatus 40 shown in FIG. 6 uses the oxyfuel combustion flame 42a generated from the granulated melt burner 42 and the high-frequency thermal plasma arc generated by the plasma generating coil 41 as needed, and creates a heated gas phase atmosphere consisting of either one. The glass raw material particles 2 are melted to form molten glass particles.

先に説明した実施形態の場合と同様に、ガラス原料粒子2をヘリウムガスとネオンガスの少なくとも一方とともに燃焼炎あるいは高周波熱プラズマアークからなる加熱気相雰囲気に投入することで、ガラス原料粒子2を気中溶融させて溶融ガラス粒子とすることができる。この溶融ガラス粒子をステンレス製の貯留部61に落下させて冷却することで、ガラスビーズ66を得ることができる。従って、貯留部61が本実施形態の装置において溶融ガラス粒子を冷却する冷却部とされている。なお、本実施形態の装置において、貯留部61と搬送台車62は必須ではなく、これらを略して収容部43の床部43Bにおいて溶融ガラス粒子を受ける構造としても良く、その場合は収容部43の内部空間と床部43Bが溶融ガラス粒子を冷却する冷却部を構成する。   As in the case of the above-described embodiment, the glass raw material particles 2 are put into a heated gas phase atmosphere consisting of a combustion flame or a high-frequency thermal plasma arc together with at least one of helium gas and neon gas. It can be melted in the middle to obtain molten glass particles. The glass beads 66 can be obtained by dropping the molten glass particles into the stainless steel storage unit 61 and cooling. Therefore, the storage unit 61 is a cooling unit that cools the molten glass particles in the apparatus of the present embodiment. In the apparatus of the present embodiment, the storage unit 61 and the transport carriage 62 are not essential, and these may be omitted, and a structure for receiving the molten glass particles on the floor 43B of the storage unit 43 may be used. The internal space and the floor portion 43B constitute a cooling unit that cools the molten glass particles.

図6に示す製造装置40により製造したガラスビーズ66は、ヘリウムガスとネオンガスの少なくとも一方とともに燃焼炎あるいは高周波熱プラズマアークにガラス原料粒子が投入される気中溶融法により溶融され、ヘリウムガスとネオンガスの少なくとも一方による清澄効果により泡の少ない溶融ガラス粒子とされた後に貯留部61において冷却され、泡の少ない泡品質の高い溶融ガラス粒子を冷却して得られているので、泡の少ない泡品質の高いガラスビーズ66が得られる。
このようにして得られたガラスビーズは、ガラスビーズとしてそのまま利用されたり、他の原料と混合されて利用されたり、その他ガラス溶融炉の中に投入されて利用されたりする。
Glass beads 66 manufactured by the manufacturing apparatus 40 shown in FIG. 6 are melted by an air melting method in which glass raw material particles are introduced into a combustion flame or a high-frequency thermal plasma arc together with at least one of helium gas and neon gas, and helium gas and neon gas. After being made into molten glass particles with less bubbles by the clarification effect by at least one of the above, it is cooled in the reservoir 61 and obtained by cooling molten glass particles with high bubbles quality with few bubbles, High glass beads 66 are obtained.
The glass beads thus obtained can be used as glass beads as they are, used by being mixed with other raw materials, or put into a glass melting furnace and used.

図7は本発明に係る気中溶融法を実施して溶融ガラスを製造する装置の一実施形態を示すもので、本実施形態の製造装置70は、プラズマ発生コイル41とその上部側に配置された造粒体溶融バーナー42と、プラズマ発生コイル41の下側に設置された貯留部71とを備えて構成されている。貯留部71の下部には炉底部80がある。
図7に示す構成の製造装置70は、先の実施形態の製造装置40と類似の構造であり、先の装置の収容部43を溶融ガラスG2の貯留部71に変更し、貯留部71に対して成形装置14を接続してなる点が異なる。その他の構成は先の図6に示す製造装置40の構成と同等であり、同一の要素には同一の符号を付し、同一要素の説明は省略する。
貯留部71は耐火レンガなどの耐火材からなり、高温の溶融ガラスG2を貯留できるように構成されている。貯留部71における天井部71Aの上に接続壁58とフレーム45が設置されていて、フレーム45の上部側に設置されている造粒体溶融バーナー42が発生させる燃焼炎は、貯留部71の内部側に達することができるように生成される。
FIG. 7 shows an embodiment of an apparatus for manufacturing molten glass by carrying out an air melting method according to the present invention. The manufacturing apparatus 70 of this embodiment is arranged on the plasma generating coil 41 and the upper side thereof. The granulated body melting burner 42 and a reservoir 71 installed on the lower side of the plasma generating coil 41 are configured. There is a furnace bottom 80 at the bottom of the reservoir 71.
The manufacturing apparatus 70 having the configuration shown in FIG. 7 has a structure similar to that of the manufacturing apparatus 40 of the previous embodiment. The storage unit 43 of the previous apparatus is changed to a storage unit 71 of molten glass G2, and the storage unit 71 The difference is that the molding apparatus 14 is connected. Other configurations are the same as the configuration of the manufacturing apparatus 40 shown in FIG. 6, and the same elements are denoted by the same reference numerals, and the description of the same elements is omitted.
The storage unit 71 is made of a refractory material such as a refractory brick, and is configured to store high-temperature molten glass G2. The connecting wall 58 and the frame 45 are installed on the ceiling portion 71 </ b> A in the storage portion 71, and the combustion flame generated by the granule melting burner 42 installed on the upper side of the frame 45 is generated inside the storage portion 71. Generated to be able to reach the side.

貯留部71には図示していないが加熱ヒータが設置され、貯留部71に貯留されている溶融ガラスG2を目的の温度(例えば1400℃程度)に溶融状態で保持できるように構成されている。
貯留部71の側壁の一部には排出口72が形成され、排出口72は図2に示す構成と同様、成形装置14が接続され、貯留部71に貯留した溶融ガラスG2を成形装置14により目的の形状に成形できるように構成されている。
更に、貯留部71の側壁部に排気管63を介し排ガス処理装置65が接続されている。
Although not shown, the heater 71 is installed in the storage unit 71 so that the molten glass G2 stored in the storage unit 71 can be held in a molten state at a target temperature (for example, about 1400 ° C.).
A discharge port 72 is formed in a part of the side wall of the storage unit 71, and the discharge port 72 is connected to the molding device 14 similarly to the configuration shown in FIG. 2, and the molten glass G2 stored in the storage unit 71 is removed by the molding device 14. It is configured so that it can be molded into the desired shape.
Further, an exhaust gas treatment device 65 is connected to the side wall portion of the storage portion 71 via an exhaust pipe 63.

図7に示す構成の製造装置70によれば、ガラス原料粒子2をヘリウムガスとネオンガスの少なくとも一方とともに燃焼炎あるいは高周波熱プラズマアークに投入することで、ガラス原料粒子2を気中溶融させて溶融ガラス粒子とすることができる。そして、この溶融ガラス粒子を耐火レンガ製の貯留部71の炉底部80方向に落下させて溶融ガラスG2として貯留することで、泡の少ない泡品質の高い溶融ガラスG2を得ることができる。
この溶融ガラスG2を所定の速度で排出口72から排出し、必要に応じ減圧脱泡装置に導入し、減圧状態で強制的に更に脱泡した後、成形装置14に移送して目的の形状に成形し、ガラス製品を製造できる。
以上のように製造されたガラス製品は、先の実施形態と同様、気泡の特に少ない泡品質の高い溶融ガラスG2を元に製造されているので、泡の少ない高品質なガラス製品を得ることができる。
以上では、本発明の実施形態の気中溶融方法およびその装置について説明したが、本発明は、ガラス原料粒子を高温の気相雰囲気で溶融できる限りは、気中溶融法に限定されない。すなわち、シーメンス窯においてバッチ式のガラス原料にかえて、ガラス原料粒子を利用してガラス原料粒子を気相雰囲気中で、かつヘリウムガスとネオンガスの少なくとも一方の存在下でガラス原料粒子を溶融し、溶融ガラス原料粒子とする限りは、同様の効果を有し、本発明の範囲である。
According to the manufacturing apparatus 70 having the configuration shown in FIG. 7, the glass raw material particles 2 are melted in the air by introducing the glass raw material particles 2 into a combustion flame or a high-frequency thermal plasma arc together with at least one of helium gas and neon gas. Glass particles can be used. And this molten glass particle can be obtained by dropping in the direction of the furnace bottom 80 of the storage part 71 made of refractory bricks and storing it as the molten glass G2, thereby obtaining a molten glass G2 having a high bubble quality with few bubbles.
This molten glass G2 is discharged from the discharge port 72 at a predetermined speed, introduced into a vacuum degassing device as necessary, and further degassed forcibly in a reduced pressure state, and then transferred to the molding device 14 to a desired shape. Can be molded to produce glass products.
Since the glass product manufactured as described above is manufactured based on the molten glass G2 having a high bubble quality with few bubbles, as in the previous embodiment, it is possible to obtain a high-quality glass product with a small number of bubbles. it can.
In the above, the air melting method and apparatus of the embodiment of the present invention have been described. However, the present invention is not limited to the air melting method as long as the glass raw material particles can be melted in a high-temperature gas phase atmosphere. That is, instead of batch-type glass raw material in a Siemens kiln, glass raw material particles are melted in a gas phase atmosphere using glass raw material particles and in the presence of at least one of helium gas and neon gas, As long as it is a molten glass raw material particle, it has the same effect and is within the scope of the present invention.

以下の表1に示す組成の無アルカリガラスを、加熱気相雰囲気中でガラス原料粒子を溶融する方法の一つとしての気中溶融法によって作製した。これらのガラス組成は、一般的なソーダライムガラスと比較し、難溶融ガラスとして認識される組成比の無アルカリガラス(A)と無アルカリガラス(B)と無アルカリガラス(C)である。例えば、無アルカリガラス(A)の組成比のガラス原料混合物の場合の溶融開始温度は1152℃である。無アルカリガラス(B)の組成比のガラス原料混合物の場合の溶融開始温度は1362℃である。無アルカリガラス(C)の組成比のガラス原料混合物の場合の溶融開始温度は1376℃である。無アルカリガラス(B)は無アルカリガラス(A)に比べてさらに難溶融組成比のガラスである。無アルカリガラス(C)は無アルカリガラス(B)に比べてさらに難溶融組成比のガラスである。溶融開始温度は、ガラス原料粒子とする前のガラス原料である原料混合物250gを長さ400mm×幅20mmの白金ボードに添加し、800〜1500℃の温度勾配をつけた炉で1時間加熱した後、原料が目視で半分以上がガラス化する温度とした。   An alkali-free glass having the composition shown in Table 1 below was produced by an air melting method as one method for melting glass raw material particles in a heated gas phase atmosphere. These glass compositions are alkali-free glass (A), alkali-free glass (B), and alkali-free glass (C) having a composition ratio recognized as hardly melted glass as compared with general soda lime glass. For example, the melting start temperature in the case of a glass raw material mixture having a composition ratio of alkali-free glass (A) is 1152 ° C. The melting start temperature in the case of a glass raw material mixture having a composition ratio of alkali-free glass (B) is 1362 ° C. The melting start temperature in the case of a glass raw material mixture having a composition ratio of alkali-free glass (C) is 1376 ° C. The alkali-free glass (B) is a glass having a hardly meltable composition ratio as compared with the alkali-free glass (A). The alkali-free glass (C) is a glass having a hardly meltable composition ratio as compared with the alkali-free glass (B). The melting start temperature is obtained by adding 250 g of a raw material mixture, which is a glass raw material before making glass raw material particles, to a platinum board having a length of 400 mm and a width of 20 mm and heating in a furnace with a temperature gradient of 800 to 1500 ° C. for 1 hour. The temperature at which more than half of the raw material was vitrified visually was determined.

Figure 2012043484
Figure 2012043484

ガラスを溶融するためのガラス原料として、珪砂、アルミナ、ホウ酸(HBO)、水酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、ジルコン、弁柄(Fe)、塩化ストロンチウムをそれぞれ準備した。これらの原料を目的のガラス組成になるように調合した。これらの原料の粒径を乾式のレーザー回折・散乱式粒径・粒度分布測定装置(マイクロトラックMT3300:商品名、日機装株式会社製)を用いて測定した。結果を表2に示す。As glass raw materials for melting glass, silica sand, alumina, boric acid (H 3 BO 3 ), magnesium hydroxide, calcium carbonate, strontium carbonate, zircon, petiole (Fe 2 O 3 ), and strontium chloride were prepared. . These raw materials were prepared so as to have a target glass composition. The particle sizes of these raw materials were measured using a dry laser diffraction / scattering particle size / particle size distribution measuring device (Microtrac MT3300: trade name, manufactured by Nikkiso Co., Ltd.). The results are shown in Table 2.

Figure 2012043484
Figure 2012043484

なお、本実施例で記載する「粒径」とは球相当径であって、具体的には上記計測装置によって計測された各原料の粒度分布における粒径をいう。また、粒径D50(メディアン粒径)とは、本測定装置によって計測された各原料の粒度分布において、累積頻度が50%のときの粒子径をいう。   The “particle size” described in the present example is a sphere equivalent diameter, and specifically refers to the particle size in the particle size distribution of each raw material measured by the measuring device. The particle size D50 (median particle size) refers to the particle size when the cumulative frequency is 50% in the particle size distribution of each raw material measured by this measuring apparatus.

上記のように調合された原料バッチ2kgを蒸留水(溶媒)3リットルと混合し、スラリーとした。スラリー中において原料を分散させ、かつガラス原料粒子の強度を向上させる目的で、無アルカリガラス(A)に対してpH調整剤として2−アミノエタノールを原料バッチに対して0.5%、および無アルカリガラス(B)に対してPVA(ポリビニルアルコール)を1%それぞれ添加した。これらのスラリーを固形分濃度40%スラリー(溶媒は水)として、アルミナボールを用いて1時間混合・粉砕を行った。アルミナボールは直径20mmのボールであり、このボールが10kg収容された容量10リットルの容器を備えたボールミルを用いた。   2 kg of the raw material batch prepared as described above was mixed with 3 liters of distilled water (solvent) to form a slurry. For the purpose of dispersing the raw material in the slurry and improving the strength of the glass raw material particles, 0.5% of 2-aminoethanol is used as a pH adjuster for the alkali-free glass (A) with respect to the raw material batch, and nothing. 1% of PVA (polyvinyl alcohol) was added to the alkali glass (B). These slurries were mixed at 40% solids concentration (solvent is water) and mixed and ground for 1 hour using alumina balls. The alumina ball was a ball having a diameter of 20 mm, and a ball mill equipped with a 10-liter container in which 10 kg of the ball was accommodated was used.

得られたスラリーを用いてスプレードライ造粒を実施した。造粒条件は、(株)プリス製のスプレードライヤーを用い、乾燥室径:2600mm、アトマイザー回転数:12000rpm、入口温度:250℃、出口温度:120℃ スラリー供給量:20〜25kg /時間とした。ガラス原料粒子の平均径は無アルカリガラス(A)原料で78μm、無アルカリガラス(B)原料で74μm、無アルカリガラス(C)原料で70μmであった。   Spray drying granulation was performed using the obtained slurry. The granulation conditions were a spray dryer manufactured by Pris Co., Ltd., drying chamber diameter: 2600 mm, atomizer rotation speed: 12000 rpm, inlet temperature: 250 ° C., outlet temperature: 120 ° C. Slurry supply amount: 20-25 kg / hour . The average diameter of the glass raw material particles was 78 μm for the alkali-free glass (A) raw material, 74 μm for the alkali-free glass (B) raw material, and 70 μm for the alkali-free glass (C) raw material.

得られたガラス原料粒子を用い、図6とほぼ同じ構成の気中溶融装置を用いて造粒体溶融バーナーから燃焼炎を発生させ、気中溶融試験を実施した。この試験において搬送台車62は利用しなかった。
ガラス原料粒子のキャリアガスとして、圧縮空気(比較例)、またはヘリウムガス(本発明例)100%のガスを用いた。その他、無アルカリガラス(B)に対しては、ヘリウムガスと空気を含む全キャリアガスに対する体積割合を1、5、10%とした場合についても試験を行った。搬送ガス量は30L/分とした。ガラス原料粒子は約70g/分で搬送した。溶融に使用する造粒体溶融バーナーの燃料ガス流量は25L/分、燃焼ガス流量は117L/分とした。なお、用いた燃料ガスはLPGであり、燃焼ガスは酸素とした。
気中溶融試験を経た溶融ガラス粒子はガラス原料粒子がそのまま溶融し球状化したもの(ガラスビーズ)であり、このままでは清澄性について評価できないため、溶融ガラス粒子180gを取り分け、白金坩堝を用いて電気炉溶融を行った。溶融条件は1400℃で30分溶融し融液化したのち、さらに、1500℃で30分清澄を行った。得られたガラスを徐冷し、両面研磨することで泡評価を行った。泡評価は、研磨したガラスを顕微鏡観察することにより、1gあたりのガラスに対する泡個数と泡径分布として測定し、後記する表3にまとめて示した。なお、清澄剤として、無アルカリガラス(A)、(B)、(C)の原料にともに、塩素(Cl);0.5重量%添加した。
Using the obtained glass raw material particles, a combustion flame was generated from the granulated melt burner using an air melting apparatus having substantially the same configuration as that shown in FIG. 6, and an air melting test was performed. In this test, the transport carriage 62 was not used.
As a carrier gas for the glass raw material particles, compressed air (comparative example) or helium gas (present invention example) 100% gas was used. In addition, for the alkali-free glass (B), the test was also performed when the volume ratio with respect to the total carrier gas including helium gas and air was set to 1, 5, and 10%. The amount of carrier gas was 30 L / min. Glass raw material particles were conveyed at about 70 g / min. The granule melting burner used for melting had a fuel gas flow rate of 25 L / min and a combustion gas flow rate of 117 L / min. The fuel gas used was LPG, and the combustion gas was oxygen.
The molten glass particles that have undergone the air melting test are those in which the glass raw material particles are melted and spheroidized as they are (glass beads), and as such, it is not possible to evaluate the clarity. Furnace melting was performed. Melting was performed at 1400 ° C. for 30 minutes to form a melt, followed by clarification at 1500 ° C. for 30 minutes. The obtained glass was gradually cooled and subjected to double-side polishing to evaluate foam. Foam evaluation was measured as the number of bubbles per bubble per 1 g and the bubble diameter distribution by observing the polished glass under a microscope, and the results are shown in Table 3 below. As a fining agent, chlorine (Cl): 0.5 wt% was added to the alkali-free glass (A), (B), and (C) raw materials.

図6に示す構成の気中溶融装置を用いて造粒体溶融バーナーから燃焼炎を発生させ、気中溶融法によりガラスビーズを形成し、このガラスビーズを白金坩堝により溶融して得られたガラスについて泡評価の試験結果を図8に示す。図8(A)は無アルカリガラス(A)の組成のガラス原料粒子を用い、キャリアガスとして圧縮空気(圧縮空気100%)を用いた空気搬送による試料の顕微鏡写真を示し、図8(B)は無アルカリガラス(A)の組成のガラス原料粒子を用い、キャリアガスとしてヘリウム(ヘリウムガス100%)を用いたヘリウム搬送による試料の顕微鏡写真を示す。図8(C)は無アルカリガラス(B)の組成のガラス原料粒子を用い、キャリアガスとして圧縮空気(圧縮空気100%)を用いた空気搬送による試料の顕微鏡写真を示し、図8(D)は無アルカリガラス(B)の組成のガラス原料粒子を用い、キャリアガスとしてヘリウム(ヘリウムガス100%)を用いたヘリウム搬送による試料の顕微鏡写真を示す。図8(A)〜(D)の顕微鏡写真はいずれも同じ倍率であり、図8(D)に1mmの縮尺を記載している。更に、表3に各試料の泡径の分布の詳細を示す。   A glass obtained by generating a combustion flame from a granule melting burner using an air melting apparatus having the structure shown in FIG. 6, forming glass beads by an air melting method, and melting the glass beads with a platinum crucible. FIG. 8 shows the results of the foam evaluation test. FIG. 8A shows a micrograph of a sample by air conveyance using glass raw material particles having a composition of alkali-free glass (A) and using compressed air (compressed air 100%) as a carrier gas. Shows a photomicrograph of a sample by helium transport using glass raw material particles having a composition of alkali-free glass (A) and helium (100% helium gas) as a carrier gas. FIG. 8C shows a micrograph of a sample by air conveyance using glass raw material particles having a composition of alkali-free glass (B) and using compressed air (compressed air 100%) as a carrier gas. Shows a photomicrograph of a sample by helium transport using glass raw material particles having a composition of alkali-free glass (B) and helium (100% helium gas) as a carrier gas. The micrographs in FIGS. 8A to 8D have the same magnification, and a scale of 1 mm is shown in FIG. 8D. Further, Table 3 shows details of the bubble diameter distribution of each sample.

図8に示すようにヘリウムをキャリアガスとして用いた気中溶融法によるガラスビーズを再溶融したガラスの泡径および泡個数は、圧縮空気を用いて空気搬送した溶融ガラス粒子(ガラスビーズ)を再溶融したガラスと比較して泡径の拡大および泡個数の減少が認められた。   As shown in FIG. 8, the bubble diameter and the number of bubbles in glass melted by remelting glass beads using helium as a carrier gas were determined by reusing molten glass particles (glass beads) conveyed by air using compressed air. Compared with the melted glass, expansion of the bubble diameter and decrease in the number of bubbles were observed.

Figure 2012043484
Figure 2012043484

表3に示す結果から、空気搬送をヘリウム搬送に置き換えることで、泡の合計数が大幅に減少していることがわかる。とくに、その効果は、難溶融のガラス組成比の無アルカリガラス(B)で著しい。また、無アルカリガラス(A)の泡径の分布においては、空気搬送して得た試料は径の小さな泡(例えば50μm以下)が圧倒的に多いのに対し、ヘリウム搬送して得た試料は100〜150μmの径の大きな泡が多くなっている。これは、図8の写真対比からも明らかである。即ち、気中溶融法によりガラス原料粒子を溶融してガラスを製造する場合、空気搬送からヘリウム搬送に変更することで泡径の拡大ができることを意味する。なお、この試験結果を示す写真から、一見すると、図8(B)、(D)に示すガラスの方が図8(A)、(C)に示すガラスより泡の体積が多いように見える。しかし、実際にガラス製品を製造する場合は、成形装置で成形する前に溶融炉などにおいてさらに脱泡処理がなされた後、目的の形状のガラス製品に成形されるので、成形する前に必然的に脱泡処理がなされる。この脱泡処理の際に泡径の大きいガラスである方が、気泡を浮上させて確実に泡を除去できるので、泡径が拡大すること自体は望ましい。
また、表3に示す無アルカリガラス(B)でヘリウムの割合を変えた結果から、ヘリウムの割合が1%で泡数の増加がみられるものの、それ以降のヘリウムの割合の増加に応じて泡の合計数が明らかに減少している。 さらに、最も難溶性を示す無アルカリガラス(C)においても、ヘリウム搬送することによって、泡の顕著な現象が見られる。
From the results shown in Table 3, it can be seen that the total number of bubbles is greatly reduced by replacing air transportation with helium transportation. In particular, the effect is remarkable in the alkali-free glass (B) having a glass composition ratio which is hardly melted. In addition, in the distribution of the bubble diameter of the alkali-free glass (A), the sample obtained by air conveyance has predominantly small diameter bubbles (for example, 50 μm or less), whereas the sample obtained by helium conveyance is Large bubbles with a diameter of 100 to 150 μm are increasing. This is also apparent from the photo contrast in FIG. That is, when manufacturing glass by melting glass raw material particles by an air melting method, it means that the bubble diameter can be increased by changing from air conveyance to helium conveyance. From the photographs showing the test results, the glasses shown in FIGS. 8B and 8D seem to have a larger volume of bubbles than the glasses shown in FIGS. 8A and 8C. However, when glass products are actually manufactured, after defoaming treatment in a melting furnace or the like before forming with a forming apparatus, the glass products are formed into a target shape. A defoaming process is performed. In the defoaming process, it is desirable that the glass has a large bubble diameter because bubbles can be lifted and the bubbles can be reliably removed.
Further, from the result of changing the proportion of helium in the alkali-free glass (B) shown in Table 3, although the number of bubbles is increased when the proportion of helium is 1%, the bubbles are increased as the proportion of helium thereafter increases. The total number of is clearly decreasing. Furthermore, even in the alkali-free glass (C) that exhibits the least solubility, a remarkable phenomenon of bubbles is observed by carrying helium.

以下の表4に、先のヘリウム搬送(ヘリウムガス100%搬送)により製造した無アルカリガラス(A)、(B)、(C)の比重、ヤング率、歪点、ガラス転移点の測定結果を示す。   Table 4 below shows the measurement results of the specific gravity, Young's modulus, strain point, and glass transition point of alkali-free glass (A), (B), and (C) produced by the previous helium conveyance (100% helium gas conveyance). Show.

Figure 2012043484
Figure 2012043484

表4に示す如く無アルカリガラス(B)、無アルカリガラス(C)は、無アルカリガラス(A)に対し歪点を向上させて、より高い温度で熱処理しても歪が少なくなるような組成としたガラスである。例えば、表示装置用のスイッチング素子として高速動作が可能なTFTをガラス基板上に形成しようとして、700℃を超える温度、例えば720℃前後の温度で10〜20分程度熱処理する条件で使用したとしても、無アルカリガラス(B)、無アルカリガラス(C)であるならば、熱処理時に問題を生じないガラス基板を提供できる。   As shown in Table 4, the non-alkali glass (B) and the non-alkali glass (C) improve the strain point with respect to the non-alkali glass (A) and reduce the strain even when heat-treated at a higher temperature. Glass. For example, even if a TFT capable of high-speed operation as a switching element for a display device is formed on a glass substrate, the TFT is used under a condition of heat treatment at a temperature exceeding 700 ° C., for example, about 720 ° C. for about 10 to 20 minutes. If it is alkali-free glass (B) and alkali-free glass (C), a glass substrate that does not cause a problem during heat treatment can be provided.

次に、参考のため、ヘリウムガス雰囲気下での電気炉溶融試験を実施した。この試験は、目的の組成に配合したガラス原料を坩堝に収容し、坩堝を設置する雰囲気にヘリウムガス(100%)を所定量(3L/分)流し、100%ヘリウムガス流量雰囲気とした状態で坩堝を加熱してガラス原料を溶融させて溶融ガラスとする試験である。
まず、原料バッチ200gの調合を行った。本試験で用いたバッチ原料は、珪砂、ホウ酸(HBO)、アルミナ、水酸化マグネシウム、ドロマイト、炭酸ストロンチウム、ジルコン、弁柄(Fe)、塩化ストロンチウムの各粒子であり、先に示した無アルカリガラス(A)と無アルカリガラス(B)の各組成としたものを試料として作製した。
Next, for reference, an electric furnace melting test was performed in a helium gas atmosphere. In this test, a glass raw material blended in a desired composition is housed in a crucible, and a predetermined amount (3 L / min) of helium gas (100%) is allowed to flow through the atmosphere in which the crucible is installed to obtain a 100% helium gas flow rate atmosphere. This is a test in which a crucible is heated to melt a glass raw material to obtain a molten glass.
First, 200 g of raw material batch was prepared. The batch raw materials used in this test are silica sand, boric acid (H 3 BO 3 ), alumina, magnesium hydroxide, dolomite, strontium carbonate, zircon, petal (Fe 2 O 3 ), and strontium chloride particles. Samples having the respective compositions of alkali-free glass (A) and alkali-free glass (B) shown above were prepared.

バッチ原料(参考例試験使用原料)の粒径を表2に示す。得られた調合原料バッチは、白金坩堝を用いて1400℃で30分溶融し融液化したのち、さらに1500℃、30分で清澄を行って参考例のガラスを得た。得られたガラスを徐冷し、両面研磨することで泡評価を行った。その結果、泡個数は、無アルカリガラス(A)の組成の場合で4468個/g、無アルカリガラス(B)の組成の場合で5472個/gとなった。なお、何れの試料においてもCl;0.5重量%を清澄剤として添加している。   Table 2 shows the particle sizes of the batch raw materials (raw materials used in the reference example test). The obtained blended raw material batch was melted at 1400 ° C. for 30 minutes using a platinum crucible to be melted, and further clarified at 1500 ° C. for 30 minutes to obtain a glass of reference example. The obtained glass was gradually cooled and subjected to double-side polishing to evaluate foam. As a result, the number of bubbles was 4468 / g in the case of the composition of alkali-free glass (A), and 5472 / g in the case of the composition of alkali-free glass (B). In any sample, Cl; 0.5% by weight is added as a fining agent.

以上の結果から、本発明のように、ガラス原料粒子をヘリウム搬送し気相雰囲気中で溶融することによって得られたガラスは、前述した参考のために行なったヘリウム雰囲気下の通常溶融法で得られるガラスと対比しても、ガラス原料粒子を圧縮空気搬送し気相雰囲気中で溶融することによって得られるガラスと対比しても、泡個数が削減できていることが分かる。この理由は、溶融炉において通常の溶融を行って溶融ガラスを製造した場合、溶融ガラスを溶融中の溶融炉の上部空間にヘリウムガスを雰囲気制御のために満たしても、溶融ガラスはその表面においてのみヘリウムガスと触れるので、溶融ガラスに対するヘリウムガスの清澄効果は限定される。
これに対し、ガラス原料粒子を気相雰囲気中のヘリウムガスで囲みながら溶融させる場合、1つ1つのガラス原料粒子が溶融し、さらに溶融ガラス粒子が存在する高温の雰囲気中には確実にヘリウムガスが存在し、溶融中の個々のガラス原料とヘリウムガスとの接触面積は通常の溶融炉を用いた溶融法に比べ遙かに大きいため、ヘリウムガスの清澄効果が十分に発揮された結果、泡個数の削減に寄与したものと考えられる。また、ヘリウムガスの代わりに、ネオンガスを用いた場合も同様に、泡個数の削減に寄与すると想定できる。なお、同等の理由から、先に説明した泡径の拡大の効果を奏することがわかる。
From the above results, the glass obtained by transporting the glass raw material particles in helium and melting in the gas phase atmosphere as in the present invention was obtained by the normal melting method in the helium atmosphere performed for the above-mentioned reference. It can be seen that the number of bubbles can be reduced even when compared with the glass obtained by comparing the glass raw material particles with the glass obtained by conveying the raw material particles with compressed air and melting them in a gas phase atmosphere. The reason for this is that when molten glass is produced by performing normal melting in a melting furnace, even if helium gas is filled in the upper space of the melting furnace for melting the molten glass for controlling the atmosphere, the molten glass remains on the surface. Since only helium gas is touched, the clarification effect of helium gas on the molten glass is limited.
On the other hand, when glass raw material particles are melted while being surrounded by helium gas in a gas phase atmosphere, each glass raw material particle is melted, and helium gas is surely contained in a high-temperature atmosphere in which molten glass particles exist. Since the contact area between the individual glass raw materials and the helium gas during melting is much larger than the melting method using a normal melting furnace, the clarification effect of the helium gas is sufficiently exerted. This is thought to have contributed to the reduction of the number. Similarly, when neon gas is used instead of helium gas, it can be assumed that it contributes to the reduction of the number of bubbles. In addition, it turns out that there exists an effect of expansion of the bubble diameter demonstrated previously for the same reason.

次に、ヘリウムのキャリアガスを用いガラス原料粒子を溶融した溶融ガラスが効果的にヘリウムを取り込んでいることを示すため、溶融ガラスをつくる途中段階である気中溶融法によるガラスビーズの発生ガス分析を実施した。   Next, in order to show that molten glass obtained by melting glass raw material particles using helium carrier gas effectively incorporates helium, analysis of gas generated from glass beads by the air melting method, which is an intermediate stage in the production of molten glass Carried out.

分析手法は、TDS(Thermal Desorption Spectrometry:昇温脱離分析)とした。即ち、試料をPt箔に包んだ状態にて昇温し、測定開始時背圧:約2×10−7Pa、昇温速度:(1)20℃/分(室温〜800℃)(2)800℃保持10分(3)10℃/分(800〜1000℃)、最高温度:1000℃として、加熱された試料から生じたイオンを質量分析計において質量対電荷比によって分離し、ヘリウムの存在を示すm/zが4のピークをカウントした。各試料における分析結果を図9、図10に示す。The analysis method was TDS (Thermal Desorption Spectrometry). That is, the sample was heated in a state of being wrapped in a Pt foil, the back pressure at the start of measurement: about 2 × 10 −7 Pa, the rate of temperature increase: (1) 20 ° C./min (room temperature to 800 ° C.) (2) Hold at 800 ° C. for 10 minutes (3) 10 ° C./minute (800-1000 ° C.), maximum temperature: 1000 ° C., ions generated from the heated sample are separated by mass-to-charge ratio in a mass spectrometer and the presence of helium The peak having an m / z of 4 was counted. The analysis results for each sample are shown in FIGS.

図9は気中溶融によるガラスサンプルの昇温脱離ガスプロファイル(室温〜500℃)を示す。図10はヘリウムガス雰囲気下の通常の溶融で得られたガラスサンプルの昇温脱離ガスプロファイル(室温〜1000℃)を示す。なお、図9、図10とも対象としたガラス組成は、無アルカリガラス(B)である。
図9に示すようにヘリウム(搬送ガスに対するヘリウムの割合が100%)搬送して得られたガラスビーズの再溶融物ガラスには室温から500℃に昇温中にヘリウムイオンの存在を示すm/zが4のピークが微弱ながら検出された。一方、ヘリウムガス雰囲気下の通常の溶融で得られた溶融ガラスは、図10に示す如くm/zが4のピークはまったく検出されていない。このことから、気中溶融法によりガラス原料粒子をヘリウム搬送して得たガラスビーズにヘリウムが残存していることが分かった。つまり、本発明により認められた泡径拡大および泡数減少の効果は、気中溶融法を実施する場合のヘリウムの効果であることを確認できた。
なお、ネオンガスは、ヘリウムガスと同様の性質を有するガスと知られており、前述のヘリウムガスと同様の効果が得られることが明らかである。
FIG. 9 shows a temperature desorption gas profile (room temperature to 500 ° C.) of a glass sample by melting in the air. FIG. 10 shows a temperature-programmed desorption gas profile (room temperature to 1000 ° C.) of a glass sample obtained by normal melting in a helium gas atmosphere. 9 and 10 is a non-alkali glass (B).
As shown in FIG. 9, the glass bead remelt glass obtained by carrying helium (the ratio of helium to the carrying gas is 100%) shows the presence of helium ions during the temperature rise from room temperature to 500 ° C. A peak with z of 4 was detected with a slight weakness. On the other hand, in the molten glass obtained by normal melting in a helium gas atmosphere, no peak having an m / z of 4 is detected at all as shown in FIG. From this, it was found that helium remained in the glass beads obtained by conveying the glass raw material particles with helium by the air melting method. That is, it was confirmed that the effect of expanding the bubble diameter and decreasing the number of bubbles recognized by the present invention was the effect of helium when the air melting method was performed.
Neon gas is known as a gas having the same properties as helium gas, and it is clear that the same effect as the above-described helium gas can be obtained.

本発明の技術は、建材用ガラス、車両用ガラス、光学用ガラス、医療用ガラス、表示装置用ガラス、ガラスビーズ、その他一般のガラス製品の製造に広く適用できる。
なお、2010年9月30日に出願された日本特許出願2010−222305号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The technology of the present invention can be widely applied to the production of glass for building materials, glass for vehicles, optical glass, medical glass, glass for display devices, glass beads, and other general glass products.
It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-222305 filed on September 30, 2010 are incorporated herein as the disclosure of the present invention. .

G…溶融ガラス、U…溶融ガラス粒子、1…気中溶融装置、2…ガラス原料粒子、3…造粒体溶融バーナー(原料加熱部)、3a…燃焼炎、4…加熱気相雰囲気、5…加熱気相雰囲気形成領域、6…貯留部、7…アーク電極、8…炉体、9…原料供給部、10…供給管、11…ガス供給源(供給部)、14…成形装置、15…ガラス製品、22…ノズル本体、25、26…ガス供給路、30…造粒体溶融バーナー(原料加熱部)、31…供給路、32…ノズル本体、S1…ガラス溶融工程、S2…成形工程、S3…徐冷工程、S4…切断工程、40…製造装置、41…プラズマ発生コイル、42…造粒体溶融バーナー(原料加熱部)、43…収容部、47…原料供給器、48…ガス供給源、50…ガス供給源(供給部)、51…供給管、52…供給管、57…高周波プラズマ装置(熱プラズマアーク発生装置)、61…貯留部(冷却部)、63…排気管、65…排ガス処理装置、66…ガラスビーズ、70…製造装置、71…貯留部、80…炉底部、G2…溶融ガラス。   G ... Molten glass, U ... Molten glass particle, 1 ... In-air melting device, 2 ... Glass raw material particle, 3 ... Granule fusion burner (raw material heating part), 3a ... Combustion flame, 4 ... Heated gas phase atmosphere, 5 DESCRIPTION OF REFERENCE SYMBOLS: Heated gas-phase atmosphere formation region, 6 ... storage part, 7 ... arc electrode, 8 ... furnace body, 9 ... raw material supply part, 10 ... supply pipe, 11 ... gas supply source (supply part), 14 ... molding apparatus, 15 DESCRIPTION OF SYMBOLS ... Glass product, 22 ... Nozzle main body, 25, 26 ... Gas supply path, 30 ... Granule fusion burner (raw material heating part), 31 ... Supply path, 32 ... Nozzle main body, S1 ... Glass melting process, S2 ... Molding process , S3 ... Slow cooling step, S4 ... Cutting step, 40 ... Manufacturing device, 41 ... Plasma generating coil, 42 ... Granule melting burner (raw material heating part), 43 ... Storage part, 47 ... Raw material feeder, 48 ... Gas Supply source, 50 ... gas supply source (supply unit), 51 ... supply pipe, 52 Supply pipe, 57 ... high frequency plasma apparatus (thermal plasma arc generator), 61 ... storage part (cooling part), 63 ... exhaust pipe, 65 ... exhaust gas treatment apparatus, 66 ... glass beads, 70 ... manufacturing apparatus, 71 ... storage part 80 ... bottom of furnace, G2 ... molten glass.

Claims (16)

複数の成分からなるガラス原料を造粒してなるガラス原料粒子を用い、このガラス原料粒子を加熱気相雰囲気中に送ることにより加熱溶融させる際、前記ガラス原料粒子をヘリウムガスとネオンガスの少なくとも一方とともに前記加熱気相雰囲気中に送ることを特徴とするガラス原料の溶融方法。   When glass raw material particles formed by granulating glass raw materials composed of a plurality of components are used and heated and melted by sending the glass raw material particles into a heated gas phase atmosphere, the glass raw material particles are at least one of helium gas and neon gas. And a glass raw material melting method, wherein the glass raw material is sent into the heated gas phase atmosphere. 前記加熱気相雰囲気中で、前記ガラス原料粒子を溶融して溶融ガラス粒子とする請求項1に記載のガラス原料の溶融方法。   The glass raw material melting method according to claim 1, wherein the glass raw material particles are melted into molten glass particles in the heated gas phase atmosphere. 前記加熱気相雰囲気として酸素燃焼炎と熱プラズマアークのうち少なくとも一方を用いる請求項2に記載のガラス原料の溶融方法。   The glass raw material melting method according to claim 2, wherein at least one of an oxyfuel flame and a thermal plasma arc is used as the heating gas phase atmosphere. 溶融後のガラス組成が酸化物基準の質量百分率表示で、SiO2:61.5〜66.0%、Al23:19〜24%、B23:0〜1.2%、MgO:3〜8%、CaO:0〜7%、SrO:0〜9%、BaO:0〜1%、MgO+CaO+SrO+BaO:10〜19%であり、アルカリ金属酸化物を実質的に含有しない組成とする請求項2または3に記載のガラス原料の溶融方法。Glass composition after melting by mass percentage based on oxides, SiO 2: 61.5~66.0%, Al 2 O 3: 19~24%, B 2 O 3: 0~1.2%, MgO : 3 to 8%, CaO: 0 to 7%, SrO: 0 to 9%, BaO: 0 to 1%, MgO + CaO + SrO + BaO: 10 to 19%, and a composition substantially free of alkali metal oxides Item 4. A method for melting glass raw material according to Item 2 or 3. 前記ガラス原料粒子を前記ヘリウムガスとネオンガスの少なくとも一方と酸素燃焼炎形成用の燃料ガスとともに加熱気相雰囲気に送る請求項1〜4のいずれか一項に記載のガラス原料の溶融方法。   The glass raw material melting method according to any one of claims 1 to 4, wherein the glass raw material particles are sent to a heated gas phase atmosphere together with at least one of the helium gas and neon gas and a fuel gas for forming an oxyfuel flame. 前記ガラス原料粒子とガラスカレット微粉とを混合して加熱気相雰囲気に送る請求項1〜5のいずれか一項に記載のガラス原料の溶融方法。   The glass raw material melting method according to any one of claims 1 to 5, wherein the glass raw material particles and glass cullet fine powder are mixed and sent to a heated gas phase atmosphere. 請求項1〜6のいずれか一項に記載のガラス原料の溶融方法を用いて前記ガラス原料粒子を加熱気相雰囲気中で溶融させることにより溶融ガラスとし該溶融ガラスを貯留する溶融ガラスの製造方法。   The manufacturing method of the molten glass which stores this molten glass by making the said glass raw material particle into a molten glass by making it melt | dissolve in a heating gas-phase atmosphere using the melting method of the glass raw material as described in any one of Claims 1-6. . 請求項1〜6のいずれか一項に記載のガラス原料の溶融方法を用いて前記ガラス原料粒子を加熱気相雰囲気中で溶融させた後、冷却することによりガラスビーズとするガラスビーズの製造方法。   A method for producing glass beads, which is made into glass beads by cooling the glass raw material particles in a heated gas phase atmosphere using the glass raw material melting method according to any one of claims 1 to 6. . 請求項1〜6のいずれか一項に記載のガラス原料の溶融方法を用いて前記ガラス原料粒子を、加熱して溶融ガラスとするガラス溶融工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程を含むガラス製品の製造方法。   A glass melting step in which the glass raw material particles are heated to form molten glass using the glass raw material melting method according to any one of claims 1 to 6, a step of molding the molten glass, and after molding A method for producing a glass product, comprising a step of slowly cooling the glass. 請求項9に記載のガラス原料粒子を溶融ガラスとするガラス溶融工程が、前記ガラス原料粒子を、気相雰囲気中で溶融させて溶融ガラス粒子とする工程と、前記溶融ガラス粒子を集積してガラス融液とする工程とを含むガラス製品の製造方法。   A glass melting step using the glass raw material particles according to claim 9 as a molten glass includes a step of melting the glass raw material particles in a gas phase atmosphere to form molten glass particles, and a glass obtained by accumulating the molten glass particles. The manufacturing method of the glass product including the process made into a melt. 複数の成分からなるガラス原料を造粒してなるガラス原料粒子を加熱溶融して溶融ガラス粒子にする気中溶融装置であって、
前記ガラス原料粒子を加熱溶融する加熱気相雰囲気を形成する原料加熱部と、
前記加熱気相雰囲気に前記ガラス原料粒子を供給するための原料供給部と、
前記原料加熱部に供給されるガラス原料粒子と前記溶融ガラス粒子にヘリウムガスとネオンガスの少なくとも一方を供給する供給部と、
を具備した気中溶融装置。
An air melting device that heats and melts glass raw material particles formed by granulating a glass raw material composed of a plurality of components into molten glass particles,
A raw material heating section for forming a heated gas phase atmosphere for heating and melting the glass raw material particles;
A raw material supply unit for supplying the glass raw material particles to the heated gas phase atmosphere;
A supply part for supplying at least one of helium gas and neon gas to the glass raw material particles supplied to the raw material heating part and the molten glass particles;
An in-flight melting apparatus.
前記加熱気相雰囲気を形成する原料加熱部が造粒体溶融バーナーと熱プラズマアーク発生装置の少なくとも一方からなることを特徴とする請求項11に記載の気中溶融装置。   The in-flight melting apparatus according to claim 11, wherein the raw material heating unit for forming the heated gas-phase atmosphere is composed of at least one of a granule melting burner and a thermal plasma arc generator. 前記原料加熱部に連通するように溶融ガラス粒子の貯留部が設けられてなる請求項11または12に記載の気中溶融装置。   The in-flight melting apparatus according to claim 11 or 12, wherein a storage unit for molten glass particles is provided so as to communicate with the raw material heating unit. 前記原料加熱部に連通するように冷却部とガラスビーズの貯留部が設けられてなる請求項11または12に記載の気中溶融装置。   The in-flight melting apparatus according to claim 11 or 12, wherein a cooling unit and a storage unit for glass beads are provided so as to communicate with the raw material heating unit. 複数の成分からなるガラス原料を造粒してなるガラス原料粒子を用い、このガラス原料粒子を加熱気相雰囲気中にヘリウムガスとネオンガスの少なくとも一方とともに送ることにより、前記加熱気相雰囲気中で前記ガラス原料粒子を溶融して溶融ガラス粒子とし、溶融後に加熱気相雰囲気からガラスビーズとして取り出すことにより得られるガラスビーズであって、ヘリウムとネオンの少なくとも一方を含むガラスビーズ。   Using glass raw material particles obtained by granulating a glass raw material composed of a plurality of components, and sending the glass raw material particles together with at least one of helium gas and neon gas in a heated gas phase atmosphere, Glass beads obtained by melting glass raw material particles to form molten glass particles, and taking them out from the heated gas phase atmosphere as glass beads after melting, comprising at least one of helium and neon. 前記ヘリウムおよび/またはネオンが昇温脱離分析におけるピークカウントから存在確認されるものである請求項15に記載のガラスビーズ。   The glass bead according to claim 15, wherein the helium and / or neon is confirmed from a peak count in a temperature programmed desorption analysis.
JP2012536441A 2010-09-30 2011-09-26 Method for melting glass raw material, method for producing molten glass, and method for producing glass product Active JP5920218B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010222305 2010-09-30
JP2010222305 2010-09-30
PCT/JP2011/071903 WO2012043484A1 (en) 2010-09-30 2011-09-26 Method for melting glass material, method for producing molten glass, method for producing glass product, in-flight melting device and glass beads

Publications (2)

Publication Number Publication Date
JPWO2012043484A1 true JPWO2012043484A1 (en) 2014-02-06
JP5920218B2 JP5920218B2 (en) 2016-05-18

Family

ID=45892928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012536441A Active JP5920218B2 (en) 2010-09-30 2011-09-26 Method for melting glass raw material, method for producing molten glass, and method for producing glass product

Country Status (5)

Country Link
JP (1) JP5920218B2 (en)
KR (1) KR20130108262A (en)
CN (1) CN103097310A (en)
TW (1) TW201223898A (en)
WO (1) WO2012043484A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075600B2 (en) * 2012-07-11 2017-02-08 日本電気硝子株式会社 Glass for pharmaceutical containers and glass tube using the same
US9102560B2 (en) * 2013-01-17 2015-08-11 Sibelco Asia Pte. Ltd. Charging load for making TFT glass and method of making same
KR101456447B1 (en) * 2013-05-08 2014-10-31 주식회사 포스코 Melt supply equipment
EP3052449A4 (en) * 2013-10-04 2017-06-21 Corning Incorporated Melting glass materials using rf plasma
US9550694B2 (en) * 2014-03-31 2017-01-24 Corning Incorporated Methods and apparatus for material processing using plasma thermal source
US9533909B2 (en) 2014-03-31 2017-01-03 Corning Incorporated Methods and apparatus for material processing using atmospheric thermal plasma reactor
CN105565656B (en) * 2014-10-17 2023-01-03 株式会社小原 Optical glass
US20160200618A1 (en) 2015-01-08 2016-07-14 Corning Incorporated Method and apparatus for adding thermal energy to a glass melt
CN109641782B (en) * 2016-08-23 2022-10-28 Agc株式会社 Alkali-free glass
CN107760275B (en) * 2017-11-14 2020-10-23 中国矿业大学 Low-melting-point high-temperature phase change material prepared from glass and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045422A (en) * 1996-07-29 1998-02-17 Asahi Glass Co Ltd Alkali-free glass and flat display panel
JP2001048586A (en) * 1999-08-03 2001-02-20 Nisshin Steel Co Ltd Light reflecting glass bead and its production
JP2003212572A (en) * 2002-01-18 2003-07-30 Hitachi Metals Ltd Method of manufacturing spherical glass powder
JP2005053711A (en) * 2003-08-04 2005-03-03 Nippon Electric Glass Co Ltd Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same
JP2007297239A (en) * 2006-04-28 2007-11-15 Tokyo Institute Of Technology Method and apparatus for dissolving glass raw material and glass production apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622296A (en) * 1966-08-29 1971-11-23 Corning Glass Works Method of fining glass
JPH10324539A (en) * 1997-05-22 1998-12-08 Asahi Glass Co Ltd Fine spherical glass and its production
US7538050B2 (en) * 2002-02-05 2009-05-26 Nippon Electric Glass Co., Ltd. Glass composition
KR101110138B1 (en) * 2003-10-20 2012-01-31 니폰 덴키 가라스 가부시키가이샤 Glass composition and method for producing glass article
JP4565185B2 (en) * 2005-01-21 2010-10-20 国立大学法人東京工業大学 Glass raw material melting method and melting apparatus, and glass manufacturing apparatus
JP5130626B2 (en) * 2005-04-22 2013-01-30 日本電気硝子株式会社 Bubbling nozzle and method for refining molten glass
JPWO2007129509A1 (en) * 2006-05-01 2009-09-17 旭硝子株式会社 Glass manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045422A (en) * 1996-07-29 1998-02-17 Asahi Glass Co Ltd Alkali-free glass and flat display panel
JP2001048586A (en) * 1999-08-03 2001-02-20 Nisshin Steel Co Ltd Light reflecting glass bead and its production
JP2003212572A (en) * 2002-01-18 2003-07-30 Hitachi Metals Ltd Method of manufacturing spherical glass powder
JP2005053711A (en) * 2003-08-04 2005-03-03 Nippon Electric Glass Co Ltd Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same
JP2007297239A (en) * 2006-04-28 2007-11-15 Tokyo Institute Of Technology Method and apparatus for dissolving glass raw material and glass production apparatus

Also Published As

Publication number Publication date
WO2012043484A1 (en) 2012-04-05
TW201223898A (en) 2012-06-16
KR20130108262A (en) 2013-10-02
CN103097310A (en) 2013-05-08
JP5920218B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5920218B2 (en) Method for melting glass raw material, method for producing molten glass, and method for producing glass product
JP5849964B2 (en) Glass melting furnace, glass substrate modification method, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus
TWI303240B (en) Producing glass using outgassed frit
WO2007129509A1 (en) Process for producing glass
TW200927686A (en) Method for production of non-alkali glass
CN108137389A (en) Mineral fibres
EP4103522A1 (en) Feed material for producing colorless glass using submerged combustion melting
CN111630011A (en) Powder and mixed powder
TWI466840B (en) Methods for producing glass compositions
CN104529161A (en) Alkali-free glass ball and its production process
JP5966933B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus
JP6015741B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing apparatus, and glass product manufacturing method
WO2017110927A1 (en) Mixed material for silicate glass and method for manufacturing tube glass using same
JP5971241B2 (en) Method for producing molten glass and method for producing glass article
JP2012096941A (en) In-flight melting burner, melting method of glass raw material, method of producing molten glass, method of producing glass bead, method of manufacturing glass product, in-flight melting device and device for manufacturing glass product
WO2015129495A1 (en) Silicate glass production method, silicate glass, and silica raw material for silica glass
JP2012232868A (en) Glass melting furnace, method of producing molten glass, glass beads and glass article
JP6032201B2 (en) Glass melting furnace, molten glass manufacturing method, glass article manufacturing method, and glass article manufacturing apparatus
JP2014094841A (en) Granulated body for glass-making feedstock, molten glass, and production method of glass article
JP2012250886A (en) Method for producing molten glass, air melt burner, glass melting furnace, method for producing glass beads, method for producing glass article, and device for producing glass article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5920218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250