JP6653073B2 - Borosilicate glass for pharmaceutical containers - Google Patents

Borosilicate glass for pharmaceutical containers Download PDF

Info

Publication number
JP6653073B2
JP6653073B2 JP2015173792A JP2015173792A JP6653073B2 JP 6653073 B2 JP6653073 B2 JP 6653073B2 JP 2015173792 A JP2015173792 A JP 2015173792A JP 2015173792 A JP2015173792 A JP 2015173792A JP 6653073 B2 JP6653073 B2 JP 6653073B2
Authority
JP
Japan
Prior art keywords
glass
borosilicate glass
container
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015173792A
Other languages
Japanese (ja)
Other versions
JP2017048092A (en
Inventor
美樹 木村
美樹 木村
晋作 西田
晋作 西田
長壽 研
研 長壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015173792A priority Critical patent/JP6653073B2/en
Publication of JP2017048092A publication Critical patent/JP2017048092A/en
Application granted granted Critical
Publication of JP6653073B2 publication Critical patent/JP6653073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はバイアル、アンプル等の管瓶用ガラスや注射器のシリンジに使用される医薬容器用ホウケイ酸ガラスに関する。   The present invention relates to borosilicate glass for pharmaceutical containers used for glass for tube bottles such as vials and ampoules and for syringes of syringes.

バイアル、アンプル等の医薬容器用ホウケイ酸ガラスには、下記に示すような特性が要求される。
(a)充填される薬液中の成分とガラス中の成分が反応しないこと
(b)充填される薬液を汚染しないように化学的耐久性や加水分解抵抗性が高いこと、また、それが容器加工時の種々の熱処理後も維持されること
(c)ガラス管の製造工程や、バイアル、アンプル等への加工時に、サーマルショックによる破損が生じ難いように低熱膨張係数であること
(d)バイアル、アンプル等への加工後に、容器内面がガラスからの蒸発物などで劣化しないよう、加工時の熱量が低減できること
(e)泡や異物が少なく、外観品質に優れていること
これらの要求特性を満足する標準的な医薬容器用ホウケイ酸ガラスは、構成成分として、SiO、B、Al、NaO、KO、CaO、BaOと少量の清澄剤を含有している。
Borosilicate glass for pharmaceutical containers such as vials and ampoules is required to have the following properties.
(A) The components in the chemical solution to be filled do not react with the components in the glass. (B) The chemical solution to be filled has high chemical durability and hydrolysis resistance so as not to contaminate the chemical solution. (C) having a low coefficient of thermal expansion so as not to be easily damaged by a thermal shock during a glass tube manufacturing process or processing into a vial, an ampule, etc. (d) a vial, After processing into an ampoule etc., the amount of heat during processing can be reduced so that the inner surface of the container does not deteriorate due to evaporate from the glass, etc. (e) There are few bubbles and foreign substances, and the appearance quality is excellent. standard pharmaceutical container borosilicate glass is present as a component, contains a SiO 2, B 2 O 3, Al 2 O 3, Na 2 O, K 2 O, CaO, BaO and a small amount of fining agents

特開2014−214084JP 2014-214084A 特開2001−89158JP 2001-89158 A

近年、充填される薬液の開発が進み、より薬効の高い薬液が使用されつつある。これらの薬液の中には、化学的に不安定で変性しやすく、ガラスとの反応性が高いものもある。これに伴い、バイアルやアンプルを構成する医薬容器用ホウケイ酸ガラスには、従来以上に化学的耐久性や加水分解抵抗性の高いガラスが要求されている。また、ガラスがBaOを含有していると、ガラス溶融時にアルミナ系耐火物との反応によってバリウム長石結晶が析出し易くなり生産性が低下すると共に、ガラスから溶出したBaイオンが薬液中の硫酸イオンと反応して不溶性の沈殿物を発生させる恐れがある。   In recent years, the development of a drug solution to be filled has progressed, and a drug solution having a higher medicinal effect is being used. Some of these chemicals are chemically unstable and easily denatured, and have high reactivity with glass. Along with this, borosilicate glass for pharmaceutical containers constituting vials and ampoules is required to have glass having higher chemical durability and hydrolysis resistance than ever before. Further, when the glass contains BaO, the barium feldspar crystal is easily precipitated by the reaction with the alumina-based refractory when the glass is melted, thereby lowering the productivity. In addition, Ba ions eluted from the glass are converted into sulfate ions in the chemical solution. And may form an insoluble precipitate.

また、医薬容器に加工された後のガラス中に泡が存在すると、充填されている薬液の効能には影響しないが、泡の存在に伴う光学的な欠陥が薬液中の浮遊異物と誤認され、不良品として廃棄されてしまう恐れがある。   Also, if bubbles are present in the glass after being processed into a medical container, it does not affect the efficacy of the filled chemical solution, but optical defects due to the presence of bubbles are mistaken as floating foreign substances in the chemical solution, There is a risk of being discarded as defective.

このような事情から、例えば特許文献1では、BaOを含有せず加水分解抵抗性が高いガラスが提案されている。また、特許文献2では、ガラスを製造する際に清澄剤に適した条件で溶融することにより泡の少ないガラスの製造方法が提案されている。   Under such circumstances, for example, Patent Document 1 proposes a glass that does not contain BaO and has high hydrolysis resistance. Patent Document 2 proposes a method for producing glass with less bubbles by melting the glass under conditions suitable for a fining agent.

ところで、バイアルやアンプルなどの医薬容器は、ガラス管を局所的にバーナーで加熱して加工することで作製される。このバーナー加熱時に、ガラス中のBやNaOなどが蒸発し、医薬容器内面に凝縮し、異質層が形成される場合がある。異質層が形成されるとガラスの化学的耐久性や加水分解抵抗性が実質的に低下し、薬液の保存中や薬液充填後のオートクレーブ処理時に異質層からBやNaOなどが溶出し、薬液成分の変質や薬液のpH変化などを引き起こす可能性がある。特に特許文献1のようなBaOを含まないガラスは、BaOを含むガラスに比べて加工性が低いことから、容器加工時に従来よりも大きな熱量が必要になる。その結果、ガラス中からのBやNaOなどの蒸発量が増加し易い。 By the way, pharmaceutical containers such as vials and ampoules are produced by locally heating and processing glass tubes with burners. During the heating of the burner, B 2 O 3 , Na 2 O and the like in the glass evaporate and condense on the inner surface of the medicine container, and a foreign layer may be formed. When the foreign layer is formed, the chemical durability and hydrolysis resistance of the glass substantially decrease, and B 2 O 3 , Na 2 O, and the like are removed from the foreign layer during storage of the chemical solution or during autoclave treatment after filling the chemical solution. It may be eluted and may cause deterioration of the chemical component or a change in the pH of the chemical. In particular, glass that does not contain BaO as in Patent Literature 1 has lower workability than glass that contains BaO, and therefore requires a larger amount of heat when processing containers. As a result, the amount of evaporation of B 2 O 3 and Na 2 O from the glass tends to increase.

また、医薬容器に加工された後のガラス中に認められる泡は、ガラス製造時に発生した泡と、容器加工のためのバーナー加熱時に発生した泡に大別される。特許文献2では、ガラス製造時の泡を低減するために、種々の清澄剤に対して適切な条件で溶融することを提案しているが、バーナー加熱時に発生する泡を低減することはできない。   In addition, bubbles observed in glass after being processed into a pharmaceutical container are roughly classified into bubbles generated during glass production and bubbles generated during heating of a burner for processing the container. Patent Literature 2 proposes that various fining agents be melted under appropriate conditions in order to reduce bubbles during glass production. However, bubbles generated during burner heating cannot be reduced.

本発明の目的は、BaOを含有しないにも関わらず、加工性が良く、しかも容器加工時のバーナー加熱で泡が発生しにくい医薬容器用ホウケイ酸ガラスを提供することである。   It is an object of the present invention to provide a borosilicate glass for a pharmaceutical container which has good processability despite being free of BaO, and hardly generates bubbles due to heating of a burner during container processing.

発明者等は種々の実験を行った結果、容器加工時のバーナー加熱に伴う泡の発生は、ガラス中に残存する水分が熱により気化することに起因していること、及びガラス中の水分量を適切な範囲に制御することでバーナー加熱時に発生する泡を低減できることを見出した。またアルカリ金属酸化物、アルカリ土類金属酸化物及びBの合量に対するAlの含有量の比率を規制することにより、加水分解性等の特性を低下させることなく加工性を改善できることを見出した。 As a result of various experiments, the inventors have found that the generation of bubbles due to the heating of the burner at the time of processing the container is due to the fact that the moisture remaining in the glass is vaporized by heat, and the amount of moisture in the glass It has been found that by controlling the temperature in an appropriate range, the bubbles generated at the time of heating the burner can be reduced. In addition, by regulating the ratio of the content of Al 2 O 3 to the total amount of the alkali metal oxide, alkaline earth metal oxide and B 2 O 3 , the workability can be improved without deteriorating properties such as hydrolyzability. I found that it can be improved.

本発明の医薬容器用ホウケイ酸ガラスは、質量%でSiO 65〜80%、Al 5〜15%、B 2〜12%、NaO 3〜10%、KO 0〜5%、LiO 0〜5%、MgO 0〜5%、CaO 0〜5%、SrO 0〜5%含有し、質量比でAl/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が0.35〜0.60であり、BaOを実質的に含まず、ガラス中の水分量がβ−OH値換算で0.2〜0.7/mmであることを特徴とする。尚、「Al/(NaO+KO+LiO+MgO+CaO+SrO+B)」とは、Alの含有量を、NaO、KO、LiO、MgO、CaO、SrO及びBの含有量の合量で除した値である。また、「BaOを実質的に含まない」とは、BaOを積極的に添加しないという意味であり、不純物として混入するものまで排除する主旨ではない。より具体的にはBaOの含有量が質量%で0.05%以下であることを意味する。さらに、ガラス中の水分量を表すβ−OH値は、以下の式を用いて求めることができ、β−OHの値が小さいほど、ガラス中の水分量が少ないことを意味する。 Pharmaceutical container borosilicate glass of the present invention, SiO 2 65-80% by mass%, Al 2 O 3 5~15% , B 2 O 3 2~12%, Na 2 O 3~10%, K 2 O 0~5%, Li 2 O 0~5% , 0~5% MgO, CaO 0~5%, containing SrO 0~5%, Al 2 O mass ratio 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) is 0.35 to 0.60, contains substantially no BaO, and has a water content of 0.2 to 0.7 / mm in terms of β-OH value. And In addition, “Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 )” means that the content of Al 2 O 3 is expressed as Na 2 O, K 2 O, Li 2 O, MgO, CaO, SrO. And B 2 O 3 divided by the total amount. Further, “substantially free of BaO” means that BaO is not actively added, and is not intended to exclude even those that are mixed as impurities. More specifically, it means that the content of BaO is 0.05% by mass or less. Further, the β-OH value representing the water content in the glass can be obtained using the following equation, and the smaller the β-OH value, the smaller the water content in the glass.

β−OH=(1/t)×log10(T/T
t:ガラスの肉厚(mm)
:参照波長3846cm−1(2600nm)における透過率(%)
:水酸基吸収波長3600cm−1(2800nm)における透過率(%)
β-OH = (1 / t) × log 10 (T 1 / T 2 )
t: wall thickness of glass (mm)
T 1 : transmittance (%) at reference wavelength 3846 cm −1 (2600 nm)
T 2 : transmittance (%) at a hydroxyl absorption wavelength of 3600 cm −1 (2800 nm)

上記構成によれば、BaOを含有しないため、ガラス溶融時あるいは成形時にBaOとアルミナ系耐火物との反応によってバリウム長石結晶が析出しない。また、ガラスからのBaイオンの溶出が少なく、薬液中の硫酸イオンと不溶性の沈殿物を形成しにくいガラスが得られる。   According to the above configuration, since BaO is not contained, barium feldspar crystals do not precipitate due to the reaction between BaO and the alumina-based refractory during glass melting or molding. In addition, a glass is obtained in which Ba ions are less eluted from the glass and hardly forms insoluble precipitates with sulfate ions in the chemical solution.

また上記構成によれば、ガラス管からアンプルやバイアル等の医薬容器を作製する際の加工温度を低くすることが可能となり、ガラスからのBやアルカリ金属酸化物成分の蒸発量を著しく低減できる。その結果、容器加工時の種々の熱処理後も優れた化学的耐久性や加水分解抵抗性を維持することができる。 Further, according to the above configuration, it is possible to lower the processing temperature when manufacturing a medical container such as an ampoule or a vial from a glass tube, and to significantly reduce the amount of evaporation of B 2 O 3 and alkali metal oxide components from the glass. Can be reduced. As a result, excellent chemical durability and hydrolysis resistance can be maintained even after various heat treatments during container processing.

さらに、上記構成によれば、容器加工のためのバーナー加熱時にガラス中の水分が気化しにくく、泡の発生を抑制できることから、容器加工後のガラス中の泡が少なく、光学的欠陥の少ない容器を得ることができる。   Furthermore, according to the above configuration, the moisture in the glass is less likely to evaporate when the burner is heated for processing the container, and the generation of bubbles can be suppressed. Can be obtained.

本発明の医薬容器用ホウケイ酸ガラスは、ガラス組成として質量%でAl6.3〜11%、MgO+CaOが0〜1%未満含有することが好ましい。 The borosilicate glass for a pharmaceutical container of the present invention preferably contains 6.3 to 11% of Al 2 O 3 and 0 to less than 0 to 1% of MgO + CaO in mass% as a glass composition.

本発明においては、モル比で(NaO+KO+LiO―Al)/Bの値が、0.33〜0.39であることが好ましい。なお、「(NaO+KO+LiO−Al)/B」とは、NaO、KO、LiOのモル%の合量からAlのモル%を差し引いた値を、Bのモル%で除した値である。 In the present invention, the value of (Na 2 O + K 2 O + Li 2 O—Al 2 O 3 ) / B 2 O 3 in a molar ratio is preferably from 0.33 to 0.39. In addition, “(Na 2 O + K 2 O + Li 2 O—Al 2 O 3 ) / B 2 O 3 ” means a mole of Al 2 O 3 based on the total amount of moles of Na 2 O, K 2 O, and Li 2 O. % Is the value obtained by dividing the value obtained by subtracting% from the molar% of B 2 O 3 .

上記構成によれば、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度を低くすることが可能となり、ガラスからのBやアルカリ金属酸化物成分の蒸発量を著しく低減できる。その結果、容器加工時の種々の熱処理後も優れた化学的耐久性や加水分解抵抗性を維持することができる。 According to the above configuration, it is possible to lower the processing temperature when producing a glass container such as an ampoule or a vial from a glass tube, and to significantly reduce the evaporation amount of B 2 O 3 and alkali metal oxide components from the glass. it can. As a result, excellent chemical durability and hydrolysis resistance can be maintained even after various heat treatments during container processing.

また、上記構成によれば、加工温度を下げることができるため、容器加工時のバーナー加熱時の水分の気化に伴う泡の発生(再沸)を抑制でき、容器加工後もガラス中の泡が少なく、光学的欠陥の少ない容器を得ることができる。   Further, according to the above configuration, since the processing temperature can be lowered, it is possible to suppress the generation (reboil) of bubbles due to vaporization of moisture during heating of the burner during container processing, and the bubbles in the glass remain even after the container processing. A container having few optical defects can be obtained.

本発明においては、EP8.0に準じた加水分解抵抗性試験の粉末試験法において、単位ガラス質量当たりの0.02mol/Lの塩酸の消費量が0.030mL以下であることが好ましい。   In the present invention, in the powder test method of the hydrolysis resistance test according to EP 8.0, the consumption of 0.02 mol / L hydrochloric acid per unit glass mass is preferably 0.030 mL or less.

本発明においては、DIN12116に準じた耐酸性試験において、単位面積あたりの質量減少量が1.0mg/dm以下となることが好ましい。 In the present invention, in the acid resistance test according to DIN12116, it is preferable that the mass reduction per unit area is 1.0 mg / dm 2 or less.

本発明においては、1150℃〜1250℃の作業温度を有することが好ましい。なお作業温度とは、ガラスの粘度が10dPa・sとなる温度である。 In the present invention, it is preferable to have a working temperature of 1150C to 1250C. The working temperature is a temperature at which the viscosity of the glass becomes 10 4 dPa · s.

上記構成によれば、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度を低くすることが可能となり、ガラスからのBやアルカリ金属酸化物成分の蒸発量を著しく低減できる。その結果、ガラス容器中に保管される薬液成分の変質や薬液のpH上昇、更にはフレークスが発生する事態を回避することができる。 According to the above configuration, it is possible to lower the processing temperature when producing a glass container such as an ampoule or a vial from a glass tube, and to significantly reduce the evaporation amount of B 2 O 3 and alkali metal oxide components from the glass. it can. As a result, it is possible to avoid deterioration of the chemical component stored in the glass container, increase in pH of the chemical solution, and occurrence of flakes.

本発明においては、104.5dPa・s以上の液相粘度を有することが好ましい。 In the present invention, it is preferable to have a liquidus viscosity of 10 4.5 dPa · s or more.

上記構成によれば、ガラス管の成形にダンナー法を採用した場合でも、成形時に失透し難くなり好ましい。   According to the above configuration, even when the Danner method is used for molding the glass tube, the glass tube is not easily devitrified during molding, which is preferable.

本発明の医薬容器用ガラス管は、上記医薬容器用ホウケイ酸ガラスからなることを特徴とする。   The glass tube for a medical container of the present invention is characterized by being made of the above-mentioned borosilicate glass for a medical container.

本発明の医薬容器は、上記医薬容器用ホウケイ酸ガラスからなることを特徴とする。   The pharmaceutical container of the present invention is made of the above-mentioned borosilicate glass for a pharmaceutical container.

本発明の医薬容器用ホウケイ酸ガラスは、BaOを実質的に含まない。BaOがガラス組成中に含まれていると、アルミナ系耐火物との反応や、ガラスから溶出したBaイオンと薬液中の硫酸イオンとの反応によって結晶を析出させたり、沈殿物を発生させたりする恐れがある。   The borosilicate glass for a medical container of the present invention is substantially free of BaO. When BaO is contained in the glass composition, a crystal is precipitated or a precipitate is generated by a reaction with an alumina-based refractory or a reaction between Ba ions eluted from the glass and sulfate ions in a chemical solution. There is fear.

本発明の医薬容器用ホウケイ酸ガラスにおいては、加水分解抵抗性を向上させるが、ガラスの粘度を上昇させる成分であるAlと、ガラスの粘度を低下させるが、加水分解抵抗性を低下させる成分であるNaO、KO、LiO、MgO、CaO、SrO、Bの含有量のバランスを取ることが、加水分解抵抗性の向上と加工温度の低下を両立させる上で望ましい。具体的には質量比でAl/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が、0.35〜0.60、好ましくは0.35〜0.50、より好ましくは0.36〜0.50、さらに好ましくは0.37〜0.50である。Al/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が小さすぎると、ガラスの加水分解抵抗性が低下する。また、バーナー加工時のガラスからのBやアルカリ金属酸化物成分の蒸発量が増加する。Al/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が大きすぎると、ガラスの粘度が高くなり、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度が高くなり、バーナー加熱時のガラス中のBやNaOなどの蒸発量が増加する。また、バーナー加熱時に水分の気化に伴う泡が発生しやすくなる。 In the borosilicate glass for a pharmaceutical container of the present invention, the hydrolysis resistance is improved, but Al 2 O 3 , a component that increases the viscosity of the glass, and the viscosity of the glass are reduced, but the hydrolysis resistance is reduced. Balancing the contents of Na 2 O, K 2 O, Li 2 O, MgO, CaO, SrO, and B 2 O 3, which are components to be made, makes it possible to achieve both improvement in hydrolysis resistance and reduction in processing temperature. Desirable above. Specifically, the value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) by mass ratio is 0.35 to 0.60, preferably 0.35 to 0.50, and more preferably 0. 0.36 to 0.50, more preferably 0.37 to 0.50. If the value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) is too small, the hydrolysis resistance of the glass decreases. In addition, the amount of evaporation of B 2 O 3 and alkali metal oxide components from the glass during burner processing increases. If the value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) is too large, the viscosity of the glass becomes high, and the processing temperature when producing a glass container such as an ampule or a vial from a glass tube becomes high. Thus, the amount of evaporation of B 2 O 3 , Na 2 O, and the like in the glass at the time of heating the burner increases. In addition, bubbles are likely to be generated due to vaporization of moisture during heating of the burner.

本発明の医薬容器用ホウケイ酸ガラスは、ガラス中の水分量がβ−OH値で表して0.2〜0.7/mm、0.2〜0.6/mm、0.2〜0.5/mm、特に0.2〜0.45/mmであることが好ましい。β−OH値が低すぎると、赤外線を吸収しにくくなり、バーナー加熱時に放射される赤外線によるガラスの加熱効率が低下するため、ガラスを強熱する必要があり、BやNaOなどの蒸発量が多くなってしまう。一方、β−OH値が高すぎると、バーナー加熱時に水分の気化に伴う泡が発生しやすくなる。尚、ガラス中の水分量の調整は、含水原料の使用や溶融温度、ガラス流量の調整などで行うことができる。 In the borosilicate glass for a pharmaceutical container of the present invention, the water content in the glass is represented by a β-OH value of 0.2 to 0.7 / mm, 0.2 to 0.6 / mm, 0.2 to 0. It is preferably 5 / mm, particularly preferably 0.2 to 0.45 / mm. If the β-OH value is too low, it becomes difficult to absorb infrared rays, and the heating efficiency of the glass by the infrared rays radiated at the time of heating the burner decreases, so that it is necessary to heat the glass strongly, and B 2 O 3 or Na 2 O Etc., the amount of evaporation increases. On the other hand, if the β-OH value is too high, bubbles are likely to be generated due to vaporization of water during heating of the burner. The adjustment of the water content in the glass can be performed by using a water-containing raw material, adjusting the melting temperature, and adjusting the flow rate of the glass.

また本発明の医薬容器用ホウケイ酸ガラスの組成は、質量%でSiO 65〜80%、Al 5〜15%、B 2〜12%、NaO 3〜10%、KO 0〜5%、LiO 0〜5%、MgO 0〜5%、CaO 0〜5%、SrO 0〜5%であり、特に質量%でSiO 70〜75.5%、Al 6.3〜11%、B 3〜11.5%、NaO 4.0〜8.5%、KO 0〜5%、LiO 0〜0.2%、MgO 0〜1%未満、CaO 0〜1%未満、SrO 0〜4%未満、MgO+CaOが0〜1%未満であることが好ましい。 In addition, the composition of the borosilicate glass for a medical container of the present invention is 65 to 80% by mass of SiO 2 , 5 to 15% of Al 2 O 3 , 2 to 12% of B 2 O 3 , 3 to 10% of Na 2 O by mass%, K 2 O 0 to 5%, Li 2 O 0 to 5%, MgO 0 to 5%, CaO 0 to 5%, SrO 0 to 5%, particularly 70 to 75.5% of SiO 2 by mass%, Al 6.3 to 11% 2 O 3, 3 to 11.5% B 2 O 3, 4.0 to 8.5% Na 2 O, 0 to 5% K 2 O, 0 to 0.2% Li 2 O , MgO 0 to less than 1%, CaO 0 to less than 1%, SrO 0 to less than 4%, and MgO + CaO is preferably 0 to less than 1%.

以下、各成分の組成範囲を上記のように限定した理由を述べる。なお以下の説明において、特に断りがない限り、%表示は質量%を意味する。   Hereinafter, the reasons for limiting the composition range of each component as described above will be described. In the following description,% means mass% unless otherwise specified.

SiOはガラスネットワークを構成する成分の1つである。SiOの含有量は65〜80%であり、62〜75.5%であり、好ましくは、65〜75.5%未満、67〜75%未満、特に70〜74.7%であることが好ましい。SiOの含有量が少な過ぎると化学的耐久性が低下し、医薬容器用ホウケイ酸ガラスに求められる耐酸性が低くなる。一方、SiOの含有量が多過ぎると液相粘度が低下し、製造工程で失透しやすくなって生産性が低下する。 SiO 2 is one of the components constituting the glass network. The content of SiO 2 is 65 to 80%, 62 to 75.5%, preferably 65 to 75.5%, 67 to 75%, especially 70 to 74.7%. preferable. If the content of SiO 2 is too small, the chemical durability decreases, and the acid resistance required for the borosilicate glass for medical containers decreases. On the other hand, if the content of SiO 2 is too large, the liquidus viscosity decreases, and the liquidus tends to be devitrified in the production process, lowering productivity.

Alはガラスの失透を抑制し、また化学的耐久性及び加水分解抵抗性を向上させる成分である。Alの含有量は5〜15%であり、6.3〜11%、6.3%を超え、10%以下、6.4〜8.5%、特に6.4〜8.3%であることが好ましい。Alの含有量が少な過ぎると上記の効果が得られない。一方、Alの含有量が多過ぎるとガラスの粘度が上昇し、作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。 Al 2 O 3 is a component that suppresses devitrification of glass and improves chemical durability and hydrolysis resistance. The content of Al 2 O 3 is 5-15%, 6.3 to 11%, more than 6.3%, 10% or less, 6.4 to 8.5%, especially 6.4 to 8.3 %. If the content of Al 2 O 3 is too small, the above effects cannot be obtained. On the other hand, if the content of Al 2 O 3 is too large, the viscosity of the glass increases, the working temperature increases, and the amount of evaporation of B 2 O 3 , Na 2 O, and the like increases when processing into a pharmaceutical container. .

はガラスの融点を低下させるだけでなく、液相粘度を上昇させ、失透を抑制する効果を有する。そのため、Bの含有量は2〜12%であり、3〜11.5%、5.5〜11.5%未満、8.5〜11.5%未満、特に9〜11.5%未満であることが好ましい。Bの含有量が少な過ぎると作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。一方、Bの含有量が多過ぎると加水分解抵抗性や化学的耐久性が低下する。 B 2 O 3 not only lowers the melting point of the glass, but also increases the liquidus viscosity and has the effect of suppressing devitrification. Therefore, the content of B 2 O 3 is 2 to 12%, 3 to 11.5%, 5.5 to less than 11.5%, 8.5 to less than 11.5%, particularly 9 to 11.5%. % Is preferred. If the content of B 2 O 3 is too small, the working temperature will increase, and the amount of evaporation of B 2 O 3 , Na 2 O, etc. will increase when processing into a pharmaceutical container. On the other hand, when the content of B 2 O 3 is too large, hydrolysis resistance and chemical durability are reduced.

NaOはガラスの粘度を低下させ、線熱膨張係数を上昇させる効果がある。NaOの含有量は3〜10%であり、3.2〜8.5%、3.5〜8.3%、4〜8%、特に4〜7%である。NaOの含有量が少なすぎると作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。一方、NaOの含有量が多過ぎると加水分解抵抗性が低下する。 Na 2 O has an effect of reducing the viscosity of the glass and increasing the linear thermal expansion coefficient. The Na 2 O content is 3-10%, 3.2 to 8.5%, from 3.5 to 8.3%, 4% to 8%, in particular 4% to 7%. If the content of Na 2 O is too small, the working temperature will increase, and the amount of evaporation of B 2 O 3 , Na 2 O, etc. will increase when processing into a pharmaceutical container. On the other hand, when the content of Na 2 O is too large, the hydrolysis resistance decreases.

OもNaOと同様にガラスの粘度を低下させ、線熱膨張係数を上昇させる効果がある。KOの含有量は0〜5%であり、0.1〜5%、0.5〜4.5%、1.0〜3%、特に1.5〜3.0%であることが好ましい。KOの含有量が多過ぎると加水分解抵抗性が低下する。 K 2 O also reduces the viscosity of the glass as with Na 2 O, an effect of increasing the coefficient of linear thermal expansion. The K 2 O content is 0-5% 0.1% to 5%, 0.5 to 4.5%, from 1.0 to 3%, to be particularly from 1.5 to 3.0% preferable. If the content of K 2 O is too large, the hydrolysis resistance decreases.

なおKOとNaOの両成分を併用すれば、混合アルカリ効果により、加水分解抵抗性が向上するため、望ましい。加水分解抵抗性を向上させるためには、質量比でKO/NaOが0.2〜1、0.20〜0.95、0.2〜0.8、特に0.2〜0.7であることが好ましい。この比が小さいと加水分解抵抗性が低下する。一方、この比が大きいと作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。 It is preferable to use both components of K 2 O and Na 2 O, since the hydrolysis resistance is improved by the mixed alkali effect. In order to improve the hydrolysis resistance, K 2 O / Na 2 O is 0.2 to 1, 0.20 to 0.95, 0.2 to 0.8, particularly 0.2 to 0 by mass ratio. .7. If this ratio is small, the hydrolysis resistance decreases. On the other hand, if this ratio is large, the working temperature will be high, and the amount of evaporation of B 2 O 3 , Na 2 O, etc., when processing into a pharmaceutical container will increase.

LiOはNaOやKOと同様にガラスの粘度を低下させ、また線熱膨張係数を上昇させる効果がある。しかしLiOを添加するとガラス溶融時に耐火物を侵食し易くなる。また生産コストの増加に繋がる。そのためLiOの含有量は0〜5%であり、0〜0.2%、0〜0.1%、0〜0.05%、特に0〜0.01%であることが好ましいが、特段の事情がなければLiO以外の他のアルカリ金属酸化物を使用することが望ましい。 Li 2 O has an effect of lowering the viscosity of glass and increasing the linear thermal expansion coefficient, like Na 2 O and K 2 O. However, when Li 2 O is added, the refractory is easily eroded when the glass is melted. It also leads to an increase in production costs. Therefore, the content of Li 2 O is 0 to 5%, preferably 0 to 0.2%, 0 to 0.1%, 0 to 0.05%, and particularly preferably 0 to 0.01%. Unless otherwise specified, it is desirable to use an alkali metal oxide other than Li 2 O.

LiO、NaO及びKOの含有量の合量は、好ましくは5〜10%、特に6〜9%である。これらの成分の合量が少ないと、作業温度が高くなる。またこれらの成分の合量が多いと、化学耐久性や加水分解抵抗性が低下する。 The total content of Li 2 O, Na 2 O and K 2 O is preferably 5 to 10%, particularly 6 to 9%. When the total amount of these components is small, the working temperature increases. When the total amount of these components is large, chemical durability and hydrolysis resistance are reduced.

MgOはガラスの高温粘度を低下させる効果がある。また、化学的耐久性向上の効果がある。MgOの含有量は0〜5%であり、0〜1%未満、特に0〜0.5%であることが好ましい。MgOの含有量が多すぎると加水分解抵抗性が低下する。   MgO has the effect of lowering the high temperature viscosity of the glass. Further, there is an effect of improving chemical durability. The content of MgO is 0 to 5%, preferably 0 to less than 1%, particularly preferably 0 to 0.5%. If the content of MgO is too large, the hydrolysis resistance decreases.

CaOはガラスの高温粘度を低下させる効果がある。CaOの含有量は0〜5%であり、0〜1%未満、特に0〜0.5%であることが好ましい。CaO含有量が多過ぎると加水分解抵抗性が低下する。   CaO has the effect of lowering the high temperature viscosity of the glass. The content of CaO is 0 to 5%, preferably 0 to less than 1%, particularly preferably 0 to 0.5%. If the CaO content is too large, the hydrolysis resistance decreases.

MgO+CaOはMgOとCaOの含有量の合量であり、ガラスの高温粘度と加水分解抵抗性を好ましい範囲に調節する上で重要な指標である。MgO+CaOは0〜5%、0〜1%未満、特に0〜0.5%であることが好ましい。MgO+CaOが多すぎると、ガラスの高温粘度は低くできるが、ガラスの加水分解抵抗性が低下してしまう
SrOは化学的耐久性向上の効果がある。SrOの含有量は0〜5%であり、0〜4%未満、0〜2%、特に0〜1%であることが好ましい。SrOの含有量が多すぎると加水分解抵抗性が低下する。
MgO + CaO is the total content of MgO and CaO, and is an important index for adjusting the high-temperature viscosity and hydrolysis resistance of the glass to a preferable range. MgO + CaO is preferably 0 to 5%, 0 to less than 1%, particularly preferably 0 to 0.5%. If the content of MgO + CaO is too large, the high-temperature viscosity of the glass can be lowered, but the hydrolysis resistance of the glass is reduced. SrO has the effect of improving the chemical durability. The SrO content is 0 to 5%, preferably less than 0 to 4%, 0 to 2%, particularly preferably 0 to 1%. If the content of SrO is too large, the hydrolysis resistance decreases.

また本発明においては、上記以外にも種々の成分を添加することが可能である。   In the present invention, it is possible to add various components other than the above.

TiOは加水分解抵抗性を向上させる効果がある。TiOの含有量は0〜7%未満、0〜5%、0〜4%、特に0〜1.5%であることが好ましい。TiOの含有量が多すぎると作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。 TiO 2 has an effect of improving hydrolysis resistance. The content of TiO 2 is less than 0-7%, 0-5%, 0-4%, particularly preferably 0 to 1.5%. If the content of TiO 2 is too large, the working temperature will increase, and the amount of evaporation of B 2 O 3 , Na 2 O, etc., will increase when processing into pharmaceutical containers.

ZrOは加水分解抵抗性を向上させる効果がある。ZrOの含有量は0〜7%未満、0〜5%、0〜4%、特に0〜1.5%であることが好ましい。ZrOの含有量が多すぎると作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。 ZrO 2 has an effect of improving hydrolysis resistance. The content of ZrO 2 is less than 0-7%, 0-5%, 0-4%, particularly preferably 0 to 1.5%. If the content of ZrO 2 is too large, the working temperature will increase, and the amount of evaporation of B 2 O 3 , Na 2 O, etc. will increase when processing into a pharmaceutical container.

Feは、ガラスを着色させ可視域での透過率を低下させる恐れがあるため、その含有量は0.2%以下、0.1%以下、特に0.02%以下であることが好ましい。 Since Fe 2 O 3 may color the glass and lower the transmittance in the visible region, its content may be 0.2% or less, 0.1% or less, particularly 0.02% or less. preferable.

また清澄剤としてF、Cl、Sb、SnO、NaSO等のいずれか一種以上を含有しても良い。これらの清澄剤の含有量の合計は3%以下、1%以下、特に0.5%以下であることが好ましい。またこれらの清澄剤の中では、溶融温度と人体への害が少ないという理由からClやSnOを使用することが好ましい。Clを使用する場合、その含有量は3%以下、更に1%以下、特に0.2%以下であることが好ましい。SnOを使用する場合、その含有量は2%以下、好ましくは0.5%以下である。 The F as a fining agent, Cl, Sb 2 O 3, SnO 2, may contain any one or more of such Na 2 SO 4. The total content of these fining agents is preferably 3% or less, 1% or less, particularly preferably 0.5% or less. Among these fining agents, it is preferable to use Cl or SnO 2 because the melting temperature and the harm to the human body are small. When Cl is used, its content is preferably 3% or less, more preferably 1% or less, particularly preferably 0.2% or less. When SnO 2 is used, its content is 2% or less, preferably 0.5% or less.

本発明においては、モル比で(NaO+KO+LiO―Al)/Bの値が、0.33〜0.39、0.33〜0.37、0.33〜0.36未満、特に0.33〜0.35であることが好ましい。この値が大きすぎると、加工時の種々の熱処理により、NaO、KO、LiOといったアルカリ金属酸化物含有量が多いためにこれらの蒸発量が増え、化学的耐久性や加水分解抵抗性が低下するか、B含有量が少ないために作業温度が高くなり、加工時の種々の熱処理により、NaO、KO、LiOといったアルカリ金属酸化物が蒸発しやすくなり、化学的耐久性や加水分解抵抗性が低下する。また、水分の気化に伴う泡が発生しやすくなる。一方、この値が小さすぎると、NaO、KO、LiOといったアルカリ金属酸化物含有量が少ないために作業温度が高くなり、加工時の種々の熱処理により、NaO、KO、LiOやBが蒸発しやすくなり、化学的耐久性や加水分解抵抗性が低下するとともに水分の気化に伴う泡が発生しやすくなるか、B含有量が多いために容器加工前の時点で化学的耐久性や加水分解抵抗性が低下する。 In the present invention, the molar ratio of (Na 2 O + K 2 O + Li 2 O—Al 2 O 3 ) / B 2 O 3 is 0.33 to 0.39, 0.33 to 0.37, 0.33. Preferably, it is less than 0.36, especially 0.33 to 0.35. If this value is too large, various heat treatments during processing increase the content of alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O, thereby increasing the amount of evaporation of these components, and increasing the chemical durability and water content. The working temperature rises due to a decrease in decomposition resistance or a low B 2 O 3 content, and alkali metal oxides such as Na 2 O, K 2 O and Li 2 O are evaporated by various heat treatments during processing. And the chemical durability and hydrolysis resistance are reduced. In addition, bubbles accompanying moisture vaporization are likely to be generated. On the other hand, if this value is too small, the working temperature becomes high because the content of alkali metal oxides such as Na 2 O, K 2 O and Li 2 O is small, and Na 2 O, K 2 O, Li 2 O and B 2 O 3 are liable to evaporate, and the chemical durability and hydrolysis resistance are reduced and bubbles are easily generated due to the vaporization of water, or the B 2 O 3 content is reduced. Due to the large amount, chemical durability and hydrolysis resistance are reduced before processing the container.

また、本発明の医薬容器用ホウケイ酸ガラスは、以下の特性を有することが好ましい。   Further, the borosilicate glass for a medical container of the present invention preferably has the following characteristics.

EP8.0に準じた加水分解抵抗性試験の粉末試験法において、単位ガラス質量当たりの0.02mol/Lの塩酸の消費量は、好ましくは0.030mL以下、0.028mL以下、0.026mL以下、特に0.025mL以下である。塩酸消費量が多すぎると、アンプルやバイアルなどの医薬容器を作製し、薬液を充填、保存した際、ガラス成分特にアルカリ金属成分の溶出が大幅に増加して薬液成分の変質を引き起こす恐れがある。   In the powder test method of the hydrolysis resistance test according to EP 8.0, the consumption of 0.02 mol / L hydrochloric acid per unit glass mass is preferably 0.030 mL or less, 0.028 mL or less, 0.026 mL or less. , Especially 0.025 mL or less. If the consumption of hydrochloric acid is too large, when a pharmaceutical container such as an ampoule or a vial is prepared, filled with a chemical solution, and stored, the elution of a glass component, particularly an alkali metal component, may be significantly increased, and the chemical component may be deteriorated. .

DIN12116に準じた耐酸性試験において、単位面積あたりの質量減少量は、好ましくは1.0mg/dm以下、特に0.8mg/dm以下である。質量減少量が多くなると、アンプルやバイアルなどの医薬容器を作製し、薬液を充填、保存した際、ガラス成分の溶出量が大幅に増加して薬液成分の変質を引き起こす恐れがある。 In the acid resistance test according to DIN 12116, the mass loss per unit area is preferably at most 1.0 mg / dm 2 , especially at most 0.8 mg / dm 2 . When the mass loss increases, when a medical container such as an ampoule or a vial is prepared, and a chemical solution is filled and stored, the elution amount of the glass component is significantly increased, and the chemical component may be deteriorated.

作業温度は1250℃以下、1150℃〜1250℃、より好ましくは1150℃〜1240℃、特に1160℃〜1230℃である。作業温度が高すぎると、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度が高くなり、ガラス中のBやアルカリ金属酸化物の蒸発量が著しく増加する。 The working temperature is 1250 ° C. or lower, 1150 ° C. to 1250 ° C., more preferably 1150 ° C. to 1240 ° C., and particularly 1160 ° C. to 1230 ° C. If the working temperature is too high, the processing temperature when producing a glass container such as an ampoule or a vial from a glass tube increases, and the amount of evaporation of B 2 O 3 and alkali metal oxide in the glass increases significantly.

液相粘度は、好ましくは104.5dPa・s以上、105.0dPa・s以上、105.2dPa・s以上、105.4dPa・s以上、特に105.6dPa・s以上である。液相粘度が低くなると、ダンナー法によるガラス管成形時に失透が起こり易くなり、生産性が低下する。 Liquidus viscosity is preferably 10 4.5 dPa · s or more, 10 5.0 dPa · s or more, 10 5.2 dPa · s or more, 10 5.4 dPa · s or more, particularly 10 5.6 dPa · s or more. When the liquidus viscosity is low, devitrification tends to occur at the time of glass tube molding by the Danner method, and productivity is reduced.

線熱膨張係数はガラスの耐熱衝撃性において重要なパラメータである。ガラスが十分な耐熱衝撃性を得るためには、30〜380℃の温度範囲における線熱膨張係数は、好ましくは58×10−7/℃以下、特に48〜55×10−7/℃である。 The linear thermal expansion coefficient is an important parameter in the thermal shock resistance of glass. In order for the glass to obtain sufficient thermal shock resistance, the linear thermal expansion coefficient in the temperature range of 30 to 380 ° C is preferably 58 × 10 −7 / ° C or less, and particularly preferably 48 to 55 × 10 −7 / ° C. .

次に本発明の医薬容器用ガラス管を製造する方法を説明する。以下の説明は、ダンナー法を用いた例である。   Next, a method for producing the glass tube for a pharmaceutical container of the present invention will be described. The following description is an example using the Danner method.

先ず、上記のガラス組成になるように、ガラス原料を調合してガラスバッチを作製する。次いで、このガラスバッチを1550〜1700℃の溶融窯に連続投入して溶融、清澄した後、得られた溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、当該先端部からガラスを管状に引き出す。なおガラス中の水分量(β-OH値)の調整は、燃焼方式、含水原料の使用や溶融温度、ガラス流量の調整などで行う。   First, a glass batch is prepared by mixing glass raw materials so as to have the above-mentioned glass composition. Next, after continuously feeding the glass batch into a melting furnace at 1550 to 1700 ° C. to melt and clarify, while wrapping the obtained molten glass on a rotating refractory, while blowing air from a refractory tip, The glass is drawn out from the tip portion into a tube. Adjustment of the water content (β-OH value) in the glass is performed by adjusting the combustion method, use of water-containing raw materials, melting temperature, glass flow rate, and the like.

引き出した管状ガラスを所定の長さに切断して医薬容器用ガラス管を得る。このようにして得られたガラス管は、バイアルやアンプルの製造に供される。   The drawn tubular glass is cut into a predetermined length to obtain a glass tube for a medicine container. The glass tube thus obtained is used for the production of vials and ampules.

なお、本発明の医薬容器用ガラス管は、ダンナー法に限らず、従来周知の任意の手法を用いて製造しても良い。例えば、ベロー法やダウンドロー法も本発明の医薬容器用ガラス管の製造方法として有効な方法である。   In addition, the glass tube for medical containers of the present invention is not limited to the Danner method, and may be manufactured using any conventionally known method. For example, the bellows method and the downdraw method are also effective methods for producing the glass tube for a pharmaceutical container of the present invention.

以下、実施例に基づいて本発明を説明する。   Hereinafter, the present invention will be described based on examples.

表1は本発明の実施例(試料No.1〜6)、及び比較例(試料No.7、8)を示している。なお表中の「ΣRO」は「KO+NaO+LiO」を表しており、「ΣRO)」は「MgO+CaO+SrO」を表している。 Table 1 shows Examples (Samples Nos. 1 to 6) of the present invention and Comparative Examples (Samples Nos. 7 and 8). Note that “ΣR 2 O” in the table represents “K 2 O + Na 2 O + Li 2 O”, and “ΣRO)” represents “MgO + CaO + SrO”.

各試料は以下のようにして調製した。   Each sample was prepared as follows.

まず表に示す組成となるように、ガラス原料を調合してガラスバッチを作製する。次いで、このガラスバッチを1550〜1700℃の溶融窯に連続投入して溶融、清澄した後、得られた溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、当該先端部から泡の無いガラスを管状に引き出す。引き出した管状ガラスを所定の長さに切断してガラス管を得た。このようにして得られたガラス管を各種の評価に供した。なおガラスのβ−OH値は、含水原料の使用を制限したり、溶融条件を変更したりすることにより調整した。   First, a glass batch is prepared by mixing glass raw materials so as to have the composition shown in the table. Next, after continuously feeding the glass batch into a melting furnace at 1550 to 1700 ° C. to melt and clarify, while wrapping the obtained molten glass on a rotating refractory, while blowing air from a refractory tip, The bubble-free glass is drawn out of the tip portion into a tube. The drawn tubular glass was cut into a predetermined length to obtain a glass tube. The thus obtained glass tube was subjected to various evaluations. The β-OH value of the glass was adjusted by restricting the use of a water-containing raw material or changing melting conditions.

表1から明らかなように、実施例である試料No.1〜6は良好な加水分解抵抗性及び化学耐久性を示した。また、ガラス組成中にSnを含むNo.1、3、4について、加水分解抵抗性試験によるSnの溶出を評価したところ、何れの試料もSn溶出量は定量下限未満であった。さらに、試料No.1〜6は、β−OH値が所定の範囲内にあり、バーナーによる管端の融封時に泡の発生が認められなかった。一方、比較例である試料No.7、8は管端を融封した際、泡が認められた。   As is clear from Table 1, the sample No. 1 to 6 showed good hydrolysis resistance and chemical durability. In addition, No. 3 containing Sn in the glass composition. When the elution of Sn by hydrolysis resistance test was evaluated for 1, 3, and 4, the Sn elution amount was less than the lower limit of quantification in all samples. Further, the sample No. In Nos. 1 to 6, the β-OH value was within a predetermined range, and no generation of bubbles was observed when the tube end was sealed by the burner. On the other hand, the sample No. In Nos. 7 and 8, bubbles were recognized when the tube ends were sealed.

なお線熱膨張係数の測定は、約5mmφ×50mmのロッド状に成形したガラス試料を用い、ディラトメーターにより、30〜380℃の温度範囲において行った。   The linear thermal expansion coefficient was measured in a temperature range of 30 to 380 ° C. by a dilatometer using a glass sample formed into a rod shape of about 5 mmφ × 50 mm.

歪点、徐冷点及び軟化点の測定はファイバーエロンゲーション法で行った。   The strain point, annealing point and softening point were measured by a fiber elongation method.

作業温度は、白金球引き上げ法によって求めた高温粘度とFulcherの粘度計算式からガラスの粘度曲線を求め、この粘度曲線から10dPa・sに相当する温度を求めた。 As the working temperature, a viscosity curve of the glass was obtained from the high-temperature viscosity obtained by the platinum ball pulling-up method and the Fulcher viscosity calculation formula, and a temperature corresponding to 10 4 dPa · s was obtained from the viscosity curve.

液相温度の測定は、約120×20×10mmの白金ボートに粉砕したガラス試料を充填し、線形の温度勾配を有する電気炉に24時間投入した。その後、顕微鏡観察にて結晶析出箇所を特定し、結晶析出箇所に対応する温度を電気炉の温度勾配グラフから算出し、この温度を液相温度とした。   For the measurement of the liquidus temperature, a platinum boat having a size of about 120 × 20 × 10 mm was filled with the crushed glass sample, and was placed in an electric furnace having a linear temperature gradient for 24 hours. Thereafter, the crystal deposition location was specified by microscopic observation, the temperature corresponding to the crystal deposition location was calculated from the temperature gradient graph of the electric furnace, and this temperature was taken as the liquidus temperature.

液相粘度の算出は、歪点、徐冷点、軟化点、作業温度とFulcherの粘度計算式からガラスの粘度曲線を求め、この粘度曲線から液相温度におけるガラスの粘度を算出し、この粘度を液相粘度とした。   The liquidus viscosity is calculated by calculating the viscosity curve of the glass from the strain point, the annealing point, the softening point, the working temperature and the Fulcher viscosity calculation formula, and calculating the viscosity of the glass at the liquidus temperature from the viscosity curve. Was taken as the liquidus viscosity.

加水分解抵抗性試験は、アルミナ製の乳鉢と乳棒を用いて試料を粉砕し、EP8.0の粉末試験法に準じた方法で行った。詳細な試験手順は以下の通りである。試料の表面をエタノールで良く拭き、アルミナ製の乳鉢と乳棒で試料を粉砕した後、ステンレス製の目開き710μm、425μm、300μmの3つの篩を用いて分級した。篩に残ったものは再度粉砕し、同じ篩操作を行い、300μmの篩上に残った試料粉末をエタノールで洗浄し、ビーカー等のガラス容器に投入した。その後、エタノールを入れてかき混ぜ、超音波洗浄機で1分間洗浄した後、上澄み液だけを流し出す操作を6回行った。その後、110℃のオーブンで30分間乾燥させ、デシケーター内で30分間冷却した。得られた試料粉末を、電子天秤を用いて10g精度±0.0001gで秤量し、250mLの石英フラスコに入れ、超純水50mLを加えた。密栓後、フラスコをオートクレーブに入れて121℃、30分間保持した。100℃から121℃までは1℃/分で昇温し、121℃から100℃までは2℃/分で降温した。95℃まで冷却後、試料をコニカルビーカーに取り出した。30mLの超純水でフラスコ内を洗浄し、コニカルビーカーに流し入れる操作を3回行った。試験後の液にメチルレッドを約0.05mL滴下後、0.02mol/Lの塩酸で中和滴定を行い、塩酸の消費量を記録し、試料ガラス1gあたりの塩酸消費量を算出した。   The hydrolysis resistance test was performed by pulverizing a sample using a mortar and pestle made of alumina and according to a method according to the powder test method of EP 8.0. The detailed test procedure is as follows. The surface of the sample was thoroughly wiped with ethanol, and the sample was pulverized with an alumina mortar and pestle, and then classified using three stainless steel sieves having openings of 710 μm, 425 μm, and 300 μm. What was left on the sieve was pulverized again and the same sieving operation was performed. The sample powder remaining on the 300 μm sieve was washed with ethanol and put into a glass container such as a beaker. Thereafter, the operation of adding ethanol, stirring, washing with an ultrasonic washing machine for 1 minute, and flowing out only the supernatant was performed six times. Then, it was dried in an oven at 110 ° C. for 30 minutes and cooled in a desiccator for 30 minutes. The obtained sample powder was weighed to an accuracy of ± 0.0001 g using an electronic balance, placed in a 250 mL quartz flask, and 50 mL of ultrapure water was added. After sealing, the flask was placed in an autoclave and kept at 121 ° C. for 30 minutes. The temperature was increased at a rate of 1 ° C./min from 100 ° C. to 121 ° C., and decreased at a rate of 2 ° C./min from 121 ° C. to 100 ° C. After cooling to 95 ° C., the sample was taken out into a conical beaker. The operation of washing the inside of the flask with 30 mL of ultrapure water and pouring it into a conical beaker was performed three times. After about 0.05 mL of methyl red was dropped into the liquid after the test, neutralization titration was performed with 0.02 mol / L hydrochloric acid, the consumption of hydrochloric acid was recorded, and the consumption of hydrochloric acid per 1 g of sample glass was calculated.

耐酸性試験は、試料表面積を50cm、溶出液である6mol/Lの塩酸の液量を800mLとし、DIN12116に準じて行った。詳細な試験手順は以下の通りである。まず全ての表面を鏡面研磨仕上げとした総表面積が50cmのガラス試料片を準備し、前処理として試料をフッ酸(40質量%)と塩酸(2mol/L)を体積比で1:9となるように混合した溶液に浸漬し、10分間マグネティックスターラーで攪拌した。次いで試料片を取出し、超純水中で2分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。次に、試料片を110℃のオーブンの中で1時間乾燥させ、デシケーター内で30分間冷却した。このようにして得られた試料片の質量mを精度±0.1mgまで測定し、記録した。続いて石英ガラス製のビーカーに6mol/Lの塩酸800mLを入れ、電熱器を用いて沸騰するまで加熱し、白金線で吊した試料片を投入して6時間保持した。試験中の液量の減少を防ぐために、容器の蓋の開口部はガスケット及び冷却管で栓をした。その後、試料片を取り出し、超純水中で2分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。さらに洗浄した試料片を110℃のオーブンの中で1時間乾燥し、デシケーター内で30分間冷却した。このようにして処理した試料の質量片mを精度±0.1mgまで測定し、記録した。最後に沸騰塩酸に投入する前後の試料の質量m、mmgと試料の総表面積Acmから以下の式1によって単位面積当たりの質量減少量を算出し、耐酸性試験の測定値とした。 The acid resistance test was carried out in accordance with DIN12116 by setting the sample surface area to 50 cm 2 and the amount of 6 mol / L hydrochloric acid as an eluate to 800 mL. The detailed test procedure is as follows. First, a glass sample piece having a total surface area of 50 cm 2 with all surfaces mirror-polished was prepared. As a pretreatment, the sample was treated with hydrofluoric acid (40% by mass) and hydrochloric acid (2 mol / L) at a volume ratio of 1: 9. The resulting mixture was immersed in a mixed solution and stirred with a magnetic stirrer for 10 minutes. Next, the sample piece was taken out, subjected to ultrasonic cleaning three times in ultrapure water for 2 minutes, and then subjected to ultrasonic cleaning twice in ethanol for 1 minute. Next, the sample pieces were dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. In this way the mass m 1 of the obtained sample pieces were measured to an accuracy ± 0.1 mg, it was recorded. Subsequently, 800 mL of 6 mol / L hydrochloric acid was placed in a quartz glass beaker, heated to boiling using an electric heater, and a sample piece suspended with a platinum wire was charged and held for 6 hours. The opening of the lid of the container was plugged with a gasket and cooling tube to prevent the liquid volume from decreasing during the test. Thereafter, the sample piece was taken out, subjected to ultrasonic cleaning for three minutes in ultrapure water for two minutes, and then subjected to ultrasonic cleaning for one minute in ethanol twice. Further, the washed sample was dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. In this way the mass pieces m 2 of sample treated was measured to an accuracy ± 0.1 mg, were recorded. Finally, the mass reduction per unit area was calculated from the masses m 1 and m 2 of the sample before and after being introduced into boiling hydrochloric acid and the total surface area Acm 2 of the sample by the following formula 1, and the measured value was used as a measured value in the acid resistance test. .

[式1] 単位面積当たりの質量減少量=100×(m−m)/2×A
Snの溶出量は、加水分解抵抗性試験後の試験液について、ICP発光分析装置(バリアン製)にて分析を行った。詳細な試験手順は以下の通りである。加水分解抵抗性試験後の試験溶液をメンブランフィルターでろ過して遠沈管に採取した。Sn含有量が0mg/L、0.05mg/L、0.5mg/L、1.0mg/Lとなるように、Sn標準液(和光純薬工業製)を希釈して、標準溶液を作製した。それらの標準溶液から検量線を作成し、試験液中のSn溶出量を算出した。Snの測定波長は189.925nmとした。
[Equation 1] Mass loss per unit area = 100 × (m 1 −m 2 ) / 2 × A
The elution amount of Sn was analyzed using a test solution after the hydrolysis resistance test using an ICP emission spectrometer (manufactured by Varian). The detailed test procedure is as follows. The test solution after the hydrolysis resistance test was filtered through a membrane filter and collected in a centrifuge tube. A standard solution was prepared by diluting a Sn standard solution (manufactured by Wako Pure Chemical Industries, Ltd.) so that the Sn content became 0 mg / L, 0.05 mg / L, 0.5 mg / L, and 1.0 mg / L. . A calibration curve was prepared from these standard solutions, and the amount of Sn eluted in the test solution was calculated. The measurement wavelength of Sn was 189.925 nm.

ガラス中の水分量は、以下の手順により測定した。作製したガラスから20mm×30mm×1mmの板ガラスを加工し、両面を鏡面研磨仕上げした。この板ガラス中の水分量をFT−IRを用いてガラスの透過率を測定し、以下の式からβ−OH値を算出した。   The water content in the glass was measured by the following procedure. A plate glass of 20 mm × 30 mm × 1 mm was processed from the produced glass, and both surfaces were mirror-polished. The transmittance of the glass was measured for the water content in the plate glass using FT-IR, and the β-OH value was calculated from the following equation.

[式2]β−OH=(1/t)log10(T/T
t:ガラスの肉厚(mm)
:参照波長3846cm−1(2600nm)における透過率(%)
:水酸基吸収波長3600cm−1(2800nm)における透過率(%)
[Equation 2] β-OH = (1 / t) log 10 (T 1 / T 2 )
t: wall thickness of glass (mm)
T 1 : transmittance (%) at reference wavelength 3846 cm −1 (2600 nm)
T 2 : transmittance (%) at a hydroxyl absorption wavelength of 3600 cm −1 (2800 nm)

加工時の泡の再沸性の評価は、以下の手順により評価した。作製したガラス管を回転させながら管端を一定時間、酸素バーナーにて加熱し、融封した。融封部分を目視で観察し、泡がある場合は×、無い場合は○とした。   The evaluation of the reboilability of the foam during processing was performed according to the following procedure. While rotating the produced glass tube, the tube end was heated with an oxygen burner for a certain period of time, and the tube was sealed. The sealed portion was visually observed, and was evaluated as x when there was a bubble, and as o when there was no bubble.

本発明の医薬容器用ホウケイ酸ガラスは、アンプル、バイアル、プレフィルドシリンジ、カートリッジなど様々な医薬容器用材料として好適に使用できる。   The borosilicate glass for a medical container of the present invention can be suitably used as a material for various medical containers such as ampules, vials, prefilled syringes, and cartridges.

Claims (9)

質量%でSiO 65〜80%、Al 5〜15%、B 2〜12%、NaO 3〜10%、KO 0〜5%、LiO 0〜5%、MgO 0〜5%、CaO 0〜5%、SrO 0〜5%含有し、質量比でAl/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が、0.35〜0.60であり、BaOを実質的に含まず、ガラス中の水分量がβ−OH値換算で0.2〜0.5/mmであることを特徴とする医薬容器用ホウケイ酸ガラス。 SiO 2 65-80% by mass%, Al 2 O 3 5~15% , B 2 O 3 2~12%, Na 2 O 3~10%, K 2 O 0~5%, Li 2 O 0~5 %, MgO 0-5%, CaO 0-5%, SrO 0-5%, and the value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) by mass ratio is 0.35 A borosilicate glass for a pharmaceutical container, wherein the borosilicate glass is 0.60, contains substantially no BaO, and has a water content of 0.2 to 0.5 / mm in terms of β-OH value. 質量%でAlの含有量が6.3〜11%、MgO+CaOが0〜1%未満であることを特徴とする請求項1に記載の医薬容器用ホウケイ酸ガラス。 Mass% in Al 2 O 3 content is from 6.3 to 11%, pharmaceutical container borosilicate glass according to claim 1, MgO + CaO is equal to or less than 0 to 1%. モル比で(NaO+KO+LiO―Al)/Bの値が、0.33〜0.39であることを特徴とする請求項1または2に記載の医薬容器用ホウケイ酸ガラス。 The pharmaceutical container according to claim 1, wherein the value of (Na 2 O + K 2 O + Li 2 O—Al 2 O 3 ) / B 2 O 3 is 0.33 to 0.39 in a molar ratio. For borosilicate glass. EP8.0に準じた加水分解抵抗性試験の粉末試験法において、単位ガラス質量当たりの0.02mol/Lの塩酸の消費量が0.030mL以下であることを特徴とする請求項1〜3の何れかに記載の医薬容器用ホウケイ酸ガラス。   4. A powder test method for a hydrolysis resistance test according to EP 8.0, wherein a consumption of 0.02 mol / L hydrochloric acid per unit glass mass is 0.030 mL or less. The borosilicate glass for a pharmaceutical container according to any one of the above. DIN12116に準じた耐酸性試験において、単位面積あたりの質量減少量が1.0mg/dm以下となることを特徴とする請求項1〜4の何れかに記載の医薬容器用ホウケイ酸ガラス。 In the acid resistance test according to DIN12116, pharmaceutical container borosilicate glass according to claim 1, weight loss per unit area, characterized in that a 1.0 mg / dm 2 or less. 1150℃〜1250℃の作業温度を有することを特徴とする請求項1〜5の何れかに記載の医薬容器用ホウケイ酸ガラス。   The borosilicate glass for a medical container according to any one of claims 1 to 5, wherein the borosilicate glass has a working temperature of 1150 ° C to 1250 ° C. 104.5dPa・s以上の液相粘度を有することを特徴とする請求項1〜6の何れかに記載の医薬容器用ホウケイ酸ガラス。 10 4.5 Pharmaceutical container borosilicate glass according to claim 1, characterized in that it comprises a dPa · s or more in the liquid phase viscosity. 請求項1〜7の何れかに記載の医薬容器用ホウケイ酸ガラスからなることを特徴とする医薬容器用ガラス管。   A glass tube for a medical container, comprising the borosilicate glass for a medical container according to claim 1. 請求項1〜8の何れかに記載の医薬容器用ホウケイ酸ガラスをからなることを特徴とする医薬容器。   A pharmaceutical container comprising the borosilicate glass for a pharmaceutical container according to claim 1.
JP2015173792A 2015-09-03 2015-09-03 Borosilicate glass for pharmaceutical containers Active JP6653073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173792A JP6653073B2 (en) 2015-09-03 2015-09-03 Borosilicate glass for pharmaceutical containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173792A JP6653073B2 (en) 2015-09-03 2015-09-03 Borosilicate glass for pharmaceutical containers

Publications (2)

Publication Number Publication Date
JP2017048092A JP2017048092A (en) 2017-03-09
JP6653073B2 true JP6653073B2 (en) 2020-02-26

Family

ID=58279093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173792A Active JP6653073B2 (en) 2015-09-03 2015-09-03 Borosilicate glass for pharmaceutical containers

Country Status (1)

Country Link
JP (1) JP6653073B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035801B4 (en) * 2000-07-22 2008-04-03 Schott Ag Borosilicate glass of high chemical resistance and its uses
JP2002293571A (en) * 2001-03-30 2002-10-09 Nippon Electric Glass Co Ltd Glass for illumination
CN101374776A (en) * 2006-01-30 2009-02-25 松下电器产业株式会社 Process for producing glass composition for lamp, glass composition for lamp, and lamp
JP6508507B2 (en) * 2013-09-02 2019-05-08 日本電気硝子株式会社 Borosilicate glass for pharmaceutical containers

Also Published As

Publication number Publication date
JP2017048092A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6694167B2 (en) Borosilicate glass for pharmaceutical containers
EP3004005B1 (en) Glass for pharmaceutical containers
WO2017038738A1 (en) Borosilicate glass for medicine containers, glass tube for medicine containers and method for producing medicine container
EP3190096B1 (en) Borosilicate glass for pharmaceutical container and glass tube for pharmaceutical container
EP3326979B1 (en) Borosilicate glass for pharmaceutical container
JP6709501B2 (en) Glass for drug container and glass tube for drug container
WO2020153294A1 (en) Glass for medicine container, and glass tube for medicine container and medicine container using same
WO2016093176A1 (en) Glass for medicine container and glass tube for medicine container
WO2014069177A1 (en) Medicinal glass and medicinal glass tube
JPWO2017115728A1 (en) Method for producing aluminoborosilicate glass for pharmaceutical containers
JP7118587B2 (en) borosilicate glass for pharmaceutical containers
JP6653076B2 (en) Glass tube for pharmaceutical container and method for producing the same
JP2017048091A (en) Borosilicate glass for pharmaceutical container
JP2014237562A (en) Borosilicate glass for medicament container
JP6653073B2 (en) Borosilicate glass for pharmaceutical containers
JP2017057096A (en) Glass tube for medical container
WO2021220801A1 (en) Medicine container glass, medicine container glass tube, and medicine container
CN113227008B (en) Glass for medical container, glass tube for medical container, and medical container using same
WO2022075171A1 (en) Tube glass, pharmaceutical primary packaging container, and alkali silicate glass
WO2023089917A1 (en) Borosilicate glass for pharmaceutical drug container, glass tube for pharmaceutical drug container, and method for producing borosilicate glass for pharmaceutical drug container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200109

R150 Certificate of patent or registration of utility model

Ref document number: 6653073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150