JP2017057096A - Glass tube for medical container - Google Patents

Glass tube for medical container Download PDF

Info

Publication number
JP2017057096A
JP2017057096A JP2015181342A JP2015181342A JP2017057096A JP 2017057096 A JP2017057096 A JP 2017057096A JP 2015181342 A JP2015181342 A JP 2015181342A JP 2015181342 A JP2015181342 A JP 2015181342A JP 2017057096 A JP2017057096 A JP 2017057096A
Authority
JP
Japan
Prior art keywords
glass
glass tube
atomic concentration
less
borosilicate glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015181342A
Other languages
Japanese (ja)
Inventor
美樹 木村
Miki Kimura
美樹 木村
晋作 西田
Shinsaku Nishida
晋作 西田
長壽 研
Ken Choju
研 長壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015181342A priority Critical patent/JP2017057096A/en
Priority to PCT/JP2016/075135 priority patent/WO2017038738A1/en
Priority to EP16841770.7A priority patent/EP3345876A4/en
Priority to CN201680051403.6A priority patent/CN107949547A/en
Priority to US15/757,155 priority patent/US20180257975A1/en
Publication of JP2017057096A publication Critical patent/JP2017057096A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a glass tube for a medical container which is a borosilicate glass containing no BaO and can maintain excellent chemical durability or hydrolysis resistance even after various heat treatment in a processing process.SOLUTION: A glass tube for a medical container is formed of borosilicate glass containing, by mass%, SiOof 65 to 80%, AlOof 5 to 15%, BOof 2 to 12%, NaO of 3 to 10%, KO of 0 to 5%, LiO of 0 to 5%, MgO of 0 to 5%, CaO of 0 to 5%, SrO of 0 to 5% with a value of AlO/(NaO+KO+LiO+MgO+CaO+SrO+BO) of 0.35 to 0.60 by mass ratio, practically has no BaO, and has a value of (atomic concentration of Na)/(atomic concentration of Na+atomic concentration of Si) in a region by 200 nm depth from an inner surface of the glass tube of 0.01 to less than 0.5.SELECTED DRAWING: Figure 2

Description

本発明はバイアル、アンプル等の管瓶用ガラスや注射器のシリンジに使用される医薬容器用ガラス管に関する。   The present invention relates to a glass tube for a pharmaceutical container used for glass for tubes such as vials and ampoules and syringes for syringes.

バイアル、アンプル等の医薬容器用ホウケイ酸ガラスには、下記に示すような特性が要求される。
(a)充填される薬液中の成分とガラス中の成分が反応しないこと
(b)充填される薬液を汚染しないように化学的耐久性や加水分解抵抗性が高いこと、また、それが容器加工時の種々の熱処理後も維持されること
(c)ガラス管の製造工程や、バイアル、アンプル等への加工時に、サーマルショックによる破損が生じ難いように低熱膨張係数であること
(d)バイアル、アンプル等への加工後に、容器内面がガラスからの蒸発物などで劣化しないよう、加工時の熱量が低減できること
これらの要求特性を満足する標準的な医薬容器用ホウケイ酸ガラスは、構成成分として、SiO、B、Al、NaO、KO、CaO、BaOと少量の清澄剤を含有している。
Borosilicate glass for pharmaceutical containers such as vials and ampoules is required to have the following characteristics.
(A) Components in the chemical solution to be filled do not react with components in the glass (b) Chemical durability and hydrolysis resistance are high so as not to contaminate the chemical solution to be filled. (C) Low coefficient of thermal expansion so that damage due to thermal shock is unlikely to occur during the manufacturing process of glass tubes and processing into vials, ampoules, etc. (d) vials, After processing into ampoules, the amount of heat during processing can be reduced so that the inner surface of the container does not deteriorate due to evaporants from the glass, etc.Standard borosilicate glass for pharmaceutical containers that satisfies these required characteristics SiO 2, B 2 O 3, Al 2 O 3, Na 2 O, K 2 O, CaO, contains a BaO and a small amount of fining agents.

特開2014−214084JP2014-214084

近年、充填される薬液の開発が進み、より薬効の高い薬液が使用されつつある。これらの薬液の中には、化学的に不安定で変性しやすく、ガラスとの反応性が高いものもある。これに伴い、バイアルやアンプルを構成する医薬容器用ホウケイ酸ガラスには、従来以上に化学的耐久性や加水分解抵抗性の高いガラスが要求されている。また、ガラスがBaOを含有していると、ガラス溶融時にアルミナ系耐火物との反応によってバリウム長石結晶が析出し易くなり生産性が低下すると共に、ガラスから溶出したBaイオンが薬液中の硫酸イオンと反応して不溶性の沈殿物を発生させる恐れがある。   In recent years, development of chemicals to be filled has progressed, and chemicals with higher medicinal effects are being used. Some of these chemical solutions are chemically unstable, easily denatured, and have high reactivity with glass. Accordingly, borosilicate glass for pharmaceutical containers constituting vials and ampoules is required to have higher chemical durability and hydrolysis resistance than ever before. Further, when the glass contains BaO, barium feldspar crystals are likely to precipitate due to the reaction with the alumina refractory when the glass is melted, and the productivity is lowered, and Ba ions eluted from the glass are sulfate ions in the chemical solution. May generate insoluble precipitates.

このような事情から、例えば特許文献1では、BaOを含有せず加水分解抵抗性が高いガラスが提案されている。また、特許文献2では、ガラスを製造する際に清澄剤に適した条件で溶融することにより泡の少ないガラスの製造方法が提案されている。   Under such circumstances, for example, Patent Document 1 proposes a glass that does not contain BaO and has high hydrolysis resistance. Moreover, in patent document 2, when manufacturing glass, the manufacturing method of glass with few bubbles is proposed by fuse | melting on the conditions suitable for a clarifying agent.

ところで、バイアルやアンプルなどの医薬容器は、ガラス管を局所的にバーナーで加熱して加工することで作製される。このバーナー加熱時に、ガラス中のBやNaOなどが蒸発し、医薬容器内面に凝縮し、異質層が形成される場合がある。異質層が形成されるとガラスの化学的耐久性や加水分解抵抗性が実質的に低下し、薬液の保存中や薬液充填後のオートクレーブ処理時に異質層からBやNaOなどが溶出し、薬液成分の変質や薬液のpH変化などを引き起こす可能性がある。特に特許文献1のようなBaOを含まないガラスは、BaOを含むガラスに比べて加工性が低いことから、容器加工時に従来よりも大きな熱量が必要になる。その結果、ガラス中からのBやNaOなどの蒸発量が増加し易い。 By the way, pharmaceutical containers such as vials and ampoules are produced by locally heating a glass tube with a burner and processing it. When this burner is heated, B 2 O 3 or Na 2 O in the glass evaporates and condenses on the inner surface of the medicine container, and a heterogeneous layer may be formed. When the heterogeneous layer is formed, the chemical durability and hydrolysis resistance of the glass are substantially reduced, and B 2 O 3 and Na 2 O are removed from the heterogeneous layer during storage of the chemical solution or during autoclaving after filling the chemical solution. Elution may cause changes in chemical solution components and changes in the pH of the chemical solution. In particular, a glass that does not contain BaO as in Patent Document 1 has a lower workability than a glass that contains BaO, and thus requires a larger amount of heat than before when processing containers. As a result, the amount of evaporation of B 2 O 3 and Na 2 O from the glass tends to increase.

また、上記異質層の形成は、容器内面が剥離し、薬液中にフレークスと言われる不溶性の異物が発生する原因にもなる。特許文献1では加水分解抵抗性を向上させるためにKOの添加量を調節したガラスを提案しているが、KOは蒸発し易いと同時にBやNaOの蒸発を抑制する効果は期待できない。このため、医薬容器に加工するためのバーナー加熱時にBやNaOなどが蒸発し、医薬容器内面に異質層が形成され、異質層からBやNaOなどが溶出し、薬液の変質や薬液のpH上昇やフレークスの発生を引き起こす懸念がある。 The formation of the heterogeneous layer also causes the inner surface of the container to peel off and insoluble foreign matter called flakes to be generated in the chemical solution. Patent Document 1 proposes a glass in which the addition amount of K 2 O is adjusted in order to improve hydrolysis resistance. However, K 2 O is easy to evaporate and at the same time, evaporates B 2 O 3 and Na 2 O. The effect of suppressing cannot be expected. Therefore, like B 2 O 3 and Na 2 O when burner heating for processing into a pharmaceutical container evaporates, is formed heterogeneous layers in a pharmaceutical container inner surface, B 2 O 3 and Na 2 O, etc. are eluted from the heterogeneous layer However, there is a concern that the chemical solution may be deteriorated, the pH of the chemical solution may be increased, or flakes may be generated.

本発明の目的は、BaOを含有しないホウケイ酸ガラスであって、加工工程での種々の熱処理後も優れた化学的耐久性や加水分解抵抗性を維持できる医薬容器用ガラス管を提供することである。   An object of the present invention is to provide a glass tube for a pharmaceutical container that is a borosilicate glass that does not contain BaO and can maintain excellent chemical durability and hydrolysis resistance even after various heat treatments in the processing step. is there.

発明者等は種々の実験を行った結果、従来のガラス管は表面近傍のNaOの含有量が高くなっており、これが上記異質層の形成と関係があること、このNaO含有量の上昇はガラス管成形時に使用される耐火物等からのNaO成分の溶出に起因することを見出し、本発明を提案するに至った。 As a result of various experiments conducted by the inventors, the conventional glass tube has a high Na 2 O content near the surface, which is related to the formation of the heterogeneous layer, and the Na 2 O content. The increase in the temperature was caused by elution of the Na 2 O component from the refractories used at the time of forming the glass tube, and the present invention was proposed.

本発明の医薬容器用ガラス管は、質量%でSiO 65〜80%、Al 5〜15%、B 2〜12%、NaO 3〜10%、KO 0〜5%、LiO 0〜5%、MgO 0〜5%、CaO 0〜5%、SrO 0〜5%含有し、質量比でAl/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が、0.35〜0.60であり、BaOを実質的に含まないホウケイ酸ガラスからなるとともに、ガラス管の内表面から200nmの深さまでの領域における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値が0.01〜0.5未満であることを特徴とする。尚、「Al/(NaO+KO+LiO+MgO+CaO+SrO+B)」とは、Alの含有量を、NaO、KO、LiO、MgO、CaO、SrO及びBの含有量の合量で除した値である。また、「BaOを実質的に含まない」とは、BaOを積極的に添加しないという意味であり、不純物として混入するものまで排除する主旨ではない。より具体的にはBaOの含有量が質量%で0.05%以下であることを意味する。さらに「(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)」とは、Naの原子濃度をNaの原子濃度とSiの原子濃度の和で除した値であり、ガラス表面から200nmの深さまでの領域における最大値を意味する。 The glass tube for pharmaceutical containers of the present invention is SiO 2 65-80%, Al 2 O 3 5-15%, B 2 O 3 2-12%, Na 2 O 3-10%, K 2 O 0 by mass%. ~5%, Li 2 O 0~5% , 0~5% MgO, CaO 0~5%, containing SrO 0 to 5%, by weight ratio Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) The value of 0.35 to 0.60 is made of borosilicate glass substantially free of BaO, and in the region from the inner surface of the glass tube to a depth of 200 nm (atomic concentration of Na) / The value of (Na atomic concentration + Si atomic concentration) is 0.01 to less than 0.5. “Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 )” means that the content of Al 2 O 3 is Na 2 O, K 2 O, Li 2 O, MgO, CaO, SrO. And the value divided by the total content of B 2 O 3 content. Further, “substantially free of BaO” means that BaO is not actively added, and is not intended to exclude substances that are mixed as impurities. More specifically, it means that the content of BaO is 0.05% or less by mass%. Further, “(Na atomic concentration) / (Na atomic concentration + Si atomic concentration)” is a value obtained by dividing the atomic concentration of Na by the sum of the atomic concentration of Na and the atomic concentration of Si, and is 200 nm from the glass surface. It means the maximum value in the region up to the depth of.

上記構成によれば、BaOを含有しないため、ガラス溶融時あるいは成形時にBaOとアルミナ系耐火物との反応によってバリウム長石結晶が析出しない。また、ガラスからのBaイオンの溶出が少なく、薬液中の硫酸イオンと不溶性の沈殿物を形成しにくいガラスが得られる。   According to the above configuration, since it does not contain BaO, barium feldspar crystals do not precipitate due to the reaction between BaO and alumina refractory during glass melting or molding. Moreover, the elution of Ba ions from the glass is small, and a glass that hardly forms an insoluble precipitate with sulfate ions in the chemical solution can be obtained.

また上記構成によれば、表面付近のNaO濃度を適正化しているため、バーナー加熱時のガラス中のBやNaOなどの蒸発を抑制することができ、異質層の形成も抑制することができる。同時に、容器加工時の種々の熱処理後も優れた化学的耐久性や加水分解抵抗性を維持することができ、薬液成分の変質やpH上昇、並びにフレークスの発生を抑制することができる。 According to the above arrangement, since the optimizing the concentration of Na 2 O near the surface, it is possible to suppress evaporation of like B 2 O 3 and Na 2 O in the glass during the burner heating, formation of heterogeneous layer Can also be suppressed. At the same time, excellent chemical durability and hydrolysis resistance can be maintained even after various heat treatments during processing of the container, and alteration of chemical components, pH increase, and occurrence of flakes can be suppressed.

本発明においては、さらにAlの含有量が6.3〜11%であり、MgO+CaOが0〜1%未満であるホウケイ酸ガラスからなることが好ましい。 In the present invention, it is preferable that the content of Al 2 O 3 is 6.3 to 11% and MgO + CaO is 0 to less than 1%.

上記構成によれば、加水分解性に優れたガラスを得やすくなる。   According to the said structure, it becomes easy to obtain the glass excellent in hydrolyzability.

本発明においては、モル比で(NaO+KO+LiO―Al)/Bの値が、0.33〜0.39であるホウケイ酸ガラスからなることが好ましい。なお、「(NaO+KO+LiO−Al)/B」とは、NaO、KO、LiOのモル%の合量からAlのモル%を差し引いた値を、Bのモル%で除した値である。 In the present invention, the value of a molar ratio (Na 2 O + K 2 O + Li 2 O-Al 2 O 3) / B 2 O 3 is preferably made of borosilicate glass is 0.33 to 0.39. Note that “(Na 2 O + K 2 O + Li 2 O—Al 2 O 3 ) / B 2 O 3 ” means the molar amount of Al 2 O 3 from the total amount of Na 2 O, K 2 O, and Li 2 O. The value obtained by subtracting% is divided by the mol% of B 2 O 3 .

上記構成によれば、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度を低くすることが可能となり、ガラスからのBやアルカリ金属酸化物成分の蒸発量を著しく低減できる。その結果、容器加工時の種々の熱処理後も優れた化学的耐久性や加水分解抵抗性を維持することができる。 According to the above configuration, it becomes possible to lower the processing temperature when producing glass containers such as ampoules and vials from glass tubes, and the amount of evaporation of B 2 O 3 and alkali metal oxide components from the glass is significantly reduced. it can. As a result, excellent chemical durability and hydrolysis resistance can be maintained even after various heat treatments during container processing.

本発明においては、EP8.0に準じた加水分解抵抗性試験の粉末試験法において、単位ガラス質量当たりの0.02mol/Lの塩酸の消費量が0.030mL以下であるホウケイ酸ガラスからなることが好ましい。   In the present invention, in the powder test method of the hydrolysis resistance test according to EP 8.0, it consists of a borosilicate glass in which the consumption of 0.02 mol / L hydrochloric acid per unit glass mass is 0.030 mL or less. Is preferred.

本発明においては、DIN12116に準じた耐酸性試験において、単位面積あたりの質量減少量が1.0mg/dm以下となるホウケイ酸ガラスからなることが好ましい。 In the present invention, in an acid resistance test according to DIN12116, it is preferably made of a borosilicate glass whose mass reduction amount per unit area is 1.0 mg / dm 2 or less.

上記構成によれば、ガラスからの各種成分の溶出や、ガラスと薬液との反応が抑制されるため、薬液成分の変質や薬液のpH上昇、フレークスの発生を抑制できる。   According to the said structure, since elution of various components from glass and reaction with glass and a chemical | medical solution are suppressed, alteration of a chemical | medical solution component, pH rise of a chemical | medical solution, and generation | occurrence | production of flakes can be suppressed.

本発明においては、1150℃〜1250℃の作業温度を有するホウケイ酸ガラスからなることが好ましい。なお作業温度とは、ガラスの粘度が10dPa・sとなる温度である。 In this invention, it is preferable to consist of borosilicate glass which has a working temperature of 1150 degreeC-1250 degreeC. The working temperature is a temperature at which the viscosity of the glass is 10 4 dPa · s.

上記構成によれば、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度を低くすることが可能となり、ガラスからのBやアルカリ金属酸化物成分の蒸発量を著しく低減できる。その結果、ガラス容器中に保管される薬液成分の変質や薬液のpH上昇、更にはフレークスが発生する事態を回避することができる。 According to the above configuration, it becomes possible to lower the processing temperature when producing glass containers such as ampoules and vials from glass tubes, and the amount of evaporation of B 2 O 3 and alkali metal oxide components from the glass is significantly reduced. it can. As a result, it is possible to avoid a situation in which the chemical solution components stored in the glass container are altered, the pH of the chemical solution is increased, and further, flakes are generated.

本発明においては、104.5dPa・s以上の液相粘度を有するホウケイ酸ガラスからなることが好ましい。 In the present invention, it is preferably made of borosilicate glass having a liquid phase viscosity of 10 4.5 dPa · s or more.

上記構成によれば、ガラス管の成形にダンナー法を採用した場合でも、成形時に失透し難くなり好ましい。   According to the above configuration, even when the Danner method is adopted for forming the glass tube, it is difficult to devitrify during forming, which is preferable.

本発明の医薬容器は、上記医薬容器用ホウケイ酸ガラスからなることを特徴とする。   The pharmaceutical container of the present invention is characterized by comprising the above borosilicate glass for a pharmaceutical container.

試料No.8の表面付近のNaOの濃度分布の分析結果を示すグラフである。Sample No. 8 is a graph showing an analysis result of a concentration distribution of Na 2 O near the surface of FIG. 試料No.1の表面付近のNaOの濃度分布の分析結果を示すグラフである。Sample No. 2 is a graph showing an analysis result of Na 2 O concentration distribution near the surface of 1. 熱処理前後の加水分解抵抗性試験の結果を示すグラフである。It is a graph which shows the result of the hydrolysis resistance test before and behind heat processing.

本発明の医薬容器用ガラス管は、BaOを実質的に含まないホウケイ酸ガラスからなる。BaOがガラス組成中に含まれていると、アルミナ系耐火物との反応や、ガラスから溶出したBaイオンと薬液中の硫酸イオンとの反応によって結晶を析出させたり、沈殿物を発生させたりする恐れがある。   The glass tube for pharmaceutical containers of the present invention is made of borosilicate glass substantially free of BaO. When BaO is contained in the glass composition, crystals are precipitated or precipitates are generated by reaction with the alumina-based refractory or by reaction of Ba ions eluted from the glass with sulfate ions in the chemical solution. There is a fear.

本発明の医薬容器用ガラス管を構成するホウケイ酸ガラスにおいては、加水分解抵抗性を向上させるが、ガラスの粘度を上昇させる成分であるAlと、ガラスの粘度を低下させるが、加水分解抵抗性を低下させる成分であるNaO、KO、LiO、MgO、CaO、SrO、Bの含有量のバランスを取ることが、加水分解抵抗性の向上と加工温度の低下を両立させる上で望ましい。具体的には質量比でAl/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が、0.35〜0.60、好ましくは0.35〜0.50、より好ましくは0.36〜0.50、さらに好ましくは0.37〜0.50である。Al/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が小さすぎると、ガラスの加水分解抵抗性が低下する。また、バーナー加工時のガラスからのBやアルカリ金属酸化物成分の蒸発量が増加する。Al/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が大きすぎると、ガラスの粘度が高くなり、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度が高くなり、バーナー加熱時のガラス中のBやNaOなどの蒸発量が増加する。 In the borosilicate glass constituting the glass tube for a pharmaceutical container of the present invention, although the hydrolysis resistance is improved, Al 2 O 3 which is a component for increasing the viscosity of the glass and the viscosity of the glass are decreased. Balancing the content of Na 2 O, K 2 O, Li 2 O, MgO, CaO, SrO, and B 2 O 3 which are components that lower decomposition resistance improves hydrolysis resistance and processing temperature. It is desirable to achieve both reductions. Specifically, the value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) by mass ratio is 0.35 to 0.60, preferably 0.35 to 0.50, more preferably 0. .36 to 0.50, and more preferably 0.37 to 0.50. When the value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) is too small, the hydrolysis resistance of the glass decreases. Moreover, the amount of evaporation of B 2 O 3 and alkali metal oxide components from the glass during burner processing increases. If the value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) is too large, the viscosity of the glass becomes high, and the processing temperature when producing glass containers such as ampoules and vials from the glass tube is high Thus, the amount of evaporation of B 2 O 3 and Na 2 O in the glass during the heating of the burner increases.

本発明の医薬容器用ガラス管は、ガラス管の内表面から200nmの深さまでの領域内における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値が0.01〜0.5未満、好ましくは0.01〜0.4未満、より好ましくは0.01〜0.3未満である。ガラス表面から200nmの深さまでの領域における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値が大きすぎると、バーナー加熱時のガラスからのBやアルカリ金属酸化物成分の蒸発量が増加する。一方、ガラス表面から200nmの深さまでの領域における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値が小さすぎると、フレークスが発生しやすくなる。尚、ガラス表面から200nmの深さまでの領域における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値は、ガラス管の成形条件やガラスと接触する耐火物の種類を適切に選択することにより、調節可能である。また、Naの原子濃度とSiの原子濃度は、例えばX線光電子分光分析(ESCA)によって定量することが可能である。 In the glass tube for a pharmaceutical container of the present invention, the value of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) in a region from the inner surface of the glass tube to a depth of 200 nm is 0.01 to 0.00. It is less than 5, preferably 0.01 to less than 0.4, more preferably 0.01 to less than 0.3. If the value of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) in the region from the glass surface to a depth of 200 nm is too large, B 2 O 3 and alkali metal oxides from the glass during burner heating Increases evaporation of components. On the other hand, if the value of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) in the region from the glass surface to a depth of 200 nm is too small, flakes are likely to occur. In addition, the value of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) in the region from the glass surface to a depth of 200 nm is appropriate for the molding conditions of the glass tube and the type of refractory in contact with the glass. It can be adjusted by selecting. The atomic concentration of Na and the atomic concentration of Si can be quantified by, for example, X-ray photoelectron spectroscopy (ESCA).

またガラス管内表面の(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値をX1、ガラス管内表面から200nmの深さにおける(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値をX2とした時、(X1−X2)の絶対値が0.1〜0.3であることが好ましい。この値が上記範囲内にないと、フレークスが発生し易くなる。   Further, the value of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) on the inner surface of the glass tube is X1, and (Na atomic concentration) / (Na atomic concentration + Si at a depth of 200 nm from the inner surface of the glass tube). When the value of (atomic concentration) is X2, the absolute value of (X1-X2) is preferably 0.1 to 0.3. If this value is not within the above range, flakes are likely to occur.

本発明の医薬容器用ガラス管を構成するホウケイ酸ガラスの組成は、質量%でSiO 65〜80%、Al 5〜15%、B 2〜12%、NaO 3〜10%、KO 0〜5%、LiO 0〜5%、MgO 0〜5%、CaO 0〜5%、SrO 0〜5%であり、特に質量%でAlの含有量が6.3〜11%であり、MgO+CaOが0〜1%未満であることが好ましい。また、より具体的には、質量%でSiO 70〜75.5%、Al 6.3〜11%、B 3〜11.5%、NaO 4〜8.5%、KO 0〜5%、LiO 0〜0.2%、MgO 0〜1%未満、CaO 0〜1%未満、SrO 0〜4%未満、MgO+CaOが0〜1%未満であることが好ましい。 The composition of the borosilicate glass constituting the glass tube for a pharmaceutical container of the present invention is SiO 2 65-80%, Al 2 O 3 5-15%, B 2 O 3 2-12%, Na 2 O 3 by mass%. ~10%, K 2 O 0~5% , Li 2 O 0~5%, 0~5% MgO, CaO 0~5%, a 0 to 5% SrO, containing Al 2 O 3, especially in mass% Preferably, the amount is 6.3-11% and MgO + CaO is less than 0-1%. Further, more specifically, SiO 2 70-75.5% by mass%, Al 2 O 3 6.3~11% , B 2 O 3 3~11.5%, Na 2 O 4~8.5 %, K 2 O 0~5%, Li 2 O 0~0.2%, less than 0 to 1% MgO, CaO less than 0 to 1%, SrO less than 0~4%, MgO + CaO is less than 0 to 1% It is preferable.

以下、各成分の組成範囲を上記のように限定した理由を述べる。なお以下の説明において、特に断りがない限り、%表示は質量%を意味する。   Hereinafter, the reason why the composition range of each component is limited as described above will be described. In the following description, unless otherwise specified,% display means mass%.

SiOはガラスネットワークを構成する成分の1つである。SiOの含有量は65〜80%であり、62〜75.5%であり、好ましくは、65〜75.5%未満、67〜75%未満、特に70〜74.7%であることが好ましい。SiOの含有量が少な過ぎると化学的耐久性が低下し、医薬容器用ホウケイ酸ガラスに求められる耐酸性が低くなる。一方、SiOの含有量が多過ぎると液相粘度が低下し、製造工程で失透しやすくなって生産性が低下する。 SiO 2 is one of the components constituting the glass network. The content of SiO 2 is 65-80%, 62-75.5%, preferably 65-75.5%, 67-75%, especially 70-74.7%. preferable. When the content of SiO 2 is too small decreases chemical durability, acid resistance required for the borosilicate glass for pharmaceutical containers is lowered. On the other hand, the liquidus viscosity is lowered when the content of SiO 2 is too large, the productivity is easily devitrified in the manufacturing process is reduced.

Alはガラスの失透を抑制し、また化学的耐久性及び加水分解抵抗性を向上させる成分である。Alの含有量は5〜15%であり、6.3〜11%、6.3%を超え、10%以下、6.4〜8.5%、特に6.4〜8.3%であることが好ましい。Alの含有量が少な過ぎると上記の効果が得られない。一方、Alの含有量が多過ぎるとガラスの粘度が上昇し、作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。 Al 2 O 3 is a component that suppresses devitrification of glass and improves chemical durability and hydrolysis resistance. The content of Al 2 O 3 is 5-15%, exceeds 6.3-11%, 6.3%, 10% or less, 6.4-8.5%, particularly 6.4-8.3. % Is preferred. If the content of Al 2 O 3 is too small, the above effect cannot be obtained. On the other hand, when the content of Al 2 O 3 is too large, the viscosity of the glass increases, the working temperature increases, and the amount of evaporation of B 2 O 3 and Na 2 O increases when processed into a pharmaceutical container. .

はガラスの融点を低下させるだけでなく、液相粘度を上昇させ、失透を抑制する効果を有する。そのため、Bの含有量は2〜12%であり、3〜11.5%、5.5〜11.5%未満、8.5〜11.5%未満、特に9〜11.5%未満であることが好ましい。Bの含有量が少な過ぎると作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。一方、Bの含有量が多過ぎると加水分解抵抗性や化学的耐久性が低下する。 B 2 O 3 not only lowers the melting point of the glass but also increases the liquid phase viscosity and suppresses devitrification. Therefore, the content of B 2 O 3 is 2 to 12%, 3 to 11.5%, 5.5 to less than 11.5%, 8.5 to less than 11.5%, particularly 9 to 11.5%. It is preferable that it is less than%. B and working temperature content is too low the 2 O 3 is increased, the evaporation amount of such B 2 O 3 and Na 2 O in processing into pharmaceutical container becomes large. On the other hand, B 2 when the content of O 3 is too much resistance to hydrolysis and chemical durability is lowered.

NaOはガラスの粘度を低下させ、線熱膨張係数を上昇させる効果がある。NaOの含有量は3〜10%であり、3.2〜8.5%、3.5〜8.3%、4〜8%、特に4〜7%である。NaOの含有量が少なすぎると作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。一方、NaOの含有量が多過ぎると加水分解抵抗性が低下する。 Na 2 O has the effect of reducing the viscosity of the glass and increasing the linear thermal expansion coefficient. The content of Na 2 O is 3 to 10%, 3.2 to 8.5%, 3.5 to 8.3%, 4 to 8%, particularly 4 to 7%. If the content of Na 2 O is too small, the working temperature increases, and the amount of evaporation of B 2 O 3 or Na 2 O increases when processed into a pharmaceutical container. On the other hand, hydrolysis resistance is deteriorated when the content of Na 2 O is too large.

OもNaOと同様にガラスの粘度を低下させ、線熱膨張係数を上昇させる効果がある。KOの含有量は0〜5%であり、0.1〜5%、0.5〜4.5%、1.0〜3%、特に1.5〜3.0%であることが好ましい。KOの含有量が多過ぎると加水分解抵抗性が低下する。 K 2 O, like Na 2 O, has the effect of reducing the viscosity of the glass and increasing the linear thermal expansion coefficient. The content of K 2 O is 0 to 5%, and is 0.1 to 5%, 0.5 to 4.5%, 1.0 to 3%, particularly 1.5 to 3.0%. preferable. K 2 When the content of O is too large resistance to hydrolysis is reduced.

なおKOとNaOの両成分を併用すれば、混合アルカリ効果により、加水分解抵抗性が向上するため、望ましい。加水分解抵抗性を向上させるためには、質量比でKO/NaOが0.2〜1、0.20〜0.95、0.2〜0.8、特に0.2〜0.7であることが好ましい。この比が小さいと加水分解抵抗性が低下する。一方、この比が大きいと作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。 Note that it is desirable to use both components of K 2 O and Na 2 O because the hydrolysis resistance is improved by the mixed alkali effect. In order to improve the hydrolysis resistance, K 2 O / Na 2 O is 0.2 to 1, 0.20 to 0.95, 0.2 to 0.8, particularly 0.2 to 0 in terms of mass ratio. .7 is preferable. If this ratio is small, the hydrolysis resistance decreases. On the other hand, if this ratio is large, the working temperature increases, and the amount of evaporation of B 2 O 3 , Na 2 O and the like increases when processed into a pharmaceutical container.

LiOはNaOやKOと同様にガラスの粘度を低下させ、また線熱膨張係数を上昇させる効果がある。しかしLiOを添加するとガラス溶融時に耐火物を侵食し易くなる。また生産コストの増加に繋がる。そのためLiOの含有量は0〜5%であり、0〜0.2%、0〜0.1%、0〜0.05%、特に0〜0.01%であることが好ましいが、特段の事情がなければLiO以外の他のアルカリ金属酸化物を使用することが望ましい。 Li 2 O has the effects of lowering the viscosity of the glass and increasing the linear thermal expansion coefficient, like Na 2 O and K 2 O. However, when Li 2 O is added, the refractory is easily eroded when the glass is melted. It also leads to an increase in production costs. Therefore, the content of Li 2 O is 0 to 5%, preferably 0 to 0.2%, 0 to 0.1%, 0 to 0.05%, particularly preferably 0 to 0.01%. If there are no special circumstances, it is desirable to use an alkali metal oxide other than Li 2 O.

LiO、NaO及びKOの含有量の合量は、好ましくは5〜10%、特に6〜9%である。これらの成分の合量が少ないと、作業温度が高くなる。またこれらの成分の合量が多いと、化学耐久性や加水分解抵抗性が低下する。 The total content of Li 2 O, Na 2 O and K 2 O is preferably 5 to 10%, in particular 6 to 9%. When the total amount of these components is small, the working temperature becomes high. Moreover, when there are many total amounts of these components, chemical durability and hydrolysis resistance will fall.

MgOはガラスの高温粘度を低下させる効果がある。また、化学的耐久性向上の効果がある。MgOの含有量は0〜5%であり、0〜1%未満、特に0〜0.5%であることが好ましい。MgOの含有量が多すぎると加水分解抵抗性が低下する。   MgO has the effect of reducing the high temperature viscosity of the glass. In addition, there is an effect of improving chemical durability. The content of MgO is 0 to 5%, preferably 0 to less than 1%, particularly preferably 0 to 0.5%. When there is too much content of MgO, hydrolysis resistance will fall.

CaOはガラスの高温粘度を低下させる効果がある。CaOの含有量は0〜5%であり、0〜1%未満、特に0〜0.5%であることが好ましい。CaO含有量が多過ぎると加水分解抵抗性が低下する。   CaO has the effect of reducing the high temperature viscosity of the glass. The content of CaO is 0 to 5%, preferably 0 to less than 1%, particularly preferably 0 to 0.5%. When there is too much CaO content, hydrolysis resistance will fall.

MgO+CaOはMgOとCaOの含有量の合量であり、ガラスの高温粘度と加水分解抵抗性を好ましい範囲に調節する上で重要な指標である。MgO+CaOは0〜5%、0〜1%未満、特に0〜0.5%であることが好ましい。MgO+CaOが多すぎると、ガラスの高温粘度は低くできるが、ガラスの加水分解抵抗性が低下してしまう
SrOは化学的耐久性向上の効果がある。SrOの含有量は0〜5%であり、0〜4%未満、0〜2%、特に0〜1%であることが好ましい。SrOの含有量が多すぎると加水分解抵抗性が低下する。
MgO + CaO is the total content of MgO and CaO, and is an important index for adjusting the high-temperature viscosity and hydrolysis resistance of glass to a preferred range. MgO + CaO is preferably 0 to 5%, 0 to less than 1%, particularly preferably 0 to 0.5%. If there is too much MgO + CaO, the high-temperature viscosity of the glass can be lowered, but the hydrolysis resistance of the glass decreases. SrO has the effect of improving chemical durability. The SrO content is 0 to 5%, preferably 0 to less than 4%, 0 to 2%, particularly preferably 0 to 1%. When there is too much content of SrO, hydrolysis resistance will fall.

また本発明においては、上記以外にも種々の成分を添加することが可能である。   In the present invention, various components other than the above can be added.

TiOは加水分解抵抗性を向上させる効果がある。TiOの含有量は0〜7%未満、0〜5%、0〜4%、特に0〜1.5%であることが好ましい。TiOの含有量が多すぎると作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。 TiO 2 has the effect of improving hydrolysis resistance. The content of TiO 2 is preferably 0 to less than 7%, 0 to 5%, 0 to 4%, particularly preferably 0 to 1.5%. If the content of TiO 2 is too large, the working temperature increases, and the amount of evaporation of B 2 O 3 , Na 2 O, etc. increases when processed into a pharmaceutical container.

ZrOは加水分解抵抗性を向上させる効果がある。ZrOの含有量は0〜7%未満、0〜5%、0〜4%、特に0〜1.5%であることが好ましい。ZrOの含有量が多すぎると作業温度が高くなり、医薬容器に加工する際にBやNaOなどの蒸発量が多くなってしまう。 ZrO 2 has an effect of improving hydrolysis resistance. The content of ZrO 2 is preferably 0 to less than 7%, 0 to 5%, 0 to 4%, particularly preferably 0 to 1.5%. Working temperature and the content of ZrO 2 is too large increases, the amount of evaporation of such B 2 O 3 and Na 2 O in processing into pharmaceutical container becomes large.

Feは、ガラスを着色させ可視域での透過率を低下させる恐れがあるため、その含有量は0.2%以下、0.1%以下、特に0.02%以下であることが好ましい。 Since Fe 2 O 3 may color the glass and reduce the transmittance in the visible region, its content may be 0.2% or less, 0.1% or less, particularly 0.02% or less. preferable.

また清澄剤としてF、Cl、Sb、SnO、NaSO等のいずれか一種以上を含有しても良い。これらの清澄剤の含有量の合計は3%以下、1%以下、特に0.5%以下であることが好ましい。またこれらの清澄剤の中では、溶融温度と人体への害が少ないという理由からClやSnOを使用することが好ましい。Clを使用する場合、その含有量は3%以下、更に1%以下、特に0.2%以下であることが好ましい。SnOを使用する場合、その含有量は2%以下、好ましくは0.5%以下である。 The F as a fining agent, Cl, Sb 2 O 3, SnO 2, may contain any one or more of such Na 2 SO 4. The total content of these fining agents is preferably 3% or less, 1% or less, and particularly preferably 0.5% or less. Among these fining agents, it is preferable to use Cl or SnO 2 for the reason that the melting temperature and the harm to the human body are small. When Cl is used, its content is preferably 3% or less, more preferably 1% or less, and particularly preferably 0.2% or less. When SnO 2 is used, its content is 2% or less, preferably 0.5% or less.

本発明においては、モル比で(NaO+KO+LiO―Al)/Bの値が、0.33〜0.39、0.33〜0.37、0.33〜0.36未満、特に0.33〜0.35であることが好ましい。この値が大きすぎると、加工時の種々の熱処理により、NaO、KO、LiOといったアルカリ金属酸化物含有量が多いためにこれらの蒸発量が増え、化学的耐久性や加水分解抵抗性が低下するか、B含有量が少ないために作業温度が高くなり、加工時の種々の熱処理により、NaO、KO、LiOといったアルカリ金属酸化物が蒸発しやすくなり、化学的耐久性や加水分解抵抗性が低下する。また、水分の気化に伴う泡が発生しやすくなる。一方、この値が小さすぎると、NaO、KO、LiOといったアルカリ金属酸化物含有量が少ないために作業温度が高くなり、加工時の種々の熱処理により、NaO、KO、LiOやBが蒸発しやすくなり、化学的耐久性や加水分解抵抗性が低下するとともに水分の気化に伴う泡が発生しやすくなるか、B含有量が多いために容器加工前の時点で化学的耐久性や加水分解抵抗性が低下する。 In the present invention, a molar ratio (Na 2 O + K 2 O + Li 2 O-Al 2 O 3) / the value of B 2 O 3 is, 0.33~0.39,0.33~0.37,0.33 It is preferable that it is -less than 0.36, especially 0.33-0.35. If this value is too large, the amount of evaporation of these substances increases due to the high content of alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O due to various heat treatments during processing. The decomposition temperature decreases or the B 2 O 3 content is low, so the working temperature becomes high, and alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O evaporate due to various heat treatments during processing. And the chemical durability and hydrolysis resistance are reduced. In addition, bubbles accompanying the vaporization of moisture are likely to occur. On the other hand, if this value is too small, the content of alkali metal oxides such as Na 2 O, K 2 O and Li 2 O is low, so that the working temperature becomes high, and various heat treatments during processing cause Na 2 O, K 2 O, Li 2 O, and B 2 O 3 are likely to evaporate, and chemical durability and hydrolysis resistance are reduced, and bubbles accompanying vaporization of water are easily generated, or the content of B 2 O 3 is low. Therefore, chemical durability and hydrolysis resistance are reduced before processing the container.

また、本発明の医薬容器用ガラス管を構成するホウケイ酸ガラスは、以下の特性を有することが好ましい。   Moreover, it is preferable that the borosilicate glass which comprises the glass tube for pharmaceutical containers of this invention has the following characteristics.

EP8.0に準じた加水分解抵抗性試験の粉末試験法において、単位ガラス質量当たりの0.02mol/Lの塩酸の消費量は、好ましくは0.030mL以下、0.028mL以下、0.026mL以下、特に0.025mL以下である。塩酸消費量が多すぎると、アンプルやバイアルなどの医薬容器を作製し、薬液を充填、保存した際、ガラス成分特にアルカリ金属成分の溶出が大幅に増加して薬液成分の変質を引き起こす恐れがある。   In the powder test method of the hydrolysis resistance test according to EP 8.0, the consumption of 0.02 mol / L hydrochloric acid per unit glass mass is preferably 0.030 mL or less, 0.028 mL or less, 0.026 mL or less. In particular, it is 0.025 mL or less. If the amount of hydrochloric acid consumed is too large, when a pharmaceutical container such as an ampoule or vial is prepared, filled with chemicals, and stored, the elution of glass components, especially alkali metal components, may increase significantly, causing chemical component alteration. .

DIN12116に準じた耐酸性試験において、単位面積あたりの質量減少量は、好ましくは1.0mg/dm以下、特に0.8mg/dm以下である。質量減少量が多くなると、アンプルやバイアルなどの医薬容器を作製し、薬液を充填、保存した際、ガラス成分の溶出量が大幅に増加して薬液成分の変質を引き起こす恐れがある。 In the acid resistance test according to DIN12116, the amount of mass reduction per unit area is preferably 1.0 mg / dm 2 or less, particularly 0.8 mg / dm 2 or less. When the amount of mass decrease increases, when a medical container such as an ampoule or vial is prepared, and a chemical solution is filled and stored, the elution amount of the glass component may greatly increase and the chemical solution component may be altered.

作業温度は、1150℃〜1250℃、1150℃〜1240℃、特に1160℃〜1230℃であることが好ましい。作業温度が高すぎると、ガラス管からアンプルやバイアル等のガラス容器を作製する際の加工温度が高くなり、ガラス中のBやアルカリ金属酸化物の蒸発量が著しく増加する。 The working temperature is preferably 1150 ° C to 1250 ° C, 1150 ° C to 1240 ° C, and particularly preferably 1160 ° C to 1230 ° C. If the working temperature is too high, the processing temperature for producing a glass container such as an ampoule or a vial from the glass tube increases, and the amount of evaporation of B 2 O 3 and alkali metal oxide in the glass increases remarkably.

液相粘度は、104.5dPa・s以上、105.0dPa・s以上、105.2dPa・s以上、105.4dPa・s以上、特に105.6dPa・s以上であることが好ましい。液相粘度が低くなると、ダンナー法によるガラス管成形時に失透が起こり易くなり、生産性が低下する。 The liquid phase viscosity is 10 4.5 dPa · s or more, 10 5.0 dPa · s or more, 10 5.2 dPa · s or more, 10 5.4 dPa · s or more, particularly 10 5.6 dPa · s or more. It is preferable that When the liquid phase viscosity is low, devitrification is likely to occur during glass tube forming by the Danner method, and productivity is reduced.

線熱膨張係数は、45〜58×10−7/℃、特に48〜55×10−7/℃であることが好ましい。線熱膨張係数はガラスの耐熱衝撃性に関する重要な特性であり、ガラスが十分な耐熱衝撃性を得るためには、この値を上記範囲内とすることが必要である。尚、本発明における線熱膨張係数とは、30〜380℃の温度範囲における線熱膨張係数を意味する。 The linear thermal expansion coefficient is preferably 45 to 58 × 10 −7 / ° C., more preferably 48 to 55 × 10 −7 / ° C. The coefficient of linear thermal expansion is an important characteristic regarding the thermal shock resistance of glass, and in order for the glass to obtain sufficient thermal shock resistance, this value needs to be within the above range. In addition, the linear thermal expansion coefficient in this invention means the linear thermal expansion coefficient in the temperature range of 30-380 degreeC.

次に本発明の医薬容器用ガラス管を製造する方法を説明する。以下の説明は、ダンナー法を用いた例である。   Next, a method for producing the glass tube for a pharmaceutical container of the present invention will be described. The following description is an example using the Danner method.

先ず、上記のガラス組成になるように、ガラス原料を調合してガラスバッチを作製する。次いで、このガラスバッチを1550〜1700℃の溶融窯に連続投入して溶融、清澄した後、得られた溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、当該先端部からガラスを管状に引き出す。ここで、使用する耐火物としてNaO含有量の少ない材料、或いはNaO成分が表面から溶出し難い材料を選択すれば、得られるガラス管(及びガラス容器)内表面の表面付近のNaOの含有量を低減することができる。 First, a glass batch is prepared by blending glass raw materials so as to have the above glass composition. Next, the glass batch was continuously charged into a melting furnace at 1550 to 1700 ° C., melted and clarified, and then the obtained molten glass was wound around a rotating refractory while blowing air from the tip of the refractory, Glass is pulled out from the tip portion into a tubular shape. Here, if a material having a low Na 2 O content or a material in which the Na 2 O component hardly elutes from the surface is selected as the refractory to be used, Na near the surface of the inner surface of the obtained glass tube (and glass container) is obtained. The content of 2 O can be reduced.

続いて引き出した管状ガラスを所定の長さに切断して本発明の医薬容器用ガラス管を得る。このようにして得られたガラス管は、バイアルやアンプルの製造に供される。   Subsequently, the drawn tubular glass is cut into a predetermined length to obtain the glass tube for a pharmaceutical container of the present invention. The glass tube thus obtained is used for manufacturing vials and ampoules.

なお、本発明の医薬容器用ガラス管は、ダンナー法に限らず、従来周知の任意の手法を用いて製造しても良い。例えば、ベロー法やダウンドロー法も本発明の医薬容器用ガラス管の製造方法として有効な方法である。   In addition, you may manufacture the glass tube for pharmaceutical containers of this invention not only with the Danner method but using the conventionally well-known arbitrary methods. For example, the bellows method and the downdraw method are also effective methods for producing the glass tube for a pharmaceutical container of the present invention.

以下、実施例に基づいて本発明を説明する。   Hereinafter, the present invention will be described based on examples.

表1は本発明の実施例(試料No.1〜6)、及び比較例(試料No.7、8)を示している。なお表中の「ΣRO」は「KO+NaO+LiO」を表しており、「ΣRO)」は「MgO+CaO+SrO」を表している。 Table 1 shows Examples of the present invention (Sample Nos. 1 to 6) and Comparative Examples (Sample Nos. 7 and 8). In the table, “ΣR 2 O” represents “K 2 O + Na 2 O + Li 2 O”, and “ΣRO)” represents “MgO + CaO + SrO”.

また、図1、図2はガラス表面から200nmの深さまでの領域内における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の分析結果を示しており、図1は試料No.8、図2は試料No.1の分析結果である。   1 and 2 show analysis results of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) in a region from the glass surface to a depth of 200 nm. 8 and FIG. It is the analysis result of 1.

各試料は以下のようにして調製した。   Each sample was prepared as follows.

まず表に示す組成となるように、ガラス原料を調合してガラスバッチを作製した。次いで、このガラスバッチを1550〜1700℃の溶融窯に連続投入して溶融、清澄した後、得られた溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、当該先端部からガラスを管状に引き出した。さらに引き出した管状ガラスを所定の長さに切断してガラス管を得た。このようにして得られたガラス管を各種の評価に供した。結果を表1に示す。また試料No.1及びNo.8のガラス管内表面の(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の変化量を図1及び図2に示す。なおガラス管内表面の(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値は、管引き成形時に使用した耐火物の種類を変更することにより調整した。   First, glass raw materials were prepared so as to have the composition shown in the table, and a glass batch was produced. Next, the glass batch was continuously charged into a melting furnace at 1550 to 1700 ° C., melted and clarified, and then the obtained molten glass was wound around a rotating refractory while blowing air from the tip of the refractory, Glass was pulled out from the tip portion in a tubular shape. Further, the drawn tubular glass was cut into a predetermined length to obtain a glass tube. The glass tube thus obtained was subjected to various evaluations. The results are shown in Table 1. Sample No. 1 and no. FIG. 1 and FIG. 2 show the amount of change of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) on the inner surface of No. 8 glass tube. The value of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) on the inner surface of the glass tube was adjusted by changing the type of refractory used at the time of pipe drawing.

表1から明らかなように、実施例である試料No.1〜6は良好な加水分解抵抗性及び化学耐久性を示した。また、ガラス組成中にSnを含むNo.1、3、4について、加水分解抵抗性試験によるSnの溶出を評価したところ、何れの試料もSn溶出量は定量下限未満であった。一方、比較例である試料No.7は優れた加水分解抵抗性を有しているが、ガラス管内表面からのNaイオン溶出量が多くpH変化が生じ易いものであった。また、試料No.8は加水分解抵抗性が低く、バーナーによる容器加工中にBやNaOなどの蒸発量を低減できない懸念があるものであった。 As is clear from Table 1, sample No. 1 to 6 showed good hydrolysis resistance and chemical durability. Moreover, No. containing Sn in the glass composition. When the elution of Sn by the hydrolysis resistance test was evaluated for 1, 3, and 4, the Sn elution amount was less than the lower limit of quantification in any sample. On the other hand, sample No. No. 7 had excellent hydrolysis resistance, but the amount of Na ion elution from the inner surface of the glass tube was large and pH change was likely to occur. Sample No. No. 8 had low hydrolysis resistance, and there was a concern that the amount of evaporation of B 2 O 3 , Na 2 O and the like could not be reduced during container processing with a burner.

なお線熱膨張係数の測定は、約5mmφ×50mmのロッド状に成形したガラス試料を用い、ディラトメーターにより、30〜380℃の温度範囲において行った。   The linear thermal expansion coefficient was measured in a temperature range of 30 to 380 ° C. with a dilatometer using a glass sample molded into a rod shape of about 5 mmφ × 50 mm.

歪点、徐冷点及び軟化点の測定はファイバーエロンゲーション法で行った。   The strain point, annealing point, and softening point were measured by the fiber elongation method.

作業温度は、白金球引き上げ法によって求めた高温粘度とFulcherの粘度計算式からガラスの粘度曲線を求め、この粘度曲線から10dPa・sに相当する温度を求めた。 The working temperature was determined by obtaining a viscosity curve of the glass from the high temperature viscosity obtained by the platinum ball pulling method and the Fulcher viscosity calculation formula, and obtaining a temperature corresponding to 10 4 dPa · s from this viscosity curve.

液相温度の測定は、約120×20×10mmの白金ボートに粉砕したガラス試料を充填し、線形の温度勾配を有する電気炉に24時間投入した。その後、顕微鏡観察にて結晶析出箇所を特定し、結晶析出箇所に対応する温度を電気炉の温度勾配グラフから算出し、この温度を液相温度とした。   The liquid phase temperature was measured by filling a crushed glass sample in a platinum boat of about 120 × 20 × 10 mm and placing it in an electric furnace having a linear temperature gradient for 24 hours. Then, the crystal precipitation location was identified by microscopic observation, the temperature corresponding to the crystal precipitation location was calculated from the temperature gradient graph of the electric furnace, and this temperature was defined as the liquidus temperature.

液相粘度の算出は、歪点、徐冷点、軟化点、作業温度とFulcherの粘度計算式からガラスの粘度曲線を求め、この粘度曲線から液相温度におけるガラスの粘度を算出し、この粘度を液相粘度とした。   The liquid phase viscosity is calculated by calculating the glass viscosity curve from the strain point, annealing point, softening point, working temperature and Fulcher's viscosity formula, and calculating the viscosity of the glass at the liquid phase temperature from this viscosity curve. Was the liquid phase viscosity.

加水分解抵抗性試験は、アルミナ製の乳鉢と乳棒を用いて試料を粉砕し、EP8.0の粉末試験法に準じた方法で行った。詳細な試験手順は以下の通りである。試料の表面をエタノールで良く拭き、アルミナ製の乳鉢と乳棒で試料を粉砕した後、ステンレス製の目開き710μm、425μm、300μmの3つの篩を用いて分級した。篩に残ったものは再度粉砕し、同じ篩操作を行い、300μmの篩上に残った試料粉末をエタノールで洗浄し、ビーカー等のガラス容器に投入した。その後、エタノールを入れてかき混ぜ、超音波洗浄機で1分間洗浄した後、上澄み液だけを流し出す操作を6回行った。その後、110℃のオーブンで30分間乾燥させ、デシケーター内で30分間冷却した。得られた試料粉末を、電子天秤を用いて10g精度±0.0001gで秤量し、250mLの石英フラスコに入れ、超純水50mLを加えた。密栓後、フラスコをオートクレーブに入れて121℃、30分間保持した。100℃から121℃までは1℃/分で昇温し、121℃から100℃までは2℃/分で降温した。95℃まで冷却後、試料をコニカルビーカーに取り出した。30mLの超純水でフラスコ内を洗浄し、コニカルビーカーに流し入れる操作を3回行った。試験後の液にメチルレッドを約0.05mL滴下後、0.02mol/Lの塩酸で中和滴定を行い、塩酸の消費量を記録し、試料ガラス1gあたりの塩酸消費量を算出した。この値が小さいほど加水分解抵抗性が高いことになる。   In the hydrolysis resistance test, the sample was pulverized using an alumina mortar and pestle, and a method according to the powder test method of EP 8.0 was used. The detailed test procedure is as follows. The surface of the sample was thoroughly wiped with ethanol, and the sample was pulverized with an alumina mortar and pestle, and then classified using three sieves made of stainless steel, 710 μm, 425 μm, and 300 μm. The material remaining on the sieve was pulverized again and subjected to the same sieve operation. The sample powder remaining on the 300 μm sieve was washed with ethanol and placed in a glass container such as a beaker. Then, ethanol was added and stirred, and after washing with an ultrasonic washing machine for 1 minute, the operation of pouring out only the supernatant was performed 6 times. Thereafter, it was dried in an oven at 110 ° C. for 30 minutes and cooled in a desiccator for 30 minutes. The obtained sample powder was weighed with an accuracy of 10 g ± 0.0001 g using an electronic balance, placed in a 250 mL quartz flask, and 50 mL of ultrapure water was added. After sealing, the flask was placed in an autoclave and kept at 121 ° C. for 30 minutes. The temperature was raised at 1 ° C./min from 100 ° C. to 121 ° C., and the temperature was lowered at 2 ° C./min from 121 ° C. to 100 ° C. After cooling to 95 ° C., the sample was removed into a conical beaker. The inside of the flask was washed with 30 mL of ultrapure water and poured into a conical beaker three times. About 0.05 mL of methyl red was dropped into the liquid after the test, and neutralization titration was performed with 0.02 mol / L hydrochloric acid. The amount of hydrochloric acid consumed was recorded, and the amount of hydrochloric acid consumed per gram of sample glass was calculated. The smaller this value, the higher the hydrolysis resistance.

耐酸性試験は、試料表面積を50cm、溶出液である6mol/Lの塩酸の液量を800mLとし、DIN12116に準じて行った。詳細な試験手順は以下の通りである。まず全ての表面を鏡面研磨仕上げとした総表面積が50cmのガラス試料片を準備し、前処理として試料をフッ酸(40質量%)と塩酸(2mol/L)を体積比で1:9となるように混合した溶液に浸漬し、10分間マグネティックスターラーで攪拌した。次いで試料片を取出し、超純水中で2分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。次に、試料片を110℃のオーブンの中で1時間乾燥させ、デシケーター内で30分間冷却した。このようにして得られた試料片の質量mを精度±0.1mgまで測定し、記録した。続いて石英ガラス製のビーカーに6mol/Lの塩酸800mLを入れ、電熱器を用いて沸騰するまで加熱し、白金線で吊した試料片を投入して6時間保持した。試験中の液量の減少を防ぐために、容器の蓋の開口部はガスケット及び冷却管で栓をした。その後、試料片を取り出し、超純水中で2分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。さらに洗浄した試料片を110℃のオーブンの中で1時間乾燥し、デシケーター内で30分間冷却した。このようにして処理した試料の質量片mを精度±0.1mgまで測定し、記録した。最後に沸騰塩酸に投入する前後の試料の質量m、mmgと試料の総表面積Acmから以下の式1によって単位面積当たりの質量減少量を算出し、耐酸性試験の測定値とした。 The acid resistance test was performed according to DIN12116, with the sample surface area set to 50 cm 2 and the amount of 6 mol / L hydrochloric acid as the eluent to 800 mL. The detailed test procedure is as follows. First, a glass sample piece having a total surface area of 50 cm 2 with a mirror polished finish on all surfaces was prepared. It was immersed in the solution so mixed and stirred with a magnetic stirrer for 10 minutes. Next, the sample piece was taken out and subjected to ultrasonic cleaning for 2 minutes in ultrapure water three times, and then ultrasonic cleaning for 2 minutes in ethanol was performed twice. Next, the sample piece was dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. The mass m 1 of the sample piece thus obtained was measured to an accuracy of ± 0.1 mg and recorded. Subsequently, 800 mL of 6 mol / L hydrochloric acid was placed in a beaker made of quartz glass, heated using an electric heater until boiling, and a sample piece suspended with a platinum wire was added and held for 6 hours. In order to prevent a decrease in the liquid volume during the test, the opening of the lid of the container was plugged with a gasket and a cooling pipe. Thereafter, the sample piece was taken out and subjected to ultrasonic cleaning for 3 minutes in ultrapure water three times, and then ultrasonic cleaning for 2 minutes in ethanol was performed twice. Further, the washed sample piece was dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. The mass m 2 of the sample thus treated was measured to an accuracy of ± 0.1 mg and recorded. Finally, the amount of mass reduction per unit area was calculated from the masses m 1 and m 2 mg of the sample before and after being added to boiling hydrochloric acid and the total surface area Acm 2 of the sample by the following formula 1, and used as the measured value in the acid resistance test. .

[式1] 単位面積当たりの質量減少量=100×(m−m)/2×A
Snの溶出量は、加水分解抵抗性試験後の試験液について、ICP発光分析装置(バリアン製)にて分析を行った。詳細な試験手順は以下の通りである。加水分解抵抗性試験後の試験溶液をメンブランフィルターでろ過して遠沈管に採取した。Sn含有量が0mg/L、0.05mg/L、0.5mg/L、1.0mg/Lとなるように、Sn標準液(和光純薬工業製)を希釈して、標準溶液を作製した。それらの標準溶液から検量線を作成し、試験液中のSn溶出量を算出した。Snの測定波長は189.925nmとした。
[Formula 1] Mass reduction per unit area = 100 × (m 1 −m 2 ) / 2 × A
The elution amount of Sn was analyzed for the test solution after the hydrolysis resistance test using an ICP emission analyzer (manufactured by Varian). The detailed test procedure is as follows. The test solution after the hydrolysis resistance test was filtered through a membrane filter and collected in a centrifuge tube. The standard solution was prepared by diluting the Sn standard solution (manufactured by Wako Pure Chemical Industries) so that the Sn content was 0 mg / L, 0.05 mg / L, 0.5 mg / L, and 1.0 mg / L. . Calibration curves were prepared from these standard solutions, and the Sn elution amount in the test solution was calculated. The measurement wavelength of Sn was 189.925 nm.

ガラス表面から200nmの深さまでの領域内における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の最大値を示す「Na/Na+Si」と、ガラス管内表面の及びガラス管内表面から200nmの深さにおける(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の差の絶対値を示す「|X1−X2|」は、試料となるガラス管を半円状に切断した後、X線光電子分光法を用いてガラス管表面から深さ200nmまでのデプスプロファイルを作製し、これを分析することにより行った。分析元素はSiとNaとした。   “Na / Na + Si” indicating the maximum value of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) in the region from the glass surface to a depth of 200 nm, the inner surface of the glass tube, and the inner surface of the glass tube “| X1-X2 |”, which indicates the absolute value of the difference of (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) at a depth of 200 nm to 200 nm, is cut into a semicircular glass tube. After that, a depth profile from the glass tube surface to a depth of 200 nm was prepared using X-ray photoelectron spectroscopy, and this was analyzed. Analytical elements were Si and Na.

ガラス管内表面からのNaイオン溶出の評価は以下の手順で行った。   Evaluation of Na ion elution from the inner surface of the glass tube was performed according to the following procedure.

ガラス管を5〜10mmの長さで切断し、片側をゴム栓で封をして用意した簡易容器に水を充填し、アルミホイルで蓋をした。その後、EP8.0に準じて溶出試験を行い、溶出液と水にメチルレッドを滴下し、色の比較を行った。溶出液のメチルレッドの色が変化した場合はNaイオンの溶出があると判断して「×」、変化しなければ溶出なしと判断して「〇」とした。   The glass tube was cut to a length of 5 to 10 mm, sealed on one side with a rubber stopper, filled in a simple container prepared with water, and covered with aluminum foil. Then, the elution test was performed according to EP8.0, methyl red was dripped at the eluate and water, and the color was compared. When the color of the methyl red in the eluate changed, it was judged that there was elution of Na ions, and when it did not change, it was judged that there was no elution, and “◯” was given.

次に、容器加工工程での種々の熱処理後の加水分解抵抗性について説明する。   Next, the hydrolysis resistance after various heat processing in a container processing process is demonstrated.

上記のようにして作製した試料No.1及び8のガラス管を用い、各試料について電気炉内で600℃、900℃でそれぞれ5時間熱処理を行った。尚、600℃、900℃は加工後の熱処理を想定している。熱処理前後の試料について、加水分解抵抗性試験を実施し、得られた溶出液中のNaイオン、Kイオン、Caイオンの溶出量を測定した。Naイオン、Kイオン、Caイオンの溶出量が少ないほど、加水分解抵抗性が高い事を意味している。表2は各イオンの溶出量の合量を示しており、図3は熱処理毎の評価結果を示している。試料No.1はAl/(NaO+KO+LiO+MgO+CaO+SrO+B)の値とガラス表面から200nmの深さまでの領域内における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値が本発明における所定の範囲内であるため、熱処理に伴うNaイオン、Kイオン、Caイオンの溶出量の変化が小さく、優れた加水分解抵抗性が維持されていた。一方、試料No.8はAl/(NaO+KO+LiO+MgO+CaO+SrO+B)の値とガラス表面から200nmの深さまでの領域内における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値が本発明における所定の範囲外であるため、熱処理と共にNaイオン、Kイオン、Caイオンの溶出量が増加し、加水分解抵抗性が低下した。 Sample No. produced as described above. Using the glass tubes 1 and 8, each sample was heat-treated at 600 ° C. and 900 ° C. for 5 hours in an electric furnace. In addition, 600 degreeC and 900 degreeC assume the heat processing after a process. About the sample before and behind heat processing, the hydrolysis resistance test was implemented and the elution amount of Na ion, K ion, and Ca ion in the obtained eluate was measured. It means that hydrolysis resistance is so high that the elution amount of Na ion, K ion, and Ca ion is small. Table 2 shows the total elution amount of each ion, and FIG. 3 shows the evaluation results for each heat treatment. Sample No. 1 is a value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) and (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) in a region from the glass surface to a depth of 200 nm. Since the value of is within the predetermined range in the present invention, the change in the elution amount of Na ions, K ions, and Ca ions accompanying the heat treatment was small, and excellent hydrolysis resistance was maintained. On the other hand, sample No. 8 is the value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3 ) and (Na atomic concentration) / (Na atomic concentration + Si atomic concentration) in the region from the glass surface to a depth of 200 nm. Since the value of is outside the predetermined range in the present invention, the elution amount of Na ions, K ions, and Ca ions increased with the heat treatment, and the hydrolysis resistance decreased.

本発明の医薬容器用ガラス管は、アンプル、バイアル、プレフィルドシリンジ、カートリッジなど様々な医薬容器用材料として好適に使用できる。   The glass tube for pharmaceutical containers of the present invention can be suitably used as various materials for pharmaceutical containers such as ampoules, vials, prefilled syringes and cartridges.

Claims (8)

質量%でSiO 65〜80%、Al 5〜15%、B 2〜12%、NaO 3〜10%、KO 0〜5%、LiO 0〜5%、MgO 0〜5%、CaO 0〜5%、SrO 0〜5%含有し、質量比でAl/(NaO+KO+LiO+MgO+CaO+SrO+B)の値が、0.35〜0.60であり、BaOを実質的に含まないホウケイ酸ガラスからなるとともに、ガラス管の内表面から200nmの深さまでの領域における(Naの原子濃度)/(Naの原子濃度+Siの原子濃度)の値が0.01〜0.5未満であることを特徴とする医薬容器用ガラス管。 SiO 2 65-80% by mass%, Al 2 O 3 5~15% , B 2 O 3 2~12%, Na 2 O 3~10%, K 2 O 0~5%, Li 2 O 0~5 %, 0~5% MgO, CaO 0~5 %, containing SrO 0 to 5%, the value of Al 2 O 3 / (Na 2 O + K 2 O + Li 2 O + MgO + CaO + SrO + B 2 O 3) at a mass ratio, 0.35 0.60, made of borosilicate glass substantially free of BaO, and in the region from the inner surface of the glass tube to a depth of 200 nm (atomic concentration of Na) / (atomic concentration of Na + atomic concentration of Si) The glass tube for pharmaceutical containers characterized by having a value of 0.01 to less than 0.5. 質量%でAlの含有量が6.3〜11%、MgO+CaOが0〜1%未満であるホウケイ酸ガラスからなることを特徴とする請求項1に記載の医薬容器用ホウケイ酸ガラス管。 2. The borosilicate glass tube for a pharmaceutical container according to claim 1, wherein the borosilicate glass tube is made of borosilicate glass having a mass% of Al 2 O 3 content of 6.3 to 11% and MgO + CaO of 0 to less than 1%. . モル比で(NaO+KO+LiO―Al)/Bの値が、0.33〜0.39であるホウケイ酸ガラスからなることを特徴とする請求項1又は2に記載の医薬容器用ガラス管。 Claim the value of a molar ratio (Na 2 O + K 2 O + Li 2 O-Al 2 O 3) / B 2 O 3 , characterized in that the borosilicate glass is 0.33 to 0.39 1 or 2 2. A glass tube for a pharmaceutical container according to 1. EP8.0に準じた加水分解抵抗性試験の粉末試験法において、単位ガラス質量当たりの0.02mol/Lの塩酸の消費量が0.030mL以下であるホウケイ酸ガラスからなることを特徴とする請求項1〜3の何れかに記載の医薬容器用ガラス管。   In the powder test method of the hydrolysis resistance test according to EP 8.0, it comprises borosilicate glass in which the consumption of 0.02 mol / L hydrochloric acid per unit glass mass is 0.030 mL or less. Item 4. A glass tube for a pharmaceutical container according to any one of Items 1 to 3. DIN12116に準じた耐酸性試験において、単位面積あたりの質量減少量が1.0mg/dm以下となるホウケイ酸ガラスからなることを特徴とする請求項1〜4の何れかに記載の医薬容器用ガラス管。 It consists of borosilicate glass whose mass reduction | decrease amount per unit area becomes 1.0 mg / dm < 2 > or less in the acid resistance test according to DIN12116, For pharmaceutical containers in any one of Claims 1-4 characterized by the above-mentioned. Glass tube. 1150℃〜1250℃の作業温度を有するホウケイ酸ガラスからなることを特徴とする請求項1〜5の何れかに記載の医薬容器用ガラス管。   It consists of borosilicate glass which has a working temperature of 1150 degreeC-1250 degreeC, The glass tube for pharmaceutical containers in any one of Claims 1-5 characterized by the above-mentioned. 104.5dPa・s以上の液相粘度を有するホウケイ酸ガラスからなることを特徴とする請求項1〜6の何れかに記載の医薬容器用ガラス管。 The glass tube for a pharmaceutical container according to any one of claims 1 to 6, comprising a borosilicate glass having a liquid phase viscosity of 10 4.5 dPa · s or more. 請求項1〜7の何れかに記載の医薬容器用ガラス管からなることを特徴とする医薬容器。   A pharmaceutical container comprising the glass tube for a pharmaceutical container according to any one of claims 1 to 7.
JP2015181342A 2015-09-03 2015-09-15 Glass tube for medical container Pending JP2017057096A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015181342A JP2017057096A (en) 2015-09-15 2015-09-15 Glass tube for medical container
PCT/JP2016/075135 WO2017038738A1 (en) 2015-09-03 2016-08-29 Borosilicate glass for medicine containers, glass tube for medicine containers and method for producing medicine container
EP16841770.7A EP3345876A4 (en) 2015-09-03 2016-08-29 Borosilicate glass for medicine containers, glass tube for medicine containers and method for producing medicine container
CN201680051403.6A CN107949547A (en) 2015-09-03 2016-08-29 The manufacture method of medical container borosilicate glass, medical container glass tube and medical container
US15/757,155 US20180257975A1 (en) 2015-09-03 2016-08-29 Borosilicate glass for pharmaceutical container, glass tube for pharmaceutical container, and manufacturing method for pharmaceutical container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015181342A JP2017057096A (en) 2015-09-15 2015-09-15 Glass tube for medical container

Publications (1)

Publication Number Publication Date
JP2017057096A true JP2017057096A (en) 2017-03-23

Family

ID=58391304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181342A Pending JP2017057096A (en) 2015-09-03 2015-09-15 Glass tube for medical container

Country Status (1)

Country Link
JP (1) JP2017057096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777932A (en) * 2019-11-08 2021-05-11 肖特股份有限公司 Temperable glass with high hydrolysis resistance and low colour

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187545A (en) * 1990-11-20 1992-07-06 Nippon Electric Glass Co Ltd Method for treating inner surface of glass tube bottle
JPH07206472A (en) * 1994-01-12 1995-08-08 Nippon Electric Glass Co Ltd Borosilicate glass for medicine
US20010055930A1 (en) * 2000-03-31 2001-12-27 Franz Ott Method of making a halogen lamp and other analogous lamps and objects, and apparatus for the manufacture thereof
JP2003128439A (en) * 2001-10-17 2003-05-08 Nippon Electric Glass Co Ltd Glass container and method for the treatment
JP2008266082A (en) * 2007-04-23 2008-11-06 Agc Techno Glass Co Ltd Sleeve for shaping glass tube, and method for producing glass tube
JP2015098430A (en) * 2013-09-02 2015-05-28 日本電気硝子株式会社 Borosilicate glass for medicament container
JP2016041650A (en) * 2014-08-14 2016-03-31 ショット アクチエンゲゼルシャフトSchott AG Method of manufacturing glass tube and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187545A (en) * 1990-11-20 1992-07-06 Nippon Electric Glass Co Ltd Method for treating inner surface of glass tube bottle
JPH07206472A (en) * 1994-01-12 1995-08-08 Nippon Electric Glass Co Ltd Borosilicate glass for medicine
US20010055930A1 (en) * 2000-03-31 2001-12-27 Franz Ott Method of making a halogen lamp and other analogous lamps and objects, and apparatus for the manufacture thereof
JP2003128439A (en) * 2001-10-17 2003-05-08 Nippon Electric Glass Co Ltd Glass container and method for the treatment
JP2008266082A (en) * 2007-04-23 2008-11-06 Agc Techno Glass Co Ltd Sleeve for shaping glass tube, and method for producing glass tube
JP2015098430A (en) * 2013-09-02 2015-05-28 日本電気硝子株式会社 Borosilicate glass for medicament container
JP2016041650A (en) * 2014-08-14 2016-03-31 ショット アクチエンゲゼルシャフトSchott AG Method of manufacturing glass tube and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777932A (en) * 2019-11-08 2021-05-11 肖特股份有限公司 Temperable glass with high hydrolysis resistance and low colour
CN112777932B (en) * 2019-11-08 2024-03-08 肖特股份有限公司 Tempered glass having high hydrolysis resistance and low color

Similar Documents

Publication Publication Date Title
JP6694167B2 (en) Borosilicate glass for pharmaceutical containers
WO2017038738A1 (en) Borosilicate glass for medicine containers, glass tube for medicine containers and method for producing medicine container
EP3004005B1 (en) Glass for pharmaceutical containers
JP6604521B2 (en) Borosilicate glass for pharmaceutical containers and glass tubes for pharmaceutical containers
JP6811941B2 (en) Borosilicate glass for pharmaceutical containers
WO2014069177A1 (en) Medicinal glass and medicinal glass tube
JPWO2017115728A1 (en) Method for producing aluminoborosilicate glass for pharmaceutical containers
WO2020153294A1 (en) Glass for medicine container, and glass tube for medicine container and medicine container using same
JP7118587B2 (en) borosilicate glass for pharmaceutical containers
JP6653076B2 (en) Glass tube for pharmaceutical container and method for producing the same
JP2017048091A (en) Borosilicate glass for pharmaceutical container
JP2017057096A (en) Glass tube for medical container
JP2014237562A (en) Borosilicate glass for medicament container
JP6653073B2 (en) Borosilicate glass for pharmaceutical containers
WO2022075171A1 (en) Tube glass, pharmaceutical primary packaging container, and alkali silicate glass
CN113227008B (en) Glass for medical container, glass tube for medical container, and medical container using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191224