JP2005053711A - Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same - Google Patents

Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same Download PDF

Info

Publication number
JP2005053711A
JP2005053711A JP2003205811A JP2003205811A JP2005053711A JP 2005053711 A JP2005053711 A JP 2005053711A JP 2003205811 A JP2003205811 A JP 2003205811A JP 2003205811 A JP2003205811 A JP 2003205811A JP 2005053711 A JP2005053711 A JP 2005053711A
Authority
JP
Japan
Prior art keywords
glass
sio
crystallized glass
helium
neon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003205811A
Other languages
Japanese (ja)
Inventor
Masataka Takagi
雅隆 高木
Noriyuki Yoshida
紀之 吉田
Narutoshi Shimatani
成俊 嶋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2003205811A priority Critical patent/JP2005053711A/en
Publication of JP2005053711A publication Critical patent/JP2005053711A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide Li<SB>2</SB>O-Al<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>crystallized glass which, even when the used amount of As<SB>2</SB>O<SB>3</SB>is reduced, has clarity and glass properties at least equivalent to those of a conventional product. <P>SOLUTION: The crystallized glass comprises, in terms of mass%, 50-80% SiO<SB>2</SB>, 12 to 30% Al<SB>2</SB>O<SB>3</SB>, 1 to 6% Li<SB>2</SB>O, 0 to 5% MgO, 0 to 10% ZnO, 0 to 8% BaO, 0 to 5% Na<SB>2</SB>O, 0 to 10% K<SB>2</SB>O, 0 to 8% TiO<SB>2</SB>, 0 to 7% ZrO<SB>2</SB>, and 0 to 7% P<SB>2</SB>O<SB>5</SB>and further contains 0.0002 to 5 μL/g (0°C, 1 atm) helium and/or neon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、LiO−Al−SiO系結晶化ガラス及びその製造方法に関するものである。
【0002】
【従来の技術】
従来より、石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子部品焼成用セッター、電子レンジ用棚板、電磁調理用トッププレート、防火戸用窓ガラス等の材料として、また液晶プロジェクタ等の投影機や照明の光源ランプに使用される反射鏡の基材として、或いは電子部品や精密機械部品として、LiO−Al−SiO系結晶化ガラスが用いられている。例えば特許文献1〜3には、主結晶としてβ−石英固溶体(LiO・Al・nSiO[ただしn≧2])やβ−スポジュメン固溶体(LiO・Al・nSiO[ただしn≧4])を析出してなるLiO−Al−SiO系結晶化ガラスが開示されている。
【0003】
上記のLiO−Al−SiO系結晶化ガラスは、熱膨張係数が低く、機械的強度も高いため、優れた熱的特性を有している。また結晶化工程における熱処理条件を変更することによって析出結晶を変化させることができるため、同一組成の原ガラスから透明な結晶化ガラス(β−石英固溶体が析出)と白色不透明な結晶化ガラス(β−スポジュメン固溶体が析出)の両方を製造することが可能であり、用途に応じて使い分けることができる。
【0004】
【特許文献1】
特公昭39−21049号公報
【特許文献2】
特公昭40−20182号公報
【特許文献3】
特開平1−308845号公報
【0005】
【発明が解決しようとする課題】
ところで、この種の結晶化ガラスを製造する場合、1400℃を超える高温で溶融する必要がある。このためガラスバッチに添加される清澄剤には、高温溶融時に清澄ガスを多量に発生させることができるAsが使用されている。バッチ溶融において、原料中のAsは400〜500℃でAsに酸化された後、1200〜1800℃で再びAsに還元され、酸素ガスを放出する。この酸素ガスがガラス中の泡に拡散することにより、泡の拡大、浮上促進が起こり、泡が除去される。Asは、この作用により、ガラスの清澄剤として広く使用されており、特に高温溶融が必要なLiO−Al−SiO系結晶化ガラスの清澄剤として非常に有効である。
【0006】
またAsは清澄効果のみならず、結晶化促進の効果もあり、この種の結晶化ガラスにおいて所望の特性を得る上で必要な成分であることが分かっている。
【0007】
ところがAsは毒性が強く、ガラスの製造工程や廃ガラスの処理時等に環境を汚染する可能性があり、使用量の削減が望まれている。しかしながら、単純にAsを削減すると、清澄性や結晶性が低下するため、As削減前と同等の清澄性やガラス特性が得られない。
【0008】
本発明の目的は、As使用量を削減しても、従来品と同等以上の清澄性やガラス特性を有するLiO−Al−SiO系結晶化ガラスを提供することである。
【0009】
【課題を解決するための手段】
本発明者等は、LiO−Al−SiO系結晶化ガラスに清澄効果をもたらす方法として、不活性ガス成分であるヘリウムやネオンをガラス溶融段階で所定量含有させることを見出し、本発明として提案するものである。
【0010】
即ち、本発明のLiO−Al−SiO系結晶化ガラスは、基本組成として、質量百分率でSiO 50〜80%、Al 12〜30%、LiO 1〜6%、MgO 0〜5%、ZnO 0〜10%、BaO 0〜8%、NaO 0〜5%、KO 0〜10%、TiO 0〜8%、ZrO 0〜7%、P 0〜7%含有し、ヘリウム及び/またはネオンを0.0002〜5μl/g(0℃、1atm)含むことを特徴とする。
【0011】
また本発明のLiO−Al−SiO系結晶化ガラスの製造方法は、基本組成として、質量百分率でSiO 50〜80%、Al 12〜30%、LiO 1〜6%、MgO 0〜5%、ZnO 0〜10%、BaO 0〜8%、NaO 0〜5%、KO 0〜10%、TiO 0〜8%、ZrO 0〜7%、P 0〜7%含有するガラスとなるように調整した原料調合物を溶融した後に成形して結晶化するLiO−Al−SiO系結晶化ガラスの製造方法において、ヘリウム及び/またはネオンをガラス溶融段階で0.0002〜5μl/g(0℃、1atm)添加することを特徴とする。
【0012】
【作用】
ヘリウムやネオン元素は、電子配列が閉殻構造で、他元素との反応性は無視できる程度に小さい。また、大きさはガラスに含まれる一般的な元素に比べて小さい。
【0013】
このため、ヘリウムやネオン元素は、溶融ガラスを構成する各種元素と結合すること無く、ガラス中で単原子分子として存在し、他成分が構成するガラス網目構造の空隙部に位置する。このためガラスの網目構造の隙間を拡散していくことができる。溶融ガラスにヘリウムまたはネオンを接触させると、ヘリウムやネオンは残存泡に拡散進入し、拡大した泡は浮上により除去され、ガラスの清澄が達成される。
【0014】
ヘリウムやネオンは、それ自体、溶融ガラスの清澄効果を有するが、他の清澄剤と併用した場合には、さらに高い清澄性が得られる。
【0015】
ヘリウムやネオンは、単独あるいは合量でガラス中に0.0002μl/g以上含有することで清澄効果を有する。0.0002μl/gより少ないと充分な清澄効果が得られない。好ましい範囲は0.0005μl/g以上、さらに好ましくは0.001μl/g以上である。
【0016】
一方、含有量が5μl/gを越えると、ガラス組成物の再加熱の際に、リボイルと呼ばれる再発泡が生じるため好ましくない。好ましくは3μl/g以下にすることが望まれる。
【0017】
ヘリウムやネオンの添加については、ヘリウムやネオンを高濃度に含有する物質やカレットガラスを原料として溶融する方法、ヘリウムやネオン雰囲気中で原料を溶融する方法、溶融状態のガラスにヘリウムやネオン雰囲気を接触させる方法、が挙げられる。
【0018】
溶融状態のガラスにヘリウムやネオン雰囲気を接触させるには、ガラス溶解室内にヘリウムやネオンを導入する他、耐火性ノズルを用いてバブリングする方法がある。また、ガス透過性のある容器を用いてガラスを溶解し、容器周囲をヘリウムやネオン雰囲気にする方法もある。バブリングではノズル先端に多孔性耐火物を用いると、ガラス中にヘリウムやネオンを拡散させやすく、効率が良い。
【0019】
本発明の結晶化ガラスは、ヘリウムやネオンの清澄効果のために、Asを必ずしも添加する必要が無い。Asは清澄性の向上の他に、ガラスの結晶性を向上させるという効果があるが、ガラスの結晶性向上については、同属元素酸化物であるSbにも同様の効果があることが発明者等の調査によりわかっている。また、SnOについても、Asほどでは無いが、結晶性を向上させる効果がある。
【0020】
Sb、SnOは、いずれも、高温で酸素放出するため、清澄剤としての効果を有する。本発明では、ヘリウムやネオンの清澄効果が期待できるために必ずしもSb、SnOの添加は必要ではないが、Asの濃度が低いときには、ガラス結晶性とともに清澄性を補う上で添加するのが望ましい。具体的には、Asが0.4%以下となる場合に、Sb 0.05〜4%やSnO 0.03〜2%の添加が望ましい。
【0021】
Sbは、数百℃の低温域でSbに酸化され、1200〜1300℃付近でSbに還元されて、多量の酸素清澄ガスを放出する。SnOは1400℃以上でSnOに変化する際に多量の清澄ガスを放出する。
【0022】
清澄効果を補う方法としては、SbやSnOのほかに、硫酸化物や塩化物などのハロゲン化物を投入することも上げられる。硫酸化物、塩化物ともに、1000℃以上の温度域で揮発して清澄ガスとして作用する。
【0023】
ヘリウムとネオン以外に挙げた上記の清澄剤については、溶融原料成分として添加してもよいし、溶融したガラスに後から添加してもよい。また、ヘリウムやネオンの添加時に同時に添加することも可能である。
【0024】
本発明の結晶化ガラスにおける好適な組成範囲は、質量百分率でSiO 50〜80%、Al 12〜30%、LiO 1〜6%、MgO 0〜5%、ZnO 0〜10%、BaO 0〜8%、NaO 0〜5%、KO 0〜10%、TiO 0〜8%、ZrO 0〜7%、P 0〜7%である。組成範囲をこのように限定した理由を述べる。
【0025】
SiOはガラスの骨格を形成するとともに結晶を構成する成分であり、その含有量は50〜80%、好ましくは52〜77%、さらに好ましくは54〜75%である。SiOが50%より少ないと熱膨張係数が大きくなり過ぎ、80%より多いとガラス溶融が困難になる。
【0026】
Alはガラスの骨格を形成するとともに結晶を構成する成分であり、その含有量は12〜30%、好ましくは13〜28%、さらに好ましくは14〜26%である。Alが12%より少ないと化学的耐久性が低下し、またガラスが失透し易くなる。一方、30%より多いとガラスの粘度が大きくなり過ぎてガラス溶融が困難になる。
【0027】
LiOは結晶構成成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘性を低下させる働きがあり、その含有量は1〜6%、好ましくは1.2〜5.5%、さらに好ましくは1.4〜5.0%である。LiOが1%より少ないとガラスの結晶性が弱くなり、熱膨張係数が大きくなり過ぎる。また透明結晶化ガラスの場合には結晶物が白濁し易くなり、白色結晶化ガラスの場合には白色度低下が起こりやすくなる。一方、6%より多いと結晶性が強くなり過ぎ、ガラスが失透したり、準安定なβ−石英固溶体が得られなくなって結晶物が白濁し、透明結晶化ガラスを得ることができなくなる。
【0028】
MgOの含有量は0〜5%、好ましくは0〜4.5%、さらに好ましくは0〜4%である。MgOが5%より多いと結晶性が強くなり、析出結晶量が多くなって不純物着色が強くなり過ぎる。
【0029】
ZnOの含有量は0〜10%、好ましくは0〜8%、より好ましくは0〜6%、さらに好ましくは0〜5%である。ZnOが10%より多いと結晶性が強くなり、析出結晶量が多くなって不純物着色が強くなり過ぎる。
【0030】
またMgOとZnOの合量は0〜10%、特に0〜8%、さらには0〜6%であることが好ましい。これらの成分の合量が10%を超えると結晶物の着色が強くなりやすい。
【0031】
BaOの含有量は0〜8%、好ましくは0.3〜7%、さらに好ましくは0.5〜6%である。BaOが8%より多いと結晶の析出を阻害するために十分な結晶量が得られず、熱膨張係数が大きくなり過ぎる。さらに透明結晶化ガラスを得る場合には結晶物が白濁し易くなる。
【0032】
NaOの含有量は0〜5%、好ましくは0〜4%、さらに好ましくは0〜0.35%である。NaOが5%より多いと結晶性が弱くなって十分な結晶量が得られず、また熱膨張係数が大きくなり過ぎる。さらに透明結晶化ガラスを得る場合には結晶物が白濁し易くなる。
【0033】
Oの含有量は0〜10%、好ましくは0〜8%、より好ましくは0〜6%、さらに好ましくは0〜5%である。KOが10%より多いと結晶性が弱くなって十分な結晶量が得られず、また熱膨張係数が大きくなり過ぎる。さらに透明結晶化ガラスを得る場合には結晶物が白濁し易くなる。
【0034】
またNaOとKOの合量は0〜12%、特に0〜10%、さらには0〜8%であることが好ましい。これらの成分の合量が12%を超えると熱膨張係数が大きくなりやすい。また透明結晶化ガラスを得る場合には結晶物が白濁し易くなる。
【0035】
TiOは核形成剤であり、その含有量は0〜8%、好ましくは0.3〜7%、さらに好ましくは0.5〜6%である。TiOが8%より多くなると不純物着色が著しくなる。
【0036】
ZrOは核形成剤であり、その含有量は0〜7%、好ましくは0.5〜6%、さらに好ましくは1〜5%である。ZrOが7%より多いとガラス溶融が困難になるとともに、ガラスの失透性が強くなる。
【0037】
はガラスの結晶性を向上させるための成分であり、その含有量は0〜7%、好ましくは0〜6%、さらに好ましくは0〜5%である。Pが7%より多いと熱膨張係数が大きくなり過ぎ、また透明結晶化ガラスを得る場合には結晶物が白濁し易くなる。
【0038】
本発明の結晶化ガラスは、上記以外にも種々の成分を添加することが可能である。例えば、Sbについては、0.05%より多く含有させると清澄効果や結晶化促進効果が得られる。4%を超えると不純物着色が著しくなる。
【0039】
SnOについては、0.03%より多く含有させると清澄効果や結晶化促進効果が得られる。2%を超えると失透性や不純物着色が著しくなる。SnOは、TiOやZrOとともにZrO−TiO−SnO系結晶核を形成して核形成剤の機能も有しているが、SbやAsに比べて不純物着色を起こしやすく、上記範囲を超えて添加すると着色が著しくなる。
【0040】
またCaOを5%まで、Bを10%まで含有しても良い。
【0041】
また、清澄剤としてClを2%まで、好ましくは1%まで添加することも可能であるが、この範囲を超えると化学耐久性が劣化して好ましくない。SnOと塩化物は、何れか1つを選択し使用してもよいが、両者を併用すると、非常に優れた清澄効果が得られるため好ましい。
【0042】
これら以外の清澄剤も添加可能であるが、その添加量は特性に悪影響を及ばさない範囲に制限する必要がある。
【0043】
なお、清澄効果や結晶化促進効果を補完するためにAsを0.8%程度まで添加することもできるが、その使用量は極力少なくすべきであり、できれば使用しないことが望ましい。
【0044】
着色剤としては、例えばVを1.5%まで、好ましくは1.0%、さらに好ましくは0.8%まで含有することができる。
【0045】
上記組成を有する本発明のLiO−Al−SiO系結晶化ガラスは、例えば以下のようにして製造することができる。
【0046】
質量百分率でSiO 50〜80%、Al 12〜30%、LiO 1〜6%、MgO 0〜5%、ZnO 0〜10%、BaO 0〜8%、NaO0〜5%、KO 0〜10%、TiO 0〜8%、ZrO 0〜7%、P 0〜7%含有するガラスとなるように原料を調合する。なお、必要に応じてさらにSb、SnO、Cl、SO、V等を添加してもよい。
【0047】
次に調合したガラス原料を1550〜1750℃のヘリウムやネオン雰囲気でで、4〜20時間溶融した後に成形し、LiO−Al−SiO系結晶性ガラスを得る。
【0048】
続いてこの結晶性ガラスからなる成形体を700〜800℃で1〜4時間保持して核形成を行い、透明な結晶化ガラスとする場合は800〜950℃で0.5〜3時間熱処理してβ−石英固溶体を析出させる。また白色不透明な結晶化ガラスとする場合は核形成後に1050〜1250℃で0.5〜2時間熱処理してβ−スポジュメン固溶体を析出させればよい。
【0049】
なお得られた結晶化ガラスは、切断、研磨、曲げ加工、延伸成形等の後加工を施したり、表面に絵付け等を施して種々の用途に供される。
【0050】
【実施例】
以下、実施例に基づいて本発明のLiO−Al−SiO系結晶化ガラスを説明する。
【0051】
表1、2は本発明の実施例(試料No.1〜10)と比較例(試料No.11、12)を示している。試料No.11とNo.12は従来品である。表中の「β−Q」はβ−石英固溶体を、「β−S」はβ−スポジュメン固溶体をそれぞれ表している。
【0052】
【表1】

Figure 2005053711
【0053】
【表2】
Figure 2005053711
【0054】
各試料は次のようにして調製した。まず、表の組成を有するガラスとなるように各原料を酸化物、水酸化物、ハロゲン化物、炭酸塩、硝酸塩等形態で調合し、均一に混合した後、ヘリウムやネオンで満たした電気炉雰囲気内で1550〜1650℃、8〜20時間溶融した。
【0055】
表2に示す比較例の試料No.11とNo.12では、ガラス組成物を大気雰囲気中で溶融した。溶融温度と時間は、No.1〜10試料と同じとした。
【0056】
次いで、溶融したガラスをカーボン定盤上に流し出し、ステンレスローラーを用いて5mmの厚さに成形し、さらに徐冷炉を用いて室温まで冷却した。このガラス成形体を電気炉に入れ、各々次に述べる2つのスケジュールで熱処理を行って結晶化した後、炉冷した。
【0057】
(1)核形成:780℃−2時間 → 結晶成長:900℃−3時間
(2)核形成:780℃−2時間 → 結晶成長:1160℃−1時間
なお昇温速度は、室温から核形成温度までを300℃/h、核形成温度から結晶成長温度までを100〜200℃/hとした。
【0058】
得られた各試料については、ヘリウムやネオンの含有量、清澄性、その他、主結晶、結晶性、外観を評価した。
【0059】
なおHe、Neのガラス含有量については、試料を1600℃に加熱した炉内のMoルツボ内に移動(落下)させ、20分間保持した後、10−9Torrの真空状態にして放出されたガスをダブルコレクター型希ガス質量分析計(VG5400)で測定した。
【0060】
清澄性は、試料中の泡数を計数し、100g当たりの泡数を算出した。焼成スケジュール(2)の試料については、試料が不透明であるため、泡の測定は、熱処理前の結晶性ガラスについて評価した。
【0061】
主結晶は、X線回折装置を用いて評価した。結晶性及び外観は、結晶性低下によるクラックや表面剥離等の異変が結晶化後に認められるかどうかを評価し、異変がないものを「良好」、異変が認められたものを「不良」として表した。
【0062】
各試料とも、スケジュール(1)の熱処理で得られた各試料は、主結晶としてβ−石英固溶体を析出しており、無色透明の外観を呈した。スケジュール(2)の熱処理で得られた各試料は、主結晶としてβ−スポジュメン固溶体を析出しており、白色不透明の外観を呈した。何れの試料も結晶性が良好であった。
【0063】
また実施例であるNo.1〜10の試料は、ヘリウム及びネオンを合量で0.05〜1.2μl/g含有しており、残存泡数は1〜5(個/100g)であった。一方、比較例であるNo.11及び12の試料では、ヘリウム、ネオンのいずれも含有せず、残存泡数は10〜12(個/100g)であり、泡が多く、充分に清澄されていなかった。
【0064】
【発明の効果】
以上説明したように、本発明のLiO−Al−SiO系結晶化ガラスは、Asを削減しても、従来品と同等以上の清澄性及びガラス特性を有しており、石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子部品焼成用セッター、電子レンジ用棚板、電磁調理用トッププレート、防火戸用窓ガラス等の材料として、また液晶プロジェクタ等の投影機や照明の光源ランプに使用される反射鏡の基材として、或いは電子部品や精密機械部品の材料として好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass and a method for producing the same.
[0002]
[Prior art]
Conventionally, front windows for petroleum stoves, wood stoves, etc., substrates for high-tech products such as color filters and image sensor substrates, setters for firing electronic components, shelf plates for microwave ovens, top plates for electromagnetic cooking, window glass for fire doors Li 2 O—Al 2 O 3 —SiO 2 crystal as a base material for reflectors used in projectors such as liquid crystal projectors and illumination light source lamps, or as an electronic component or precision mechanical component Glass is used. For example, Patent Documents 1 to 3, as a main crystal β- quartz solid solution (Li 2 O · Al 2 O 3 · nSiO 2 [ provided that n ≧ 2]) and β- spodumene solid solution (Li 2 O · Al 2 O 3 · Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass obtained by precipitating nSiO 2 [where n ≧ 4]) is disclosed.
[0003]
The Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass has excellent thermal characteristics because it has a low coefficient of thermal expansion and high mechanical strength. In addition, since the precipitated crystal can be changed by changing the heat treatment conditions in the crystallization process, a transparent crystallized glass (β-quartz solid solution is precipitated) and a white opaque crystallized glass (β -Spodumene solid solution can be produced in both cases, and can be used properly depending on the application.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 39-21049 [Patent Document 2]
Japanese Patent Publication No. 40-20182 [Patent Document 3]
Japanese Patent Laid-Open No. 1-308845
[Problems to be solved by the invention]
By the way, when manufacturing this kind of crystallized glass, it is necessary to melt at a high temperature exceeding 1400 ° C. For this reason, As 2 O 3 that can generate a large amount of clarification gas at the time of high-temperature melting is used as the clarifier added to the glass batch. In batch melting, As 2 O 3 in the raw material is oxidized to As 2 O 5 at 400 to 500 ° C. and then reduced again to As 2 O 3 at 1200 to 1800 ° C. to release oxygen gas. When this oxygen gas diffuses into the bubbles in the glass, expansion of the bubbles and promotion of levitation occur, and the bubbles are removed. As 2 O 3 is widely used as a glass refining agent due to this action, and is particularly effective as a refining agent for Li 2 O—Al 2 O 3 —SiO 2 crystallized glass that requires high temperature melting. is there.
[0006]
Further, As 2 O 3 has not only a refining effect but also an effect of promoting crystallization, and it has been found that this is a necessary component for obtaining desired characteristics in this kind of crystallized glass.
[0007]
However, As 2 O 3 is highly toxic and may contaminate the environment during the glass production process or waste glass treatment, and a reduction in the amount used is desired. However, when As 2 O 3 is simply reduced, the clarity and crystallinity are lowered, so that the clarity and glass properties equivalent to those before As 2 O 3 reduction cannot be obtained.
[0008]
An object of the present invention is to provide a Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass having a clarity and glass characteristics equivalent to or higher than those of conventional products even when the amount of As 2 O 3 used is reduced. It is.
[0009]
[Means for Solving the Problems]
The present inventors have found that helium and neon, which are inert gas components, are contained in a predetermined amount in the glass melting stage as a method for bringing a clarification effect to Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass. This is proposed as the present invention.
[0010]
That is, the Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention has, as a basic composition, SiO 2 50 to 80%, Al 2 O 3 12 to 30%, Li 2 O 1 to 1 by mass percentage. 6%, 0~5% MgO, 0~10 % ZnO, BaO 0~8%, Na 2 O 0~5%, K 2 O 0~10%, TiO 2 0~8%, ZrO 2 0~7% , P 2 O 5 0 to 7%, and helium and / or neon 0.0002 to 5 μl / g (0 ° C., 1 atm).
[0011]
The method for producing a Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass of the present invention has a basic composition, SiO 2 50 to 80% in mass percentage, Al 2 O 3 12~30%, Li 2 O 1~6%, 0~5% MgO, 0~10 % ZnO, BaO 0~8%, Na 2 O 0~5%, K 2 O 0~10%, TiO 2 0~8%, ZrO 2 0~ 7%, the production of P 2 O 5 0~7% crystallized by molding after melting the adjusted raw material formulation so that the glass containing Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass The method is characterized in that helium and / or neon is added in the glass melting stage from 0.0002 to 5 μl / g (0 ° C., 1 atm).
[0012]
[Action]
Helium and neon elements have a closed shell structure and their reactivity with other elements is negligibly small. In addition, the size is smaller than general elements contained in glass.
[0013]
For this reason, helium and neon elements are present as monoatomic molecules in the glass without being bonded to various elements constituting the molten glass, and are located in the void portion of the glass network structure constituted by other components. For this reason, the gaps in the glass network structure can be diffused. When helium or neon is brought into contact with the molten glass, helium or neon diffuses and penetrates into the remaining bubbles, and the expanded bubbles are removed by levitation to achieve glass clarification.
[0014]
Helium and neon itself have a clarification effect of molten glass, but when used in combination with other clarifiers, higher clarification is obtained.
[0015]
Helium and neon have a clarification effect by containing 0.0002 μl / g or more in glass alone or in combination. When it is less than 0.0002 μl / g, a sufficient clarification effect cannot be obtained. A preferred range is 0.0005 μl / g or more, more preferably 0.001 μl / g or more.
[0016]
On the other hand, if the content exceeds 5 μl / g, refoaming called reboil occurs when the glass composition is reheated, which is not preferable. Preferably, it is desired to be 3 μl / g or less.
[0017]
Regarding the addition of helium and neon, a method of melting a material containing helium or neon at a high concentration or cullet glass as a raw material, a method of melting a raw material in a helium or neon atmosphere, a helium or neon atmosphere in a molten glass The method of making it contact is mentioned.
[0018]
In order to bring the helium or neon atmosphere into contact with the molten glass, there is a method of bubbling with a refractory nozzle in addition to introducing helium or neon into the glass melting chamber. There is also a method in which glass is melted using a gas-permeable container so that the surroundings of the container are made into a helium or neon atmosphere. In the bubbling, when a porous refractory is used at the tip of the nozzle, helium and neon are easily diffused into the glass, which is efficient.
[0019]
In the crystallized glass of the present invention, it is not always necessary to add As 2 O 3 for the clarification effect of helium or neon. As 2 O 3 has the effect of improving the crystallinity of the glass in addition to the improvement of the clarity, but the same effect is also obtained for Sb 2 O 3 which is an oxide of the same group with respect to the improvement of the crystallinity of the glass. It has been found by the inventors' investigation. Also, SnO 2 has an effect of improving crystallinity, although not as much as As 2 O 3 .
[0020]
Since both Sb 2 O 3 and SnO 2 release oxygen at a high temperature, they have an effect as a fining agent. In the present invention, it is not always necessary to add Sb 2 O 3 or SnO 2 because a clarification effect of helium or neon can be expected. However, when the concentration of As 2 O 3 is low, the glass crystallinity and the clarification are supplemented. It is desirable to add in. Specifically, when As 2 O 3 is 0.4% or less, Sb 2 O 3 0.05 to 4% or SnO 2 0.03 to 2 % is desirably added.
[0021]
Sb 2 O 3 is oxidized to Sb 2 O 5 in a low temperature range of several hundred degrees Celsius, and is reduced to Sb 2 O 3 in the vicinity of 1200 to 1300 ° C. to release a large amount of oxygen clarification gas. SnO 2 releases a large amount of clarified gas when it changes to SnO at 1400 ° C. or higher.
[0022]
As a method for supplementing the fining effect, in addition to Sb 2 O 3 and SnO 2 , halides such as sulfates and chlorides can be added. Both sulfur oxides and chlorides volatilize in the temperature range of 1000 ° C. or more and act as a clarified gas.
[0023]
The clarifiers other than helium and neon may be added as a melting raw material component or may be added later to the molten glass. It is also possible to add helium or neon at the same time.
[0024]
The suitable composition range in the crystallized glass of the present invention is SiO 2 50-80%, Al 2 O 3 12-30%, Li 2 O 1-6%, MgO 0-5%, ZnO 0-10 by mass percentage. %, BaO 0~8%, Na 2 O 0~5%, K 2 O 0~10%, TiO 2 0~8%, ZrO 2 0~7%, a P 2 O 5 0~7%. The reason for limiting the composition range in this way will be described.
[0025]
SiO 2 is a component that forms a glass skeleton and constitutes a crystal, and its content is 50 to 80%, preferably 52 to 77%, and more preferably 54 to 75%. If the SiO 2 content is less than 50%, the thermal expansion coefficient becomes too large, and if it exceeds 80%, glass melting becomes difficult.
[0026]
Al 2 O 3 is a component that forms a glass skeleton and constitutes a crystal, and its content is 12 to 30%, preferably 13 to 28%, and more preferably 14 to 26%. When Al 2 O 3 is less than 12%, the chemical durability is lowered and the glass is easily devitrified. On the other hand, if it exceeds 30%, the viscosity of the glass becomes too high and glass melting becomes difficult.
[0027]
Li 2 O is a crystal component, has a large effect on crystallinity and has a function of reducing the viscosity of glass, and its content is 1 to 6%, preferably 1.2 to 5.5%, Preferably it is 1.4 to 5.0%. When Li 2 O is less than 1%, the crystallinity of the glass becomes weak and the thermal expansion coefficient becomes too large. Further, in the case of transparent crystallized glass, the crystalline substance tends to become cloudy, and in the case of white crystallized glass, the whiteness tends to decrease. On the other hand, if it exceeds 6%, the crystallinity becomes too strong, the glass becomes devitrified, or a metastable β-quartz solid solution cannot be obtained, and the crystal becomes cloudy, making it impossible to obtain a transparent crystallized glass.
[0028]
The content of MgO is 0 to 5%, preferably 0 to 4.5%, more preferably 0 to 4%. If the MgO content exceeds 5%, the crystallinity becomes strong, the amount of precipitated crystals increases, and the impurity coloring becomes too strong.
[0029]
The content of ZnO is 0 to 10%, preferably 0 to 8%, more preferably 0 to 6%, and still more preferably 0 to 5%. If the ZnO content is more than 10%, the crystallinity becomes strong, the amount of precipitated crystals increases, and the impurity coloring becomes too strong.
[0030]
The total amount of MgO and ZnO is preferably 0 to 10%, particularly 0 to 8%, and more preferably 0 to 6%. When the total amount of these components exceeds 10%, the crystallized product tends to be strongly colored.
[0031]
The content of BaO is 0 to 8%, preferably 0.3 to 7%, more preferably 0.5 to 6%. If BaO is more than 8%, a sufficient amount of crystals cannot be obtained to inhibit crystal precipitation, and the thermal expansion coefficient becomes too large. Furthermore, when obtaining transparent crystallized glass, the crystallized product tends to become cloudy.
[0032]
The content of Na 2 O is 0 to 5%, preferably 0 to 4%, more preferably 0 to 0.35%. If Na 2 O is more than 5%, the crystallinity becomes weak and a sufficient amount of crystals cannot be obtained, and the thermal expansion coefficient becomes too large. Furthermore, when obtaining transparent crystallized glass, the crystallized product tends to become cloudy.
[0033]
The content of K 2 O is 0 to 10%, preferably 0 to 8%, more preferably 0 to 6%, and further preferably 0 to 5%. If K 2 O is more than 10%, the crystallinity becomes weak and a sufficient amount of crystals cannot be obtained, and the thermal expansion coefficient becomes too large. Furthermore, when obtaining transparent crystallized glass, the crystallized product tends to become cloudy.
[0034]
The total amount of Na 2 O and K 2 O is preferably 0 to 12%, particularly 0 to 10%, and more preferably 0 to 8%. If the total amount of these components exceeds 12%, the thermal expansion coefficient tends to increase. Moreover, when obtaining transparent crystallized glass, a crystal substance becomes easy to become cloudy.
[0035]
TiO 2 is a nucleating agent, and its content is 0 to 8%, preferably 0.3 to 7%, more preferably 0.5 to 6%. When the amount of TiO 2 exceeds 8%, impurity coloring becomes remarkable.
[0036]
ZrO 2 is a nucleating agent, and its content is 0 to 7%, preferably 0.5 to 6%, more preferably 1 to 5%. If the amount of ZrO 2 is more than 7%, glass melting becomes difficult and the devitrification property of the glass becomes strong.
[0037]
P 2 O 5 is a component for improving the crystallinity of the glass, and its content is 0 to 7%, preferably 0 to 6%, more preferably 0 to 5%. If the P 2 O 5 content is more than 7%, the thermal expansion coefficient becomes too large, and when a transparent crystallized glass is obtained, the crystal is liable to become cloudy.
[0038]
In addition to the above, various components can be added to the crystallized glass of the present invention. For example, when Sb 2 O 3 is contained in an amount of more than 0.05%, a clarification effect and a crystallization promoting effect can be obtained. When it exceeds 4%, impurity coloring becomes remarkable.
[0039]
When SnO 3 is contained in an amount of more than 0.03%, a clarification effect and a crystallization promoting effect are obtained. When it exceeds 2%, devitrification and impurity coloring become remarkable. SnO 2 forms a ZrO 2 —TiO 2 —SnO 2 -based crystal nucleus together with TiO 2 and ZrO 2 , and also has a function of a nucleating agent, but is more impure than Sb 2 O 3 and As 2 O 3. Coloring is likely to occur, and if it exceeds the above range, the coloration becomes remarkable.
[0040]
The up to 5% of CaO, a B 2 O 3 may be contained up to 10%.
[0041]
Further, it is possible to add Cl as a fining agent up to 2%, preferably up to 1%. However, exceeding this range is not preferable because the chemical durability deteriorates. Any one of SnO 2 and chloride may be selected and used. However, it is preferable to use both in combination since a very excellent clarification effect can be obtained.
[0042]
Although clarifiers other than these can also be added, the amount added must be limited to a range that does not adversely affect the properties.
[0043]
In order to supplement the clarification effect and the crystallization promoting effect, As 2 O 3 can be added up to about 0.8%, but the amount of use should be as small as possible, and it is desirable not to use it if possible.
[0044]
As a colorant, for example, V 2 O 5 can be contained up to 1.5%, preferably 1.0%, more preferably 0.8%.
[0045]
The Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention having the above composition can be produced, for example, as follows.
[0046]
SiO 2 50 to 80% in mass percentage, Al 2 O 3 12~30%, Li 2 O 1~6%, 0~5% MgO, 0~10% ZnO, BaO 0~8%, Na 2 O0~5 %, K 2 O 0 to 10%, TiO 2 0 to 8%, ZrO 2 0 to 7%, P 2 O 5 0 to 7%, and the raw materials are prepared. Still further Sb 2 O 3 if necessary, SnO 2, Cl, may be added to SO 3, V 2 O 5 or the like.
[0047]
Next, the prepared glass raw material is melted in a helium or neon atmosphere at 1550 to 1750 ° C. for 4 to 20 hours and then molded to obtain Li 2 O—Al 2 O 3 —SiO 2 based crystalline glass.
[0048]
Subsequently, the formed body made of this crystalline glass is held at 700 to 800 ° C. for 1 to 4 hours for nucleation, and when it is made into a transparent crystallized glass, it is heat treated at 800 to 950 ° C. for 0.5 to 3 hours. To precipitate a β-quartz solid solution. In addition, when a white opaque crystallized glass is formed, a β-spodumene solid solution may be precipitated by heat treatment at 1050 to 1250 ° C. for 0.5 to 2 hours after nucleation.
[0049]
The obtained crystallized glass is subjected to post-processing such as cutting, polishing, bending, and stretch molding, and is used for various purposes by painting on the surface.
[0050]
【Example】
Hereinafter, the Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention will be described based on examples.
[0051]
Tables 1 and 2 show examples of the present invention (sample Nos. 1 to 10) and comparative examples (samples No. 11 and 12). Sample No. 11 and no. 12 is a conventional product. In the table, “β-Q” represents a β-quartz solid solution, and “β-S” represents a β-spodumene solid solution.
[0052]
[Table 1]
Figure 2005053711
[0053]
[Table 2]
Figure 2005053711
[0054]
Each sample was prepared as follows. First, each raw material is prepared in the form of oxides, hydroxides, halides, carbonates, nitrates, etc. so as to become a glass having the composition shown in the table, and after mixing uniformly, an electric furnace atmosphere filled with helium or neon And melted at 1550 to 1650 ° C. for 8 to 20 hours.
[0055]
Sample No. of the comparative example shown in Table 2. 11 and no. In No. 12, the glass composition was melted in an air atmosphere. Melting temperature and time are no. Same as 1-10 samples.
[0056]
Next, the molten glass was poured out on a carbon surface plate, formed into a thickness of 5 mm using a stainless roller, and further cooled to room temperature using a slow cooling furnace. The glass molded body was placed in an electric furnace, heat-treated according to the following two schedules, crystallized, and then cooled in the furnace.
[0057]
(1) Nucleation: 780 ° C.-2 hours → crystal growth: 900 ° C.-3 hours (2) Nucleation: 780 ° C.-2 hours → crystal growth: 1160 ° C.-1 hour The temperature was 300 ° C./h, and the temperature from the nucleation temperature to the crystal growth temperature was 100 to 200 ° C./h.
[0058]
About each obtained sample, helium and neon content, clarity, others, main crystal, crystallinity, and external appearance were evaluated.
[0059]
Regarding the glass content of He and Ne, the sample was moved (dropped) into a Mo crucible in a furnace heated to 1600 ° C., held for 20 minutes, and then released in a vacuum state of 10 −9 Torr. Was measured with a double collector type rare gas mass spectrometer (VG5400).
[0060]
For clarity, the number of bubbles in the sample was counted, and the number of bubbles per 100 g was calculated. Regarding the sample of the firing schedule (2), since the sample is opaque, the measurement of foam was evaluated for the crystalline glass before the heat treatment.
[0061]
The main crystal was evaluated using an X-ray diffractometer. The crystallinity and appearance are evaluated as to whether or not abnormalities such as cracks and surface peeling due to lowering of crystallinity are observed after crystallization. did.
[0062]
In each sample, each sample obtained by the heat treatment of schedule (1) had a β-quartz solid solution precipitated as the main crystal and exhibited a colorless and transparent appearance. Each sample obtained by the heat treatment of schedule (2) had a β-spodumene solid solution precipitated as the main crystal, and exhibited a white opaque appearance. All samples had good crystallinity.
[0063]
Moreover, No. which is an Example. Samples 1 to 10 contained helium and neon in a combined amount of 0.05 to 1.2 μl / g, and the number of remaining bubbles was 1 to 5 (pieces / 100 g). On the other hand, No. which is a comparative example. Samples 11 and 12 contained neither helium nor neon, the number of remaining bubbles was 10 to 12 (pieces / 100 g), had many bubbles, and were not sufficiently clarified.
[0064]
【The invention's effect】
As described above, the Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention has a clarity and glass characteristics equal to or higher than those of conventional products even when As 2 O 3 is reduced. Front windows for oil stoves, wood stoves, etc., substrates for high-tech products such as color filters and image sensor substrates, setters for firing electronic components, shelf plates for microwave ovens, top plates for electromagnetic cooking, window glass for fire doors It is suitable as a base material for reflectors used in projectors such as liquid crystal projectors and light source lamps for illumination, or as a material for electronic parts and precision machine parts.

Claims (10)

基本組成として、質量百分率でSiO 50〜80%、Al 12〜30%、LiO 1〜6%、MgO 0〜5%、ZnO 0〜10%、BaO 0〜8%、NaO 0〜5%、KO 0〜10%、TiO0〜8%、ZrO 0〜7%、P 0〜7%含有し、ヘリウム及び/またはネオンを0.0002〜5μl/g(0℃、1atm)含むことを特徴とするLiO−Al−SiO系結晶化ガラス。As the basic composition, SiO 2 50 to 80% in mass percentage, Al 2 O 3 12~30%, Li 2 O 1~6%, 0~5% MgO, 0~10% ZnO, BaO 0~8%, Na 2 O 0-5%, K 2 O 0-10%, TiO 2 0-8%, ZrO 2 0-7%, P 2 O 5 0-7%, helium and / or neon 0.0002- Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass characterized by containing 5 μl / g (0 ° C., 1 atm). さらにAs、Sb、SnOから選ばれる1種以上を含有することを特徴とする請求項1のLiO−Al−SiO系結晶化ガラス。Further As 2 O 3, Sb 2 O 3, according to claim 1, characterized in that it contains one or more selected from SnO 2 Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass. As含有量が0.4質量%以下であることを特徴とする請求項2のLiO−Al−SiO系結晶化ガラス。The Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass according to claim 2, wherein the As 2 O 3 content is 0.4 mass% or less. Sb含有量が0.05〜4質量%であることを特徴とする請求項2又は3のLiO−Al−SiO系結晶化ガラス。Sb 2 O 3 content of claim 2 or 3 Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass, characterized in that 0.05 to 4 mass%. SnO含有量が0.03〜2質量%であることを特徴とする請求項2〜4のいずれかのLiO−Al−SiO系結晶化ガラス。One of Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass of claim 2-4 in which SnO 2 content is characterized by a 0.03 to 2% by weight. 基本組成として、質量百分率でSiO 50〜80%、Al 12〜30%、LiO 1〜6%、MgO 0〜5%、ZnO 0〜10%、BaO 0〜8%、NaO 0〜5%、KO 0〜10%、TiO0〜8%、ZrO 0〜7%、P 0〜7%含有するガラスとなるように調整した原料調合物を溶融した後に成形して結晶化するLiO−Al−SiO系結晶化ガラスの製造方法において、ヘリウム及び/またはネオンをガラス溶融段階で0.0002〜5μl/g(0℃、1atm)添加することを特徴とするLiO−Al−SiO系結晶化ガラスの製造方法。As the basic composition, SiO 2 50 to 80% in mass percentage, Al 2 O 3 12~30%, Li 2 O 1~6%, 0~5% MgO, 0~10% ZnO, BaO 0~8%, Na 2 O 0-5%, K 2 O 0-10%, TiO 2 0-8%, ZrO 2 0-7%, P 2 O 5 0-7% In a method for producing a Li 2 O—Al 2 O 3 —SiO 2 crystallized glass that is molded and crystallized after melting, helium and / or neon is added in an amount of 0.0002 to 5 μl / g (0 ° C., in the glass melting stage). 1 atm) A method for producing Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass, characterized by comprising adding 1 atm). さらにAs、Sb、SnOから選ばれる1種以上を含有するガラスとなるように原料調合物を調整することを特徴とする請求項6のLiO−Al−SiO系結晶化ガラスの製造方法。Further As 2 O 3, Sb 2 O 3, Li 2 O-Al 2 O 3 of claim 6, wherein the adjusting the raw material formulation so that the glass containing one or more selected from SnO 2 method for producing -SiO 2 based crystallized glass. As含有量が0.4質量%以下であることを特徴とする請求項7のLiO−Al−SiO系結晶化ガラスの製造方法。The method for producing Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass according to claim 7, wherein the As 2 O 3 content is 0.4 mass% or less. Sb含有量が0.05〜4質量%であることを特徴とする請求項7又は8のLiO−Al−SiO系結晶化ガラスの製造方法。Sb 2 O 3 process according to claim 7 or 8 Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass content is characterized in that 0.05 to 4 mass%. SnO含有量が0.03〜2質量%であることを特徴とする請求項7〜9のいずれかのLiO−Al−SiO系結晶化ガラスの製造方法。One of Li 2 O-Al 2 O 3 -SiO 2 system manufacturing method of a crystallized glass as claimed in claim 7-9, wherein the SnO 2 content of 0.03 to 2 wt%.
JP2003205811A 2003-08-04 2003-08-04 Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same Pending JP2005053711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205811A JP2005053711A (en) 2003-08-04 2003-08-04 Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205811A JP2005053711A (en) 2003-08-04 2003-08-04 Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005053711A true JP2005053711A (en) 2005-03-03

Family

ID=34362922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205811A Pending JP2005053711A (en) 2003-08-04 2003-08-04 Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005053711A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053712A (en) * 2003-08-04 2005-03-03 Nippon Electric Glass Co Ltd Alkali-free glass
EP1864952A1 (en) * 2006-06-06 2007-12-12 Ohara Inc. Crystallized glass, and method for producing crystallized glass
WO2009141959A1 (en) * 2008-05-19 2009-11-26 日本電気硝子株式会社 Crystallizable glass and crystallized glass obtained by crystallizing the same
JP2010202510A (en) * 2009-03-05 2010-09-16 Schott Ag Method for environmentally friendly melting and refining glass melt for crystallizable glass composed of lithium aluminum silicate (las) glass ceramic
JP2011201763A (en) * 2010-02-22 2011-10-13 Schott Ag Transparent las glass ceramic produced with alternative environmentally acceptable fining agent
JP2012012290A (en) * 2010-05-31 2012-01-19 Nippon Electric Glass Co Ltd Li2o-al2o3-sio2 based crystallized glass and production method for the same
WO2012043484A1 (en) * 2010-09-30 2012-04-05 旭硝子株式会社 Method for melting glass material, method for producing molten glass, method for producing glass product, in-flight melting device and glass beads
CN103130413A (en) * 2011-11-24 2013-06-05 比亚迪股份有限公司 Glass raw material composition, inorganic glass powder, crystalline silicon solar battery aluminum conductive paste and preparation method of the crystalline silicon solar battery aluminum conductive paste
WO2013124231A1 (en) * 2012-02-22 2013-08-29 Schott Ag Method for producing glasses, glass ceramics and the use of same
JP2014091637A (en) * 2012-10-31 2014-05-19 Ohara Inc Crystallized glass
US9120699B2 (en) 2010-05-31 2015-09-01 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2 based crystallized glass and production method for the same
WO2020196171A1 (en) * 2019-03-22 2020-10-01 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
WO2020203308A1 (en) * 2019-04-01 2020-10-08 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
WO2020217792A1 (en) * 2019-04-23 2020-10-29 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
JPWO2019167850A1 (en) * 2018-02-27 2021-02-04 Agc株式会社 Three-dimensional crystallized glass, three-dimensional chemically strengthened glass and their manufacturing method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053712A (en) * 2003-08-04 2005-03-03 Nippon Electric Glass Co Ltd Alkali-free glass
EP1864952A1 (en) * 2006-06-06 2007-12-12 Ohara Inc. Crystallized glass, and method for producing crystallized glass
US8309480B2 (en) 2008-05-19 2012-11-13 Nippon Electric Glass Co., Ltd. Crystallizable glass and crystallized glass obtained by crystallizing the same
WO2009141959A1 (en) * 2008-05-19 2009-11-26 日本電気硝子株式会社 Crystallizable glass and crystallized glass obtained by crystallizing the same
JP2010001206A (en) * 2008-05-19 2010-01-07 Nippon Electric Glass Co Ltd Crystallizable glass and crystallized glass obtained by crystallizing the same
JP2010202510A (en) * 2009-03-05 2010-09-16 Schott Ag Method for environmentally friendly melting and refining glass melt for crystallizable glass composed of lithium aluminum silicate (las) glass ceramic
JP2011201763A (en) * 2010-02-22 2011-10-13 Schott Ag Transparent las glass ceramic produced with alternative environmentally acceptable fining agent
JP2012012290A (en) * 2010-05-31 2012-01-19 Nippon Electric Glass Co Ltd Li2o-al2o3-sio2 based crystallized glass and production method for the same
US9458053B2 (en) 2010-05-31 2016-10-04 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2 based crystallized glass and production method for the same
US9120699B2 (en) 2010-05-31 2015-09-01 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2 based crystallized glass and production method for the same
WO2012043484A1 (en) * 2010-09-30 2012-04-05 旭硝子株式会社 Method for melting glass material, method for producing molten glass, method for producing glass product, in-flight melting device and glass beads
JP5920218B2 (en) * 2010-09-30 2016-05-18 旭硝子株式会社 Method for melting glass raw material, method for producing molten glass, and method for producing glass product
JPWO2012043484A1 (en) * 2010-09-30 2014-02-06 旭硝子株式会社 Method of melting glass raw material, method of manufacturing molten glass, method of manufacturing glass product, and in-air melting apparatus and glass beads
CN103130413B (en) * 2011-11-24 2015-05-27 比亚迪股份有限公司 Glass raw material composition, inorganic glass powder, crystalline silicon solar battery aluminum conductive paste and preparation method of the crystalline silicon solar battery aluminum conductive paste
CN103130413A (en) * 2011-11-24 2013-06-05 比亚迪股份有限公司 Glass raw material composition, inorganic glass powder, crystalline silicon solar battery aluminum conductive paste and preparation method of the crystalline silicon solar battery aluminum conductive paste
CN104144890A (en) * 2012-02-22 2014-11-12 肖特公开股份有限公司 Method for producing glasses, glass ceramics and the use of same
WO2013124231A1 (en) * 2012-02-22 2013-08-29 Schott Ag Method for producing glasses, glass ceramics and the use of same
US9676643B2 (en) 2012-02-22 2017-06-13 Schott Ag Method for producing glasses, glass ceramics and the use of same
JP2014091637A (en) * 2012-10-31 2014-05-19 Ohara Inc Crystallized glass
JP7268673B2 (en) 2018-02-27 2023-05-08 Agc株式会社 Three-dimensional crystallized glass, three-dimensional chemically strengthened glass, and methods for producing the same
JPWO2019167850A1 (en) * 2018-02-27 2021-02-04 Agc株式会社 Three-dimensional crystallized glass, three-dimensional chemically strengthened glass and their manufacturing method
JP2020189782A (en) * 2019-03-22 2020-11-26 日本電気硝子株式会社 Li2O-Al2O3-SiO2 BASED CRYSTALLIZED GLASS
JPWO2020196171A1 (en) * 2019-03-22 2021-04-08 日本電気硝子株式会社 Li2O-Al2O3-SiO2 system crystallized glass
JP7244804B2 (en) 2019-03-22 2023-03-23 日本電気硝子株式会社 Li2O-Al2O3-SiO2-based crystallized glass
WO2020196171A1 (en) * 2019-03-22 2020-10-01 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
JP2020196664A (en) * 2019-04-01 2020-12-10 日本電気硝子株式会社 Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
WO2020203308A1 (en) * 2019-04-01 2020-10-08 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
JPWO2020203308A1 (en) * 2019-04-01 2021-04-30 日本電気硝子株式会社 Li2O-Al2O3-SiO2 system crystallized glass
WO2020217792A1 (en) * 2019-04-23 2020-10-29 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
CN113710625A (en) * 2019-04-23 2021-11-26 日本电气硝子株式会社 Li2O-Al2O3-SiO2Crystallized glass of system
EP3960716A4 (en) * 2019-04-23 2023-08-16 Nippon Electric Glass Co., Ltd. Li2o-al2o3-sio2-based crystallized glass

Similar Documents

Publication Publication Date Title
JP4000500B2 (en) Li2O-Al2O3-SiO2 based crystallized glass and crystalline glass
JP6152537B2 (en) Transparent, colorless, low titania beta, quartz, glass and ceramic materials
JP3767260B2 (en) Li2O-Al2O3-SiO2 based crystallized glass and crystalline glass
JP3997593B2 (en) Li2O-Al2O3-SiO2 based crystallized glass
JP5848258B2 (en) Beta quartz glass ceramic and related precursor glass
JP2022511634A (en) Transparent β quartz glass ceramic with low lithium content
JP4120897B2 (en) Infrared transmitting glass ceramics
KR101020694B1 (en) Alkali-free glass
WO2011152337A1 (en) Li2o-al2o3-sio2 based crystallised glass and production method for same
JP2006199538A (en) Li2O-Al2O3-SiO2 CRYSTALLINE GLASS AND CRYSTALLIZED GLASS AND MANUFACTURING METHOD OF Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS
JP6279657B2 (en) Lithium aluminosilicate glass, β-quartz and / or β-spodumene glass-ceramic, glass and glass-ceramic article, method of obtaining the same
JP2010510952A (en) Transparent, colorless, titania-free, beta, quartz, glass and ceramic materials
JPH11228181A (en) Li2-al2o3-sio2 based glass ceramics
JP2005053711A (en) Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same
JP2002154840A (en) Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS
JP2004075441A (en) Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
WO2011105246A1 (en) Process for production of las-system crystalline glass
JP4471075B2 (en) Mineral glass that can be ceramicized, preparation of glass-ceramic products, and products
JPH11100231A (en) Infrared transmissive glass ceramics
JP4287119B2 (en) Glass ceramic and method for producing the same
JP3269529B2 (en) Li2O-Al2O3-SiO2-based crystallized glass
JP5733621B2 (en) Method for producing Li2O-Al2O3-SiO2 crystallized glass
JP7121348B2 (en) LAS-based crystallizable glass, LAS-based crystallized glass, and method for producing the same
JP2012041260A (en) Li2o-al2o3-sio2 based crystallized glass and production method for the same
JP2012036075A (en) Method for producing silicate glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215