JP2017048091A - Borosilicate glass for pharmaceutical container - Google Patents

Borosilicate glass for pharmaceutical container Download PDF

Info

Publication number
JP2017048091A
JP2017048091A JP2015173791A JP2015173791A JP2017048091A JP 2017048091 A JP2017048091 A JP 2017048091A JP 2015173791 A JP2015173791 A JP 2015173791A JP 2015173791 A JP2015173791 A JP 2015173791A JP 2017048091 A JP2017048091 A JP 2017048091A
Authority
JP
Japan
Prior art keywords
glass
borosilicate glass
pharmaceutical container
mass
pharmaceutical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015173791A
Other languages
Japanese (ja)
Inventor
美樹 木村
Miki Kimura
美樹 木村
晋作 西田
Shinsaku Nishida
晋作 西田
長壽 研
Ken Choju
研 長壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015173791A priority Critical patent/JP2017048091A/en
Priority to EP16841770.7A priority patent/EP3345876A4/en
Priority to PCT/JP2016/075135 priority patent/WO2017038738A1/en
Priority to CN201680051403.6A priority patent/CN107949547A/en
Priority to US15/757,155 priority patent/US20180257975A1/en
Publication of JP2017048091A publication Critical patent/JP2017048091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide borosilicate glass for pharmaceutical container, having good processability even when BaO is not contained.SOLUTION: Provided is borosilicate glass for pharmaceutical container comprising SiO, AlO, BO, and RO (R is one or more selected from Li, Na, and K) as essential components and substantially not containing BaO, where a water content in the glass, in terms of a β-OH value, is 0.3 to 0.8/mm, and the glass contains, in mass%, 70.0 to 75.5% of SiO, 6.3 to 11% of AlO, 3 to 11.5% of BO, 4.0 to 8.5% of NaO, 0 to 5% of KO, and 0 to 0.2% of LiO. Further provided is the borosilicate glass for pharmaceutical container, where a content of MgO, CaO, and SrO is 0 to 4 mass%, 0≤MgO+CaO+SrO≤4 mass%, preferably 0≤MgO+CaO<1 mass%, and preferably 5≤NaO+KO+LiO≤10 mass%.SELECTED DRAWING: None

Description

本発明はバイアル、アンプル等の管瓶用ガラスや注射器のシリンジに使用される医薬容器用ホウケイ酸ガラスに関する。   The present invention relates to borosilicate glass for pharmaceutical containers used for glass for tubes such as vials and ampoules and syringes for syringes.

バイアル、アンプル等の医薬容器用ホウケイ酸ガラスには、下記に示すような特性が要求される。
(a)充填される薬液中の成分とガラス中の成分が反応しないこと
(b)充填される薬液を汚染しないように化学的耐久性や加水分解抵抗性が高いこと
(c)ガラス管の製造工程や、バイアル、アンプル等への加工時に、サーマルショックによる破損が生じ難いように低熱膨張係数であること
(d)バイアル、アンプル等への加工後に、容器内面がガラスからの蒸発物などで劣化しないよう、加工時の熱量が低減できること
これらの要求特性を満足する標準的な医薬容器用ホウケイ酸ガラスは、構成成分として、SiO、B、Al、NaO、KO、CaO、BaOと少量の清澄剤を含有している。
Borosilicate glass for pharmaceutical containers such as vials and ampoules is required to have the following characteristics.
(A) Components in the chemical solution to be filled do not react with components in the glass (b) Chemical durability and hydrolysis resistance are high so as not to contaminate the chemical solution to be filled (c) Production of glass tube Low coefficient of thermal expansion so that damage due to thermal shock is unlikely to occur during processing or processing into vials, ampoules, etc. (d) After processing into vials, ampoules, etc., the inner surface of the container deteriorates due to evaporation from the glass, etc. The amount of heat at the time of processing can be reduced so that the standard borosilicate glass for pharmaceutical containers satisfying these required characteristics is composed of SiO 2 , B 2 O 3 , Al 2 O 3 , Na 2 O, K It contains 2 O, CaO, BaO and a small amount of fining agent.

特開2014−214084JP2014-214084

近年、充填される薬液の開発が進み、より薬効の高い薬液が使用されつつある。これらの薬液の中には、化学的に不安定で変性しやすく、ガラスとの反応性が高いものもある。これに伴い、バイアルやアンプルを構成する医薬容器用ホウケイ酸ガラスには、従来以上に化学的耐久性や加水分解抵抗性の高いガラスが要求されている。また、ガラスがBaOを含有していると、ガラス溶融時にアルミナ系耐火物との反応によってバリウム長石結晶が析出し易くなり生産性が低下すると共に、ガラスから溶出したBaイオンが薬液中の硫酸イオンと反応して不溶性の沈殿物を発生させる恐れがある。   In recent years, development of chemicals to be filled has progressed, and chemicals with higher medicinal effects are being used. Some of these chemical solutions are chemically unstable, easily denatured, and have high reactivity with glass. Accordingly, borosilicate glass for pharmaceutical containers constituting vials and ampoules is required to have higher chemical durability and hydrolysis resistance than ever before. Further, when the glass contains BaO, barium feldspar crystals are likely to precipitate due to the reaction with the alumina refractory when the glass is melted, and the productivity is lowered, and Ba ions eluted from the glass are sulfate ions in the chemical solution. May generate insoluble precipitates.

このような事情から、例えば特許文献1では、BaOを含有せず加水分解抵抗性が高いガラスが提案されている。   Under such circumstances, for example, Patent Document 1 proposes a glass that does not contain BaO and has high hydrolysis resistance.

ところで、バイアルやアンプルなどの医薬容器は、管ガラスを局所的にバーナーで加熱して加工することで作製される。このバーナー加熱時に、ガラス中のBやNaOなどが蒸発し、医薬容器内面に凝縮し、異質層が形成される場合がある。異質層が形成されるとガラスの化学的耐久性や加水分解抵抗性が実質的に低下し、薬液の保存中や薬液充填後のオートクレーブ処理時に異質層からBやNaOなどが溶出し、薬液成分の変質や薬液のpH変化などを引き起こす可能性がある。特に特許文献1のようなBaOを含まないガラスは、BaOを含むガラスに比べて加工性が低いことから、容器加工時に従来よりも大きな熱量が必要になる。その結果、ガラス中からのBやNaOなどの蒸発量が増加し易い。 By the way, pharmaceutical containers such as vials and ampoules are produced by locally heating and processing tube glass with a burner. When this burner is heated, B 2 O 3 or Na 2 O in the glass evaporates and condenses on the inner surface of the medicine container, and a heterogeneous layer may be formed. When the heterogeneous layer is formed, the chemical durability and hydrolysis resistance of the glass are substantially reduced, and B 2 O 3 and Na 2 O are removed from the heterogeneous layer during storage of the chemical solution or during autoclaving after filling the chemical solution. Elution may cause changes in chemical solution components and changes in the pH of the chemical solution. In particular, a glass that does not contain BaO as in Patent Document 1 has a lower workability than a glass that contains BaO, and thus requires a larger amount of heat than before when processing containers. As a result, the amount of evaporation of B 2 O 3 and Na 2 O from the glass tends to increase.

本発明の目的は、BaOを含有しないにも関わらず、加工性の良い医薬容器用ホウケイ酸ガラスを提供することである。   An object of the present invention is to provide a borosilicate glass for a pharmaceutical container having good processability even though it does not contain BaO.

発明者等は種々の実験を行い、ガラス中の水分量が多いと赤外域での吸収が強まり、容器加工時の熱量を低減することができることを見出した。   The inventors conducted various experiments and found that when the amount of moisture in the glass is large, absorption in the infrared region is strengthened, and the amount of heat during processing of the container can be reduced.

本発明の医薬容器用ホウケイ酸ガラスは、SiO、Al、B、RO(RはLi、Na、Kから選ばれる1種類以上)を必須成分として含み、BaOを実質的に含有せず、ガラス中の水分量がβ−OH値換算で0.30〜0.80/mmであることを特徴とする。なお「BaOを実質的に含有しない」とは、BaOを積極的に添加しないという意味であり、不純物として混入するものまで排除する主旨ではない。より具体的にはBaOの含有量が質量%で0.05%以下であることを意味する。 The borosilicate glass for pharmaceutical containers of the present invention contains SiO 2 , Al 2 O 3 , B 2 O 3 , R 2 O (R is one or more selected from Li, Na, K) as essential components, and contains BaO. It is not substantially contained, and the moisture content in the glass is 0.30 to 0.80 / mm in terms of β-OH value. “Substantially free of BaO” means that BaO is not actively added, and is not intended to exclude substances that are mixed as impurities. More specifically, it means that the content of BaO is 0.05% or less by mass%.

上記構成によれば、BaOを含有しないため、ガラス溶融時あるいは成形時にBaOとアルミナ系耐火物との反応によってバリウム長石結晶が析出しない。またガラスからのBaイオンの溶出量が少なく、薬液中の硫酸イオンと不溶性の沈殿物を形成しにくいガラスが得られる。   According to the above configuration, since it does not contain BaO, barium feldspar crystals do not precipitate due to the reaction between BaO and alumina refractory during glass melting or molding. Moreover, the elution amount of Ba ions from the glass is small, and a glass that hardly forms an insoluble precipitate with sulfate ions in the chemical solution can be obtained.

また、上記構成によれば、ガラス中に存在する水酸基により、赤外域(2800nm付近)で吸収が生じる。そのため、バーナーによる容器加工時に放射される赤外光をガラスが吸収し、効率良くガラスを加熱することができ、結果的に容器加工時に必要となる熱量を低減することが可能になる。これにより、容器加工時のBやNaOなどの蒸発量を低減でき、内面に異質層が形成されにくい医薬容器を得ることができる。その結果、医薬容器の化学耐久性や加水分解抵抗性が高くなり、薬液の保存中や薬液充填後のオートクレーブ処理による、薬液成分の変質や薬液のpH変化などを引き起こし難くなる。尚、「熱量」とはバーナーの炎から供給される熱量であり、ガラスの加熱に寄与する熱量とガラス以外のものの加熱に寄与する熱量の和に相当する。 Moreover, according to the said structure, absorption arises in infrared region (2800 nm vicinity) by the hydroxyl group which exists in glass. For this reason, the glass absorbs infrared light radiated when the container is processed by the burner, and the glass can be efficiently heated. As a result, the amount of heat required for processing the container can be reduced. This can reduce the amount of evaporation of such B 2 O 3 and Na 2 O during container processing, it is possible to obtain a hard pharmaceutical container is formed heterogeneous layers on the inner surface. As a result, the chemical durability and hydrolysis resistance of the pharmaceutical container are increased, and it is difficult to cause alteration of chemical components and pH change of the chemical solution due to autoclaving during storage of the chemical solution or after filling with the chemical solution. The “heat amount” is the heat amount supplied from the flame of the burner, and corresponds to the sum of the heat amount contributing to the heating of the glass and the heat amount contributing to the heating of things other than the glass.

本発明の医薬容器用ホウケイ酸ガラスは、質量%でSiO 70.0〜75.5%、Al 6.3〜11%、B 3.0〜11.5%、NaO 4.0〜8.5%、KO 0〜5.0%、LiO 0〜0.2%含有することが好ましい。 The borosilicate glass for a pharmaceutical container of the present invention is SiO 2 70.0-75.5% by mass%, Al 2 O 3 6.3-11%, B 2 O 3 3.0-11.5%, Na 2 O 4.0~8.5%, K 2 O 0~5.0%, preferably contains Li 2 O 0~0.2%.

上記構成によれば、化学的耐久性や加水分解抵抗性に優れたガラスを得やすくなる。   According to the said structure, it becomes easy to obtain the glass excellent in chemical durability or hydrolysis resistance.

本発明においては、さらにMgO、CaO及びSrOの含有量が各々0〜4質量%であることが好ましい。   In the present invention, the contents of MgO, CaO and SrO are preferably 0 to 4% by mass, respectively.

上記構成によれば、化学的耐久性や加水分解抵抗性の低下を抑制しつつ、作業温度の低いガラスを得やすくなる。   According to the said structure, it becomes easy to obtain glass with a low working temperature, suppressing the chemical durability and the fall of hydrolysis resistance.

本発明においては、さらにMgO+CaO+SrOが0〜4質量%であることが好ましい。なお「MgO+CaO+SrO」とは、MgO、CaO及びSrOの含有量の合量を意味する。   In the present invention, MgO + CaO + SrO is preferably 0 to 4% by mass. “MgO + CaO + SrO” means the total content of MgO, CaO and SrO.

本発明においては、MgO+CaOが0〜1質量%未満であることが好ましい。   In the present invention, MgO + CaO is preferably 0 to less than 1% by mass.

本発明においては、さらにNaO+KO+LiOが5〜10質量%であることが好ましい。なお「NaO+KO+LiO」とは、NaO、KO及びLiOの合量を意味する。 In the present invention, preferably further Na 2 O + K 2 O + Li 2 O is from 5 to 10 wt%. “Na 2 O + K 2 O + Li 2 O” means the total amount of Na 2 O, K 2 O and Li 2 O.

上記構成によれば、化学的耐久性や加水分解抵抗性の低下を抑制しつつ、作業温度の低いガラスを得やすくなる。   According to the said structure, it becomes easy to obtain glass with a low working temperature, suppressing the chemical durability and the fall of hydrolysis resistance.

本発明においては、さらにFeの含有量が0〜0.2質量%未満であることが好ましい。 In the present invention, the content of Fe 2 O 3 is preferably 0 to less than 0.2% by mass.

上記構成によれば、ガラスの着色を効果的に防止することが可能になる。   According to the said structure, it becomes possible to prevent the coloring of glass effectively.

本発明においては、質量比で、(MgO+CaO+SrO)/(NaO+KO+LiO)の値を、0.10以下に調整することが好ましい。なお「(MgO+CaO+SrO)/(NaO+KO+LiO)」とは、MgO、CaO及びSrOの含有量の合量を、NaO、KO及びLiOの含有量の合量で除した値である。 In the present invention, it is preferable to adjust the value of (MgO + CaO + SrO) / (Na 2 O + K 2 O + Li 2 O) to 0.10 or less by mass ratio. Note that “(MgO + CaO + SrO) / (Na 2 O + K 2 O + Li 2 O)” means the total content of MgO, CaO and SrO is the total content of Na 2 O, K 2 O and Li 2 O. It is the value divided.

上記構成によれば、化学的耐久性や加水分解抵抗性の低下を抑制しつつ、作業温度の低いガラスを得やすくなる。   According to the said structure, it becomes easy to obtain glass with a low working temperature, suppressing the chemical durability and the fall of hydrolysis resistance.

本発明においては、質量比で、CaO/(NaO+KO+LiO)が、0〜0.10であることが好ましい。なお「CaO/(NaO+KO+LiO)」とは、CaOの含有量を、NaO、KO及びLiOの含有量の合量で除した値である。 In the present invention, the mass ratio, CaO / (Na 2 O + K 2 O + Li 2 O) is preferably a 0 to 0.10. “CaO / (Na 2 O + K 2 O + Li 2 O)” is a value obtained by dividing the content of CaO by the total content of Na 2 O, K 2 O and Li 2 O.

上記構成によれば、加水分解抵抗性が高いガラスが得られる。   According to the said structure, glass with high hydrolysis resistance is obtained.

本発明においては、質量比で、KO/NaOが、0.2〜1.0であることが好ましい。なお、KO/NaOとはKOの含有量をNaOの含有量で除した値である。 In the present invention, the mass ratio, K 2 O / Na 2 O is preferably a 0.2 to 1.0. K 2 O / Na 2 O is a value obtained by dividing the content of K 2 O by the content of Na 2 O.

上記構成によれば、加水分解抵抗性の低下を抑制しつつ、作業温度の低いガラスを得やすくなる。   According to the said structure, it becomes easy to obtain glass with a low working temperature, suppressing the hydrolysis resistance fall.

本発明においては、質量比でAl/(NaO+KO+LiO)が0.7〜1.5であることが好ましい。なお「Al/(NaO+KO+LiO)」とは、Alの含有量を、NaO、KO及びLiOの含有量の合量で除した値である。 In the present invention, a weight ratio Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O) is preferably a 0.7 to 1.5. “Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O)” is a value obtained by dividing the content of Al 2 O 3 by the total content of Na 2 O, K 2 O and Li 2 O. It is.

上記構成によれば、加水分解性能をさらに向上させることが可能になる。   According to the above configuration, the hydrolysis performance can be further improved.

本発明においては、EP8.0に準じた加水分解抵抗性試験の粉末試験法において、単位ガラス質量当たりの0.02mol/Lの塩酸の消費量が0.030mL以下であることが好ましい。   In the present invention, in the powder test method of the hydrolysis resistance test according to EP 8.0, the consumption of 0.02 mol / L hydrochloric acid per unit glass mass is preferably 0.030 mL or less.

本発明においては、DIN12116に準じた耐酸性試験において、面積あたりの質量減少量が1.0mg/dm以下となることが好ましい。 In the present invention, in the acid resistance test according to DIN12116, the mass loss per area is preferably 1.0 mg / dm 2 or less.

本発明においては、1150℃〜1250℃の作業温度を有することが好ましい。なお作業温度とは、ガラスの粘度が10dPa・sとなる温度である。 In the present invention, the working temperature is preferably 1150 ° C to 1250 ° C. The working temperature is a temperature at which the viscosity of the glass is 10 4 dPa · s.

上記構成によれば、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度を低くすることが可能となり、ガラスからのBやアルカリ金属酸化物成分の蒸発量を著しく低減できる。結果として、ガラス容器中に保管される薬液成分の変質や薬液のpH上昇などを引き起こす事態を回避することができる。 According to the above configuration, it becomes possible to lower the processing temperature when producing glass containers such as ampoules and vials from glass tubes, and the amount of evaporation of B 2 O 3 and alkali metal oxide components from the glass is significantly reduced. it can. As a result, it is possible to avoid a situation in which the chemical component stored in the glass container is altered or the pH of the chemical solution is increased.

本発明においては、104.5dPa・s以上の液相粘度を有することが好ましい。 In the present invention, it is preferable to have a liquid phase viscosity of 10 4.5 dPa · s or more.

上記構成によれば、ガラス管の成形にダンナー法を採用した場合でも、成形時の失透が生じ難くなり好ましい。   According to the said structure, even when a dunner method is employ | adopted for shaping | molding of a glass tube, devitrification at the time of shaping | molding does not arise easily, and it is preferable.

本発明の医薬容器用ガラス管は、上記医薬容器用ホウケイ酸ガラスからなることを特徴とする。   The glass tube for a pharmaceutical container of the present invention is characterized by comprising the above borosilicate glass for a pharmaceutical container.

本発明の医薬容器は、上記医薬容器用ホウケイ酸ガラスからなることを特徴とする。   The pharmaceutical container of the present invention is characterized by comprising the above borosilicate glass for a pharmaceutical container.

本発明の医薬容器用ホウケイ酸ガラスは、SiO、Al、B、RO(RはLi、Na及びKから選ばれる1種類以上)を必須成分として含む。 The borosilicate glass for pharmaceutical containers of the present invention contains SiO 2 , Al 2 O 3 , B 2 O 3 , R 2 O (R is one or more selected from Li, Na and K) as essential components.

また本発明の医薬容器用ホウケイ酸ガラスは、BaOを実質的に含まない。BaOがガラス組成中に含まれていると、前述のようにアルミナ系耐火物との反応や、ガラスから溶出したBaイオンと薬液中の硫酸イオンとの反応によって結晶を析出させたり、沈殿物を発生させたりする恐れがある。   Moreover, the borosilicate glass for pharmaceutical containers of the present invention does not substantially contain BaO. When BaO is contained in the glass composition, as described above, crystals are precipitated by the reaction with the alumina-based refractory, the reaction between Ba ions eluted from the glass and sulfate ions in the chemical solution, There is a risk of generating.

本発明の医薬容器用ガラスは、ガラス中の水分量をβ−OH値で表して0.3〜0.8/mm、0.35〜0.80/mm、0.4〜0.75/mm、特に0.45〜0.70/mmが好ましい。β−OH値が低すぎると、赤外線の吸収量が少ないため、バーナーの熱が伝わりにくく、加工時に強熱で加工する必要があり、容器内面が変質する原因となる。また、β−OH値が高すぎると、ガラスが赤外線を吸収しすぎて、バーナーによって急激に加熱され、軟化変形し易くなり加工時に容器形状を維持するのが困難になる。   The glass for pharmaceutical containers of the present invention represents the water content in the glass as a β-OH value and is 0.3 to 0.8 / mm, 0.35 to 0.80 / mm, 0.4 to 0.75 / mm. mm, particularly 0.45 to 0.70 / mm is preferred. If the β-OH value is too low, the amount of absorbed infrared rays is small, so that the heat of the burner is difficult to be transmitted, and it is necessary to process with high heat during processing, which causes the inner surface of the container to be altered. On the other hand, if the β-OH value is too high, the glass absorbs infrared rays too much and is heated suddenly by the burner, so that it becomes easy to soften and deform, making it difficult to maintain the container shape during processing.

なおガラス中の水分量を表すβ−OH値は、以下の式を用いて求めることができる。
β−OH=(1/t)×log10(T/T
t:ガラスの肉厚(mm)
:参照波長3846cm−1(2600nm)における透過率(%)
:水酸基吸収波長3600cm−1(2800nm)における透過率(%)
The β-OH value representing the amount of moisture in the glass can be obtained using the following formula.
β-OH = (1 / t) × log 10 (T 1 / T 2 )
t: Glass thickness (mm)
T 1 : Transmittance (%) at a reference wavelength of 3846 cm −1 (2600 nm)
T 2 : Transmittance (%) at a hydroxyl group absorption wavelength of 3600 cm −1 (2800 nm)

本発明において、ホウケイ酸ガラスの組成に特に制限はないが、質量%でSiO 70.0〜75.5%、Al 6.3〜11%、B 3.0〜11.5%、NaO 4.0〜8.5%、KO 0〜5.0%、LiO 0〜0.2%含有し、BaOを
実質的に含まないホウケイ酸ガラスであることが好ましい。以下、各成分の組成範囲を上記のように限定した理由を述べる。なお以下の説明において、特に断りがない限り、%表示は質量%を意味する。
In the present invention, is not particularly limited on the composition of borosilicate glass, SiO 2 70.0 to 75.5% by mass%, Al 2 O 3 6.3~11% , B 2 O 3 3.0~11 0.5%, Na 2 O 4.0-8.5%, K 2 O 0-5.0%, Li 2 O 0-0.2% and a borosilicate glass substantially free of BaO. It is preferable. Hereinafter, the reason why the composition range of each component is limited as described above will be described. In the following description, unless otherwise specified,% display means mass%.

SiOはガラスネットワークを構成する成分の1つである。SiOの含有量は70.0〜75.5%、70.0〜75.5%未満、70.0〜75.0%、特に70.0〜74.7%であることが好ましい。SiOの含有量が少な過ぎると化学的耐久性が低下し、医薬容器用ホウケイ酸ガラスに求められる耐酸性が低くなる。一方、SiOの含有量が多過ぎると液相粘度が低下し、製造工程で失透が起こりやすくなって生産性が低下する。 SiO 2 is one of the components constituting the glass network. The content of SiO 2 is preferably 70.0 to 75.5%, less than 70.0 to 75.5%, 70.0 to 75.0%, particularly preferably 70.0 to 74.7%. When the content of SiO 2 is too small decreases chemical durability, acid resistance required for the borosilicate glass for pharmaceutical containers is lowered. On the other hand, if the content of SiO 2 is too large liquidus viscosity lowers productivity and is more prone to devitrification in the production process is reduced.

Alはガラスの失透を抑制し、また化学的耐久性及び加水分解抵抗性を向上させる成分である。Alの含有量は6.3〜11%、6.4〜10%、6.5〜8.5%、特に6.7〜8.0%であることが好ましい。Alの含有量が少な過ぎると上記の効果が得られない。一方、Alの含有量が多過ぎるとガラスの粘度が上昇し、作業温度が高くなり、医薬容器に加工する際に必要な熱量が多くなってしまう。 Al 2 O 3 is a component that suppresses devitrification of glass and improves chemical durability and hydrolysis resistance. The content of Al 2 O 3 is preferably 6.3 to 11%, 6.4 to 10%, 6.5 to 8.5%, particularly 6.7 to 8.0%. If the content of Al 2 O 3 is too small, the above effect cannot be obtained. On the other hand, Al 2 O viscosity of the glass when the content is too large for 3 rises, the working temperature increases, the amount of heat required to process the pharmaceutical container becomes large.

はガラスの融点を低下させるだけでなく、液相粘度を上昇させ、失透を抑制する効果を有する。そのため、Bの含有量は3.0〜11.5%、5.5〜11.4%、8.5〜11.0%、特に9〜11.0%未満である。Bの含有量が少な過ぎると作業温度が高くなり、医薬容器に加工する際に必要な熱量が多くなってしまう。一方、Bの含有量が多過ぎると加水分解抵抗性や化学的耐久性が低下する。 B 2 O 3 not only lowers the melting point of the glass but also increases the liquid phase viscosity and suppresses devitrification. Therefore, the content of B 2 O 3 is 3.0 to 11.5%, 5.5 to 11.4%, 8.5 to 11.0%, particularly 9 to less than 11.0%. B 2 O content of 3 is too small working temperature increases, the amount of heat required to process the pharmaceutical container becomes large. On the other hand, B 2 when the content of O 3 is too much resistance to hydrolysis and chemical durability is lowered.

NaOはガラスの粘度を低下させ、線熱膨張係数を上昇させる効果がある。NaOの含有量は4.0〜8.5%、4.2〜8.4%、4.5〜8.0%、特に5.0〜7.0%であることが好ましい。NaOの含有量が少なすぎると作業温度が高くなり、医薬容器に加工する際に必要な熱量が多くなってしまう。一方、NaOの含有量が多過ぎると加水分解抵抗性が低下する。 Na 2 O has the effect of reducing the viscosity of the glass and increasing the linear thermal expansion coefficient. The content of Na 2 O is 4.0 to 8.5%, 4.2 to 8.4%, 4.5 to 8.0%, particularly preferably 5.0 to 7.0%. The working temperature is the Na 2 O content is too small is increased, the amount of heat required to process the pharmaceutical container becomes large. On the other hand, hydrolysis resistance is deteriorated when the content of Na 2 O is too large.

OもNaOと同様にガラスの粘度を低下させ、線熱膨張係数を上昇させる効果がある。KOの含有量は0〜5%、0.1〜5%、0.5〜4.5%、1.0〜3%、特に1.5〜3.0%であることが好ましい。KOの含有量が多過ぎると加水分解抵抗性が低下する。 K 2 O, like Na 2 O, has the effect of reducing the viscosity of the glass and increasing the linear thermal expansion coefficient. The content of K 2 O is preferably 0 to 5%, 0.1 to 5%, 0.5 to 4.5%, 1.0 to 3%, particularly preferably 1.5 to 3.0%. K 2 When the content of O is too large resistance to hydrolysis is reduced.

なおKOとNaOの両成分を併用すれば、混合アルカリ効果により、加水分解抵抗性が向上するため、望ましい。加水分解抵抗性を向上させるためには、質量比でKO/NaOが0.2〜1、0.20〜0.95、0.2〜0.8、特に0.2〜0.7であることが好ましい。この比が小さいと加水分解抵抗性が低下する。一方、この比が大きいと作業温度が高くなり、医薬容器に加工する際に必要な熱量が多くなってしまう。 Note that it is desirable to use both components of K 2 O and Na 2 O because the hydrolysis resistance is improved by the mixed alkali effect. In order to improve the hydrolysis resistance, K 2 O / Na 2 O is 0.2 to 1, 0.20 to 0.95, 0.2 to 0.8, particularly 0.2 to 0 in terms of mass ratio. .7 is preferable. If this ratio is small, the hydrolysis resistance decreases. On the other hand, if this ratio is large, the working temperature becomes high, and the amount of heat required for processing into a pharmaceutical container increases.

LiOはNaOやKOと同様にガラスの粘度を低下させ、また線熱膨張係数を上昇させる効果がある。しかしLiOを添加するとガラス溶融時に耐火物を侵食し易くなる。また生産コストの増加に繋がる。そのためLiOの含有量は0〜0.2%、0〜0.1%、0〜0.05%、特に0〜0.01%とすることが好ましく、特段の事情がなければLiO以外の他のアルカリ金属酸化物を使用することが望ましい。 Li 2 O has the effects of lowering the viscosity of the glass and increasing the linear thermal expansion coefficient, like Na 2 O and K 2 O. However, when Li 2 O is added, the refractory is easily eroded when the glass is melted. It also leads to an increase in production costs. Therefore, the content of Li 2 O is preferably 0 to 0.2%, 0 to 0.1%, 0 to 0.05%, particularly preferably 0 to 0.01%. If there is no special circumstance, Li 2 It is desirable to use other alkali metal oxides other than O.

LiO、NaO及びKOの含有量の合量は、好ましくは5〜10%、特に6〜9%である。これらの成分の合量が少ないと、作業温度が高くなる。またこれらの成分の合量が多いと、化学耐久性や加水分解抵抗性が低下する。 The total content of Li 2 O, Na 2 O and K 2 O is preferably 5 to 10%, in particular 6 to 9%. When the total amount of these components is small, the working temperature becomes high. Moreover, when there are many total amounts of these components, chemical durability and hydrolysis resistance will fall.

また本発明においては、上記以外にも種々の成分を添加することが可能である。   In the present invention, various components other than the above can be added.

MgOは化学的耐久性向上の効果がある。MgOの含有量は、好ましくは0〜4.0%、0〜2.0%、特に0〜1.0%である。MgOの含有量が多すぎると加水分解抵抗性が低下する。   MgO has an effect of improving chemical durability. The content of MgO is preferably 0 to 4.0%, 0 to 2.0%, particularly 0 to 1.0%. When there is too much content of MgO, hydrolysis resistance will fall.

CaOはガラスの高温粘度を低下させる効果がある。CaOの含有量は、好ましくは0〜4.0%、0〜1.5%、0〜1.1%、0〜0.9%、特に0〜0.5%である。CaO含有量が多過ぎると加水分解抵抗性が低下する。   CaO has the effect of reducing the high temperature viscosity of the glass. The content of CaO is preferably 0 to 4.0%, 0 to 1.5%, 0 to 1.1%, 0 to 0.9%, particularly 0 to 0.5%. When there is too much CaO content, hydrolysis resistance will fall.

SrOは化学的耐久性向上の効果がある。SrOの含有量は、好ましくは0〜4.0%、0〜2.0%、特に0〜1.0%である。SrOの含有量が多すぎると加水分解抵抗性が低下する。   SrO has an effect of improving chemical durability. The content of SrO is preferably 0 to 4.0%, 0 to 2.0%, particularly 0 to 1.0%. When there is too much content of SrO, hydrolysis resistance will fall.

MgOとCaOとSrOの含有量の合量は、好ましくは0〜4.0%、0〜3.0%、0〜2.0%、0〜1.0%未満、特に0〜0.5%であることが好ましい。これらの成分の合量が多すぎると加水分解抵抗性が低下する。   The total content of MgO, CaO and SrO is preferably 0 to 4.0%, 0 to 3.0%, 0 to 2.0%, 0 to less than 1.0%, especially 0 to 0.5%. % Is preferred. When there is too much total amount of these components, hydrolysis resistance will fall.

MgOとCaOの含有量の合量は、好ましくは0〜1%未満、0〜0.8%、特に0〜0.5%である。これらの成分の合量が多すぎると加水分解性が低下する。   The total content of MgO and CaO is preferably 0 to less than 1%, 0 to 0.8%, particularly 0 to 0.5%. When there is too much total amount of these components, hydrolyzability will fall.

TiOは加水分解抵抗性を向上させる効果がある。TiOの含有量は0〜7.0%未満であることが好ましく、0〜5.0%、0〜4.0%、特に0〜1.5%であることがより好ましい。TiOの含有量が多すぎると作業温度が高くなり、医薬容器に加工する際に必要な熱量が多くなってしまう。 TiO 2 has the effect of improving hydrolysis resistance. The content of TiO 2 is preferably 0 to less than 7.0%, more preferably 0 to 5.0%, 0 to 4.0%, and particularly preferably 0 to 1.5%. Working temperature and the content of TiO 2 is too large increases, the amount of heat required to process the pharmaceutical container becomes large.

ZrOは加水分解抵抗性を向上させる効果がある。ZrOの含有量は0〜7.0%未満であることが好ましく、0〜5.0%、0〜4.0%、特に0〜1.5%であることがより好ましい。ZrOの含有量が多すぎると作業温度が高くなり、医薬容器に加工する際に必要な熱量が多くなってしまう。 ZrO 2 has an effect of improving hydrolysis resistance. The content of ZrO 2 is preferably 0 to less than 7.0%, more preferably 0 to 5.0%, 0 to 4.0%, and particularly preferably 0 to 1.5%. Working temperature and the content of ZrO 2 is too large increases, the amount of heat required to process the pharmaceutical container becomes large.

Feは、ガラスを着色させ可視域での透過率を低下させる恐れがあるため、その含有量は0.2%以下、0.1%以下、特には0.02%以下に制限することが望ましい。 Since Fe 2 O 3 may color the glass and reduce the transmittance in the visible range, its content is limited to 0.2% or less, 0.1% or less, particularly 0.02% or less. It is desirable.

また清澄剤としてF、Cl、Sb、SnO、NaSO等のいずれか一種以上を含有しても良い。これらの清澄剤の含有量の合計は3%以下であり、好ましくは1%以下、より好ましくは0.5%以下である。またこれらの清澄剤の中では、溶融温度や環境への影響が少ないという理由からClやSnOを使用することが好ましい。Clを使用する場合、その含有量は3%以下、更に1%以下、特に0.2%以下であることが好ましい。SnOを使用する場合、その含有量は2%以下、より好ましくは0.5%以下であることが好ましい。 The F as a fining agent, Cl, Sb 2 O 3, SnO 2, may contain any one or more of such Na 2 SO 4. The total content of these fining agents is 3% or less, preferably 1% or less, more preferably 0.5% or less. Among these fining agents, it is preferable to use Cl or SnO 2 because it has little influence on the melting temperature and the environment. When Cl is used, its content is preferably 3% or less, more preferably 1% or less, and particularly preferably 0.2% or less. When SnO 2 is used, its content is preferably 2% or less, more preferably 0.5% or less.

また、本発明においては、低粘度、高加水分解抵抗性のガラスを得るために、質量比で、(MgO+CaO+SrO)/(NaO+KO+LiO)の値を、0.10以下、0.08以下、0.07以下、特に0.07未満に調整することが好ましい。この値が大きすぎると加水分解抵抗性が低下する。同様の理由で、質量比で、CaO/(NaO+KO+LiO)の値を、0.10以下、より好ましくは0.08以下、特に0.07以下さらに好ましくは0.07未満に調整することが好ましい。この値が大きすぎると加水分解抵抗性が低下する。 In the present invention, in order to obtain a glass having a low viscosity and a high hydrolysis resistance, the value of (MgO + CaO + SrO) / (Na 2 O + K 2 O + Li 2 O) is set to 0.10 or less, 0.0. It is preferable to adjust to 08 or less, 0.07 or less, and particularly less than 0.07. If this value is too large, the hydrolysis resistance decreases. For the same reason, the value of CaO / (Na 2 O + K 2 O + Li 2 O) by mass ratio is 0.10 or less, more preferably 0.08 or less, particularly 0.07 or less, more preferably less than 0.07. It is preferable to adjust. If this value is too large, the hydrolysis resistance decreases.

また本発明においては、加水分解抵抗性を向上させるが、ガラスの粘度を上昇させる成分であるAlと、ガラスの粘度を低下させるが、加水分解抵抗性を低下させる成分であるNaO、KO、LiO、MgO、CaO、SrO、Bの含有量のバランスを取ることが、加水分解抵抗性と良好な加工性を両立させる上で望ましい。具体的には質量比でAl/(NaO+KO+LiO+MgO+CaO+SrO+B)が0.32以上、特に0.34以上であることが好ましく、またこの値が0.60以下、特に0.50以下であることが望ましい。なお「Al/(NaO+KO+LiO+MgO+CaO+SrO+B)」とは、Alの含有量を、NaO、KO、LiO、MgO、CaO、SrO及びBの含有量の合量で除した値である。 In the present invention also improves the resistance to hydrolysis, and Al 2 O 3 is a component to increase the viscosity of the glass, but reduces the viscosity of the glass, Na 2 is a component that lowers the resistance to hydrolysis It is desirable to balance the contents of O, K 2 O, Li 2 O, MgO, CaO, SrO, and B 2 O 3 in order to achieve both hydrolysis resistance and good workability. Specifically, the mass ratio of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) is preferably 0.32 or more, particularly preferably 0.34 or more, and this value is 0.60 or less, In particular, it is desirable that it is 0.50 or less. “Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 )” means that the content of Al 2 O 3 is Na 2 O, K 2 O, Li 2 O, MgO, CaO, SrO and It is the value divided by the total content of B 2 O 3 content.

さらに質量比でAl/(NaO+KO+LiO)が0.7〜1.5、0.75〜1.5、特に0.75〜1.2であることが望ましい。この比率が小さ過ぎると加水分解抵抗性が低下し、高すぎると作業温度が高くなり、医薬容器に加工する際に必要な熱量が多くなってしまう。 Furthermore, it is desirable that Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O) is 0.7 to 1.5, 0.75 to 1.5, and particularly 0.75 to 1.2 in terms of mass ratio. If this ratio is too small, the hydrolysis resistance will decrease, and if it is too high, the working temperature will increase, and the amount of heat required for processing into a pharmaceutical container will increase.

また本発明においては、モル比で(NaO+KO+LiO―Al)/Bの値が、0.315〜0.350、好ましくは0.320〜0.345、0.320〜0.340、特に0.325〜0.340未満であることが望ましい。この値が大きすぎると、加工時の種々の熱処理により、NaO、KO、LiOといったアルカリ金属酸化物含有量が多いためにこれらの蒸発量が増え、化学的耐久性や加水分解抵抗性が低下するか、B含有量が少ないために作業温度が高くなり、加工時の種々の熱処理により、NaO、KO、LiOといったアルカリ金属酸化物が蒸発しやすくなり、化学的耐久性や加水分解抵抗性が低下する。また、水分の気化に伴う泡が発生しやすくなる。一方、この値が小さすぎると、NaO、KO、LiOといったアルカリ金属酸化物含有量が少ないために作業温度が高くなり、加工時の種々の熱処理により、NaO、KO、LiOやBが蒸発しやすくなり、化学的耐久性や加水分解抵抗性が低下するとともに水分の気化に伴う泡が発生しやすくなるか、B含有量が多いために容器加工前の時点で化学的耐久性や加水分解抵抗性が低下する。なお「NaO+KO+LiO−Al」とは、NaO、KO及びLiOの合量からAlの含有量を引いた値である。「(NaO+KO+LiO−Al)/B」とは、(NaO+KO+LiO−Al)の値をBで除した値を意味する。 In the present invention, the molar ratio of (Na 2 O + K 2 O + Li 2 O—Al 2 O 3 ) / B 2 O 3 is 0.315 to 0.350, preferably 0.320 to 0.345, It is desirable that it is 0.320 to 0.340, especially less than 0.325 to 0.340. If this value is too large, the amount of evaporation of these substances increases due to the high content of alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O due to various heat treatments during processing. The decomposition temperature decreases or the B 2 O 3 content is low, so the working temperature becomes high, and alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O evaporate due to various heat treatments during processing. And the chemical durability and hydrolysis resistance are reduced. In addition, bubbles accompanying the vaporization of moisture are likely to occur. On the other hand, if this value is too small, the content of alkali metal oxides such as Na 2 O, K 2 O and Li 2 O is low, so that the working temperature becomes high, and various heat treatments during processing cause Na 2 O, K 2 O, Li 2 O, and B 2 O 3 are likely to evaporate, and chemical durability and hydrolysis resistance are reduced, and bubbles accompanying vaporization of water are easily generated, or the content of B 2 O 3 is low. Therefore, chemical durability and hydrolysis resistance are reduced before processing the container. “Na 2 O + K 2 O + Li 2 O—Al 2 O 3 ” is a value obtained by subtracting the content of Al 2 O 3 from the total amount of Na 2 O, K 2 O and Li 2 O. “(Na 2 O + K 2 O + Li 2 O—Al 2 O 3 ) / B 2 O 3 ” means a value obtained by dividing the value of (Na 2 O + K 2 O + Li 2 O—Al 2 O 3 ) by B 2 O 3. means.

また本発明の医薬容器用ホウケイ酸ガラスは、以下の特性を有することが好ましい。   Moreover, it is preferable that the borosilicate glass for pharmaceutical containers of this invention has the following characteristics.

EP8.0に準じた加水分解抵抗性試験の粉末試験法において、単位ガラス質量当たりの0.02mol/Lの塩酸の消費量は、好ましくは0.030mL以下、0.028mL以下、0.026mL以下、特に0.025mL以下である。塩酸消費量が多すぎると、アンプルやバイアルなどの医薬容器を作製し、薬液を充填、保存した際、ガラス成分特にアルカリ金属成分の溶出が大幅に増加して薬液成分の変質を引き起こす恐れがある。   In the powder test method of the hydrolysis resistance test according to EP 8.0, the consumption of 0.02 mol / L hydrochloric acid per unit glass mass is preferably 0.030 mL or less, 0.028 mL or less, 0.026 mL or less. In particular, it is 0.025 mL or less. If the amount of hydrochloric acid consumed is too large, when a pharmaceutical container such as an ampoule or vial is prepared, filled with chemicals, and stored, the elution of glass components, especially alkali metal components, may increase significantly, causing chemical component alteration. .

DIN12116に準じた耐酸性試験において、単位面積あたりの質量減少量は、好ましくは1.0mg/dm以下、特に0.8mg/dm以下である。質量減少量が多くなると、アンプルやバイアルなどの医薬容器を作製し、薬液を充填、保存した際、ガラス成分の溶出量が大幅に増加して薬液成分の変質を引き起こす恐れがある。 In the acid resistance test according to DIN12116, the amount of mass reduction per unit area is preferably 1.0 mg / dm 2 or less, particularly 0.8 mg / dm 2 or less. When the amount of mass decrease increases, when a medical container such as an ampoule or vial is prepared, and a chemical solution is filled and stored, the elution amount of the glass component may greatly increase and the chemical solution component may be altered.

作業温度は1250℃以下、1150℃〜1250℃、より好ましくは1150℃〜1240℃、特に1160℃〜1230℃である。作業温度が高すぎると、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度が高くなり、ガラス中のBやアルカリ金属酸化物の蒸発量が著しく増加する。 The working temperature is 1250 ° C. or lower, 1150 ° C. to 1250 ° C., more preferably 1150 ° C. to 1240 ° C., particularly 1160 ° C. to 1230 ° C. If the working temperature is too high, the processing temperature for producing a glass container such as an ampoule or a vial from the glass tube increases, and the amount of evaporation of B 2 O 3 and alkali metal oxide in the glass increases remarkably.

液相粘度は、好ましくは104.5dPa・s以上、105.0dPa・s以上、105.2dPa・s以上、105.4dPa・s以上、特に105.6dPa・s以上である。液相粘度が低くなると、ダンナー法によるガラス管成形時に失透が起こり易くなり、生産性が低下する。 The liquid phase viscosity is preferably 10 4.5 dPa · s or more, 10 5.0 dPa · s or more, 10 5.2 dPa · s or more, 10 5.4 dPa · s or more, particularly 10 5.6 dPa · s or more. s or more. When the liquid phase viscosity is low, devitrification is likely to occur during glass tube forming by the Danner method, and productivity is reduced.

線熱膨張係数はガラスの耐熱衝撃性において重要なパラメータである。ガラスが十分な耐熱衝撃性を得るためには、30〜380℃の温度範囲における線熱膨張係数は、好ましくは58×10−7/℃以下、特に48〜55×10−7/℃である。 The linear thermal expansion coefficient is an important parameter in the thermal shock resistance of glass. In order for the glass to obtain sufficient thermal shock resistance, the linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. is preferably 58 × 10 −7 / ° C. or less, particularly 48 to 55 × 10 −7 / ° C. .

次に本発明の医薬容器用ガラス管を製造する方法を説明する。以下の説明は、ダンナー法を用いた例である。   Next, a method for producing the glass tube for a pharmaceutical container of the present invention will be described. The following description is an example using the Danner method.

先ず、上記のガラス組成になるように、ガラス原料を調合してガラスバッチを作製する。次いで、このガラスバッチを1550〜1700℃の溶融窯に連続投入して溶融、清澄した後、得られた溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、当該先端部からガラスを管状に引き出す。なおガラス中の水分量(β-OH値)の調整は、含水原料の使用や溶融温度、ガラス流量の調整などで行う。
引き出した管状ガラスを所定の長さに切断して医薬容器用ガラス管を得る。このようにして得られたガラス管は、バイアルやアンプルの製造に供される。
First, a glass batch is prepared by blending glass raw materials so as to have the above glass composition. Next, the glass batch was continuously charged into a melting furnace at 1550 to 1700 ° C., melted and clarified, and then the obtained molten glass was wound around a rotating refractory while blowing air from the tip of the refractory, Glass is pulled out from the tip portion into a tubular shape. The water content (β-OH value) in the glass is adjusted by using a water-containing raw material, adjusting the melting temperature, and the glass flow rate.
The drawn tubular glass is cut into a predetermined length to obtain a glass tube for a pharmaceutical container. The glass tube thus obtained is used for manufacturing vials and ampoules.

なお、本発明の医薬容器用ガラス管は、ダンナー法に限らず、従来周知の任意の手法を用いて製造しても良い。例えば、ベロー法やダウンドロー法も本発明の医薬容器用ガラス管の製造方法として有効な方法である。   In addition, you may manufacture the glass tube for pharmaceutical containers of this invention not only with the Danner method but using the conventionally well-known arbitrary methods. For example, the bellows method and the downdraw method are also effective methods for producing the glass tube for a pharmaceutical container of the present invention.

以下、実施例に基づいて本発明を説明する。   Hereinafter, the present invention will be described based on examples.

表1、2は本発明の実施例(試料No.1〜15)、及び比較例(試料No.16)を示している。なお表中の「ΣRO」は「KO+NaO+LiO」を表しており、ΣRO)」は「MgO+CaO+SrO」を表している。 Tables 1 and 2 show examples of the present invention (sample Nos. 1 to 15) and comparative examples (sample No. 16). In the table, “ΣR 2 O” represents “K 2 O + Na 2 O + Li 2 O”, and “ΣRO)” represents “MgO + CaO + SrO”.

各試料は以下のようにして調製した。   Each sample was prepared as follows.

まず表に示す組成となるように、ガラス建て500gのバッチを調合し、白金坩堝を用いて1650℃で4時間溶融した。なお融液中の泡を除去するために、溶融中に攪拌2回を行った。溶融後、インゴットを作製し、測定に必要な形状に加工し、各種の評価に供した。なおガラスのβ−OH値は、含水原料の配合や溶融雰囲気を制御することで調整した。   First, a glass-built 500 g batch was prepared so as to have the composition shown in the table, and melted at 1650 ° C. for 4 hours using a platinum crucible. In order to remove bubbles in the melt, stirring was performed twice during melting. After melting, an ingot was prepared, processed into a shape necessary for measurement, and subjected to various evaluations. The β-OH value of the glass was adjusted by controlling the blending of the water-containing raw material and the melting atmosphere.

表1、2から明らかなように、試料No.1〜15は良好な加水分解抵抗性及び化学的耐久性を示した。また、各試料とも1220℃以下の作業温度を有していることがわかった。また、ガラス組成中にSnを含むNo.2、6〜15について、加水分解抵抗性試験によるSnの溶出を評価したところ、何れの試料もSn溶出量は検出下限未満であった。また、試料No.1〜15は、β−OH値が所定の範囲内にあり、バーナーによる容器加工時に効率良くガラスを加熱できた。それゆえBaOを含有しないにも関わらず、BやNaOの蒸発量が増加しないと考えられる。比較例である試料No.16は、β−OH値が低く、バーナーによる容器加工時に効率良くガラスを加熱できなかった。それゆえガラス管の加工時に必要以上の熱量が必要となることから、BやNaOの蒸発量が増加する懸念がある。 As apparent from Tables 1 and 2, Sample No. 1-15 showed good hydrolysis resistance and chemical durability. Moreover, it turned out that each sample has the working temperature of 1220 degrees C or less. Moreover, No. containing Sn in the glass composition. When the elution of Sn by a hydrolysis resistance test was evaluated about 2 and 6-15, Sn elution amount was less than a detection minimum in any sample. Sample No. In Nos. 1 to 15, the β-OH value was within a predetermined range, and the glass could be heated efficiently during container processing with a burner. Therefore, it is considered that the evaporation amount of B 2 O 3 and Na 2 O does not increase even though BaO is not contained. Sample No. which is a comparative example. No. 16 had a low β-OH value, and the glass could not be efficiently heated during container processing with a burner. Therefore, since the amount of heat more than necessary is required when processing the glass tube, there is a concern that the amount of evaporation of B 2 O 3 and Na 2 O increases.

なお線熱膨張係数の測定は、約5mmφ×50mmのロッド状に成形したガラス試料を用い、ディラートメーターにより、30〜380℃の温度範囲において行った。   The linear thermal expansion coefficient was measured in a temperature range of 30 to 380 ° C. with a dilatometer using a glass sample molded into a rod shape of about 5 mmφ × 50 mm.

歪点、徐冷点及び軟化点の測定はファイバーエロンゲーション法で行った。   The strain point, annealing point, and softening point were measured by the fiber elongation method.

作業温度は、白金球引き上げ法によって求めた高温粘度とFulcherの粘度計算式からガラスの粘度曲線を求め、この粘度曲線から10dPa・sに相当する温度を求めた。 The working temperature was determined by obtaining a viscosity curve of the glass from the high temperature viscosity obtained by the platinum ball pulling method and the Fulcher viscosity calculation formula, and obtaining a temperature corresponding to 10 4 dPa · s from this viscosity curve.

液相温度の測定は、約120×20×10mmの白金ボートに粉砕したガラス試料を充填し、線形の温度勾配を有する電気炉に24時間投入した。その後、顕微鏡観察にて結晶析出箇所を特定し、結晶析出箇所に対応する温度を電気炉の温度勾配グラフから算出し、この温度を液相温度とした。   The liquid phase temperature was measured by filling a crushed glass sample in a platinum boat of about 120 × 20 × 10 mm and placing it in an electric furnace having a linear temperature gradient for 24 hours. Then, the crystal precipitation location was identified by microscopic observation, the temperature corresponding to the crystal precipitation location was calculated from the temperature gradient graph of the electric furnace, and this temperature was defined as the liquidus temperature.

液相粘度の算出は、歪点、徐冷点、軟化点、作業温度とFulcherの粘度計算式からガラスの粘度曲線を求め、この粘度曲線から液相温度におけるガラスの粘度を算出し、この粘度を液相粘度とした。   The liquid phase viscosity is calculated by calculating the glass viscosity curve from the strain point, annealing point, softening point, working temperature and Fulcher's viscosity formula, and calculating the viscosity of the glass at the liquid phase temperature from this viscosity curve. Was the liquid phase viscosity.

加水分解抵抗性試験は、アルミナ製の乳鉢と乳棒を用いて試料を粉砕し、EP8.0の粉末試験法に準じた方法で行った。詳細な試験手順は以下の通りである。試料の表面をエタノールで良く拭き、アルミナ製の乳鉢と乳棒で試料を粉砕した後、ステンレス製の目開き710μm、425μm、300μmの3つの篩を用いて分級した。篩に残ったものは再度粉砕し、同じ篩操作を行い、300μmの篩上に残った試料粉末をエタノールで洗浄し、ビーカー等のガラス容器に投入した。その後、エタノールを入れてかき混ぜ、超音波洗浄機で1分間洗浄した後、上澄み液だけを流し出す操作を6回行った。その後、110℃のオーブンで30分間乾燥させ、デシケーター内で30分間冷却した。得られた試料粉末を、電子天秤を用いて10g精度±0.0001gで秤量し、250mLの石英フラスコに入れ、超純水50mLを加えた。密栓後、フラスコをオートクレーブに入れて121℃、30分間保持した。100℃から121℃までは1℃/分で昇温し、121℃から100℃までは2℃/分で降温した。95℃まで冷却後、試料をコニカルビーカーに取り出した。30mLの超純水でフラスコ内を洗浄し、コニカルビーカーに流し入れる操作を3回行った。試験後の液にメチルレッドを約0.05mL滴下後、0.02mol/Lの塩酸で中和滴定を行い、塩酸の消費量を記録し、試料ガラス1gあたりの塩酸消費量を算出した。   In the hydrolysis resistance test, the sample was pulverized using an alumina mortar and pestle, and a method according to the powder test method of EP 8.0 was used. The detailed test procedure is as follows. The surface of the sample was thoroughly wiped with ethanol, and the sample was pulverized with an alumina mortar and pestle, and then classified using three sieves made of stainless steel, 710 μm, 425 μm, and 300 μm. The material remaining on the sieve was pulverized again and subjected to the same sieve operation. The sample powder remaining on the 300 μm sieve was washed with ethanol and placed in a glass container such as a beaker. Then, ethanol was added and stirred, and after washing with an ultrasonic washing machine for 1 minute, the operation of pouring out only the supernatant was performed 6 times. Thereafter, it was dried in an oven at 110 ° C. for 30 minutes and cooled in a desiccator for 30 minutes. The obtained sample powder was weighed with an accuracy of 10 g ± 0.0001 g using an electronic balance, placed in a 250 mL quartz flask, and 50 mL of ultrapure water was added. After sealing, the flask was placed in an autoclave and kept at 121 ° C. for 30 minutes. The temperature was raised at 1 ° C./min from 100 ° C. to 121 ° C., and the temperature was lowered at 2 ° C./min from 121 ° C. to 100 ° C. After cooling to 95 ° C., the sample was removed into a conical beaker. The inside of the flask was washed with 30 mL of ultrapure water and poured into a conical beaker three times. About 0.05 mL of methyl red was dropped into the liquid after the test, and neutralization titration was performed with 0.02 mol / L hydrochloric acid. The amount of hydrochloric acid consumed was recorded, and the amount of hydrochloric acid consumed per gram of sample glass was calculated.

耐酸性試験は、試料表面積を50cm、溶出液である6mol/Lの塩酸の液量を800mLとし、DIN12116に準じて行った。詳細な試験手順は以下の通りである。まず全ての表面を鏡面研磨仕上げとした総表面積が50cmのガラス試料片を準備し、前処理として試料をフッ酸(40質量%)と塩酸(2mol/L)を体積比で1:9となるように混合した溶液に浸漬し、10分間マグネティックスターラーで攪拌した。次いで試料片を取出し、超純水中で2分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。次に、試料片を110℃のオーブンの中で1時間乾燥させ、デシケーター内で30分間冷却した。このようにして得られた試料片の質量mを精度±0.1mgまで測定し、記録した。続いて石英ガラス製のビーカーに6mol/Lの塩酸800mLを入れ、電熱器を用いて沸騰するまで加熱し、白金線で吊した試料片を投入して6時間保持した。試験中の液量の減少を防ぐために、容器の蓋の開口部はガスケット及び冷却管で栓をした。その後、試料片を取り出し、超純水中で2分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。さらに洗浄した試料片を110℃のオーブンの中で1時間乾燥し、デシケーター内で30分間冷却した。このようにして処理した試料の質量片mを精度±0.1mgまで測定し、記録した。最後に沸騰塩酸に投入する前後の試料の質量m、mmgと試料の総表面積Acmから以下の式2によって単位面積当たりの質量減少量を算出し、耐酸性試験の測定値とした。 The acid resistance test was performed according to DIN12116, with the sample surface area set to 50 cm 2 and the amount of 6 mol / L hydrochloric acid as the eluent to 800 mL. The detailed test procedure is as follows. First, a glass sample piece having a total surface area of 50 cm 2 with a mirror polished finish on all surfaces was prepared. It was immersed in the solution so mixed and stirred with a magnetic stirrer for 10 minutes. Next, the sample piece was taken out and subjected to ultrasonic cleaning for 2 minutes in ultrapure water three times, and then ultrasonic cleaning for 2 minutes in ethanol was performed twice. Next, the sample piece was dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. The mass m 1 of the sample piece thus obtained was measured to an accuracy of ± 0.1 mg and recorded. Subsequently, 800 mL of 6 mol / L hydrochloric acid was placed in a beaker made of quartz glass, heated using an electric heater until boiling, and a sample piece suspended with a platinum wire was added and held for 6 hours. In order to prevent a decrease in the liquid volume during the test, the opening of the lid of the container was plugged with a gasket and a cooling pipe. Thereafter, the sample piece was taken out and subjected to ultrasonic cleaning for 3 minutes in ultrapure water three times, and then ultrasonic cleaning for 2 minutes in ethanol was performed twice. Further, the washed sample piece was dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. The mass m 2 of the sample thus treated was measured to an accuracy of ± 0.1 mg and recorded. Finally, the amount of mass reduction per unit area was calculated from the masses m 1 and m 2 mg of the sample before and after being added to boiling hydrochloric acid and the total surface area Acm 2 of the sample by the following formula 2, and used as the measured value in the acid resistance test. .

[式2] 単位面積当たりの質量減少量=100×(m−m)/2×A
Snの溶出量は、加水分解抵抗性試験後の試験液について、ICP発光分析装置(バリアン製)にて分析を行った。詳細な試験手順は以下の通りである。加水分解抵抗性試験後の試験溶液をメンブランフィルターでろ過して遠沈管に採取した。Sn含有量が0mg/L、0.05mg/L、0.5mg/L、1.0mg/Lとなるように、Sn標準液(和光純薬工業製)を希釈して、標準溶液を作製した。それらの標準溶液から検量線を作成し、試験液中のSn溶出量を算出した。Snの測定波長は189.925nmとした。
[Formula 2] Mass reduction amount per unit area = 100 × (m 1 −m 2 ) / 2 × A
The elution amount of Sn was analyzed for the test solution after the hydrolysis resistance test using an ICP emission analyzer (manufactured by Varian). The detailed test procedure is as follows. The test solution after the hydrolysis resistance test was filtered through a membrane filter and collected in a centrifuge tube. The standard solution was prepared by diluting the Sn standard solution (manufactured by Wako Pure Chemical Industries) so that the Sn content was 0 mg / L, 0.05 mg / L, 0.5 mg / L, and 1.0 mg / L. . Calibration curves were prepared from these standard solutions, and the Sn elution amount in the test solution was calculated. The measurement wavelength of Sn was 189.925 nm.

ガラス中の水分量は、以下の手順により測定した。作製したガラスから20mm×30mm×1mmの板ガラスを加工し、両面を鏡面研磨仕上げした。この板ガラス中の水分量をFT−IRを用いてガラスの透過率を測定し、以下の式1からβ−OH値を算出した。   The amount of water in the glass was measured by the following procedure. A 20 mm × 30 mm × 1 mm plate glass was processed from the produced glass, and both surfaces were mirror-polished. The transmittance | permeability of glass was measured for the moisture content in this plate glass using FT-IR, and (beta) -OH value was computed from the following formula | equation 1. FIG.

[式1]β−OH=(1/t)log10(T/T
t:ガラスの肉厚(mm)
:参照波長3846cm−1(2600nm)における透過率(%)
:水酸基吸収波長3600cm−1(2800nm)における透過率(%)
[Formula 1] β-OH = (1 / t) log 10 (T 1 / T 2 )
t: Glass thickness (mm)
T 1 : Transmittance (%) at a reference wavelength of 3846 cm −1 (2600 nm)
T 2 : Transmittance (%) at a hydroxyl group absorption wavelength of 3600 cm −1 (2800 nm)

ガラスの加工性評価は、以下の手順により評価した。作製した管ガラスを回転させながら管端を一定時間、酸素バーナーにて加熱し、融封した。加熱後、融封した管端を目視で観察し、形状が良好である場合は○、形状が維持できない場合は×とした。   The workability of the glass was evaluated by the following procedure. While rotating the produced tube glass, the tube end was heated with an oxygen burner for a certain time and fused. After heating, the end of the sealed tube was visually observed. If the shape was good, it was marked as ◯, and if the shape could not be maintained, it was marked as x.

本発明の医薬容器用ホウケイ酸ガラスは、アンプル、バイアル、プレフィルドシリンジ、カートリッジなど様々な医薬容器用材料として好適に使用できる。   The borosilicate glass for pharmaceutical containers of the present invention can be suitably used as various pharmaceutical container materials such as ampoules, vials, prefilled syringes and cartridges.

Claims (17)

SiO、Al、BO、RO(RはLi、Na、Kのいずれか1種類以上)を必須成分として含み、BaOを実質的に含まず、ガラス中の水分量がβ−OH値換算で0.30〜0.80/mmであることを特徴とする医薬容器用ホウケイ酸ガラス。 SiO 2 , Al 2 O 3 , B 2 O, R 2 O (R is any one or more of Li, Na, K) is contained as an essential component, BaO is not substantially contained, and the moisture content in the glass is Borosilicate glass for pharmaceutical containers, characterized in that it is 0.30 to 0.80 / mm in terms of β-OH value. 質量%でSiO 70.0〜75.5%、Al 6.3〜11%、B 3〜11.5%、NaO 4.0〜8.5%、KO 0〜5%、LiO 0〜0.2%含有することを特徴とする請求項1に記載の医薬容器用ホウケイ酸ガラス。 SiO 2 70.0 to 75.5% by mass%, Al 2 O 3 6.3~11% , B 2 O 3 3~11.5%, Na 2 O 4.0~8.5%, K 2 O 0 to 5%, pharmaceutical container borosilicate glass according to claim 1, characterized by containing Li 2 O 0~0.2%. MgO、CaO及びSrOの含有量が各々0〜4質量%であることを特徴とする請求項1又は請求項2に記載の医薬容器用ホウケイ酸ガラス。   Content of MgO, CaO, and SrO is 0-4 mass%, respectively, The borosilicate glass for pharmaceutical containers of Claim 1 or Claim 2 characterized by the above-mentioned. MgO+CaO+SrOが0〜4質量%であることを特徴とする請求項1〜3に記載の医薬容器用ホウケイ酸ガラス。   MgO + CaO + SrO is 0-4 mass%, The borosilicate glass for pharmaceutical containers of Claims 1-3 characterized by the above-mentioned. MgO+CaOが0〜1質量%未満であることを特徴とする請求項1〜4の何れかに記載の医薬容器用ホウケイ酸ガラス。   The borosilicate glass for pharmaceutical containers according to any one of claims 1 to 4, wherein MgO + CaO is 0 to less than 1% by mass. NaO+KO+LiOが5〜10質量%であることを特徴とする請求項1〜5の何れかに記載の医薬容器用ホウケイ酸ガラス。 Na 2 O + K 2 O + Li 2 O pharmaceutical container borosilicate glass according to claim 1, characterized in that 5 to 10 wt%. Feの含有量が0〜0.2質量%未満である請求項1〜6の何れかに記載の医薬容器用ホウケイ酸ガラス。 The borosilicate glass for a pharmaceutical container according to any one of claims 1 to 6, wherein the content of Fe 2 O 3 is 0 to less than 0.2% by mass. 質量比で(MgO+CaO+SrO)/(NaO+KO+LiO)の値が、0.10以下であることを特徴とする請求項1〜7の何れかに記載の医薬容器用ホウケイ酸ガラス。 The value of the mass ratio (MgO + CaO + SrO) / (Na 2 O + K 2 O + Li 2 O) The pharmaceutical container borosilicate glass according to any one of claims 1-7, characterized in that 0.10 or less. 質量比で、CaO/(NaO+KO+LiO)が、0〜0.10であることを特徴とする請求項1〜8の何れかに記載の医薬容器用ホウケイ酸ガラス。 A mass ratio, CaO / (Na 2 O + K 2 O + Li 2 O) The pharmaceutical container borosilicate glass according to claim 1, characterized in that the 0 to 0.10. 質量比でKO/NaOが0.2〜1であることを特徴とする請求項1〜9の何れかに記載の医薬容器用ホウケイ酸ガラス。 The borosilicate glass for pharmaceutical containers according to claim 1, wherein K 2 O / Na 2 O is 0.2 to 1 in terms of mass ratio. 質量比で、Al/(NaO+KO+LiO)が0.7〜1.5であることを特徴とする請求項1〜10の何れかに記載の医薬容器用ホウケイ酸ガラス。 The borosilicate glass for a pharmaceutical container according to claim 1, wherein Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O) is 0.7 to 1.5 by mass ratio. . EP8.0に準じた加水分解抵抗性試験の粉末試験法において、単位ガラス質量当たりの0.02mol/Lの塩酸の消費量が0.030mL以下であることを特徴とする請求項1〜11の何れかに記載の医薬容器用ホウケイ酸ガラス。   The powder test method of the hydrolysis resistance test according to EP 8.0, wherein the consumption of 0.02 mol / L hydrochloric acid per unit glass mass is 0.030 mL or less. The borosilicate glass for pharmaceutical containers according to any one of the above. DIN12116に準じた耐酸性試験において、面積あたりの質量減少量が1.0mg/dm以下となることを特徴とする請求項1〜12の何れかに記載の医薬容器用ホウケイ酸ガラス。 In the acid resistance test according to DIN12116, pharmaceutical container borosilicate glass according to any one of claims 1 to 12, weight loss per unit area is characterized by comprising a 1.0 mg / dm 2 or less. 1150℃〜1250℃の作業温度を有することを特徴とする請求項1〜13の何れかに記載の医薬容器用ホウケイ酸ガラス。   The borosilicate glass for a pharmaceutical container according to any one of claims 1 to 13, which has an operating temperature of 1150C to 1250C. 104.5dPa・s以上の液相粘度を有することを特徴とする請求項1〜14の何れかに記載の医薬容器用ホウケイ酸ガラス。 The borosilicate glass for a pharmaceutical container according to any one of claims 1 to 14, which has a liquid phase viscosity of 10 4.5 dPa · s or more. 請求項1〜15の何れかに記載の医薬容器用ホウケイ酸ガラスからなることを特徴とする医薬容器用ガラス管。   A glass tube for a pharmaceutical container comprising the borosilicate glass for a pharmaceutical container according to any one of claims 1 to 15. 請求項1〜16の何れかに記載の医薬容器用ホウケイ酸ガラスをからなることを特徴とする医薬容器。   A pharmaceutical container comprising the borosilicate glass for a pharmaceutical container according to any one of claims 1 to 16.
JP2015173791A 2015-09-03 2015-09-03 Borosilicate glass for pharmaceutical container Pending JP2017048091A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015173791A JP2017048091A (en) 2015-09-03 2015-09-03 Borosilicate glass for pharmaceutical container
EP16841770.7A EP3345876A4 (en) 2015-09-03 2016-08-29 Borosilicate glass for medicine containers, glass tube for medicine containers and method for producing medicine container
PCT/JP2016/075135 WO2017038738A1 (en) 2015-09-03 2016-08-29 Borosilicate glass for medicine containers, glass tube for medicine containers and method for producing medicine container
CN201680051403.6A CN107949547A (en) 2015-09-03 2016-08-29 The manufacture method of medical container borosilicate glass, medical container glass tube and medical container
US15/757,155 US20180257975A1 (en) 2015-09-03 2016-08-29 Borosilicate glass for pharmaceutical container, glass tube for pharmaceutical container, and manufacturing method for pharmaceutical container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173791A JP2017048091A (en) 2015-09-03 2015-09-03 Borosilicate glass for pharmaceutical container

Publications (1)

Publication Number Publication Date
JP2017048091A true JP2017048091A (en) 2017-03-09

Family

ID=58279085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173791A Pending JP2017048091A (en) 2015-09-03 2015-09-03 Borosilicate glass for pharmaceutical container

Country Status (1)

Country Link
JP (1) JP2017048091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110255895A (en) * 2019-07-16 2019-09-20 醴陵旗滨电子玻璃有限公司 Containing alkali borosilicate glass and preparation method thereof
CN112703173A (en) * 2018-08-30 2021-04-23 康宁股份有限公司 Soft chemically-strengthenable glass for laminates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206472A (en) * 1994-01-12 1995-08-08 Nippon Electric Glass Co Ltd Borosilicate glass for medicine
JP2004091308A (en) * 2002-07-11 2004-03-25 Nippon Electric Glass Co Ltd Glass for lighting
JP2010168233A (en) * 2009-01-21 2010-08-05 Nippon Electric Glass Co Ltd Reinforced glass and glass
JP2013245124A (en) * 2012-05-24 2013-12-09 Nippon Electric Glass Co Ltd Method for manufacturing borosilicate glass
JP2014214084A (en) * 2013-04-26 2014-11-17 ショット アクチエンゲゼルシャフトSchott AG Borosilicate glass having improved hydrolysis resistance suitable for use in pharmaceutical field
JP2015098430A (en) * 2013-09-02 2015-05-28 日本電気硝子株式会社 Borosilicate glass for medicament container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206472A (en) * 1994-01-12 1995-08-08 Nippon Electric Glass Co Ltd Borosilicate glass for medicine
JP2004091308A (en) * 2002-07-11 2004-03-25 Nippon Electric Glass Co Ltd Glass for lighting
JP2010168233A (en) * 2009-01-21 2010-08-05 Nippon Electric Glass Co Ltd Reinforced glass and glass
JP2013245124A (en) * 2012-05-24 2013-12-09 Nippon Electric Glass Co Ltd Method for manufacturing borosilicate glass
JP2014214084A (en) * 2013-04-26 2014-11-17 ショット アクチエンゲゼルシャフトSchott AG Borosilicate glass having improved hydrolysis resistance suitable for use in pharmaceutical field
JP2015098430A (en) * 2013-09-02 2015-05-28 日本電気硝子株式会社 Borosilicate glass for medicament container

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GLASS SCIENCE AND TECHNOLOGY, vol. 72, no. 5, JPN6019049967, 1999, pages 145 - 152, ISSN: 0004177992 *
GLASS TECHNOLOGY, vol. 36, no. 4, JPN6019049966, 1995, pages 103 - 106, ISSN: 0004177991 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703173A (en) * 2018-08-30 2021-04-23 康宁股份有限公司 Soft chemically-strengthenable glass for laminates
CN110255895A (en) * 2019-07-16 2019-09-20 醴陵旗滨电子玻璃有限公司 Containing alkali borosilicate glass and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6694167B2 (en) Borosilicate glass for pharmaceutical containers
WO2017038738A1 (en) Borosilicate glass for medicine containers, glass tube for medicine containers and method for producing medicine container
JP6455799B2 (en) Glass tubes for pharmaceutical containers and pharmaceutical containers
JP6604521B2 (en) Borosilicate glass for pharmaceutical containers and glass tubes for pharmaceutical containers
JP6811941B2 (en) Borosilicate glass for pharmaceutical containers
JP6709501B2 (en) Glass for drug container and glass tube for drug container
JPWO2017115728A1 (en) Method for producing aluminoborosilicate glass for pharmaceutical containers
WO2014069177A1 (en) Medicinal glass and medicinal glass tube
CN113227008B (en) Glass for medical container, glass tube for medical container, and medical container using same
WO2020153294A1 (en) Glass for medicine container, and glass tube for medicine container and medicine container using same
JP2017048091A (en) Borosilicate glass for pharmaceutical container
JP7118587B2 (en) borosilicate glass for pharmaceutical containers
JP6653076B2 (en) Glass tube for pharmaceutical container and method for producing the same
JP2014237562A (en) Borosilicate glass for medicament container
JP6653073B2 (en) Borosilicate glass for pharmaceutical containers
JP2017057096A (en) Glass tube for medical container
WO2021220801A1 (en) Medicine container glass, medicine container glass tube, and medicine container
WO2022075171A1 (en) Tube glass, pharmaceutical primary packaging container, and alkali silicate glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200528