JP6075600B2 - Glass for pharmaceutical containers and glass tube using the same - Google Patents

Glass for pharmaceutical containers and glass tube using the same Download PDF

Info

Publication number
JP6075600B2
JP6075600B2 JP2012155176A JP2012155176A JP6075600B2 JP 6075600 B2 JP6075600 B2 JP 6075600B2 JP 2012155176 A JP2012155176 A JP 2012155176A JP 2012155176 A JP2012155176 A JP 2012155176A JP 6075600 B2 JP6075600 B2 JP 6075600B2
Authority
JP
Japan
Prior art keywords
glass
content
pharmaceutical
pharmaceutical containers
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012155176A
Other languages
Japanese (ja)
Other versions
JP2014015365A (en
Inventor
長壽 研
研 長壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012155176A priority Critical patent/JP6075600B2/en
Publication of JP2014015365A publication Critical patent/JP2014015365A/en
Application granted granted Critical
Publication of JP6075600B2 publication Critical patent/JP6075600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Glass Compositions (AREA)

Description

本発明は、医薬品容器を製造するために用いられるガラスおよびガラス管に関する。   The present invention relates to glass and glass tubes used for producing pharmaceutical containers.

従来、医薬品を保管する充填容器の材料として種々のガラスが用いられている。医薬品は大別して経口剤と注射剤とに区分され、その充填容器に用いられるガラスの種別は当該区分に応じて選択されている。   Conventionally, various glasses have been used as materials for filling containers for storing pharmaceuticals. Pharmaceuticals are roughly classified into oral preparations and injections, and the type of glass used for the filling container is selected according to the classification.

経口剤は、ドリンク剤、錠剤等種々の形態で容器に充填される。これらの経口剤は、消化器官を経て体内へ吸収されるものであるため、多くの場合、要求される管理品質が注射剤ほど高くなく、保存容器に求められる品位も高くない。したがって、経口剤の充填容器は、経口剤と空気中の水分や酸素、あるいは紫外線を遮断できれば良く、一般的に、安価なソーダ石灰ガラスが用いられている。   Oral preparations are filled in containers in various forms such as drinks and tablets. Since these oral preparations are absorbed into the body through the digestive tract, in many cases, the required management quality is not as high as that of an injection and the quality required for a storage container is not high. Therefore, it is only necessary that the oral filling container be able to block moisture, oxygen in the air, or ultraviolet rays from the oral preparation, and generally inexpensive soda lime glass is used.

一方、注射剤は、血管等から直接体内へ投与されるため、その充填容器には非常に厳しい品位が要求される。具体的には、充填された薬剤の変質等を防ぐため、空気中の水分や酸素、紫外線を遮断するだけでなく、容器を構成するアルカリ金属等の成分が薬剤へ溶出し難いことが求められる。このような要求から、注射剤の充填容器の材料としては、従来、ホウケイ酸ガラスが多く用いられている(例えば、特許文献1)。特許文献1に開示されるホウケイ酸ガラスは、ソーダ石灰ガラス等に比べてガラス中のアルカリ金属成分が溶出し難く、充填される薬剤を変質させ難い。   On the other hand, since an injection is directly administered into the body from a blood vessel or the like, a very strict quality is required for the filling container. Specifically, in order to prevent alteration of the filled medicine, it is required not only to block moisture, oxygen and ultraviolet rays in the air, but also to prevent components such as alkali metals constituting the container from being easily eluted into the medicine. . From such a demand, borosilicate glass has been conventionally used as a material for filling containers for injections (for example, Patent Document 1). The borosilicate glass disclosed in Patent Document 1 is less likely to elute alkali metal components in the glass than soda lime glass and the like, and it is difficult to alter the chemicals to be filled.

特開平7−206472号公報JP-A-7-206472

医薬品容器用ガラスには、上記要件以外にも高い性能が要求されている。例えば、安全性や破損時の損失コスト等の観点から、医薬品容器用ガラスは高い機械的強度を有することが好ましい。一般的にガラスは、傷が入ると機械的強度が著しく低下することが知られている。そして、従来のアンプル、バイアル、プレフィルドシリンジ、カートリッジ等の注射剤容器には、容器加工、検査、輸送、薬剤充填等の各工程で傷が付くことがあり、容器の強度低下原因となっている。   In addition to the above requirements, high performance is required for glass for pharmaceutical containers. For example, it is preferable that the glass for pharmaceutical containers has high mechanical strength from the viewpoints of safety, cost of loss at breakage, and the like. In general, it is known that the mechanical strength of glass is significantly reduced when scratched. And, conventional injectable containers such as ampoules, vials, prefilled syringes, cartridges, etc. may be damaged in each process such as container processing, inspection, transportation, drug filling, etc., causing the strength of the container to decrease. .

このような問題を鑑み、本発明の目的は、充填された薬剤に影響を与えるアルカリ金属成分の溶出量が少なく、尚且つ、傷が付き難く、割れにくいガラスおよびガラス管を提供することである。   In view of such problems, an object of the present invention is to provide a glass and a glass tube that have a small amount of elution of an alkali metal component that affects a filled medicine, are hardly scratched, and are not easily broken. .

本発明者等は、鋭意検討を行なった結果、ガラス組成を所定範囲に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の医薬容器用ガラスは、ガラス組成として、質量%で、SiO 50〜70%、B 0〜15%、Al 10〜20%、MgO 0〜5%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%を含み、アルカリ金属成分を含有しないことを特徴とする。なお、「アルカリ金属成分を含有しない」とは、含有するアルカリ金属成分の合量LiO+NaO+KOが0.1%未満であることを指す。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by regulating the glass composition within a predetermined range, and propose the present invention. That is, the glass for pharmaceutical containers of the present invention has, as a glass composition, mass%, SiO 2 50 to 70%, B 2 O 3 0 to 15%, Al 2 O 3 10 to 20%, MgO 0 to 5%, It contains 0 to 10% of CaO, 0 to 10% of SrO, and 0 to 10% of BaO, and does not contain an alkali metal component. Incidentally, "containing no alkali metal component" refers to the total amount Li 2 O + Na 2 O + K 2 O alkali metal components contained is less than 0.1%.

第二に、本発明の医薬容器用ガラスは、クラック抵抗の値が700gf以上であることが好ましい。クラック抵抗とは、ガラスの傷つきやすさの指標である。より詳細には、クラック抵抗とはビッカ−ス圧子を種々の荷重で15秒間押し付け、ダイアモンド圧子を除いて15秒までに圧痕の四隅から発生するクラック数をカウントした場合に、最大発生しうるクラック数(4ケ)に対する割合が50%になるときの荷重を示す。   Second, the glass for a pharmaceutical container of the present invention preferably has a crack resistance value of 700 gf or more. Crack resistance is an index of how easily glass is damaged. More specifically, the crack resistance is a crack that can occur at the maximum when the Vickers indenter is pressed with various loads for 15 seconds and the number of cracks generated from the four corners of the indentation is counted by 15 seconds excluding the diamond indenter. The load when the ratio to the number (4) is 50% is shown.

第三に、本発明の医薬容器用ガラスは、液相粘度が104.5dPa・s以上であることが好ましい。ここで、液相粘度とは、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。液相温度とは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持した後、結晶の析出する温度を測定した値を指す。 Third, the glass for a pharmaceutical container of the present invention preferably has a liquidus viscosity of 10 4.5 dPa · s or more. Here, the liquid phase viscosity refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method. The liquidus temperature is measured by measuring the temperature at which crystals precipitate after passing through a standard sieve 30 mesh (500 μm), putting the glass powder remaining on 50 mesh (300 μm) into a platinum boat and holding it in a temperature gradient furnace for 24 hours. Indicates the value.

第四に、本発明の医薬容器用ガラスは、30〜380℃における熱膨張係数が30〜45×10−7/℃であることが好ましい。 Fourthly, it is preferable that the glass for pharmaceutical containers of the present invention has a thermal expansion coefficient of 30 to 45 × 10 −7 / ° C. at 30 to 380 ° C.

第五に、本発明の医薬容器用ガラスは、ヨーロッパ薬局方第7.0版 3.2に記載の耐水性試験方法に基づいて測定したアルカリ溶出試験における中和滴定で使用される塩酸消費量が0.03ml/g・glass以下であることが好ましい。当該塩酸消費量はガラスのアルカリ溶出量に比例し、塩酸消費量が少ないほどガラスのアルカリ溶出量が少ないと言える。   Fifth, the glass for pharmaceutical containers of the present invention has a consumption amount of hydrochloric acid of 0.03 ml used in neutralization titration in an alkali dissolution test measured based on the water resistance test method described in European Pharmacopoeia 7.0 edition 3.2. / G · glass or less is preferable. The hydrochloric acid consumption is proportional to the alkali elution amount of the glass, and it can be said that the smaller the hydrochloric acid consumption, the smaller the alkali elution amount of the glass.

第六に、本発明の医薬容器用ガラスSnOを0.1〜1%さらに含有することが好ましい。 Sixth, it is preferable to further contain 0.1 to 1% of glass container glass SnO 2 of the present invention.

第七に、本発明のガラス管は上記医薬容器用ガラスから成ることが好ましい。   Seventh, it is preferable that the glass tube of the present invention is made of the glass for a pharmaceutical container.

本発明の医薬容器用ガラスによれば、アルカリ金属成分の溶出量を抑制しつつ、従来品に比べて傷が付き難く、割れ難いガラスを得ることができる。より詳細には、本発明の医薬容器用ガラスは、実質的にアルカリ金属酸化物を含まないため、薬剤へのアルカリ溶出を抑制することができる。したがって、本発明の医薬容器用ガラスを薬剤充填容器として用いた場合、アルカリ溶出による薬剤の変質を抑制し、薬剤の品質を良好に保つことができる。さらに、本発明の医薬容器用ガラスは、上記組成を有することから高いクラック抵抗を有する。したがって、本発明の医薬容器用ガラスは、傷がつきにくく、破損し難い。   According to the glass for pharmaceutical containers of the present invention, it is possible to obtain a glass that is less likely to be scratched and hard to break than conventional products while suppressing the elution amount of the alkali metal component. More specifically, since the glass for a pharmaceutical container of the present invention does not substantially contain an alkali metal oxide, it can suppress alkali elution into the drug. Therefore, when the glass for a pharmaceutical container of the present invention is used as a drug filling container, it is possible to suppress the quality change of the drug due to alkali elution and keep the drug quality good. Furthermore, since the glass for pharmaceutical containers of the present invention has the above composition, it has high crack resistance. Therefore, the glass for pharmaceutical containers of the present invention is hardly scratched and is not easily damaged.

本発明の医薬容器用ガラスは、ガラス組成として、質量%で、SiO 50〜70%、B 0〜15%、Al 10〜20%、MgO 0〜5%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%を含み、実質的にアルカリ金属酸化物を含まない。上記のように各成分の含有範囲を限定した理由を以下に説明する。なお、以下の組成範囲の説明において、%表示は、特に断りがある場合を除き、質量%を表す。 Pharmaceutical container glass of the present invention, as a glass composition, in mass%, SiO 2 50~70%, B 2 O 3 0~15%, Al 2 O 3 10~20%, 0~5% MgO, CaO 0 -10%, SrO 0-10%, BaO 0-10% is included, and an alkali metal oxide is not included substantially. The reason for limiting the content range of each component as described above will be described below. In the description of the composition range below,% display represents mass% unless otherwise specified.

SiOは、ガラスのネットワークを形成する成分であり、SiOの含有量は50〜70%である。SiOの含有量が50%より少ないと、ガラスの耐水性が悪くなったりクラック抵抗が低くなったりする傾向がある。SiOの含有量が70%より多くなると、溶融性、成形性が低下し易くなる。SiOの含有量の好ましい範囲は55〜70%、更に好ましくは、55〜68%、もっとも好ましくは57〜65%である。 SiO 2 is a component that forms a network of glass, and the content of SiO 2 is 50 to 70%. When the content of SiO 2 is less than 50%, the water resistance of the glass tends to deteriorate or the crack resistance tends to decrease. When the content of SiO 2 is more than 70%, the meltability and moldability tend to be lowered. The preferable range of the content of SiO 2 is 55 to 70%, more preferably 55 to 68%, and most preferably 57 to 65%.

は、ガラスのネットワークを形成する成分であり、Bの含有量は0〜15%である。Bの含有量が15%より多くなると、温度変化量に対する粘度変化量が大きくなり、ガラスを成形し難くなる。また、Bの含有量が15%より多くなると、ガラス原料を溶融する際に溶融窯表面から揮発する成分量が増加してガラスにブツ等の欠陥が発生し易くなる。Bの含有量の好ましい範囲は0〜13%、更に好ましくは3〜13%、もっとも好ましくは5〜12%である。 B 2 O 3 is a component that forms a glass network, and the content of B 2 O 3 is 0 to 15%. When the content of B 2 O 3 is more than 15%, the amount of change in viscosity with respect to the amount of change in temperature increases, making it difficult to mold the glass. Moreover, when the content of B 2 O 3 exceeds 15%, the amount of components that volatilize from the surface of the melting kiln when the glass raw material is melted increases, and defects such as blisters are likely to occur in the glass. The preferable range of the content of B 2 O 3 is 0 to 13%, more preferably 3 to 13%, and most preferably 5 to 12%.

Alも、ガラスのネットワークを形成する成分であり、Alの含有量は10〜25%である。Alの含有量が10%より少ないと、ガラスの耐水性が悪くなる傾向がある。Alの含有量が25%より多くなるとガラスの粘度が上昇し、ガラスを溶融する温度や成形する温度が高くなるため、製造エネルギーコストが高くなるという問題が生じる。Alの含有量の好ましい範囲は12〜23%、更に好ましくは13〜22%、もっとも好ましくは15〜20%である。 Al 2 O 3 is also a component that forms a glass network, and the content of Al 2 O 3 is 10 to 25%. When the content of Al 2 O 3 is less than 10%, the water resistance of the glass tends to deteriorate. When the content of Al 2 O 3 is more than 25%, the viscosity of the glass is increased, and the temperature for melting the glass and the temperature for forming the glass are increased, resulting in a problem that the production energy cost is increased. The preferable range of the content of Al 2 O 3 is 12 to 23%, more preferably 13 to 22%, and most preferably 15 to 20%.

MgOは、ガラスの熱膨張係数を調整し、また、高温粘度を低下させる成分である。MgOの含有量は0〜5%である。MgOの含有量が5%より多くなると、クラック抵抗が低くなり、ガラスが割れ易くなる。また、MgOの含有量が5%より多くなると、熱膨張係数が高くなるため、ガラスの製造工程等でサーマルショックにより破損する可能性が高くなる。MgOの含有量の好ましい範囲は0〜4%、更に好ましくは0〜3%である。   MgO is a component that adjusts the thermal expansion coefficient of glass and lowers the high-temperature viscosity. The content of MgO is 0 to 5%. When the content of MgO is more than 5%, the crack resistance is lowered and the glass is easily broken. Further, if the content of MgO exceeds 5%, the coefficient of thermal expansion increases, so that the possibility of breakage due to thermal shock in the glass manufacturing process or the like increases. The preferable range of the content of MgO is 0 to 4%, more preferably 0 to 3%.

CaOは、ガラスの熱膨張係数を調整し、また、高温粘度を低下させる成分である。CaOの含有量は0〜10%である。CaOの含有量が10%より多くなると、クラック抵抗が低くなり、ガラスが割れ易くなる。また、CaOの含有量が10%より多くなると、熱膨張係数が高くなるため、ガラス製造工程でのサーマルショックにより破損する可能性が高くなる。CaOの含有量の好ましい範囲は2〜10%、更に好ましくは3〜10%、もっとも好ましくは3〜8%である。   CaO is a component that adjusts the thermal expansion coefficient of glass and lowers the high-temperature viscosity. The content of CaO is 0 to 10%. When the content of CaO is more than 10%, the crack resistance is lowered and the glass is easily broken. Moreover, since the coefficient of thermal expansion will become high when content of CaO exceeds 10%, possibility that it will be damaged by the thermal shock in a glass manufacturing process becomes high. The preferable range of the content of CaO is 2 to 10%, more preferably 3 to 10%, and most preferably 3 to 8%.

SrOは、ガラスの熱膨張係数を調整し、また、高温粘度を低下させる成分である。SrOの含有量は0〜10%である。SrOの含有量が10%より多くなると、クラック抵抗が低くなり、ガラスが割れ易くなる。また、SrOの含有量が10%より多くなると、熱膨張係数が高くなるため、ガラス製造工程でのサーマルショックにより破損する可能性が高くなる。SrOの含有量の好ましい範囲は0〜8%、更に好ましくは0.5〜8%である。   SrO is a component that adjusts the thermal expansion coefficient of glass and lowers the high-temperature viscosity. The content of SrO is 0 to 10%. When the content of SrO is more than 10%, the crack resistance is lowered and the glass is easily broken. On the other hand, if the SrO content exceeds 10%, the thermal expansion coefficient increases, so that the possibility of breakage due to a thermal shock in the glass manufacturing process increases. The preferable range of the content of SrO is 0 to 8%, more preferably 0.5 to 8%.

BaOは、ガラスの熱膨張係数を調整し、また、高温粘度を低下させる成分である。BaOの含有量は0〜10%である。BaOの含有量が10%より多くなると、クラック抵抗が低くなり、ガラスが割れ易くなる。また、BaOの含有量が10%より多くなると、熱膨張係数が高くなるため、ガラス製造工程でのサーマルショックにより破損する可能性が高くなる。BaOの含有量の好ましい範囲は0〜8%、更に好ましくは0〜7%、もっとも好ましくは0.5〜6%である。   BaO is a component that adjusts the thermal expansion coefficient of glass and lowers the high-temperature viscosity. The content of BaO is 0 to 10%. When the content of BaO is more than 10%, the crack resistance is lowered and the glass is easily broken. Moreover, since the coefficient of thermal expansion will become high when content of BaO exceeds 10%, possibility that it will be damaged by the thermal shock in a glass manufacturing process becomes high. The preferable range of the content of BaO is 0 to 8%, more preferably 0 to 7%, and most preferably 0.5 to 6%.

本発明の医薬品用ガラスは、上記成分以外に、ZnO、Sb、As、SnO、Cl、F等の成分をさらに含有して良い。 The pharmaceutical glass of the present invention may further contain components such as ZnO, Sb 2 O 3 , As 2 O 3 , SnO 2 , Cl, and F in addition to the above components.

ZnOは、ガラスの熱膨張係数を調整し、また、高温粘度を低下させる成分であり、ZnOの含有量は好ましくは0〜5%である。ZnOの含有量が5%より多くなると、クラック抵抗が低くなり、ガラスが割れ易くなる。また、ZnOの含有量が5%より多くなると、熱膨張係数が高くなるため、ガラス製造工程でのサーマルショックにより破損する可能性が高くなる。ZnOの含有量の、より好ましい範囲は0〜4%、更に好ましくは0〜3%、もっとも好ましくは0〜2%である。   ZnO is a component that adjusts the thermal expansion coefficient of glass and lowers the high-temperature viscosity, and the content of ZnO is preferably 0 to 5%. When the ZnO content is more than 5%, the crack resistance is lowered and the glass is easily broken. Moreover, since the thermal expansion coefficient will become high when content of ZnO exceeds 5%, possibility that it will be damaged by the thermal shock in a glass manufacturing process becomes high. A more preferable range of the content of ZnO is 0 to 4%, more preferably 0 to 3%, and most preferably 0 to 2%.

SbとAsは、ガラス溶融時の清澄性(泡切れ)を向上する成分であり、SbとAsの含有量は各々好ましくは0〜1%である。SbとAsの含有量が1%より多くなると、ガラスの加工時にSbやAsが還元してコロイドとして析出し、ガラスが着色してしまうおそれがある。SbとAsの含有量の、より好ましい範囲は0〜0.8%、更に好ましくは0〜0.6%、もっとも好ましくは0〜0.5%である。 Sb 2 O 3 and As 2 O 3 are components that improve clarity (foaming) during glass melting, and the contents of Sb 2 O 3 and As 2 O 3 are each preferably 0 to 1%. . If the content of Sb 2 O 3 and As 2 O 3 is more than 1%, Sb and As may be reduced and precipitated as a colloid during glass processing, and the glass may be colored. A more preferable range of the contents of Sb 2 O 3 and As 2 O 3 is 0 to 0.8%, more preferably 0 to 0.6%, and most preferably 0 to 0.5%.

SnOは、ガラス溶融時の清澄性を向上する成分であり、SnOの含有量は好ましくは0〜1%である。SnOの含有量が1%より多くなると、ガラスの加工時にSnが還元してコロイドとして析出し、ガラスが着色してしまうおそれがある。SnOの含有量の、より好ましい範囲は0.1〜0.5%、更に好ましくは0.1〜0.3%、もっとも好ましくは0.1〜0.3%である。 SnO 2 is a component to improve the clarity of the glass during melting, the content of SnO 2 is preferably 0 to 1%. If the SnO 2 content is more than 1%, Sn may be reduced during glass processing and deposited as a colloid, and the glass may be colored. A more preferable range of the content of SnO 2 is 0.1 to 0.5%, more preferably 0.1 to 0.3%, and most preferably 0.1 to 0.3%.

Clは、ガラス製造時の清澄性を向上する成分であり、Clの含有量は好ましくは0〜1%である。Clの含有量が1%より多くなると、ガラスの生産時に蒸発したClが水分と反応して、生産設備の金属を侵食する可能性がある。Clの含有量の、より好ましい範囲は0〜0.5%、更に好ましくは0〜0.3%、もっとも好ましくは0.01〜0.3%である。   Cl is a component that improves the clarity during glass production, and the Cl content is preferably 0 to 1%. If the Cl content is more than 1%, Cl evaporated during glass production may react with moisture and corrode the metal in the production facility. A more preferable range of the Cl content is 0 to 0.5%, more preferably 0 to 0.3%, and most preferably 0.01 to 0.3%.

Fは、ガラス溶融時の清澄性を向上する成分であり、Fの含有量は好ましくは0〜1%である。Fは、環境負荷が高い物質であるため、できる限り使用量を抑制することが好ましい。Fの含有量の、より好ましい範囲は0〜0.5%、更に好ましくは0〜0.3%、もっとも好ましくは0〜0.2%である。   F is a component that improves the clarity when glass is melted, and the content of F is preferably 0 to 1%. Since F is a substance with a high environmental load, it is preferable to suppress the usage amount as much as possible. A more preferable range of the content of F is 0 to 0.5%, more preferably 0 to 0.3%, and most preferably 0 to 0.2%.

上記の成分以外にも、本発明の効果を大幅に損なわない限り、他の成分を添加しても良い。例えば耐熱性を向上させるためにZrOを0〜5%、紫外線を遮蔽するためにTiOを0〜5%添加してもよい。 In addition to the above components, other components may be added as long as the effects of the present invention are not significantly impaired. For example, 0 to 5% of ZrO 2 may be added to improve heat resistance, and 0 to 5% of TiO 2 may be added to shield ultraviolet rays.

本発明の医薬容器用ガラスのクラック抵抗の値は、好ましくは700gf以上、より好ましくは800gf以上、更に好ましくは900gf以上、もっとも好ましくは1000gf以上である。クラック抵抗の値は、ガラスの傷つきやすさを表す数値である。クラック抵抗値が700gfより低いとガラスを成形する際、および、ガラスからアンプル、バイアル、プレフィルドシリンジ等の容器を加工ならびに製造する際に傷がつき易くなり、ガラスの機械的強度が低下し易くなる。   The value of crack resistance of the glass for pharmaceutical containers of the present invention is preferably 700 gf or more, more preferably 800 gf or more, still more preferably 900 gf or more, and most preferably 1000 gf or more. The value of the crack resistance is a numerical value that indicates how easily glass is damaged. When the crack resistance value is lower than 700 gf, the glass tends to be damaged when molding glass and when processing and manufacturing containers such as ampoules, vials, and prefilled syringes from glass, and the mechanical strength of the glass tends to decrease. .

本発明の医薬容器用ガラスの液相粘度は104.5dPa・s以上であることが好ましい。液相粘度は、より好ましくは104.8dPa・s以上、更に好ましくは105.0dPa・s以上、もっとも好ましくは105.3dPa・s以上である。液相粘度が104.5dPa・sより低いとダンナー法等を用いたガラスの成形が困難となるため、本発明の医薬容器用ガラス管を大量且つ安価に製造することが困難となる。 The liquid viscosity of the glass for a pharmaceutical container of the present invention is preferably 10 4.5 dPa · s or more. The liquid phase viscosity is more preferably 10 4.8 dPa · s or more, further preferably 10 5.0 dPa · s or more, and most preferably 10 5.3 dPa · s or more. If the liquid phase viscosity is lower than 10 4.5 dPa · s, it becomes difficult to form a glass using the Danner method or the like, so that it is difficult to produce the glass tube for a pharmaceutical container of the present invention in a large amount and at a low cost.

本発明の医薬容器用ガラスは、30〜380℃における熱膨張係数が30〜45×10−7/℃であることが好ましい。熱膨張係数はディラトメーターを使用して測定を行った値を指す。熱膨張係数は、より好ましくは30〜40×10−7/℃、さらに好ましくは30〜38×10−7/℃、もっとも好ましくは32〜38×10−7/℃である。熱膨張係数が30×10−7/℃より低くなると、ガラスの粘度が上昇する傾向があり、溶融温度や成形温度が上昇してガラスを製造し難くなる。また、熱膨張係数が45×10−7/℃より高くなると、ガラスの製造工程、加工工程、滅菌工程等でサーマルショックにより破損する可能性が高くなる。 The glass for a pharmaceutical container of the present invention preferably has a thermal expansion coefficient of 30 to 45 × 10 −7 / ° C. at 30 to 380 ° C. The coefficient of thermal expansion refers to the value measured using a dilatometer. Thermal expansion coefficient, more preferably 30 to 40 × 10 -7 / ° C., more preferably 30~38 × 10 -7 / ℃, and most preferably 32~38 × 10 -7 / ℃. When the thermal expansion coefficient is lower than 30 × 10 −7 / ° C., the viscosity of the glass tends to increase, and the melting temperature and the molding temperature increase to make it difficult to produce the glass. Moreover, if the thermal expansion coefficient is higher than 45 × 10 −7 / ° C., there is a high possibility of breakage due to thermal shock in the glass manufacturing process, processing process, sterilization process, and the like.

本発明の医薬容器用ガラスは、ヨーロッパ薬局方第7.0版 3.2(European Pharmacopeia 7.0 3.2 Containers, 3.2.1 Glass containers for pharmaceutical us, Test B. Hydrolytic resistance of glass grains)に記載の耐水性試験における中和滴定で使用される塩酸消費量が0.03ml/g・glass以下であることが好ましい。塩酸消費量が0.03ml/g・glassより多いと、すなわちガラスからのアルカリ溶出量が多いと、医薬容器用ガラスを医薬品容器として用いた場合に、充填された薬剤が変質し易くなる傾向がある。したがって、上記塩酸消費量は、より好ましくは、0.02ml/g・glass以下、もっとも好ましくは0.01ml/g・glass以下である。   The glass for pharmaceutical containers of the present invention is neutralized in a water resistance test described in European Pharmacopeia 7.0 version 3.2 (European Pharmacopeia 7.0 3.2 Containers, 3.2.1 Glass containers for pharmaceutical us, Test B. Hydrolytic resistance of glass grains). The consumption of hydrochloric acid used in the titration is preferably 0.03 ml / g · glass or less. If the amount of hydrochloric acid consumed is greater than 0.03 ml / g · glass, that is, if the amount of alkali elution from the glass is large, when the glass for a pharmaceutical container is used as a pharmaceutical container, the charged medicine tends to be easily altered. is there. Therefore, the consumption of hydrochloric acid is more preferably 0.02 ml / g · glass or less, and most preferably 0.01 ml / g · glass or less.

本発明の医薬容器用ガラス管の製造方法を例示する。本発明の医薬容器用ガラス管の製造方法としてはダンナー法が好適である。先ず、上記ガラス組成になるように、ガラス原料を調合して、ガラスバッチを作製する。次いで、このガラスバッチを1550〜1700℃の溶融窯に連続投入して溶融、清澄した後、得られた溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、当該先端部からガラス管を引き出す。なお、本発明の医薬容器用ガラス管の製造方法はダンナー法に限らず、従来周知の任意の手法を用いて良い。例えば、ベロー法も本発明の医薬容器用ガラス管の製造方法として有効な方法である。   The manufacturing method of the glass tube for pharmaceutical containers of this invention is illustrated. The Danner method is suitable as a method for producing the glass tube for a pharmaceutical container of the present invention. First, glass raw materials are prepared so as to have the above glass composition, and a glass batch is prepared. Next, the glass batch was continuously charged into a melting furnace at 1550 to 1700 ° C., melted and clarified, and then the obtained molten glass was wound around a rotating refractory while blowing air from the tip of the refractory, Pull out the glass tube from the tip. In addition, the manufacturing method of the glass tube for pharmaceutical containers of this invention is not restricted to the Danner method, You may use the conventionally well-known arbitrary methods. For example, the bellows method is also an effective method for producing the glass tube for a pharmaceutical container of the present invention.

以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示であり、本発明は、以下の実施例に何ら限定されない。表1は、本発明の実施例(試料No.1〜7)及び比較例(試料No.8)を示している。   Hereinafter, based on an Example, this invention is demonstrated in detail. The following examples are merely illustrative, and the present invention is not limited to the following examples. Table 1 shows Examples (Sample Nos. 1 to 7) and Comparative Examples (Sample No. 8) of the present invention.

まず表1に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチを白金坩堝に入れて1600〜1700℃で4時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出して板状に成形した後、所定のアニール処理(650℃に設定した電気炉内で炉冷)を行った。最後に、得られたガラス試料について、種々の特性を評価した。   First, after preparing a glass raw material so that it might become a glass composition of Table 1, the obtained glass batch was put into the platinum crucible, and it melted at 1600-1700 degreeC for 4 hours. Next, after the obtained molten glass was poured out on a carbon plate and formed into a plate shape, a predetermined annealing treatment (furnace cooling in an electric furnace set at 650 ° C.) was performed. Finally, various properties of the obtained glass samples were evaluated.

熱膨張係数は、ディラトメーターを用いて、30〜380℃の温度範囲における平均線熱膨張係数を測定した値である。   A thermal expansion coefficient is the value which measured the average linear thermal expansion coefficient in the temperature range of 30-380 degreeC using the dilatometer.

歪点、徐冷点は、ASTM C336の方法に基づいて測定した値である。   The strain point and annealing point are values measured based on the method of ASTM C336.

軟化点は、ASTM C338の方法に基づいて測定した値である。   The softening point is a value measured based on the method of ASTM C338.

高温粘度104.0dPa・sにおける温度T104.0、103.0dPa・sにおける温度T103.0、102.5dPa・sにおける温度102.5は、各々白金球引き上げ法で測定した値である。 Temperature T10 4.0 in high temperature viscosity 10 4.0 dPa · s, 10 3.0 Temperature T10 3.0 in dPa · s, 10 2.5 Temperature 10 2.5 in dPa · s are each platinum ball pulling method It is the value measured by.

液相温度は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持した後、結晶の析出する温度を測定した値を指す。   The liquid phase temperature passed through a standard sieve 30 mesh (500 μm), the glass powder remaining in 50 mesh (300 μm) was placed in a platinum boat, held in a temperature gradient furnace for 24 hours, and then the temperature at which crystals precipitated was measured. Points to the value.

液相粘度は、液相温度におけるガラスの粘度を白金球引き上げ法を用いて測定した値である。   The liquid phase viscosity is a value obtained by measuring the viscosity of the glass at the liquid phase temperature using a platinum ball pulling method.

耐水性試験における塩酸消費量は、ヨーロッパ薬局方第7.0版 3.2(European Pharmacopeia 7.0 3.2 Containers, 3.2.1 Glass containers for pharmaceutical us, Test B. Hydrolytic resistance of glass grains)に基づいて測定した。   Hydrochloric acid consumption in the water resistance test was measured based on European Pharmacopeia 7.0 edition 3.2 (European Pharmacopeia 7.0 3.2 Containers, 3.2.1 Glass containers for pharmaceutical us, Test B. Hydrolytic resistance of glass grains).

ガラスのクラック抵抗は、和田らが提案した方法(M.Wada et al. Proc.,the Xth ICG,vol. 11, Ceram. Soc., Japan, Kyoto, 1974, p39)によって求めた。この方法は、ビッカ−ス硬度計のステージに板状の試料ガラスを置き、この試料ガラスの表面に菱形状のダイアモンド圧子を種々の荷重で15秒間押し付けるものである。そして、ダイアモンド圧子を除いて15秒までに圧痕の四隅から発生するクラック数をカウントし、最大発生しうるクラック数(4ケ)に対する割合を求めクラック発生率とした。また、クラック発生率が50%になるときの荷重を「クラック抵抗」とした。クラック抵抗が大きいほどクラックが発生しにくく、ガラスに傷がつきにくいことを示す。なお、クラック発生率は、同一荷重で20回測定し、その平均値から求めた。また、クラック抵抗は、湿度の影響を受けるため、気温25℃、湿度30%の条件で測定を行った。   The crack resistance of the glass was determined by the method proposed by Wada et al. (M. Wada et al. Proc., The Xth ICG, vol. 11, Ceram. Soc., Japan, Kyoto, 1974, p39). In this method, a plate-shaped sample glass is placed on the stage of a Vickers hardness tester, and a diamond-shaped diamond indenter is pressed against the surface of the sample glass with various loads for 15 seconds. Then, the number of cracks generated from the four corners of the indentation by 15 seconds excluding the diamond indenter was counted, and the ratio to the maximum number of cracks that could be generated (4 pieces) was determined to be the crack generation rate. Further, the load when the crack occurrence rate was 50% was defined as “crack resistance”. As the crack resistance is larger, the crack is less likely to occur and the glass is less likely to be damaged. The crack occurrence rate was measured 20 times with the same load, and obtained from the average value. In addition, since crack resistance is affected by humidity, measurement was performed under conditions of an air temperature of 25 ° C. and a humidity of 30%.

表1に示すように、試料No.1〜7は、塩酸消費量が0.01ml/g・glass以下であり、アルカリ溶出が少ないガラスであった。一方、試料No.8は、塩酸消費量が0.04ml/g・glassであり、アルカリ溶出が多いガラスであった。また、試料No.1〜7は、クラック抵抗が1000gf以上であり、傷が付き難いガラスであった。一方、試料No.8は、クラック抵抗が600gfであり、傷がつき易いガラスであった。   As shown in Table 1, sample no. Nos. 1 to 7 were glasses with a consumption of hydrochloric acid of 0.01 ml / g · glass or less and little alkali elution. On the other hand, sample No. No. 8 was a glass having a hydrochloric acid consumption of 0.04 ml / g · glass and a large amount of alkali elution. Sample No. Nos. 1 to 7 were glasses having a crack resistance of 1000 gf or more and hardly scratched. On the other hand, sample No. No. 8 was a glass having a crack resistance of 600 gf and easily damaged.

本発明の医薬品容器用ガラス管は、医薬品容器の材料等として有用である。   The glass tube for a pharmaceutical container of the present invention is useful as a material for a pharmaceutical container.

Claims (6)

質量%で、SiO 50〜70%、B 0〜15%、Al 10〜20%、MgO 0〜2.5%、CaO 〜10%、SrO 0〜10%、BaO 0〜10%を含有し、アルカリ金属酸化物を実質的に含まず、且つ管形状であることを特徴とする医薬品容器用ガラス。 By mass%, SiO 2 50~70%, B 2 O 3 0~15%, Al 2 O 3 10~20%, MgO 0~2.5%, CaO 2 ~10%, SrO 0~10%, BaO A glass for pharmaceutical containers, containing 0 to 10%, substantially free of alkali metal oxides, and having a tubular shape. クラック抵抗値が700gf以上であることを特徴とする、請求項1に記載の医薬品容器用ガラス。   The glass for pharmaceutical containers according to claim 1, wherein the crack resistance value is 700 gf or more. 液相粘度が104.5dPa・s以上であることを特徴とする、請求項1または2に記載の医薬品容器用ガラス。 Liquid phase viscosity is 10 < 4.5 > dPa * s or more, Glass for pharmaceutical containers of Claim 1 or 2 characterized by the above-mentioned. 30〜380℃における熱膨張係数が30〜45×10−7/℃であることを特徴とする請求項1〜3の何れかに記載の医薬品容器用ガラス。 The glass for pharmaceutical containers according to any one of claims 1 to 3, wherein a coefficient of thermal expansion at 30 to 380 ° C is 30 to 45 × 10 -7 / ° C. ヨーロッパ薬局方第7.0版 3.2に記載の耐水性試験における中和滴定で使用される塩酸消費量が0.03ml/g・glass以下であることを特徴とする、請求項1〜4の何れかに記載の医薬品容器用ガラス。 The amount of hydrochloric acid used in neutralization titration in the water resistance test described in European Pharmacopoeia 7.0, 3.2, is 0.03 ml / g · glass or less, according to any one of claims 1 to 4, The glass for pharmaceutical containers as described. さらにSnOを0.1〜1質量%含有することを特徴とする請求項1〜5の何れかに記載の医薬品容器用ガラス。 Further pharmaceutical container glass according to claim 1, the SnO 2, characterized in that it contains 0.1 to 1 wt%.
JP2012155176A 2012-07-11 2012-07-11 Glass for pharmaceutical containers and glass tube using the same Active JP6075600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155176A JP6075600B2 (en) 2012-07-11 2012-07-11 Glass for pharmaceutical containers and glass tube using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155176A JP6075600B2 (en) 2012-07-11 2012-07-11 Glass for pharmaceutical containers and glass tube using the same

Publications (2)

Publication Number Publication Date
JP2014015365A JP2014015365A (en) 2014-01-30
JP6075600B2 true JP6075600B2 (en) 2017-02-08

Family

ID=50110407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155176A Active JP6075600B2 (en) 2012-07-11 2012-07-11 Glass for pharmaceutical containers and glass tube using the same

Country Status (1)

Country Link
JP (1) JP6075600B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323139B2 (en) * 2014-04-17 2018-05-16 旭硝子株式会社 Glass for pharmaceutical or cosmetic containers
DE102014111646A1 (en) * 2014-08-14 2016-02-18 Schott Ag Process for the production of glass tubes and uses thereof
JP6469390B2 (en) * 2014-09-01 2019-02-13 国立大学法人 東京大学 Glass material and manufacturing method thereof
WO2016035619A1 (en) * 2014-09-05 2016-03-10 日本電気硝子株式会社 Borosilicate glass and glass tube for medicament container
WO2016093176A1 (en) * 2014-12-10 2016-06-16 日本電気硝子株式会社 Glass for medicine container and glass tube for medicine container
CN111386250A (en) * 2018-03-22 2020-07-07 日本电气硝子株式会社 Precision glass tube and method for manufacturing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206472A (en) * 1994-01-12 1995-08-08 Nippon Electric Glass Co Ltd Borosilicate glass for medicine
JP5378158B2 (en) * 2003-02-19 2013-12-25 日本電気硝子株式会社 Cover glass for semiconductor packages
WO2005042437A2 (en) * 2003-09-30 2005-05-12 Schott Ag Antimicrobial glass and glass ceramic surfaces and their production
JP2008013434A (en) * 2007-09-03 2008-01-24 Nippon Electric Glass Co Ltd Nonalkali glass excellent in crack resistance
JP5704395B2 (en) * 2010-03-29 2015-04-22 日本電気硝子株式会社 Glass roll package
JP5920218B2 (en) * 2010-09-30 2016-05-18 旭硝子株式会社 Method for melting glass raw material, method for producing molten glass, and method for producing glass product
DE102010054967B4 (en) * 2010-12-08 2014-08-28 Schott Ag Boreless universal glass and its use

Also Published As

Publication number Publication date
JP2014015365A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP6455799B2 (en) Glass tubes for pharmaceutical containers and pharmaceutical containers
JP6694167B2 (en) Borosilicate glass for pharmaceutical containers
JP6075600B2 (en) Glass for pharmaceutical containers and glass tube using the same
JP2014037343A (en) Glass for medicine container and glass tube using the same
JP2014169209A (en) Medicine container and method for producing the same
JP6810104B2 (en) Aluminum-free borosilicate glass
EP3190096B1 (en) Borosilicate glass for pharmaceutical container and glass tube for pharmaceutical container
JP6627779B2 (en) Glass for pharmaceutical containers and glass tubes for pharmaceutical containers
JP6709501B2 (en) Glass for drug container and glass tube for drug container
CN113582538A (en) Borosilicate glass composition, borosilicate glass, and preparation method and application thereof
CN107848871B (en) Borosilicate glass for medical containers
JPH07206472A (en) Borosilicate glass for medicine
JP6380577B2 (en) Pharmaceutical container and manufacturing method thereof
WO2014069177A1 (en) Medicinal glass and medicinal glass tube
WO2020153294A1 (en) Glass for medicine container, and glass tube for medicine container and medicine container using same
JPWO2017115728A1 (en) Method for producing aluminoborosilicate glass for pharmaceutical containers
WO2017110927A1 (en) Mixed material for silicate glass and method for manufacturing tube glass using same
JP7118587B2 (en) borosilicate glass for pharmaceutical containers
JP2014237562A (en) Borosilicate glass for medicament container
JPH0959037A (en) Boro-silicate glass for medicine
JP6653073B2 (en) Borosilicate glass for pharmaceutical containers
WO2020138063A1 (en) Glass for medicine container, and medicine container glass tube and medicine container using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R150 Certificate of patent or registration of utility model

Ref document number: 6075600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150