JPWO2012035757A1 - Ozone / ion generator for generating ozone and ion wind and air conditioner equipped with the same - Google Patents

Ozone / ion generator for generating ozone and ion wind and air conditioner equipped with the same Download PDF

Info

Publication number
JPWO2012035757A1
JPWO2012035757A1 JP2012533863A JP2012533863A JPWO2012035757A1 JP WO2012035757 A1 JPWO2012035757 A1 JP WO2012035757A1 JP 2012533863 A JP2012533863 A JP 2012533863A JP 2012533863 A JP2012533863 A JP 2012533863A JP WO2012035757 A1 JPWO2012035757 A1 JP WO2012035757A1
Authority
JP
Japan
Prior art keywords
ozone
electrode
ion generator
counter electrode
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012533863A
Other languages
Japanese (ja)
Other versions
JP5899453B2 (en
Inventor
智史 大城
智史 大城
本田 公康
公康 本田
橋田 卓
卓 橋田
久美子 鈴木
久美子 鈴木
明莉 畑
明莉 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012533863A priority Critical patent/JP5899453B2/en
Publication of JPWO2012035757A1 publication Critical patent/JPWO2012035757A1/en
Application granted granted Critical
Publication of JP5899453B2 publication Critical patent/JP5899453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • F24F8/26Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media using ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

空気調和機において、室内ユニットの本体1内に、放電によってオゾンおよびイオン風を発生させるオゾン・イオン発生装置を設け、オゾン・イオン発生装置より発生されたイオン風が通風路内を吹出口側から吸込口側へと向かうように、オゾン・イオン発生装置が本体内に配置され、イオン風により本体内にオゾンを充満させて、本体内部の浄化を行う構成とすることにより、十分な量のオゾンを拡散させて殺菌し、雑菌やかびの繁殖を十分に防止することが可能なオゾン・イオン発生装置およびそれを備える空気調和機を提供する。In the air conditioner, an ozone / ion generator for generating ozone and ion wind by discharge is provided in the main body 1 of the indoor unit, and the ion wind generated by the ozone / ion generator is passed through the ventilation path from the outlet side. A sufficient amount of ozone can be obtained by placing an ozone / ion generator inside the main unit so that it goes toward the suction port, and filling the main unit with ozone by ion wind to purify the main unit. An ozone ion generator and an air conditioner equipped with the ozone / ion generator capable of sufficiently sterilizing and sterilizing bacteria and sufficiently preventing the growth of germs and molds.

Description

本発明は、オゾンとイオン風を発生させるオゾン・イオン発生装置およびそれを備える空気調和機に関する。   The present invention relates to an ozone / ion generator for generating ozone and ion wind and an air conditioner including the same.

一般的な空気調和機は、室内ユニットの本体前面および上面に空気の吸込口を、底面に空気の吹出口をそれぞれ形成し、この本体の内部に、エアフィルタと熱交換器と送風ファンとを収納し、送風ファンにより吸込口から吸い込んだ空気をエアフィルタにより除塵し、ついで熱交換器により熱交換させたのち吹出口より吹き出す構成になっている。   A typical air conditioner has an air inlet on the front and top surfaces of the main body of the indoor unit and an air outlet on the bottom, and an air filter, a heat exchanger, and a blower fan inside the main body. The air is housed, and the air sucked from the suction port by the blower fan is removed by the air filter, and then the heat is exchanged by the heat exchanger and then blown out from the outlet.

このため、室内ユニット内には空気中に浮遊するごみや埃が室内空気と一緒に吸い込まれ、このごみや埃が室内ユニット内部壁面や内部に設けられた送風ファンや熱交換器等に付着しやすい。そしてこの付着したごみや埃に含まれる雑菌やかび等の微生物が繁殖し易いという問題がある。特に、冷房運転停止後には、熱交換器で凝縮した凝縮水が室内ユニット内で蒸発し、室内ユニット内部の湿度が高くなるため、微生物がより繁殖し易くなるという問題がある。   For this reason, dust and dust floating in the air are sucked into the indoor unit together with the indoor air, and the dust and dust adhere to the inner wall surface of the indoor unit and the blower fan and heat exchanger provided inside. Cheap. And there exists a problem that microorganisms, such as various germs and mold | fungi contained in this adhering garbage and dust, are easy to propagate. In particular, after the cooling operation is stopped, the condensed water condensed in the heat exchanger evaporates in the indoor unit, and the humidity inside the indoor unit becomes high, so that there is a problem that microorganisms are more easily propagated.

このような問題に対して、室内ユニット内にオゾン発生装置を設けてオゾンの殺菌効果により、微生物の繁殖を抑制するよう構成した空気調和機が提案されている(特許文献1参照)。   In order to solve such a problem, an air conditioner has been proposed in which an ozone generator is provided in an indoor unit to suppress the growth of microorganisms by the sterilizing effect of ozone (see Patent Document 1).

特開平6−272888号公報JP-A-6-272888

前記従来の空気調和機において、室内ユニット内で発生させたオゾンは、オゾン発生装置の近傍に止まるだけで、オゾンが室内ユニット内部に十分に拡散しないという課題があった。従い、オゾン発生装置近傍のみしか雑菌やかびの繁殖を防止することができず、室内ユニット内部全体を殺菌して雑菌やかびの繁殖を防止するには不十分であった。特に、塵埃が捕集されたエアフィルタは一般的に室内ユニットの上面に設置されており、空気より高比重のオゾンを実際上エアフィルタまで充満させることが出来ず、エアフィルタ上の塵埃とともに捕集された雑菌やかびの繁殖を十分に防止できなかった。   In the conventional air conditioner, ozone generated in the indoor unit only stops in the vicinity of the ozone generator, and there is a problem that ozone does not sufficiently diffuse inside the indoor unit. Accordingly, the propagation of germs and fungi can only be prevented in the vicinity of the ozone generator, which is insufficient to sterilize the entire interior of the indoor unit and prevent the propagation of germs and fungi. In particular, the air filter in which dust is collected is generally installed on the upper surface of the indoor unit, and ozone having a higher specific gravity than air cannot actually be filled up to the air filter, and is collected together with dust on the air filter. The collected germs and fungi could not be prevented sufficiently.

また、送風ファンを回転させてオゾンを拡散させることが考えられるが、室内ユニット内で発生させたオゾンが室内に拡散してしまい、室内ユニット内に必要なオゾン濃度を確保できないという欠点があった。また、空気調和装置を運転していないのに送風ファンの運転音がするため、使用者にとってあまり好ましいものではなかった。   In addition, it is conceivable to rotate the blower fan to diffuse ozone. However, ozone generated in the indoor unit diffuses into the room, and there is a disadvantage that the required ozone concentration cannot be secured in the indoor unit. . Moreover, since the operation sound of the blower fan is generated even when the air conditioner is not operated, it is not so preferable for the user.

従って、本発明の目的は、上記問題を解決することにあって、十分な量のオゾンを拡散させて殺菌することにより雑菌やかびの繁殖を十分に防止することが可能なオゾン・イオン発生装置およびそれを備える空気調和機を提供することにある。   Accordingly, an object of the present invention is to solve the above problems, and an ozone ion generator capable of sufficiently preventing the proliferation of germs and fungi by diffusing and sterilizing a sufficient amount of ozone. And it is providing an air conditioner provided with the same.

前記従来の課題を解決するために、本発明の空気調和機は、吸込口および吹出口を備えた本体と、吸込口から吹出口に至る通風路に設けた熱交換器および送風ファンと、本体内に配置され、放電によってオゾンおよびイオン風を発生させるオゾン・イオン発生装置とを備え、オゾン・イオン発生装置より発生されたイオン風が通風路内を吹出口側から吸込口側へと向かうように、オゾン・イオン発生装置が本体内に配置され、イオン風により本体内にオゾンを充満させて、本体内部の浄化を行う構成とした。   In order to solve the above-described conventional problems, an air conditioner of the present invention includes a main body having a suction port and a blower outlet, a heat exchanger and a blower fan provided in a ventilation path extending from the suction port to the blower outlet, and a main body. And an ozone ion generator that generates ozone and ion wind by electric discharge, and the ion wind generated by the ozone ion generator is directed from the outlet side to the inlet side in the ventilation path. In addition, an ozone / ion generator is disposed in the main body, and the main body is filled with ozone by ion wind to purify the inside of the main body.

また、前記従来の課題を解決するために、本発明のオゾン・イオン発生装置は、放電電極と対向電極との間でコロナ放電を発生させてオゾンおよびマイナスイオンを発生させるオゾン・イオン発生装置において、放電電極が針電極であり、対向電極が針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であり、かつ放電電極を対向電極の軸心上に放電電極の針先が対向電極の端面より突出する位置に配した構成とした。   In order to solve the conventional problems, the ozone ion generator of the present invention is an ozone ion generator that generates ozone and negative ions by generating corona discharge between a discharge electrode and a counter electrode. The discharge electrode is a needle electrode, the counter electrode is an arc-shaped electrode obtained by removing a part from the cylindrical shape centered on the axis of the needle electrode, and the discharge electrode is placed on the axis of the counter electrode. The needle tip is arranged at a position protruding from the end face of the counter electrode.

本発明のオゾン・イオン発生装置を備える空気調和機は、オゾン・イオン発生装置により十分な量のオゾンを拡散させて殺菌し、雑菌やかびの繁殖を十分に防止することができる。   An air conditioner equipped with the ozone / ion generator of the present invention can sterilize by diffusing a sufficient amount of ozone with the ozone / ion generator and sufficiently prevent the growth of germs and molds.

本発明のオゾン・イオン発生装置は、イオン放出量を増大させるとともに、オゾン発生量をコントロールし、発生するイオン風を利用してオゾンの拡散を促進させることができる。   The ozone ion generator of the present invention can increase the amount of released ions, control the amount of generated ozone, and promote the diffusion of ozone using the generated ion wind.

本発明の実施の形態1における空気調和機の横断面図1 is a cross-sectional view of an air conditioner according to Embodiment 1 of the present invention. 本発明の実施の形態1におけるオゾン・イオン発生装置の略概断面図1 is a schematic cross-sectional view of an ozone ion generator according to Embodiment 1 of the present invention. 図2Aの矢印S1方向から見た模式図Schematic view seen from arrow S1 direction in FIG. 2A 本発明の実施の形態1におけるオゾン・イオン発生装置の略概断面図1 is a schematic cross-sectional view of an ozone ion generator according to Embodiment 1 of the present invention. 図3Aの矢印S2方向から見た模式図Schematic view seen from the direction of arrow S2 in FIG. 3A 本発明の実施の形態1における空気調和機の正面図The front view of the air conditioner in Embodiment 1 of this invention 本発明の実施の形態1における空気調和機を上から見た平面図The top view which looked at the air conditioner in Embodiment 1 of this invention from the top 本発明の実施の形態1における空気調和機の正面図The front view of the air conditioner in Embodiment 1 of this invention 本発明の実施の形態1における空気調和機を上から見た平面図The top view which looked at the air conditioner in Embodiment 1 of this invention from the top 本発明の実施の形態2におけるオゾン・イオン発生装置の模式図Schematic diagram of ozone / ion generator in Embodiment 2 of the present invention 本発明の実施の形態2における円弧形状筒型電極の俯瞰図An overhead view of an arc-shaped cylindrical electrode in Embodiment 2 of the present invention 本発明の実施の形態2における円弧型状筒型電極の1つの展開平面図One development plan view of the arc-shaped cylindrical electrode in Embodiment 2 of the present invention 本発明の実施の形態2における円弧型状筒型電極の1つの俯瞰図One overhead view of the arc-shaped cylindrical electrode in Embodiment 2 of the present invention 本発明の実施の形態2における電流(小)とオゾン発生量の関係図Relationship diagram between current (small) and ozone generation amount in Embodiment 2 of the present invention 本発明の実施の形態2における電流(大)とオゾン発生量の関係図Relationship diagram between current (large) and ozone generation amount in Embodiment 2 of the present invention 本発明の実施の形態2における印加電圧と電流値の関係図Relationship diagram between applied voltage and current value in Embodiment 2 of the present invention 本発明の実施の形態2における突出長さとマイナスイオン発生量および電流値の関係図Relationship diagram between protrusion length, negative ion generation amount and current value in Embodiment 2 of the present invention 本発明の実施の形態2における円弧角度および突出長さとマイナスイオン発生量および電流値の関係図Relationship diagram between arc angle and protrusion length, negative ion generation amount and current value in Embodiment 2 of the present invention 本発明の実施の形態2における円筒直径および突出長さとマイナスイオン発生量および電流値の関係図Relationship diagram between cylindrical diameter and protrusion length, negative ion generation amount and current value in Embodiment 2 of the present invention 本発明の実施の形態2における円弧角度と発生装置近傍のオゾン濃度の関係図Relationship diagram between arc angle and ozone concentration near generator in embodiment 2 of the present invention 本発明の実施の形態3における空気調和機の室内ユニットの横断面模式図The cross-sectional schematic diagram of the indoor unit of the air conditioner in Embodiment 3 of this invention 本発明の実施の形態3における空気調和機に組み込まれたオゾン・イオン発生装置の平面図The top view of the ozone ion generator incorporated in the air conditioner in Embodiment 3 of this invention 同オゾン・イオン発生装置の側面図Side view of the ozone ion generator 本発明の実施の形態3におけるオゾン・イオン発生装置を吹出側風路の略中央部分に配置した空気調和機室内ユニットの正面図The front view of the air conditioner indoor unit which has arrange | positioned the ozone ion generator in Embodiment 3 of this invention in the approximate center part of the blowing side air path. 本発明の実施の形態3におけるオゾン・イオン発生装置を吹出側風路の端部に配置した空気調和機室内ユニットの正面図The front view of the air conditioner indoor unit which has arrange | positioned the ozone ion generator in Embodiment 3 of this invention in the edge part of the blowing side air path

第1の発明は、吸込口および吹出口を備えた本体と、吸込口から吹出口に至る通風路に設けた熱交換器および送風ファンと、本体内に配置され、放電によってオゾンおよびイオン風を発生させるオゾン・イオン発生装置とを備え、オゾン・イオン発生装置より発生されたイオン風が通風路内を吹出口側から吸込口側へと向かうように、オゾン・イオン発生装置が本体内に配置され、イオン風により本体内にオゾンを充満させて、本体内部の浄化を行う、空気調和機である。   1st invention is arrange | positioned in a main body provided with the suction inlet and the blower outlet, the heat exchanger provided in the ventilation path from a suction inlet to a blower outlet, and a main body, and ozone and an ion wind by discharge The ozone ion generator is arranged in the main body so that the ion wind generated by the ozone ion generator is directed from the outlet side to the inlet side in the ventilation path. It is an air conditioner that purifies the inside of the main body by filling the main body with ozone by ion wind.

オゾン・イオン発生装置は、放電によって空気中の酸素分子を酸化してオゾン分子(O3)としオゾンを発生させると同時に、放電によってプラスイオンやマイナスイオンを発生させ空気中にイオン風として放出させる構成とすることで、発生させたオゾンをイオン風により拡散させ、本体内部全体に充満させることができる。   The ozone ion generator is configured to oxidize oxygen molecules in the air by discharge to generate ozone molecules (O3) and generate ozone as well as to generate positive ions and negative ions by discharge and release them into the air as ion wind. By doing so, the generated ozone can be diffused by the ion wind, and the entire inside of the main body can be filled.

また、イオン風が本体内側に向かって流れるような配置とすることで、本体内部に均一にオゾンを拡散させることが可能となる。   Further, by arranging the ion wind to flow toward the inside of the main body, ozone can be uniformly diffused inside the main body.

これにより、オゾンの殺菌効果によって室内ユニットの本体内の各部、各部品が殺菌され、本体内におけるかび等の微生物の繁殖が抑制される。   Thereby, each part and each part in the main body of the indoor unit are sterilized by the sterilizing effect of ozone, and the propagation of microorganisms such as mold in the main body is suppressed.

さらにオゾンによる脱臭効果によって、本体内の部材に染み付いた臭いの脱臭が効果的に行われ、空気調和機の運転開始時に、臭いが吹出口から吹出風となって吹出されるのを防ぐことが可能となる。   Furthermore, the deodorizing effect of ozone effectively deodorizes the odor that has soaked into the components in the main body, and prevents the odor from being blown out from the outlet when the air conditioner is started. It becomes possible.

第2の発明は、第1の発明において、吸込口に設けたエアフィルタをさらに備え、オゾン・イオン発生装置より発生されたイオン風を用いてオゾンを本体内に充満させることにより、エアフィルタおよび本体内部の除菌を行う、空気調和機である。   A second invention further comprises an air filter provided in the suction port in the first invention, and the main body is filled with ozone using an ion wind generated from an ozone ion generator, whereby the air filter and It is an air conditioner that disinfects the inside of the main body.

エアフィルタまでオゾンを充満させて殺菌することにより、エアフィルタ上の塵埃とともに捕集された雑菌やかびの繁殖も十分に防止することができる。   By sterilizing the air filter by filling it with ozone, it is possible to sufficiently prevent the proliferation of germs and fungi collected together with dust on the air filter.

第3の発明は、第2の発明において、本体の上部に吸込口、下部に吹出口を設けるとともに、オゾン・イオン発生装置は吹出口近傍に設けて、イオン風が上向きに流れるように配置した、空気調和機である。   According to a third aspect of the present invention, in the second aspect of the present invention, a suction port is provided in the upper part of the main body, and a blower outlet is provided in the lower part. An air conditioner.

その際、イオン風が上向きに流れるように配置することにより吹出口から上部方向にオゾンが拡散され、空気より高比重のオゾンをエアフィルタ近傍まで充満させることが可能となる。従い、エアフィルタを含めた室内ユニット内部の殺菌を効果的に行うことができる。   At that time, by arranging the ion wind so as to flow upward, ozone is diffused upward from the outlet, and it becomes possible to fill ozone having a higher specific gravity than air to the vicinity of the air filter. Accordingly, the inside of the indoor unit including the air filter can be sterilized effectively.

第4の発明は、第2の発明において、吹出口を開閉するルーバーと、オゾン・イオン発生装置及びルーバーの開閉を制御する制御部とをさらに備え、制御部はルーバーにより吹出口を閉塞してオゾン・イオン発生装置を作動させる、空気調和機である。   According to a fourth invention, in the second invention, further comprising: a louver that opens and closes the air outlet; and a controller that controls the opening and closing of the ozone ion generator and the louver. The controller closes the air outlet by the louver. It is an air conditioner that operates an ozone ion generator.

これにより、室内ユニットの内部は密閉あるいは略密閉な状態となり、オゾンを効率良く室内ユニット内に充満させることが可能となる。   Thereby, the inside of the indoor unit is sealed or substantially sealed, and ozone can be efficiently filled into the indoor unit.

第5の発明は、第2の発明において、制御部は、空気調和機の冷凍サイクル停止中に、オゾン・イオン発生装置を作動させるクリーン運転を実施する、空気調和機である。   A fifth aspect of the invention is the air conditioner according to the second aspect of the invention, wherein the control unit performs a clean operation for operating the ozone / ion generator while the refrigeration cycle of the air conditioner is stopped.

冷房運転停止後は、熱交換器で凝縮した凝縮水が室内ユニット内で蒸発し、室内ユニット内部の湿度が高くなるため、雑菌やかびが繁殖し易い環境となっているが、冷房運転停止後すなわち冷凍サイクル停止中に、オゾン・イオン発生装置を作動させることにより、室内ユニット内部の雑菌およびかびを殺菌し、繁殖を抑制することが可能となる。   After the cooling operation is stopped, the condensed water condensed in the heat exchanger evaporates in the indoor unit, and the humidity inside the indoor unit becomes high. That is, by operating the ozone / ion generator while the refrigeration cycle is stopped, it is possible to sterilize germs and fungi inside the indoor unit and suppress propagation.

第6の発明は、第2の発明において、オゾン・イオン発生装置は放電電極と対向電極とで構成し、対向電極は放電電極の外周所定範囲を取り囲む、空気調和機である。   A sixth invention is the air conditioner according to the second invention, wherein the ozone ion generator is constituted by a discharge electrode and a counter electrode, and the counter electrode surrounds a predetermined outer peripheral range of the discharge electrode.

放電電極と対向電極を対置して両電極間に高電圧を印加することで、風量感を与えるほどの風速のイオン風を発生させることができる。対向電極を放電電極の外周所定範囲を取り囲むように構成することにより、イオン風の進行方向を拡散させ広がりを持たせることができ、これによりオゾンを室内ユニット内部に効果的に均一に充満させることが可能となる。   By placing the discharge electrode and the counter electrode facing each other and applying a high voltage between the two electrodes, an ion wind having a wind speed that gives a feeling of air volume can be generated. By constructing the counter electrode so as to surround a predetermined range of the outer periphery of the discharge electrode, the traveling direction of the ion wind can be diffused and widened, thereby effectively and uniformly filling the interior of the indoor unit with ozone. Is possible.

第7の発明は、第6の発明において、放電電極の放電部は対向電極よりも上方に突出させて設けた、空気調和機である。   A seventh invention is the air conditioner according to the sixth invention, wherein the discharge part of the discharge electrode is provided so as to protrude upward from the counter electrode.

これにより、対向電極に捕捉されるマイナスイオン等のイオン量を抑制し、空気中に放出されるイオン量を増加させることが出来る。従い、イオン風の風量を増加させることができ、オゾンを室内ユニット内部に迅速に拡散させることが可能となり、さらにより効果的にエアフィルタにまでオゾンを充満させることが可能となる。   Thereby, the amount of ions such as negative ions captured by the counter electrode can be suppressed, and the amount of ions released into the air can be increased. Accordingly, the amount of ion wind can be increased, ozone can be quickly diffused inside the indoor unit, and the air filter can be more effectively filled with ozone.

第8の発明は、第1〜7の発明において、オゾン・イオン発生装置は放電電極と対向電極の電極間に直流電圧を印加する高電圧発生装置を備え、高電圧発生装置が印加する直流電圧は、範囲が−3kV以上−10kV以下であり、かつ、電極間に流れる電流が1μAより大きく、30μAより小さい、空気調和機である。   According to an eighth invention, in the first to seventh inventions, the ozone ion generator includes a high voltage generator that applies a DC voltage between the discharge electrode and the counter electrode, and the DC voltage applied by the high voltage generator Is an air conditioner having a range of −3 kV to −10 kV and a current flowing between the electrodes is larger than 1 μA and smaller than 30 μA.

これにより、放電の強さにともなうイオン発生量の増加、および対向電極に捕捉されてしまうイオン量の減少によるイオン放出量の増加、また、オゾン発生量を増加することができ、イオンとともにオゾン発生量をともに増大させることができ、より確実にエアフィルタにまでオゾンを充満させることが可能となる。   As a result, the amount of ion generation increases due to the intensity of discharge, and the amount of ion emission increases due to the decrease in the amount of ions trapped by the counter electrode, and the amount of ozone generation can be increased. The amount can be increased together, and it is possible to more reliably fill the air filter with ozone.

第9の発明は、第1の発明において、空気調和機は、運転中にイオンを室内空間に放出する塵捕集運転機能と、運転停止後に本体内部にオゾンを充満させる内部クリーン運転機能を有し、通風路は、吸込口に連通した吸込側風路と、吹出口に連通した吹出側風路とを有し、オゾン・イオン発生装置は、吹出側風路またはその近傍に配置され、さらに、オゾン・イオン発生装置は、放電電極と対向電極とを有する放電部を備え、少なくとも対向電極が放電電極よりも吹出側風路の内側寄りに位置するように、放電部が吹出側風路内へと突出して配置されており、運転中に、オゾン・イオン発生装置により吹出側風路内に発生されたイオンが、吹出口を通して室内に放出されることにより塵捕集運転を行い、運転停止後に、オゾン・イオン発生装置より発生されたイオン風が吹出側風路を通り、吸込側風路に向かうことにより内部クリーン運転を行う、空気調和機である。   In a ninth aspect based on the first aspect, the air conditioner has a dust collection operation function for releasing ions into the indoor space during operation, and an internal clean operation function for filling the main body with ozone after the operation is stopped. The ventilation path has a suction side air path that communicates with the suction port and a blowout side air path that communicates with the outlet, and the ozone ion generator is disposed at or near the blowout side air path, The ozone ion generator includes a discharge part having a discharge electrode and a counter electrode, and the discharge part is located in the outlet side air passage so that at least the counter electrode is located closer to the inside of the outlet side air passage than the discharge electrode. During operation, the ions generated in the blow-out side air channel by the ozone / ion generator are released into the room through the blow-out port, and the dust is collected and stopped. Later, ozone ion generator Through the outlet side air passage more the generated ion wind performs internal cleaning operation by facing the suction side air path, an air conditioner.

このように、オゾン・イオン発生装置を吹出口側風路またはその近傍に配置することで、発生したイオンを熱交換器等で吸収されることなく室内空間に多く放出できる。また、吹出口側風路内は運転中に通過する風量、風速ともに大きく、イオンを室内空間に放出するには好適である。また、内部クリーン運転時にはオゾン・イオン発生装置から発生するイオンがイオン風によって吹出側風路を通り、吸込口側へと流れることにより、室内ユニット内部へオゾンを確実に拡散することができる。したがって、室内空間に浮遊する菌、ウイルス、カビ、粉塵、花粉などを帯電させることができ、積極的に室内ユニット内に取り込むことができる。さらに、取り込んだ菌、ウイルス、カビを室内ユニット内に充満させたオゾンにより死滅させることにより増殖を抑制することができる。加えてこの発明では拡散のための駆動部を持たなくてもよいため、静かであり、就寝時にも稼動音が気にならない。   As described above, by arranging the ozone / ion generator in the air outlet side air passage or in the vicinity thereof, a large amount of the generated ions can be released into the indoor space without being absorbed by the heat exchanger or the like. In addition, the air flow rate and the wind speed passing through the air outlet side in the air outlet side air passage are large, which is suitable for releasing ions into the indoor space. Further, during the internal clean operation, ions generated from the ozone / ion generator flow through the blow-out side air passage by the ion wind and flow toward the suction port side, so that ozone can be reliably diffused inside the indoor unit. Therefore, bacteria, viruses, molds, dust, pollen, etc. floating in the indoor space can be charged and actively taken into the indoor unit. Furthermore, the growth can be suppressed by killing the taken bacteria, virus, and mold with ozone filled in the indoor unit. In addition, in the present invention, since it is not necessary to have a drive unit for diffusion, it is quiet and does not bother operating noises at bedtime.

第10の発明は、第9の発明において、放電電極は針電極であり、対向電極は針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であり、かつ放電電極を対向電極の軸心上に放電電極の針先が対向電極の端面より突出する位置に配した、空気調和機である。   According to a tenth aspect, in the ninth aspect, the discharge electrode is a needle electrode, the counter electrode is an arc-shaped electrode obtained by removing a part from a cylindrical shape centering on the axis of the needle electrode, and the discharge electrode Is an air conditioner in which the needle tip of the discharge electrode is disposed on the axis of the counter electrode at a position where the tip of the discharge electrode protrudes from the end surface of the counter electrode.

これにより、イオンの放出量が多くなるので、無風時においても吹出側風路を通過する風量、風速の大きさに大きく左右されず安定したイオン放出量を確保することができる。また、対向電極は針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であることで、均一な距離に配した電極面を形成することができ、安定した強い放電によるオゾン生成と除去された面の存在によりイオンの放出量の増大を果たすことができる。これにより、室内空間に浮遊する菌、ウイルス、カビ、粉塵、花粉などを帯電させることができ、積極的に室内ユニット内に取り込むことができる。さらに、取り込んだ菌、ウイルス、カビを室内ユニット内に充満させたオゾンにより死滅させることにより増殖を抑制することができる。   Thereby, since the amount of released ions increases, a stable amount of released ions can be ensured regardless of the amount of air passing through the blowing side air passage and the magnitude of the wind speed even when there is no wind. In addition, the counter electrode is an arc-shaped electrode that is partly removed from the cylindrical shape centered on the axis of the needle electrode, so that an electrode surface arranged at a uniform distance can be formed, and stable and strong discharge Ozone generation and the presence of the removed surface can increase the amount of ions released. Thereby, bacteria, viruses, molds, dust, pollen, etc. floating in the indoor space can be charged and can be actively taken into the indoor unit. Furthermore, the growth can be suppressed by killing the taken bacteria, virus, and mold with ozone filled in the indoor unit.

第11の発明は、第9、10の発明において、オゾン・イオン発生装置を吹出側風路の略中央部分に配置し、対向電極が針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であり、円弧形状の円弧中心が風向の風上側に存在する、空気調和機である。   An eleventh aspect of the present invention is the ninth or tenth aspect, wherein the ozone ion generator is disposed at a substantially central portion of the outlet side air passage, and the counter electrode is partly formed from a cylindrical shape centering on the axis of the needle electrode. It is an air conditioner that is an arc-shaped electrode that has been removed, and the arc-shaped arc center exists on the windward side of the wind direction.

この構成により、塵捕集運転機能の動作時には、放電電極より風上側に対向電極の大部分が存在することになり、送風ファンからの風によって発生したイオンが対向電極で中和されることを抑制することになって、イオンが多く室内空間に放出されることになる。また、内部クリーン機能の動作中には、オゾン・イオン発生装置を吹出側風路の略中央部分に配置したことにより、室内ユニット内部にオゾンを行き渡らせることが容易となり、また、イオン風が針電極の軸心から対向電極に向かってイオン風が起こるため、中央から室内ユニット内部にオゾンが広がっていく。これにより、室内空間に浮遊する菌、ウイルス、カビ、粉塵、花粉などを帯電させることができ、積極的に室内ユニット内に取り込むことができる。さらに、取り込んだ菌、ウイルス、カビを室内ユニット内に充満させたオゾンにより死滅させることにより増殖を抑制することができる。   With this configuration, during the operation of the dust collection operation function, the majority of the counter electrode exists on the windward side of the discharge electrode, and ions generated by the wind from the blower fan are neutralized by the counter electrode. As a result, a large amount of ions are released into the indoor space. In addition, during the operation of the internal clean function, the ozone / ion generator is placed in the substantially central part of the blow-out side air passage, so that it is easy to spread ozone inside the indoor unit, and the ion wind is Since ion wind is generated from the electrode axis toward the counter electrode, ozone spreads from the center into the indoor unit. Thereby, bacteria, viruses, molds, dust, pollen, etc. floating in the indoor space can be charged and can be actively taken into the indoor unit. Furthermore, the growth can be suppressed by killing the taken bacteria, virus, and mold with ozone filled in the indoor unit.

第12の発明は、第9、10の発明において、オゾン・イオン発生装置を吹出側風路の端部に配置し、対向電極が針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であり、円弧形状の円弧中心が風向の風上側に対して中央方向に0度から90度までの範囲に存在する、空気調和機である。   The twelfth invention is the ninth or tenth invention, wherein the ozone ion generator is disposed at the end of the blow-out side air passage, and the counter electrode is partially removed from the cylindrical shape centering on the axis of the needle electrode. The air conditioner is an arc-shaped electrode having an arc-shaped arc center in a range from 0 degrees to 90 degrees in the central direction with respect to the windward side of the wind direction.

この構成により、塵捕集運転機能の動作時には、放電電極より風上側に対向電極の大部分が存在することになり、送風ファンからの風によって発生したイオンが対向電極で中和されることを抑制することになって、イオンが多く室内空間に放出されることになる。また、内部クリーン機能の動作中には、オゾン・イオン発生装置を吹出側風路の端部に配置したことにより、空気調和機の運転時に風の抵抗になりにくく、また、対向電極の正面からの投影面積も減少することになるので風の抵抗を抑えることができる。また、イオン風が針電極の軸心から対向電極に向かってイオン風が起こるため、円弧形状の円弧中心が風向の風上側に対して中央方向に0度から90度までの範囲に存在する構成とすることで、室内ユニット内部にオゾンが広がっていく。これにより、室内空間に浮遊する菌、ウイルス、カビ、粉塵、花粉などを帯電させることができ、積極的に室内ユニット内に取り込むことができる。さらに、取り込んだ菌、ウイルス、カビを室内ユニット内に充満させたオゾンにより死滅させることにより増殖を抑制することができる。   With this configuration, during the operation of the dust collection operation function, the majority of the counter electrode exists on the windward side of the discharge electrode, and ions generated by the wind from the blower fan are neutralized by the counter electrode. As a result, a large amount of ions are released into the indoor space. In addition, during operation of the internal clean function, the ozone ion generator is placed at the end of the blowout side air passage, so that it is difficult for wind resistance to occur during the operation of the air conditioner, and from the front of the counter electrode. This reduces the projected area of the wind so that wind resistance can be suppressed. In addition, since the ion wind is generated from the axis of the needle electrode toward the counter electrode, the arc-shaped arc center exists in the range from 0 degrees to 90 degrees in the central direction with respect to the windward side of the wind direction. As a result, ozone spreads inside the indoor unit. Thereby, bacteria, viruses, molds, dust, pollen, etc. floating in the indoor space can be charged and can be actively taken into the indoor unit. Furthermore, the growth can be suppressed by killing the taken bacteria, virus, and mold with ozone filled in the indoor unit.

第13の発明は、放電電極と対向電極との間でコロナ放電を発生させてオゾンおよびマイナスイオンを発生させるオゾン・イオン発生装置において、放電電極が針電極であり、対向電極が針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であり、かつ放電電極を対向電極の軸心上に放電電極の針先が対向電極の端面より突出する位置に配した、オゾン・イオン発生装置である。   A thirteenth aspect of the invention is an ozone ion generator that generates corona discharge between a discharge electrode and a counter electrode to generate ozone and negative ions. The discharge electrode is a needle electrode, and the counter electrode is an axis of the needle electrode. Ozone that is an arc-shaped electrode with a part removed from the cylindrical shape centered on the center, and the discharge electrode is arranged on the axis of the counter electrode at a position where the tip of the discharge electrode protrudes from the end surface of the counter electrode・ Ion generator.

対向電極が針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であって、更にその放電電極の針先が対向電極の端面より突出しているので、マイナスイオンの主な放出方向である針先前方に対向電極が無いことでマイナスイオン放出量を増加させ、さらに、オゾン量も増加し、かつ、イオン風の利用により生成オゾンの拡散を促進できる。   Since the counter electrode is an arc-shaped electrode obtained by removing a part from the cylindrical shape centered on the axis of the needle electrode, and the needle tip of the discharge electrode protrudes from the end face of the counter electrode, Since there is no counter electrode in front of the needle tip, which is a simple emission direction, the amount of negative ion emission is increased, the amount of ozone is increased, and the diffusion of generated ozone can be promoted by using ion wind.

第14の発明は、第13の発明において、対向電極が針電極の軸心を中心とした円弧形状の筒型電極であり、円弧が90度以上270度以下である、オゾン・イオン発生装置である。   The fourteenth invention is the ozone ion generator according to the thirteenth invention, wherein the counter electrode is an arc-shaped cylindrical electrode centered on the axis of the needle electrode, and the arc is 90 degrees or more and 270 degrees or less. is there.

円弧が90度以上270度以下であることで、幅広い指向性を持ったイオン風を生成することができ、生成したオゾンの拡散を促進させ、また、オゾン・マイナスイオン発生装置近傍に高濃度のオゾンを蓄積させることがないため、安全性および周辺部材の劣化を抑制することができる。   When the arc is 90 degrees or more and 270 degrees or less, it is possible to generate ion winds with a wide directivity, promote the diffusion of the generated ozone, and high concentrations in the vicinity of the ozone / negative ion generator. Since ozone is not accumulated, safety and deterioration of peripheral members can be suppressed.

第15の発明は、第13の発明において、対向電極が針電極の軸心を中心とした円弧形状の筒型電極であり、左右の端部上部の角が扇状に切除されている、オゾン・イオン発生装置である。   In a fifteenth aspect according to the thirteenth aspect, the counter electrode is an arc-shaped cylindrical electrode centered on the axis of the needle electrode, and the corners of the upper left and right ends are cut out in a fan shape. It is an ion generator.

円弧形状の筒電極の最も角が鋭利となる箇所を滑らかにすることで、安定した放電を起こすことができる。   Stable discharge can be caused by smoothing the sharpest part of the arcuate cylindrical electrode.

第16の発明は、第13の発明において、対向電極が針電極の軸心を中心とした円弧形状の筒型電極であり、左右の端部が外側に折られている、オゾン・イオン発生装置である。   A sixteenth aspect of the invention is the ozone ion generator according to the thirteenth aspect of the invention, wherein the counter electrode is an arc-shaped cylindrical electrode centered on the axis of the needle electrode, and the left and right ends are folded outward. It is.

円弧形状の筒電極の最も角が鋭利となる箇所を他の円弧形状部分より針先から遠ざけることで、安定した放電を起こすことができる。   Stable discharge can be generated by moving the arc-shaped cylindrical electrode at the sharpest corner away from the needle tip from other arc-shaped portions.

第17の発明は、第13〜16の発明において、放電電極と対向電極の電極間に直流電圧を印加する高電圧発生装置を備え、この高電圧発生装置が印加する直流電圧は、範囲が−3kV以上−10kV以下であり、かつ、電極間に流れる電流が1μAより大きく、30μAより小さい、オゾン・イオン発生装置である。   A seventeenth invention includes a high voltage generator for applying a DC voltage between the discharge electrode and the counter electrode in the thirteenth to sixteenth inventions, and the DC voltage applied by the high voltage generator has a range of − The ozone ion generator has a current of 3 kV or more and −10 kV or less and a current flowing between the electrodes is larger than 1 μA and smaller than 30 μA.

放電の強さにともなうマイナスイオン発生量の増加、および対向電極に捕捉されてしまうマイナスイオン量の減少によるマイナスイオン放出量の増加、また、オゾン発生量をコントロールすることができ、イオンとともにオゾン発生量をともに増大させることができる。   Increase in the amount of negative ions generated due to the intensity of the discharge, increase in the amount of negative ions released due to the decrease in the amount of negative ions trapped by the counter electrode, and control of the amount of ozone generated. Both quantities can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、この発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は本発明の実施の形態1におけるオゾン・イオン発生装置を備える空気調和機の横断面図である。まず、空気調和機について説明する前に、本実施の形態1のオゾン・イオン発生装置8について説明する。
(Embodiment 1)
FIG. 1 is a cross-sectional view of an air conditioner including an ozone / ion generator according to Embodiment 1 of the present invention. First, before describing the air conditioner, the ozone / ion generator 8 of the first embodiment will be described.

オゾン・イオン発生装置8は、放電電極と対向電極で構成されており、放電電極にマイナス電位を印加すると、放電電極の先端でコロナ放電が起こり、放電電極の先端から対向電極の内面に向かって電子が放出される。放出された電子の流れは高電界によって加速されながら気体分子と衝突し、気体分子に運動エネルギーを与えて空気の電子誘導風となって気流を生み出す。このとき、電子の一部は気体分子の結合起動の外殻にトラップされてマイナスに帯電したマイナスイオン分子となる。したがって、電子誘導風は、マイナスイオン分子を含むイオン風の気流となる。このように、放電電極と対向電極に直流の電位を印加することによって生じるイオン風は、放電電極から対向電極の間を抜けて吹き出される気流となり、マイナスイオン分子を含むイオン風を放電電極から対向電極に向かう方向に放出させることができる。   The ozone / ion generator 8 is composed of a discharge electrode and a counter electrode. When a negative potential is applied to the discharge electrode, corona discharge occurs at the tip of the discharge electrode, and from the tip of the discharge electrode toward the inner surface of the counter electrode. Electrons are emitted. The emitted electron flow collides with gas molecules while being accelerated by a high electric field, gives kinetic energy to the gas molecules, and generates air currents as electron-induced wind of air. At this time, some of the electrons are trapped in the outer shell of the gas molecule bond activation and become negatively charged negative ion molecules. Therefore, the electron induction wind becomes an air flow of an ion wind containing negative ion molecules. In this way, the ionic wind generated by applying a DC potential to the discharge electrode and the counter electrode becomes an air current that blows out from the discharge electrode through the counter electrode, and the ionic wind containing negative ion molecules is discharged from the discharge electrode. The light can be emitted in a direction toward the counter electrode.

オゾン・イオン発生装置8は、放電によってオゾンおよびイオン風が発生する構成としてあり、本実施の形態1では、放電電極と対向電極を対置して両電極間に高電圧を印加し、コロナ放電によってイオン風を発生させるものとしているが、コロナ放電方式に特に限定するものではなく、種々の発生方法が採用可能である。   The ozone / ion generator 8 is configured to generate ozone and ion wind by discharge. In the first embodiment, the discharge electrode and the counter electrode are opposed to each other, a high voltage is applied between both electrodes, and corona discharge is performed. Although an ion wind is generated, it is not particularly limited to the corona discharge method, and various generation methods can be employed.

例えば、オゾン・イオン発生装置8の一例として、図2A、Bに示すような構成を採ることができる。図2Aはオゾン・イオン発生装置8の略概断面図であり、図2Bは図2Aの矢印S1方向から見た模式図である。   For example, as an example of the ozone / ion generator 8, the configuration shown in FIGS. 2A and 2B can be adopted. 2A is a schematic cross-sectional view of the ozone / ion generator 8, and FIG. 2B is a schematic view seen from the direction of arrow S1 in FIG. 2A.

図2Aに示すように、オゾン・イオン発生装置8は長方形の板状に形成した対向電極31と、針状の放電電極32とを所定間隔を隔てて平衡に配置した構成としており、対向電極31と放電電極32はそれぞれ導線33により高電圧発生装置34に接続されている。高電圧発生装置34により放電電極32にマイナス電位を印加することによって生じるイオン風は、図2Bに示すように放電電極32から対向電極31の間を抜けて吹き出される気流となり、マイナスイオン分子を含むイオン風が放電電極32から対向電極31に向かう方向に放出される。すなわち、対向電極31を板状に形成したことにより、イオン風は放電電極32から対向電極31の全長にわたって扇状に発生する気流となり、オゾン・イオン発生装置8よりイオン風と同時に発生させたオゾンを発生後すぐにイオン風によりオゾン・イオン発生装置を中心として扇状に拡散させることができる。   As shown in FIG. 2A, the ozone / ion generator 8 has a configuration in which a counter electrode 31 formed in a rectangular plate shape and a needle-like discharge electrode 32 are arranged in a balanced manner at a predetermined interval. And the discharge electrode 32 are each connected to a high voltage generator 34 by a conducting wire 33. The ion wind generated by applying a negative potential to the discharge electrode 32 by the high voltage generator 34 becomes an air current blown from the discharge electrode 32 through the counter electrode 31 as shown in FIG. The contained ion wind is discharged in the direction from the discharge electrode 32 toward the counter electrode 31. That is, by forming the counter electrode 31 in a plate shape, the ion wind becomes a fan-like air stream from the discharge electrode 32 over the entire length of the counter electrode 31, and ozone generated simultaneously with the ion wind from the ozone / ion generator 8 is generated. Immediately after the generation, it can be diffused in a fan shape around the ozone ion generator by the ion wind.

別のオゾン・イオン発生装置8の一例として、図3A、Bに示すような構成を採ることができる。図3Aはオゾン・イオン発生装置8の略概断面図であり、図3Bは図3Aの矢印S2方向から見た模式図である。   As another example of the ozone / ion generator 8, a configuration as shown in FIGS. 3A and 3B can be employed. FIG. 3A is a schematic cross-sectional view of the ozone / ion generator 8, and FIG. 3B is a schematic view seen from the direction of arrow S2 in FIG. 3A.

図3Aに示すように、オゾン・イオン発生装置は、対向電極41を円筒状に形成し、上記円筒状の中心に針状の放電電極42を配置し、対向電極41が放電電極42の外周を取り囲むように構成している。高電圧発生装置34により放電電極42にマイナス電位を印加することによって生じるイオン風は、図3Bに示すように放電電極42から対向電極41の間を抜けて吹き出される気流となり、マイナスイオン分子を含むイオン風が放電電極42から対向電極41に向かう方向に放出される。すなわち、対向電極41を円筒状に形成したことにより、イオン風は放電電極42を中心に円状に発生する気流となり、オゾン・イオン発生装置8よりイオン風と同時に発生させたオゾンを発生後すぐにイオン風によりオゾン・イオン発生装置8を中心として円状に拡散させることができる。   As shown in FIG. 3A, the ozone ion generator has a counter electrode 41 formed in a cylindrical shape, a needle-like discharge electrode 42 is disposed at the center of the cylinder, and the counter electrode 41 is disposed on the outer periphery of the discharge electrode 42. It is configured to surround. The ion wind generated by applying a negative potential to the discharge electrode 42 by the high voltage generator 34 becomes an air current blown from the discharge electrode 42 through the counter electrode 41 as shown in FIG. The contained ion wind is discharged in the direction from the discharge electrode 42 toward the counter electrode 41. That is, since the counter electrode 41 is formed in a cylindrical shape, the ion wind becomes a circular air flow generated around the discharge electrode 42, and immediately after the ozone generated simultaneously with the ion wind from the ozone / ion generator 8 is generated. The ion / air can be diffused in a circular shape around the ozone / ion generator 8.

次に、本実施の形態1の空気調和機の全体構成について、図1を参照しながら説明する。   Next, the overall configuration of the air conditioner of the first embodiment will be described with reference to FIG.

図1に示すように空気調和機の室内ユニットの本体1には、吸込口2が前面から上面にかけて形成され、吹出口3が下部に形成されている。吸込口2と吹出口3とを結ぶ空気通路には、空気中の粗い塵埃を取り除くためのエアフィルタ4と、ファンモータ(図示せず)に連結された送風ファン5と、熱交換器6とが設けられている。   As shown in FIG. 1, in the main body 1 of the indoor unit of the air conditioner, a suction port 2 is formed from the front surface to the upper surface, and an air outlet 3 is formed in the lower portion. In an air passage connecting the suction port 2 and the air outlet 3, an air filter 4 for removing coarse dust in the air, a blower fan 5 connected to a fan motor (not shown), a heat exchanger 6, Is provided.

本体1の吸込口2から吸引された空気は熱交換器6を通過させることにより熱交換され、冷却または加熱される。その後、室内送風回路である送風ファン5によって吹出口3より室内環境へと送り出され、所定の空調となるよう調整され、ルーバー7によって所定の方向へ調整された後、吹き出される構成となる。この時、本体1に吸い込まれる空気中の塵埃はエアフィルタ4に捕集される。   The air sucked from the suction port 2 of the main body 1 is heat-exchanged by passing through the heat exchanger 6 and cooled or heated. After that, the air is sent to the indoor environment from the blower outlet 3 by the blower fan 5 which is an indoor blower circuit, adjusted to have a predetermined air conditioning, adjusted in a predetermined direction by the louver 7, and then blown out. At this time, dust in the air sucked into the main body 1 is collected by the air filter 4.

エアフィルタ4は、吸い込まれた室内空気の中に含まれる塵埃を捕集するためのものであり、熱交換器6の吸引側を覆うように設けられていて、オゾン・イオン発生装置8が発生させるオゾンで浄化される。   The air filter 4 is for collecting dust contained in the sucked room air, and is provided so as to cover the suction side of the heat exchanger 6 and is generated by the ozone / ion generator 8. Purified with ozone.

オゾン・イオン発生装置8は、上述のように、発生させるイオン風の上流側に放電電極が配置され、下流側に対向電極が配置されている。従い、室内ユニット内において、オゾン・イオン発生装置8の取付配置位置により、イオン風の気流方向を任意に設定することができる。   As described above, the ozone / ion generator 8 has the discharge electrode disposed upstream of the ion wind to be generated and the counter electrode disposed downstream. Accordingly, the air flow direction of the ion wind can be arbitrarily set in the indoor unit depending on the mounting arrangement position of the ozone / ion generator 8.

本実施の形態1では、オゾン・イオン発生装置8は、吹出口3下側に配置されている。オゾン・イオン発生装置8は本体1において、例えば吸込口2や送風ファン5近傍のどこに設置しても同様の殺菌効果を得ることが可能であるが、空気調和機の送風性能を低下させないためには、オゾン・イオン発生装置8を吹出口3近傍に設けることが望ましい。この構成にすることにより、送風ファン5との距離を長く取ることができ、送風性能の低下を抑制することができる。   In the first embodiment, the ozone / ion generator 8 is disposed below the outlet 3. The ozone / ion generator 8 can obtain the same sterilizing effect in the main body 1, for example, in the vicinity of the suction port 2 or the blower fan 5, but in order not to lower the blowing performance of the air conditioner. It is desirable to provide the ozone ion generator 8 in the vicinity of the air outlet 3. By adopting this configuration, it is possible to increase the distance from the blower fan 5 and to suppress the deterioration of the blower performance.

なお、オゾン・イオン発生装置8は吹出口3下側の中央もしくは左右どちらかの端部等、吹出口3下部のどこに設置してもよく、本実施の形態1により、特に設置場所を限定するものではない。オゾン・イオン発生装置8を吹出口3下側に設置し、オゾン・イオン発生装置8の放電電極を吹出口3側に配置し対向電極を本体の背面側に配置する。このような構成にすることにより、イオン風は本体1内側に向かって流れ、イオン風と同時に発生させたオゾンがイオン風の気流で本体1内側に向かって拡散され、送風ファン5、熱交換器6、エアフィルタ4の順にオゾンが流れ充満されていく。従い、本体1内全体にオゾンを充満させることが可能となる。   Note that the ozone / ion generator 8 may be installed anywhere below the outlet 3 such as the center of the lower side of the outlet 3 or the left or right end, and the installation location is particularly limited by the first embodiment. It is not a thing. The ozone / ion generator 8 is installed on the lower side of the air outlet 3, the discharge electrode of the ozone / ion generator 8 is arranged on the air outlet 3 side, and the counter electrode is arranged on the back side of the main body. With such a configuration, the ion wind flows toward the inside of the main body 1, and ozone generated simultaneously with the ion wind is diffused toward the inside of the main body 1 by the air current of the ion wind, and the blower fan 5, heat exchanger 6. Ozone flows and fills in order of the air filter 4. Accordingly, it is possible to fill the entire body 1 with ozone.

また、オゾン・イオン発生装置8をイオン風の流れが上向き(エアフィルタ4側)になるように配置することにより、オゾン・イオン発生装置8を吹出口3に設置した場合でも、オゾンはイオン風により上部方向に拡散され、空気より高比重のオゾンをエアフィルタ4近傍まで充満させることが可能となる。従い、エアフィルタ4を含めた本体1内部の殺菌を効果的に行うことができる。   Further, by arranging the ozone / ion generator 8 so that the flow of the ion wind is upward (on the air filter 4 side), even if the ozone / ion generator 8 is installed at the outlet 3, the ozone Thus, ozone diffused upward and having a higher specific gravity than air can be filled up to the vicinity of the air filter 4. Accordingly, the inside of the main body 1 including the air filter 4 can be sterilized effectively.

次に、本実施の形態1における空気調和機の動作について説明する。   Next, the operation of the air conditioner according to Embodiment 1 will be described.

空気調和機の冷凍サイクルの運転を停止させ、制御部9によりルーバー7で吹出口3を閉塞し、オゾン・イオン発生装置8を作動し、クリーン運転を開始する。オゾン・イオン発生装置8を作動させ、高電圧発生装置(図示せず)によって放電電極にマイナス電位を印加することにより、イオン風とオゾンの発生が開始する。オゾンはイオン風により本体1内部に拡散され、オゾンによる本体1内の殺菌が行われる。   The operation of the refrigeration cycle of the air conditioner is stopped, the control unit 9 closes the outlet 3 with the louver 7, operates the ozone / ion generator 8, and starts the clean operation. The ozone / ion generator 8 is activated, and a negative voltage is applied to the discharge electrode by a high voltage generator (not shown) to start generation of ion wind and ozone. Ozone is diffused inside the main body 1 by ion wind, and the inside of the main body 1 is sterilized by ozone.

ルーバー7で吹出口を閉塞することにより、本体1内部は密閉あるいは略密閉な状態となり、オゾンを効率良く本体1内に充満させることができる。従い、本体1内の微生物の殺菌を効果的に行うことができ、微生物の繁殖を抑制することが可能となる。前記のクリーン運転が所定時間行われると、オゾン・イオン発生装置8は停止され、クリーン運転が終了する。冷房運転停止後は、熱交換器6で凝縮した凝縮水が本体1内で蒸発し、本体1内部の湿度が高くなるため、雑菌やかびが繁殖し易い環境となっている。よって、冷房運転停止後に、クリーン運転を実施することが特に望ましい。   By closing the air outlet with the louver 7, the inside of the main body 1 is sealed or substantially sealed, and ozone can be efficiently filled in the main body 1. Therefore, the microorganisms in the main body 1 can be effectively sterilized, and the growth of microorganisms can be suppressed. When the clean operation is performed for a predetermined time, the ozone / ion generator 8 is stopped and the clean operation ends. After the cooling operation is stopped, the condensed water condensed in the heat exchanger 6 evaporates in the main body 1 and the internal humidity of the main body 1 becomes high. Therefore, it is particularly desirable to perform a clean operation after stopping the cooling operation.

(実施例1)
図4は図2Aに示すオゾン・イオン発生装置8を吹出口3の右端部に設置した空気調和機の正面図であり、図5はその空気調和機を上から見た平面図である。以下、空気調和機について、その動作、作用を説明するが、前述したものと同一構成については同一の符号を付してその詳細な説明は省略する。
Example 1
4 is a front view of an air conditioner in which the ozone / ion generator 8 shown in FIG. 2A is installed at the right end of the air outlet 3, and FIG. 5 is a plan view of the air conditioner as viewed from above. Hereinafter, the operation and action of the air conditioner will be described, but the same components as those described above are denoted by the same reference numerals, and detailed description thereof will be omitted.

図2Bに示すように、高電圧発生装置34により放電電極32にマイナス電位を印加することによって、マイナスイオン分子を含むイオン風が放電電極32から対向電極31に向かう方向に放出される。オゾン・イオン発生装置8の構成を上記のようにすることにより、オゾン・イオン発生装置8より発生するイオン風にある程度の指向性を与えてイオン風の無駄な拡散を抑制し、適量な風量感のある気流を得ることができる。   As shown in FIG. 2B, by applying a negative potential to the discharge electrode 32 by the high voltage generator 34, an ion wind containing negative ion molecules is released from the discharge electrode 32 toward the counter electrode 31. By configuring the ozone / ion generator 8 as described above, the ion wind generated from the ozone / ion generator 8 is imparted with a certain degree of directivity to suppress unnecessary diffusion of the ion wind, and an appropriate amount of airflow. A certain air flow can be obtained.

空気調和機の送風性能の低下を防ぐためにはオゾン・イオン発生装置8は吹出口3の端部に配置することが望ましいが、オゾン・イオン発生装置8を吹出口3端部に設置した場合、吹出口3の反対側端部および上部対角方向のエアフィルタ4端部にまでオゾンが充満しないことが課題となる。そこで、図5に示すように、オゾン・イオン発生装置8を吹出口3右端部に設置し、イオン風が対角方向に流れるように配置することにより、前記の風量感のあるイオン風によりオゾンを本体1内部の反対側の端部にまで全体に拡散させることが可能となる。   In order to prevent a decrease in the blowing performance of the air conditioner, it is desirable that the ozone / ion generator 8 is disposed at the end of the outlet 3, but when the ozone / ion generator 8 is installed at the end of the outlet 3, The problem is that ozone does not fill the opposite end of the air outlet 3 and the end of the upper diagonal air filter 4. Therefore, as shown in FIG. 5, the ozone / ion generator 8 is installed at the right end of the outlet 3 so that the ionic wind flows in a diagonal direction. Can be diffused throughout the body 1 to the opposite end.

さらに、オゾン・イオン発生装置8をイオン風の流れが上向きになるように配置することにより、空気より高比重のオゾンをエアフィルタ4近傍まで迅速に充満させることが可能となる。従い、実施例1においては、空気調和機の送風性能を低下させることなく、エアフィルタを含めた本体1内部の殺菌および脱臭を効果的に行うことができる。本実施の形態の場合、対向電極31の幅を5〜10mm程度とすることにより、適度なイオン風の指向性とオゾン発生量を確保することができた。   Furthermore, by disposing the ozone / ion generator 8 so that the flow of ion wind is upward, ozone having a higher specific gravity than air can be quickly filled to the vicinity of the air filter 4. Therefore, in Example 1, the inside of the main body 1 including the air filter can be sterilized and deodorized effectively without reducing the air blowing performance of the air conditioner. In the case of the present embodiment, by setting the width of the counter electrode 31 to about 5 to 10 mm, it was possible to secure an appropriate ion wind directivity and ozone generation amount.

また、放電電極32の放電部すなわち先端部を、対向電極31の端部よりも突出させた構成とすることにより、対向電極31に捕捉されるイオン量を抑制し、空気中に放出されるイオン量を増加させることができる。従い、イオン風の風量を増加させることができ、オゾンを本体1内部に迅速に拡散させることが可能となり、さらにより効果的にエアフィルタ4にまでオゾンを充満させることが可能となる。   Further, the discharge part of the discharge electrode 32, that is, the tip part is made to protrude from the end part of the counter electrode 31, thereby suppressing the amount of ions captured by the counter electrode 31 and releasing ions into the air. The amount can be increased. Accordingly, the amount of ion wind can be increased, ozone can be quickly diffused inside the main body 1, and the air filter 4 can be more effectively filled with ozone.

(実施例2)
図6は図3Aに示すオゾン・イオン発生装置8を吹出口3中央部に設置した空気調和機の正面図であり、図7はその空気調和機を上から見た平面図である。
(Example 2)
FIG. 6 is a front view of an air conditioner in which the ozone / ion generator 8 shown in FIG. 3A is installed at the center of the air outlet 3, and FIG. 7 is a plan view of the air conditioner as viewed from above.

図7に示すようにオゾン・イオン発生装置8を吹出口3下側の中央部に配置したことにより、本体1の中央から周囲に対して均一にオゾンを拡散させることができ、従い本体1内部にオゾンを均一に充満させることが可能となる。   As shown in FIG. 7, the ozone / ion generator 8 is arranged in the central portion below the air outlet 3 so that ozone can be uniformly diffused from the center of the main body 1 to the surroundings. It is possible to uniformly fill ozone.

また、放電電極42の放電部すなわち先端部を、対向電極41の端部よりも突出させた構成とすることにより、対向電極41に捕捉されるイオン量を抑制し、空気中に放出されるイオン量を増加させることができる。従い、イオン風の風量を増加させることができ、オゾンを本体1内部に迅速に拡散させることが可能となり、さらにより効果的にエアフィルタ4にまでオゾンを充満させることが可能となる。これにより、本体1内の微生物の殺菌を効果的に行うことができ、微生物の繁殖を効果的に抑制することができる。   Further, the discharge part of the discharge electrode 42, that is, the tip part is configured to protrude from the end part of the counter electrode 41, thereby suppressing the amount of ions trapped by the counter electrode 41 and releasing ions into the air. The amount can be increased. Accordingly, the amount of ion wind can be increased, ozone can be quickly diffused inside the main body 1, and the air filter 4 can be more effectively filled with ozone. Thereby, the microorganisms in the main body 1 can be sterilized effectively, and the propagation of microorganisms can be effectively suppressed.

(実施の形態2)
本発明の実施の形態2では、前述のオゾン・イオン発生装置8を特定の構成に限定したオゾン・イオン発生装置108について説明する。
(Embodiment 2)
In the second embodiment of the present invention, an ozone / ion generator 108 in which the aforementioned ozone / ion generator 8 is limited to a specific configuration will be described.

図8は、本実施の形態2におけるオゾン・イオン発生装置108の模式図である。オゾン・イオン発生装置108は、放電電極102と対向電極101との間に高電圧発生装置104によりマイナスの高電圧をかけ、コロナ放電を発生させてオゾンとマイナスイオンを発生させるものである。   FIG. 8 is a schematic diagram of the ozone / ion generator 108 according to the second embodiment. The ozone / ion generator 108 applies a negative high voltage between the discharge electrode 102 and the counter electrode 101 by the high voltage generator 104 to generate corona discharge to generate ozone and negative ions.

対向電極101は、図9に示すような円弧状の形状をしている。そして、放電電極102は対向電極101の軸心上に放電電極102の針先が対向電極101の端面より突出(図面では上方に突出)する位置に配してある。   The counter electrode 101 has an arc shape as shown in FIG. The discharge electrode 102 is disposed on the axis of the counter electrode 101 at a position where the needle tip of the discharge electrode 102 protrudes from the end surface of the counter electrode 101 (projects upward in the drawing).

上記対向電極101は円弧状の形状をしていることで、放電電極102からの距離が略等しく円弧状の形状をする対向電極101上で均等な放電をすることができ、効率的な放電が可能となる。さらに、図10に示すような、円弧状筒型電極の上部両端角が扇状に切除加工されていることで最近接部の鋭利な面が取り除かれ、安定した放電を行なうことができる。また、図11に示すような、左右の端部が外側に折られていることで最近接部の鋭利な面が放電電極102の針先から遠ざけられ、安定した放電を行なうことができる。   Since the counter electrode 101 has an arc shape, the distance from the discharge electrode 102 is approximately equal and can be discharged evenly on the counter electrode 101 having the arc shape. It becomes possible. Furthermore, as shown in FIG. 10, the upper end corners of the arc-shaped cylindrical electrode are cut into a fan shape, so that the sharpest surface of the nearest part is removed, and stable discharge can be performed. Further, as shown in FIG. 11, the left and right end portions are bent outward, so that the sharpest surface of the closest portion is moved away from the needle tip of the discharge electrode 102, and stable discharge can be performed.

対向電極101の材料は、ステンレス、ニッケル、アルミ、銅、タングステンなどが挙げられるが、ステンレスが、汎用的であり、加工性の面からも望ましい。板厚は、0.3mm以上、2mm以下であれば良い。0.3mm未満では、強度が弱くなってしまい、製造過程などで形状が変形しやすいことが問題となってしまう。また、1mmより大きいと、加工がしにくい。   Examples of the material of the counter electrode 101 include stainless steel, nickel, aluminum, copper, tungsten, and the like. Stainless steel is general-purpose and desirable from the viewpoint of workability. The plate thickness should just be 0.3 mm or more and 2 mm or less. If it is less than 0.3 mm, the strength becomes weak, and the shape is likely to be deformed during the manufacturing process. If it is larger than 1 mm, it is difficult to process.

放電電極102の材料は、ステンレス、ニッケル、アルミ、銅、タングステンなどが挙げられるが、ステンレスが、汎用的であり、加工性の面からも望ましい。放電電極102の形状は、先端が鋭く尖った形状をしており、鋭く尖っているほど、オゾン発生量が減少する。放電電極102は、径が0.3mm以上、1mm以下であれば良い。0.3mm未満では、先端との差が出にくい。また、1mmより大きいと、加工が難しくなる。   Examples of the material of the discharge electrode 102 include stainless steel, nickel, aluminum, copper, and tungsten. Stainless steel is general-purpose and desirable from the viewpoint of workability. The shape of the discharge electrode 102 has a sharp pointed tip, and the sharper the point, the smaller the amount of ozone generated. The discharge electrode 102 may have a diameter of 0.3 mm or more and 1 mm or less. If it is less than 0.3 mm, it is difficult to make a difference from the tip. Moreover, when it is larger than 1 mm, processing becomes difficult.

高電圧発生装置104は対向電極101と放電電極102との間にマイナスの高電圧をかけるが、図12に示すように、対向電極101と放電電極102の電極間に流す電流は直流であり、1μA以上の電流が流れると、オゾン発生量が25μg/h以上となり、例えば、40Lの密閉容器であれば、オゾン濃度を30ppb程度まで高めることができる。30ppb程度のオゾンは臭いをわずかに感じるかのレベルであり、非常に利用しやすい濃度である。また、図13に示すように、30μA以下の電流が流れると、オゾン発生量が400μg/h程度となり、例えば、200Lの密閉容器であれば、オゾン濃度を100ppb程度にすることができる。100ppb以上のオゾンが蓄積すると、長時間暴露されると人体に与える影響も現れるため100ppb以下であることが望ましい。つまり、対向電極101と放電電極102の電極間に流す電流は1μA以上、30μA以下が望ましい。   The high voltage generator 104 applies a negative high voltage between the counter electrode 101 and the discharge electrode 102, but as shown in FIG. 12, the current that flows between the counter electrode 101 and the discharge electrode 102 is a direct current, When a current of 1 μA or more flows, the amount of ozone generated is 25 μg / h or more. For example, in a 40 L sealed container, the ozone concentration can be increased to about 30 ppb. Ozone of about 30 ppb is at a level where the odor is slightly felt and is a concentration that is very easy to use. As shown in FIG. 13, when a current of 30 μA or less flows, the ozone generation amount is about 400 μg / h. For example, in the case of a 200 L sealed container, the ozone concentration can be about 100 ppb. When ozone of 100 ppb or more accumulates, if it is exposed for a long time, an effect on the human body also appears. That is, the current flowing between the counter electrode 101 and the discharge electrode 102 is preferably 1 μA or more and 30 μA or less.

図14は、円筒直径15mmかつ円弧角度が180度で放電電極102の針先の突出長さ106が10mmのオゾン・イオン発生装置108を用いた時の印加電圧と電流値の関係を示している。同図に示すように、−3kV程度から電流値が立ち上がり、コロナ放電が開始していることがわかる。また、印加電圧の増加とともに電流値が増加している。しかしながら、−10kVまで印加電圧を増加させると、安全設計のため、空間距離や沿面距離を十分にとる必要がでてくる。そのためオゾン・イオン発生装置108が大きくなってしまうため不適である。また電圧を増加させることで電極間の短絡も懸念されるため印加電圧を増加させることは好ましくない。本発明の実施の形態では、一部の電極形状で、印加電圧−10kVで電極間の短絡が確認されたことから、より好ましくは、印加電圧は−8kV以下である。   FIG. 14 shows the relationship between the applied voltage and the current value when using an ozone ion generator 108 having a cylindrical diameter of 15 mm, an arc angle of 180 degrees, and a protruding length 106 of the needle tip of the discharge electrode 102 of 10 mm. . As shown in the figure, the current value rises from about -3 kV, and it can be seen that corona discharge has started. In addition, the current value increases as the applied voltage increases. However, when the applied voltage is increased to -10 kV, it is necessary to take sufficient space distance and creepage distance for safety design. Therefore, the ozone / ion generator 108 becomes unsuitable because it becomes large. In addition, increasing the voltage may cause a short circuit between the electrodes, so it is not preferable to increase the applied voltage. In the embodiment of the present invention, since a short circuit between the electrodes was confirmed at an applied voltage of −10 kV in some electrode shapes, the applied voltage is more preferably −8 kV or less.

このように高電圧発生装置104は、上記電流と印加電圧を発生させ、さらに、安全性を保つことができるものである。また、電流制限をかけるなど保護回路を有していることが望ましい。   Thus, the high voltage generator 104 can generate the current and the applied voltage, and can maintain safety. Further, it is desirable to have a protection circuit such as a current limit.

図15は、円筒直径15mmかつ円弧角度が180度で印加電圧が−6kVのオゾン・イオン発生装置108を用いた時の突出長さ106とマイナスイオン発生量および電流値の関係を示している。放電電極102の針先の突出長さ106が負のとき、つまり対向電極101より図面上低い位置にあるときは、マイナスイオン量は少ない。放電電極102の針先の突出長さ106がゼロを境に正になると、つまり対向電極101より図面上高い位置に突出すると、マイナスイオン量が増加するともに、顕著に電流値が減少してくる。これは、放電電極102の針先と最近接部距離107が離れることで放電が弱くなるとともに、マイナスイオンが放出されやすくなるからである。このことから、突出長さ106はゼロより大きいことが好ましい。また、詳細は後で述べるが、突出長さ106は、図16や図17に示すように、13mmでも対向電極101と放電電極102の電極間に流れる電流が5μAとなっており、十分にオゾン発生量を確保できる。すなわち、イオンとともにオゾンの発生量も確保することができ、イオンとオゾンを実用的レベルで両立させることができる。   FIG. 15 shows the relationship between the protruding length 106, the amount of negative ions generated, and the current value when the ozone ion generator 108 having a cylinder diameter of 15 mm, an arc angle of 180 degrees, and an applied voltage of −6 kV is used. When the protruding length 106 of the needle tip of the discharge electrode 102 is negative, that is, when it is at a position lower than the counter electrode 101 in the drawing, the amount of negative ions is small. When the protruding length 106 of the needle tip of the discharge electrode 102 becomes positive with respect to zero, that is, when protruding to a position higher than the counter electrode 101 in the drawing, the amount of negative ions increases and the current value decreases remarkably. . This is because the discharge becomes weak and the negative ions are easily released when the distance 107 between the needle tip of the discharge electrode 102 is separated. For this reason, the protrusion length 106 is preferably larger than zero. As will be described in detail later, as shown in FIGS. 16 and 17, the protrusion length 106 has a current flowing between the counter electrode 101 and the discharge electrode 102 of 5 μA even at 13 mm, and is sufficiently ozone. The amount generated can be secured. That is, the amount of ozone generated together with the ions can be secured, and ions and ozone can be made compatible at a practical level.

図16は、円筒直径15mmかつ印加電圧が−8kVのオゾン・イオン発生装置108を用いた時の円弧角度および突出長さ106とマイナスイオン発生量および電流値の関係を示している。突出長さ106を十分にとることで、円弧角度によるマイナスイオン放出量の影響を減らすことができている。また、円弧角度が大きいほど、電流値が高くなるので、電流値1μA以上30μAを実現するために円弧角度を制御することで、マイナスイオン放出量との両立が可能となる。   FIG. 16 shows the relationship between the arc angle and protrusion length 106, the amount of negative ions generated, and the current value when the ozone ion generator 108 having a cylinder diameter of 15 mm and an applied voltage of −8 kV is used. By sufficiently taking the protrusion length 106, the influence of the negative ion emission amount due to the arc angle can be reduced. In addition, since the current value increases as the arc angle increases, controlling the arc angle in order to realize a current value of 1 μA or more and 30 μA makes it possible to achieve both negative ion release amount.

図17は、印加電圧が−8kVのオゾン・イオン発生装置108を用いた時の円筒直径105および突出長さ106とマイナスイオン発生量および電流値の関係を示している。突出長さ106を十分にとることで、円筒直径105によるマイナスイオン放出量の影響を減らすことができている。また、円筒直径105が小さいほど、電流値が高くなるので、電流値1μA以上30μAを実現するために円筒直径105を制御することで、マイナスイオン放出量との両立が可能となる。しかしながら、円筒直径105は、その内径の直径が、小さいと短絡の危険性が高くなり、大きすぎると放電が弱くなってしまうので、10mm以上、30mm以下である必要がある。また、30mmより大きいと、オゾン・イオン発生装置108として大きくなってしまうため利用の幅が狭くなってしまうことも大きな理由である。   FIG. 17 shows the relationship between the cylindrical diameter 105 and the protrusion length 106, the amount of negative ions generated, and the current value when the ozone ion generator 108 with an applied voltage of −8 kV is used. By sufficiently taking the protruding length 106, the influence of the negative ion emission amount due to the cylindrical diameter 105 can be reduced. Further, since the current value increases as the cylinder diameter 105 decreases, the negative ion emission amount can be achieved by controlling the cylinder diameter 105 in order to realize a current value of 1 μA or more and 30 μA. However, if the diameter of the cylindrical diameter 105 is small, the risk of short circuit increases, and if it is too large, the discharge becomes weak. Therefore, it is necessary that the diameter is 10 mm or more and 30 mm or less. Further, if it is larger than 30 mm, the ozone / ion generator 108 becomes large, and therefore the use width is narrow.

円筒幅(図面上では上下の幅)は、0.3mm以上、5mm以下であればよい。0.3mm未満では強度が弱くなる。また、5mmより大きいと、発生したマイナスイオンが対向電極101に捕捉されるため、マイナスイオン放出量が減少する。この傾向は、針先突出長さが長いほど減少する。   The cylindrical width (the vertical width in the drawing) may be 0.3 mm or more and 5 mm or less. If it is less than 0.3 mm, the strength becomes weak. On the other hand, if it is larger than 5 mm, the generated negative ions are captured by the counter electrode 101, so that the amount of negative ions released is reduced. This tendency decreases as the needle tip protrusion length increases.

最近接部距離107は、放電電極102の先端と対向電極101の距離を表している。最近接部距離107を、小さくとれば、放電の強さが増し、電極間の電流値が増加し、大きくすれば、電極間の電流値が減少する。   The closest part distance 107 represents the distance between the tip of the discharge electrode 102 and the counter electrode 101. If the closest distance 107 is reduced, the intensity of discharge increases and the current value between the electrodes increases, and if it is increased, the current value between the electrodes decreases.

図18は、密閉はされていないが、風除けができる40Lの容器に、オゾン・イオン発生装置108を設置し、オゾン・イオン発生装置108の対向電極の円弧角度と発生装置近傍のオゾン濃度の関係を示したものである。対向電極101と放電電極102の電極間に流れる電流を5μAとしている。40Lの密閉容器では充満するとオゾン濃度は、150ppb程度まで上昇する。しかしながら、円弧角度が90度以上270度以下のオゾン・イオン発生装置108では、発生装置近傍で100ppbを超えておらず、オゾンをよく拡散している。つまり、オゾンの拡散を促進するために、円弧角度は90度以上270度以下が望ましい。   FIG. 18 shows the relationship between the arc angle of the counter electrode of the ozone / ion generator 108 and the ozone concentration in the vicinity of the generator in a 40-liter container that is not sealed but can be protected from the wind. Is shown. The current flowing between the counter electrode 101 and the discharge electrode 102 is 5 μA. When the 40 L closed container is filled, the ozone concentration rises to about 150 ppb. However, the ozone / ion generator 108 having an arc angle of 90 degrees or more and 270 degrees or less does not exceed 100 ppb near the generator and diffuses ozone well. That is, in order to promote the diffusion of ozone, the arc angle is desirably 90 degrees or more and 270 degrees or less.

なお、図8に示す導線103は、樹脂で被覆された導線であり、特に、放電電極側の導線103は、高電圧にも耐えうる、フッ素樹脂被覆やシリコーン樹脂被覆などの耐圧性の導線が望ましい。   The conductive wire 103 shown in FIG. 8 is a resin-coated conductive wire. In particular, the conductive wire 103 on the discharge electrode side has a pressure-resistant conductive wire such as a fluororesin coating or a silicone resin coating that can withstand a high voltage. desirable.

(実施の形態3)
本発明の実施の形態3では、実施の形態2におけるオゾン・イオン発生装置108を用いた空気調和機について説明する。
(Embodiment 3)
In the third embodiment of the present invention, an air conditioner using the ozone / ion generator 108 in the second embodiment will be described.

図19は本実施の形態3における空気調和機の室内ユニットの横断面模式図である。室内ユニット210は、吸込口2、吹出口3、送風ファン5、熱交換器6、吸込口側風路211、吹出口側風路212、オゾン・イオン発生装置108から大きくは構成されている。なお、吸込口2、吹出口3、吸込口側風路211、吹出口側風路212は、本体1に形成されている。   FIG. 19 is a schematic cross-sectional view of an indoor unit of an air conditioner according to the third embodiment. The indoor unit 210 is mainly composed of a suction port 2, a blower outlet 3, a blower fan 5, a heat exchanger 6, a suction port side air passage 211, a blower outlet side air passage 212, and an ozone / ion generator 108. The suction port 2, the air outlet 3, the air inlet side air passage 211, and the air outlet side air passage 212 are formed in the main body 1.

まず、空気調和機の通常の運転について説明する。送風ファン5が回転すると、室内空間から空気が、吸込口2を通過して、吸込口側風路211に取り込まれる。取り込まれた空気が、熱交換器6によって、冷房運転時には冷やされ、また、暖房運転時には温められ、吹出口側風路212を経て、吹出口3から室内空間に供給される。   First, normal operation of the air conditioner will be described. When the blower fan 5 rotates, air from the indoor space passes through the suction port 2 and is taken into the suction port side air passage 211. The taken-in air is cooled by the heat exchanger 6 during the cooling operation, warmed during the heating operation, and supplied to the indoor space from the air outlet 3 through the air outlet side air passage 212.

次に、塵捕集運転機能について説明する。塵捕集運転機能は、送風ファン5が回転することで、室内空間から空気が、吸込口2を介して吸込口側風路211に取り込まれ、熱交換器6によって、冷房運転時には冷やされ、暖房運転時には温められる。これと同時にオゾン・イオン発生装置108に通電することによってオゾン・イオン発生装置108からイオンが生成され、このイオンが吹出口3から室内空間に供給される。この際、送風ファン5の回転数が増えるほど、風量、風速が上がることとなり、オゾン・イオン発生装置から生成したイオンが中和されることが抑制され、室内空間へのイオンの放出が増加する。このため、塵捕集運転機能が強く望まれる際には、送風ファン5の回転数を上げた運転が、イオン放出量増大と、室内ユニット210への室内空気の取り込み量の増大の点から効果的である。   Next, the dust collection operation function will be described. The dust collection operation function is that when the blower fan 5 rotates, air is taken from the indoor space into the air inlet side air passage 211 via the air inlet 2 and is cooled by the heat exchanger 6 during the cooling operation, It is warmed during heating operation. At the same time, the ozone / ion generator 108 is energized to generate ions from the ozone / ion generator 108, and the ions are supplied from the outlet 3 to the indoor space. At this time, as the number of rotations of the blower fan 5 increases, the air volume and the wind speed increase, and the ions generated from the ozone / ion generator are suppressed from being neutralized, and the release of ions into the indoor space increases. . For this reason, when the dust collection operation function is strongly desired, the operation of increasing the rotational speed of the blower fan 5 is effective from the viewpoint of increasing the amount of released ions and increasing the amount of indoor air taken into the indoor unit 210. Is.

また、この塵捕集運転機能は、熱交換器6を作動させることなく送風ファン5による送風のみによる塵捕集運転も可能なものである。   In addition, this dust collection operation function can also perform a dust collection operation only by blowing air from the blower fan 5 without operating the heat exchanger 6.

次に、内部クリーン運転機能について説明する。これは、通常運転の完了後、通常運転と塵捕集運転機能の併用運転後、または、塵捕集運転機能の単独運転後に、運転を行う。運転は、オゾン・イオン発生装置108を作動させることによって行われるが、オゾン・イオン発生装置108から発生するオゾンが、オゾン・イオン発生装置108から吹出口側風路212を通り、吸込口2側へとイオン風が吹くことにより、オゾンが室内ユニット210内部に拡散する。すなわち、送風ファン5を動作させなくても拡散させることができ、ファン駆動音なく内部クリーン運転を行うことができる。   Next, the internal clean operation function will be described. This is performed after the normal operation is completed, after the combined operation of the normal operation and the dust collection operation function, or after the single operation of the dust collection operation function. The operation is performed by operating the ozone / ion generator 108. The ozone generated from the ozone / ion generator 108 passes from the ozone / ion generator 108 through the air outlet side air passage 212 to the suction port 2 side. Ozone diffuses into the interior of the indoor unit 210 due to the blowing of ion wind. That is, it can be diffused without operating the blower fan 5, and the internal clean operation can be performed without fan driving noise.

なお、図19では、オゾン・イオン発生装置108を、吹出口側風路212の下部に配しているが、吹出口側風路212の天面部や、吹出口側風路212の側面部に配することも可能である。   In FIG. 19, the ozone / ion generator 108 is arranged in the lower part of the air outlet side air passage 212, but the top surface portion of the air outlet side air passage 212 and the side surface portion of the air outlet side air passage 212 are arranged. It is also possible to arrange them.

本実施の形態3で用いられているオゾン・イオン発生装置108は、実施の形態2の説明で図8などを用いて説明したように、放電電極102は対向電極101の軸心上に放電電極102の針先が対向電極101の端面より突出(図面では上方に突出)する位置に配しているため、無風状態であってもイオンの放出量が多くすることができ、風量や風速に大きく左右されず安定的に室内空間にイオンを放出することができるため好適である。   In the ozone ion generator 108 used in the third embodiment, the discharge electrode 102 is disposed on the axis of the counter electrode 101 as described with reference to FIG. 8 in the description of the second embodiment. Since the needle tip 102 is arranged at a position where it protrudes from the end face of the counter electrode 101 (projects upward in the drawing), the amount of ions released can be increased even in a no-wind state, and the air volume and wind speed are greatly increased. This is preferable because ions can be stably discharged into the indoor space without being influenced.

このイオン風は、放電電極102から、対向電極101に向かって強く放射する。また、対向電極101の円弧角度が大きくなれば、イオン風の広がりは大きくなり、逆に、対向電極101の円弧角度が小さくなれば、イオン風の広がりは小さくなる。なお、対向電極101が放電電極102に比べて上方に配する場合は、イオン風が対向電極101に向けて上方に向かった風となる。そこで、吸込口2側へイオン風を起こすために、放電電極102の針先を送風ファン5方向に傾けることが好適となる。   This ion wind is strongly emitted from the discharge electrode 102 toward the counter electrode 101. Further, when the arc angle of the counter electrode 101 is increased, the spread of the ion wind is increased. Conversely, when the arc angle of the counter electrode 101 is decreased, the spread of the ion wind is decreased. In the case where the counter electrode 101 is disposed above the discharge electrode 102, the ion wind is directed upward toward the counter electrode 101. Therefore, it is preferable to incline the needle tip of the discharge electrode 102 toward the blower fan 5 in order to generate ion wind toward the suction port 2 side.

高電圧発生装置104は対向電極101と放電電極102との間に高電圧をかけるが、プラスもしくはマイナスの直流電圧である。マイナスの直流電圧をかけることがよりプラスの直流電圧をかけるよりオゾンが発生しやすく、室内へのイオン放出量とオゾン発生量とを制御しやすい点からマイナスの直流電圧がより望ましい。また、パルスや交流を用いることも可能であるが、直流であることで継続的にイオン風を発生させることができる点で好ましい。   The high voltage generator 104 applies a high voltage between the counter electrode 101 and the discharge electrode 102, but is a positive or negative DC voltage. Applying a negative DC voltage is more preferable than applying a positive DC voltage, and ozone is more likely to be generated, and a negative DC voltage is more desirable because it is easier to control the amount of ions released into the room and the amount of ozone generated. Moreover, although a pulse and alternating current can also be used, it is preferable in that the ion wind can be continuously generated by using direct current.

図20A、Bは、本発明の実施の形態3における空気調和機に組み込まれたオゾン・イオン発生装置108を示し、図20Aはオゾン・イオン発生装置の上から見た平面図、図20Bはオゾン・イオン発生装置の横から見た側面図である。   20A and 20B show the ozone / ion generator 108 incorporated in the air conditioner according to Embodiment 3 of the present invention, FIG. 20A is a plan view seen from above the ozone / ion generator, and FIG. 20B shows ozone. -It is the side view seen from the side of an ion generator.

風上方向231に対して、円弧中心方向232が、円弧中心の風上方向との角度233の傾きをもっている。図21に示すような、オゾン・イオン発生装置108を吹出口側風路212の略中央部分に配置した空気調和機室内ユニットでは、風上方向231と、円弧中心方向232が、ほぼ同一とすることで、塵捕集運転機能の動作時には、放電電極102より風上側に対向電極101の大部分が存在することになる。これにより、送風ファンからの風によって発生したイオンが対向電極で中和されることを抑制することになり、イオンが多く室内空間に放出されるので好適である。   With respect to the windward direction 231, the arc center direction 232 has an inclination of an angle 233 with the windward direction of the arc center. As shown in FIG. 21, in the air conditioner indoor unit in which the ozone / ion generator 108 is disposed in the substantially central portion of the air outlet side air passage 212, the windward direction 231 and the arc center direction 232 are substantially the same. Thus, when the dust collecting operation function is operated, most of the counter electrode 101 exists on the windward side of the discharge electrode 102. Thereby, it is suppressed that ions generated by the wind from the blower fan are neutralized by the counter electrode, and a large amount of ions are released into the indoor space, which is preferable.

また、内部クリーン機能の動作中には、イオン風が針電極の軸心から対向電極に向かってイオン風が起こるため、中央から室内ユニット内部にオゾンが広がっていき、オゾンを室内ユニット内部に行き渡らせるのに好適である。   In addition, during the operation of the internal clean function, ion wind is generated from the axial center of the needle electrode toward the counter electrode. It is suitable for making it.

また、図22に示すような、オゾン・イオン発生装置108を吹出口側風路212の端部に配置した空気調和機室内ユニットでは、円弧中心の風上方向との角度233が、0度から90度とすることで、塵捕集運転機能の動作時には、放電電極102より風上側に対向電極101の大部分が存在することができる。これにより、送風ファンからの風によって発生したイオンが対向電極で中和されることを抑制することになり、イオンが多く室内空間に放出されるので好適である。   Further, in the air conditioner indoor unit in which the ozone / ion generator 108 is disposed at the end of the air outlet side air passage 212 as shown in FIG. 22, the angle 233 with respect to the upwind direction at the center of the arc is from 0 degrees. By setting the angle to 90 degrees, most of the counter electrode 101 can exist on the windward side of the discharge electrode 102 during the operation of the dust collecting operation function. Thereby, it is suppressed that ions generated by the wind from the blower fan are neutralized by the counter electrode, and a large amount of ions are released into the indoor space, which is preferable.

また、内部クリーン機能の動作中には、イオン風が針電極の軸心から対向電極に向かってイオン風が起こるため、端部から室内ユニット内部にオゾンが広がっていき、オゾンを室内ユニット内部に行き渡らせるのに好適である。   Also, during operation of the internal clean function, ion wind is generated from the axis of the needle electrode toward the counter electrode, so that ozone spreads from the end to the interior of the indoor unit, and ozone enters the interior of the indoor unit. It is suitable for spreading.

なお、図22は、オゾン・イオン発生装置108が正面から見て右端部に設置されているが、左端部に設置することも可能で、その際は、円弧中心方向232が、風上方向231を軸として対称となる。また、図22では、オゾン・イオン発生装置108を、片側端部に1つ設置しているが、両側端部にそれぞれ1つずつ設置することも可能で、その際には、片側設置の場合より、円弧中心の風上方向との角度233の角度が小さくなる。   In FIG. 22, the ozone / ion generator 108 is installed at the right end as viewed from the front, but it can also be installed at the left end. In this case, the arc center direction 232 is the windward direction 231. Is symmetric about the axis. In FIG. 22, one ozone / ion generator 108 is installed at one end of each side, but it is also possible to install one at each end of each side. Accordingly, the angle 233 with the upwind direction at the center of the arc becomes smaller.

イオン風は、放電電極102から、対向電極101に向かって強く放射する。また、対向電極101の円弧角度234が大きくなれば、イオン風の広がりは大きくなり分散してしまい、逆に、対向電極101の円弧角度234が小さくなれば、イオン風の広がりは小さくなり局所集中してしまう。そのため、円弧角度234は90度から270度であることが好適である。   The ion wind radiates strongly from the discharge electrode 102 toward the counter electrode 101. If the arc angle 234 of the counter electrode 101 increases, the spread of the ion wind increases and disperses. Conversely, if the arc angle 234 of the counter electrode 101 decreases, the spread of the ion wind decreases and the local concentration is concentrated. Resulting in. Therefore, the arc angle 234 is preferably 90 degrees to 270 degrees.

また、対向電極101が放電電極102より吹出口の内部寄り側に位置する形で吹出口風路面235から突出していることで、吹出口風路面235内部で遮られることなく、イオン風が、吹出口風路面235に沿って、吸込口側に流れる。   Further, since the counter electrode 101 protrudes from the outlet air passage surface 235 so as to be located closer to the inside of the outlet than the discharge electrode 102, the ion wind is blown out without being blocked inside the outlet air passage surface 235. It flows along the outlet air passage surface 235 toward the suction port side.

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

また、実施の形態2で説明したように、高電圧発生装置104が印加する直流電圧を、範囲が−3kV以上−10kV以下であり、かつ、電極間に流れる電流が1μAより大きく、30μAより小さくなる構成とすることにより、空気より高比重のオゾンをエアフィルタ4近傍まで流すことができるイオン風を生成しつつエアフィルタに付着した微生物を殺菌できるオゾンを発生させることができ、実用に供しうるオゾン・イオン発生装置とすることができる。   Further, as described in the second embodiment, the DC voltage applied by the high voltage generator 104 is within a range of −3 kV to −10 kV, and the current flowing between the electrodes is greater than 1 μA and less than 30 μA. By adopting such a configuration, it is possible to generate ozone that can sterilize microorganisms attached to the air filter while generating ion wind that can flow ozone having a higher specific gravity than air to the vicinity of the air filter 4, and can be put to practical use. It can be an ozone ion generator.

以上のように、本発明のオゾン・イオン発生装置およびそれを用いた空気調和機は、オゾンとイオン風を発生させ、殺菌および脱臭を効果的に行うことができるので、空気調和機以外の家庭用電気製品等の用途にも適用できる。   As described above, the ozone / ion generator and the air conditioner using the ozone / ion generator of the present invention generate ozone and ion wind, and can effectively perform sterilization and deodorization. It can also be used for electrical appliances.

1 本体
2 吸込口
3 吹出口
4 エアフィルタ
5 送風ファン
6 熱交換器
7 ルーバー
8 オゾン・イオン発生装置
9 制御部
31 対向電極
32 放電電極
33 導線
34 高電圧発生装置
41 対向電極
42 放電電極
101 対向電極
102 放電電極
103 導線
104 高電圧発生装置
105 円筒直径
106 突出長さ
107 最近接部距離
108 オゾン・イオン発生装置
121 円弧角度
210 室内ユニット
211 吸込口側風路
212 吹出口側風路
231 風上方向
232 円弧中心方向
233 角度
234 円弧角度
235 吹出口風路面
DESCRIPTION OF SYMBOLS 1 Main body 2 Suction port 3 Outlet 4 Air filter 5 Blower fan 6 Heat exchanger 7 Louver 8 Ozone / ion generator 9 Control part 31 Counter electrode 32 Discharge electrode 33 Conductor 34 High voltage generator 41 Counter electrode 42 Discharge electrode 101 Opposite Electrode 102 Discharge electrode 103 Conductor 104 High voltage generator 105 Cylindrical diameter 106 Projection length 107 Nearest part distance 108 Ozone / ion generator 121 Arc angle 210 Indoor unit 211 Suction side air path 212 Blower side air path 231 Upwind Direction 232 Arc center direction 233 Angle 234 Arc angle 235 Outlet air path surface

Claims (17)

放電電極と対向電極との間でコロナ放電を発生させてオゾンおよびマイナスイオンを発生させるオゾン・イオン発生装置において、放電電極が針電極であり、対向電極が針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であり、かつ放電電極を対向電極の軸心上に放電電極の針先が対向電極の端面より突出する位置に配した、
オゾン・イオン発生装置。
In an ozone ion generator that generates ozone and negative ions by generating corona discharge between a discharge electrode and a counter electrode, the discharge electrode is a needle electrode, and the counter electrode is a cylinder centered on the axis of the needle electrode It is an arc-shaped electrode with a part removed from the shape, and the discharge electrode is disposed on the axis of the counter electrode at a position where the needle tip of the discharge electrode protrudes from the end surface of the counter electrode.
Ozone ion generator.
対向電極が針電極の軸心を中心とした円弧形状の筒型電極であり、円弧が90度以上270度以下である、
請求項1に記載のオゾン・イオン発生装置。
The counter electrode is an arc-shaped cylindrical electrode centered on the axis of the needle electrode, and the arc is 90 degrees or more and 270 degrees or less.
The ozone ion generator according to claim 1.
対向電極が針電極の軸心を中心とした円弧形状の筒型電極であり、左右の端部上部の角が扇状に切除されている、
請求項1に記載のオゾン・イオン発生装置。
The counter electrode is an arc-shaped cylindrical electrode centered on the axis of the needle electrode, and the left and right end upper corners are cut out in a fan shape,
The ozone ion generator according to claim 1.
対向電極が針電極の軸心を中心とした円弧形状の筒型電極であり、左右の端部が外側に折られている、
請求項1に記載のオゾン・イオン発生装置。
The counter electrode is an arc-shaped cylindrical electrode centered on the axis of the needle electrode, and the left and right ends are folded outward.
The ozone ion generator according to claim 1.
放電電極と対向電極の電極間に直流電圧を印加する高電圧発生装置を備え、この高電圧発生装置が印加する直流電圧は、範囲が−3kV以上−10kV以下であり、かつ、電極間に流れる電流が1μAより大きく、30μAより小さい、
請求項1〜4のいずれか1項に記載のオゾン・イオン発生装置。
A high voltage generator that applies a DC voltage between the discharge electrode and the counter electrode is provided. The DC voltage applied by the high voltage generator is in the range of −3 kV to −10 kV and flows between the electrodes. Current greater than 1 μA and less than 30 μA,
The ozone ion generator of any one of Claims 1-4.
吸込口および吹出口を備えた本体と、
吸込口から吹出口に至る通風路に設けた熱交換器および送風ファンと、
本体内に配置され、放電によってオゾンおよびイオン風を発生させるオゾン・イオン発生装置とを備え、
オゾン・イオン発生装置より発生されたイオン風が通風路内を吹出口側から吸込口側へと向かうように、オゾン・イオン発生装置が本体内に配置され、
イオン風により本体内にオゾンを充満させて、本体内部の浄化を行う、
空気調和機。
A body with a suction port and a blowout port;
A heat exchanger and a blower fan provided in the ventilation path from the inlet to the outlet;
An ozone ion generator that is placed inside the body and generates ozone and ion wind by electric discharge,
The ozone ion generator is arranged in the main body so that the ion wind generated from the ozone ion generator goes from the outlet side to the inlet side in the ventilation path,
Purify the inside of the main body by filling ozone with ion wind.
Air conditioner.
吸込口に設けたエアフィルタをさらに備え、
オゾン・イオン発生装置より発生されたイオン風を用いてオゾンを本体内に充満させることにより、エアフィルタおよび本体内部の除菌を行う、
請求項6に記載の空気調和機。
An air filter provided at the suction port is further provided,
The sterilization of the air filter and the inside of the main body is performed by filling the main body with ozone using the ion wind generated from the ozone ion generator.
The air conditioner according to claim 6.
本体の上部に吸込口、下部に吹出口を設けるとともに、オゾン・イオン発生装置は吹出口近傍に設けて、イオン風が上向きに流れるように配置した、
請求項7に記載の空気調和機。
A suction port is provided at the upper part of the main body, and a blower outlet is provided at the lower part, and an ozone ion generator is provided in the vicinity of the blower outlet so that the ion wind flows upward.
The air conditioner according to claim 7.
吹出口を開閉するルーバーと、
オゾン・イオン発生装置及びルーバーの開閉を制御する制御部とをさらに備え、
制御部はルーバーにより吹出口を閉塞してオゾン・イオン発生装置を作動させる、
請求項7に記載の空気調和機。
A louver that opens and closes the air outlet,
A controller for controlling the opening and closing of the ozone ion generator and the louver;
The controller closes the outlet with the louver and activates the ozone ion generator.
The air conditioner according to claim 7.
制御部は、空気調和機の冷凍サイクル停止中に、オゾン・イオン発生装置を作動させるクリーン運転を実施する、
請求項7に記載の空気調和機。
The control unit performs a clean operation to operate the ozone ion generator while the refrigeration cycle of the air conditioner is stopped.
The air conditioner according to claim 7.
オゾン・イオン発生装置は放電電極と対向電極とで構成し、対向電極は放電電極の外周所定範囲を取り囲む、
請求項7に記載の空気調和機。
The ozone ion generator is composed of a discharge electrode and a counter electrode, and the counter electrode surrounds a predetermined range of the outer periphery of the discharge electrode.
The air conditioner according to claim 7.
放電電極の放電部は対向電極よりも上方に突出させて設けた、
請求項11に記載の空気調和機。
The discharge part of the discharge electrode was provided to protrude upward from the counter electrode.
The air conditioner according to claim 11.
オゾン・イオン発生装置は放電電極と対向電極の電極間に直流電圧を印加する高電圧発生装置を備え、高電圧発生装置が印加する直流電圧は、範囲が−3kV以上−10kV以下であり、かつ、電極間に流れる電流が1μAより大きく、30μAより小さい、
請求項6〜12のいずれか1項に記載の空気調和機。
The ozone ion generator includes a high voltage generator that applies a DC voltage between the discharge electrode and the counter electrode, and the DC voltage applied by the high voltage generator is in the range of −3 kV to −10 kV, and , The current flowing between the electrodes is greater than 1 μA and less than 30 μA,
The air conditioner according to any one of claims 6 to 12.
空気調和機は、運転中にイオンを室内空間に放出する塵捕集運転機能と、運転停止後に本体内部にオゾンを充満させる内部クリーン運転機能を有し、
通風路は、吸込口に連通した吸込側風路と、吹出口に連通した吹出側風路とを有し、
オゾン・イオン発生装置は、吹出側風路またはその近傍に配置され、
さらに、オゾン・イオン発生装置は、放電電極と対向電極とを有する放電部を備え、少なくとも対向電極が放電電極よりも吹出側風路の内側寄りに位置するように、放電部が吹出側風路内へと突出して配置されており、
運転中に、オゾン・イオン発生装置により吹出側風路内に発生されたイオンが、吹出口を通して室内に放出されることにより塵捕集運転を行い、
運転停止後に、オゾン・イオン発生装置より発生されたイオン風が吹出側風路を通り、吸込側風路に向かうことにより内部クリーン運転を行う、
請求項6に記載の空気調和機。
The air conditioner has a dust collection operation function that releases ions into the indoor space during operation, and an internal clean operation function that fills the main body with ozone after the operation is stopped,
The ventilation path has a suction side air path communicating with the suction port, and a blowout side air path communicating with the outlet.
The ozone ion generator is placed in or near the outlet side air passage,
Furthermore, the ozone ion generator includes a discharge part having a discharge electrode and a counter electrode, and the discharge part is located on the inside of the blow-out side air path at least with respect to the discharge electrode. It is arranged to protrude into the inside,
During operation, the ions generated in the outlet side air passage by the ozone ion generator are released into the room through the outlet, and the dust collection operation is performed.
After the operation is stopped, the ion wind generated from the ozone ion generator passes through the blow-out side air passage and goes to the suction side air passage to perform the internal clean operation.
The air conditioner according to claim 6.
放電電極は針電極であり、対向電極は針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であり、かつ放電電極を対向電極の軸心上に放電電極の針先が対向電極の端面より突出する位置に配した、
請求項14に記載の空気調和機。
The discharge electrode is a needle electrode, the counter electrode is an arc-shaped electrode obtained by removing a part from the cylindrical shape centered on the axis of the needle electrode, and the discharge electrode is placed on the axis of the counter electrode. The tip is arranged at a position protruding from the end face of the counter electrode.
The air conditioner according to claim 14.
オゾン・イオン発生装置を吹出側風路の略中央部分に配置し、対向電極が針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であり、円弧形状の円弧中心が風向の風上側に存在する、
請求項14または15に記載の空気調和機。
An ozone / ion generator is placed in the approximate center of the blowout air path, and the counter electrode is an arc-shaped electrode that is partially removed from the cylindrical shape centered on the axis of the needle electrode. Exists on the windward side of the wind direction,
The air conditioner according to claim 14 or 15.
オゾン・イオン発生装置を吹出側風路の端部に配置し、対向電極が針電極の軸心を中心とした筒形状から一部を除去した円弧形状の電極であり、円弧形状の円弧中心が風向の風上側に対して中央方向に0度から90度までの範囲に存在する、
請求項14または15に記載の空気調和機。
An ozone ion generator is placed at the end of the blowout air path, and the counter electrode is an arc-shaped electrode that is partially removed from the cylindrical shape centered on the axis of the needle electrode. Exists in the range from 0 degrees to 90 degrees in the central direction with respect to the windward side of the wind direction,
The air conditioner according to claim 14 or 15.
JP2012533863A 2010-09-14 2011-09-13 Ozone / ion generator for generating ozone and ion wind and air conditioner equipped with the same Active JP5899453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533863A JP5899453B2 (en) 2010-09-14 2011-09-13 Ozone / ion generator for generating ozone and ion wind and air conditioner equipped with the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010205116 2010-09-14
JP2010205117 2010-09-14
JP2010205117 2010-09-14
JP2010205116 2010-09-14
JP2010277589 2010-12-14
JP2010277589 2010-12-14
JP2012533863A JP5899453B2 (en) 2010-09-14 2011-09-13 Ozone / ion generator for generating ozone and ion wind and air conditioner equipped with the same
PCT/JP2011/005139 WO2012035757A1 (en) 2010-09-14 2011-09-13 Ozone/ion generating device for generating ozone and ionic wind, and air conditioner provided therewith

Publications (2)

Publication Number Publication Date
JPWO2012035757A1 true JPWO2012035757A1 (en) 2014-01-20
JP5899453B2 JP5899453B2 (en) 2016-04-06

Family

ID=45831243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012533863A Active JP5899453B2 (en) 2010-09-14 2011-09-13 Ozone / ion generator for generating ozone and ion wind and air conditioner equipped with the same

Country Status (4)

Country Link
JP (1) JP5899453B2 (en)
CN (2) CN106225084B (en)
BR (1) BR112013005787A2 (en)
WO (1) WO2012035757A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953237A (en) * 2013-10-02 2017-07-14 夏普株式会社 Ion generating device and electrical equipment
WO2015163829A1 (en) * 2014-04-21 2015-10-29 Chitiparlungsri Somsak Sterilizing air conditioner
KR101725588B1 (en) * 2014-06-19 2017-04-11 김부열 A self - diagnosis system for fish holding nursery and marinenursery facilities
JP6641182B2 (en) * 2016-01-13 2020-02-05 アマノ株式会社 Ion wind type liquid vaporizer and air conditioner
CN106387613A (en) * 2016-08-29 2017-02-15 合肥美菱股份有限公司 Control method for sterilizing and reducing pesticide residues for refrigerator
CN107869760B (en) * 2016-09-23 2020-08-04 青岛海尔空调器有限总公司 Ion wind generating device and air conditioner indoor unit
CN107869771B (en) * 2016-09-23 2020-08-04 青岛海尔空调器有限总公司 Ion wind generating device and air conditioner indoor unit
CN107869770B (en) * 2016-09-23 2020-08-04 青岛海尔空调器有限总公司 Ion wind generating device and air conditioner indoor unit
CN106642323B (en) * 2016-11-29 2020-05-29 青岛海尔空调器有限总公司 Indoor unit of air conditioner
JP2019039637A (en) * 2017-08-28 2019-03-14 日立ジョンソンコントロールズ空調株式会社 Air conditioner
KR102532262B1 (en) * 2017-12-29 2023-05-12 창신대학교 산학협력단 Ionic Wind Generator
CN108375140A (en) * 2018-04-23 2018-08-07 深圳元启环境能源技术有限公司 Air-conditioning
CN109185986B (en) * 2018-09-30 2024-03-29 广州华凌制冷设备有限公司 Indoor unit of air conditioner and air conditioner
JP2020110557A (en) * 2019-01-08 2020-07-27 パナソニックIpマネジメント株式会社 Air cleaner
US20210222898A1 (en) * 2020-01-17 2021-07-22 Inceptus Incorporated Cover assembly for disinfecting an air conditioner
CN111550879A (en) * 2020-05-15 2020-08-18 深圳市艾德尔健康发展有限公司 Safe air sterilizing machine suitable for large space
JP2022024254A (en) 2020-07-13 2022-02-09 三菱重工パワー環境ソリューション株式会社 Air cleaning device and air conditioning device

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629260A (en) * 1979-08-17 1981-03-24 Tadao Oshiba Corona charging method in electrophotography or the like
JPH06272888A (en) * 1993-03-19 1994-09-27 Toshiba Corp Air conditioner
JPH0723777B2 (en) * 1989-08-29 1995-03-15 松下電器産業株式会社 Air conditioner equipped with an ion generator
JPH08231206A (en) * 1995-02-24 1996-09-10 Meidensha Corp Ozonizer
JP2002164148A (en) * 2000-11-27 2002-06-07 Matsushita Electric Works Ltd Ion generating device
JP2002349891A (en) * 2001-05-25 2002-12-04 Toshiba Kyaria Kk Air conditioner
JP2002355300A (en) * 2001-02-23 2002-12-10 Matsushita Electric Works Ltd Deoidorizing filter and air cleaner
JP2002361117A (en) * 2001-06-09 2002-12-17 Ayumi Iijima Electric precipitator
JP2003074926A (en) * 2001-08-31 2003-03-12 Matsushita Electric Works Ltd Air cleaner
JP2003106600A (en) * 2001-09-28 2003-04-09 Fujitsu General Ltd Control method for air conditioner
JP2003163067A (en) * 2001-11-26 2003-06-06 Yoshiko Shimizu Corona discharge negative ion generator
JP2003284945A (en) * 2002-03-28 2003-10-07 Sharp Corp Discharge electrode and non-equilibrium plasma generator, and device for decomposing harmful substance, and air controller
JP2004031145A (en) * 2002-06-26 2004-01-29 Hitachi Media Electoronics Co Ltd Negative ion generator
JP2004208935A (en) * 2002-12-27 2004-07-29 Matsushita Electric Works Ltd Hair drier
JP2005003255A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Fan-forced room heater
JP2006029663A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Air conditioner
JP2006185740A (en) * 2004-12-27 2006-07-13 Toyota Central Res & Dev Lab Inc Negative ion generator
JP2006250447A (en) * 2005-03-10 2006-09-21 Sharp Corp Electric equipment with ion generator
JP2008181697A (en) * 2007-01-23 2008-08-07 Kyushu Hitachi Maxell Ltd Ion generator
JP2008190819A (en) * 2007-02-07 2008-08-21 Hitachi Appliances Inc Air conditioner
JP2009016288A (en) * 2007-07-09 2009-01-22 Sharp Corp High-voltage generating circuit, ion generator, and electric device
JP2009030911A (en) * 2007-07-30 2009-02-12 Hitachi Appliances Inc Air conditioner, and refrigeration cycle device
JP2009168429A (en) * 2007-12-21 2009-07-30 Panasonic Corp Air conditioner
JP2009186032A (en) * 2008-02-01 2009-08-20 Toshiba Carrier Corp Indoor unit of air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19503937C2 (en) * 1995-02-07 1999-05-12 Meisner Christina Method and device for air treatment in closed rooms
JPH1176726A (en) * 1997-08-29 1999-03-23 Aiwa Co Ltd Filter replacement warning device and tonic air cleaner
US6907888B2 (en) * 2000-11-27 2005-06-21 Matsushita Electric Works, Ltd. Ion generator and hairbrush using the same
CN2665584Y (en) * 2003-07-30 2004-12-22 詹沛宇 Electrostatic air purifying device with ozone reduction
JP2006334212A (en) * 2005-06-03 2006-12-14 Sanyo Electric Co Ltd Bactericidal device and air conditioner
EP1891981A3 (en) * 2006-08-25 2009-10-21 Sanyo Electric Co., Ltd. Air conditioner, air conditioning system, air filtering apparatus and air filtering system

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629260A (en) * 1979-08-17 1981-03-24 Tadao Oshiba Corona charging method in electrophotography or the like
JPH0723777B2 (en) * 1989-08-29 1995-03-15 松下電器産業株式会社 Air conditioner equipped with an ion generator
JPH06272888A (en) * 1993-03-19 1994-09-27 Toshiba Corp Air conditioner
JPH08231206A (en) * 1995-02-24 1996-09-10 Meidensha Corp Ozonizer
JP2002164148A (en) * 2000-11-27 2002-06-07 Matsushita Electric Works Ltd Ion generating device
JP2002355300A (en) * 2001-02-23 2002-12-10 Matsushita Electric Works Ltd Deoidorizing filter and air cleaner
JP2002349891A (en) * 2001-05-25 2002-12-04 Toshiba Kyaria Kk Air conditioner
JP2002361117A (en) * 2001-06-09 2002-12-17 Ayumi Iijima Electric precipitator
JP2003074926A (en) * 2001-08-31 2003-03-12 Matsushita Electric Works Ltd Air cleaner
JP2003106600A (en) * 2001-09-28 2003-04-09 Fujitsu General Ltd Control method for air conditioner
JP2003163067A (en) * 2001-11-26 2003-06-06 Yoshiko Shimizu Corona discharge negative ion generator
JP2003284945A (en) * 2002-03-28 2003-10-07 Sharp Corp Discharge electrode and non-equilibrium plasma generator, and device for decomposing harmful substance, and air controller
JP2004031145A (en) * 2002-06-26 2004-01-29 Hitachi Media Electoronics Co Ltd Negative ion generator
JP2004208935A (en) * 2002-12-27 2004-07-29 Matsushita Electric Works Ltd Hair drier
JP2005003255A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Fan-forced room heater
JP2006029663A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Air conditioner
JP2006185740A (en) * 2004-12-27 2006-07-13 Toyota Central Res & Dev Lab Inc Negative ion generator
JP2006250447A (en) * 2005-03-10 2006-09-21 Sharp Corp Electric equipment with ion generator
JP2008181697A (en) * 2007-01-23 2008-08-07 Kyushu Hitachi Maxell Ltd Ion generator
JP2008190819A (en) * 2007-02-07 2008-08-21 Hitachi Appliances Inc Air conditioner
JP2009016288A (en) * 2007-07-09 2009-01-22 Sharp Corp High-voltage generating circuit, ion generator, and electric device
JP2009030911A (en) * 2007-07-30 2009-02-12 Hitachi Appliances Inc Air conditioner, and refrigeration cycle device
JP2009168429A (en) * 2007-12-21 2009-07-30 Panasonic Corp Air conditioner
JP2009186032A (en) * 2008-02-01 2009-08-20 Toshiba Carrier Corp Indoor unit of air conditioner

Also Published As

Publication number Publication date
CN103109136B (en) 2016-10-12
WO2012035757A1 (en) 2012-03-22
BR112013005787A2 (en) 2016-05-03
CN106225084B (en) 2019-07-19
CN106225084A (en) 2016-12-14
CN103109136A (en) 2013-05-15
JP5899453B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5899453B2 (en) Ozone / ion generator for generating ozone and ion wind and air conditioner equipped with the same
ES2331806T3 (en) STERILIZATION METHOD
WO2015015587A1 (en) Sanitization device using electrical discharge
JP2010276296A (en) Humidifier
JP2005076906A (en) Air conditioner
JP4866468B2 (en) Blower fan, circulator using the same, and fine particle diffusion device
JP2004293893A (en) Air conditioner
JP2011141060A (en) Circulator, fine particle dispersion device and air circulation method
JP2009041817A (en) Air conditioner
JP2009066073A (en) Odor neutralization, deodorization method and air cleaner
JP4716927B2 (en) refrigerator
JP2021152442A (en) Air cleaner
JP2004347264A (en) Blowing device, louver, and air conditioning device with the louver
JP2012037170A (en) Deodorizing device with humidifying function
JP6020805B2 (en) Air cleaner
JP2012037169A (en) Humidifier and its control method
JP2006029664A (en) Ceiling embedded type or ceiling suspension type air conditioner, and air cleaning unit
JP5209753B2 (en) Ventilation system
JP2010051398A (en) Ion diffusion apparatus
JP2002253656A (en) Air cleaner
JP2012154556A (en) Air conditioner
JP2014159937A (en) Air conditioner
JP2013032858A (en) Air conditioning machine
JP5015272B2 (en) Circulator and fine particle diffusion device
US20220313863A1 (en) Devices and systems for concentrated biogenic ionization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R151 Written notification of patent or utility model registration

Ref document number: 5899453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151