JPWO2012029885A1 - 画像処理装置および方法 - Google Patents

画像処理装置および方法 Download PDF

Info

Publication number
JPWO2012029885A1
JPWO2012029885A1 JP2012531952A JP2012531952A JPWO2012029885A1 JP WO2012029885 A1 JPWO2012029885 A1 JP WO2012029885A1 JP 2012531952 A JP2012531952 A JP 2012531952A JP 2012531952 A JP2012531952 A JP 2012531952A JP WO2012029885 A1 JPWO2012029885 A1 JP WO2012029885A1
Authority
JP
Japan
Prior art keywords
image
information
unit
parallax
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2012531952A
Other languages
English (en)
Inventor
しのぶ 服部
しのぶ 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPWO2012029885A1 publication Critical patent/JPWO2012029885A1/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/161Encoding, multiplexing or demultiplexing different image signal components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/147Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/005Adapting incoming signals to the display format of the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • G09G5/008Clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/14Display of multiple viewports
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/139Format conversion, e.g. of frame-rate or size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/167Synchronising or controlling image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/172Processing image signals image signals comprising non-image signal components, e.g. headers or format information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/194Transmission of image signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/10Use of a protocol of communication by packets in interfaces along the display data pipeline
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/12Use of DVI or HDMI protocol in interfaces along the display data pipeline
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

本発明は、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができるようにする画像処理装置および方法に関する。再生装置のモード判定部は、多視点の画像を生成する際に用いる3D画像データのフォーマットを参照して、画像データのフォーマットとの互換性を示す互換モードを判定し、3D情報生成部は、判定された互換モードを示す互換情報を3D情報として生成する。通信部は、その3D画像データと3D情報を表示装置に送信する。表示装置の通信部は、再生装置から伝送された3D画像データを受信するとともに、互換情報を3D情報として受信し、モード判定部は、3D情報により3D画像データの互換モードを判定する。同期制御部は、判定された互換モードに基づいて、3D画像データに対する処理の同期を制御する。本技術は、例えば、画像処理装置に適用することができる。

Description

本技術は画像処理装置および方法に関し、特に、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができるようにした画像処理装置および方法に関する。
従来、映像コンテンツとして、視差を利用して立体視を可能とする3D(3 Dimensions)画像が普及しつつある。
この3D画像の視聴方式として、2視点の画像のうちの一方の画像の表示時に左目用のシャッタが開き、他方の画像の表示時に右目用のシャッタが開くメガネを装着して、交互に表示される2視点の画像を見る方式(以下において、2視点方式と称する)が一般的である。
立体視可能な3Dの画像データ、すなわち、複数の視点の画像データの符号化と復号の方法については、例えば、特許文献1に記載されている。
近年、3D画像の1つとして、立体視用のメガネを装着せずに立体視可能な視聴方式(以下において、多視点方式と称する)の需要が高まっている。多視点方式の場合、3D画像を表示する際、多視点の画像が生成されて表示される。視聴者には、立体視用のメガネを装着しなくても、その位置(視点)に応じた画像が提供されることになる。
特開2008−182669号公報
このような3D画像も、他の画像と同様に、機器間で伝送することが想定される。例えばブルーレイプレーヤ(再生装置)等からデジタルテレビジョンモニタ(表示装置)等に3D画像を非圧縮で伝送する方法が考えられる。
しかしながら、従来においては、2視点方式の3D画像しかその伝送方法は考えられておらず、多視点方式の3D画像を伝送する方法は考えられていなかった。
そのため、このような多視点方式の3D画像を、従来の2視点方式の3D画像の伝送方法で伝送すると、正しく伝送することができない。
本技術は、このような状況に鑑みてなされたものであり、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができるようにすることを目的とする。
本技術の一側面は、多視点の画像を生成する際に用いる立体視用画像データのフォーマットを参照して、画像データのフォーマットとの互換性を示す互換モードを判定するモード判定部と、前記モード判定部により判定された前記互換モードを示す互換情報を3D情報として生成する生成部と、前記立体視用画像データと前記生成部により生成された前記3D情報を、前記立体視用画像データの送信先に送信する送信部とを備える画像処理装置である。
前記生成部は、前記立体視用画像データのフォーマットを示すフォーマット情報を前記3D情報として生成することができる。
前記生成部は、前記立体視用画像データのうちの画像データの多重化方式を示す画像多重化情報と、前記立体視用画像データのうちの視差画像データの多重化方式を示す視差画像多重化情報とを前記3D情報として生成することができる。
前記生成部は、前記立体視用画像データのうちの画像データの多重化パターン、または、前記立体視用画像データのうちの視差画像データの多重化パターンを識別する識別情報を前記3D情報として生成することができる。
前記送信部は、前記3D情報を、HDMI(High Definition Multimedia Interface)規格のVSIFPC(Vendor Specific InfoFrame Packet Contents)に記述して送信することができる。
前記送信部は、前記3D情報を、VSIFPCの3D画像データに関する情報を記述する領域の空き領域に記述して送信することができる。
前記互換モードは、既存の2次元画像データとの互換性を示すモノコンパチブルモード、既存のフレームパッキングの3D画像データとの互換性を示すフレームパッキングコンパチブルモード、並びに、既存のステレオスコピックの3D画像データとの互換性を示すステレオスコピックコンパチブルモードを含むことができる。
前記送信部は、前記立体視用画像データの1フレーム分のデータを、垂直同期信号複数周期分のアクティブビデオ区間を用いて送信することができる。
前記垂直同期信号の各周期を不等間隔に設定する間隔設定部をさらに備え、前記送信部は、前記立体視用画像データの1フレーム分のデータを、前記間隔設定部により設定された周期のアクティブビデオ区間を用いて送信することができる。
前記立体視用画像データの送信先のデバイスから、前記デバイスの処理能力を示す能力情報を取得する能力情報取得部と、前記能力情報取得部により取得された前記能力情報が示す前記デバイスの処理能力に基づいて、前記立体視用画像データの同期方法を設定する同期設定部とをさらに備え、前記生成部は、前記同期設定部により設定された同期方法を示す同期情報を前記3D情報として生成することができる。
本技術の一側面は、また、画像処理装置の画像処理方法であって、モード判定部が、多視点の画像を生成する際に用いる立体視用画像データのフォーマットを参照して、画像データのフォーマットとの互換性を示す互換モードを判定し、生成部が、前記モード判定部により判定された前記互換モードを示す互換情報を3D情報として生成し、送信部が、前記立体視用画像データと前記生成部により生成された前記3D情報を、前記立体視用画像データの送信先に送信する画像処理方法である。
本技術の他の側面は、多視点の画像を生成する際に用いる立体視用画像データを受信するとともに、前記立体視用画像データのフォーマットの画像データのフォーマットとの互換性を示す互換モードを3D情報として受信する受信部と、前記受信部により受信された前記3D情報に基づいて、前記受信部により受信される前記立体視用画像データの前記互換モードを判定するモード判定部と、前記モード判定部により判定された前記互換モードに基づいて、前記受信部により受信される前記立体視用画像データに対する処理の同期を制御する同期制御部とを備える画像処理装置である。
前記受信部は、前記立体視用画像データのフォーマットを示すフォーマット情報を前記3D情報として受信することができる。
前記受信部は、前記立体視用画像データのうちの画像データの多重化方式を示す画像多重化情報と、前記立体視用画像データのうちの視差画像データの多重化方式を示す視差画像多重化情報とを前記3D情報として生成することができる。
前記受信部は、前記立体視用画像データのうちの画像データの多重化パターン、または、前記立体視用画像データのうちの視差画像データの多重化パターンを識別する識別情報を前記3D情報として受信することができる。
前記受信部は、HDMI(High Definition Multimedia Interface)規格のVSIFPC(Vendor Specific InfoFrame Packet Contents)に記述して送信されてくる前記3D情報を受信することができる。
前記受信部は、VSIFPCの3D画像データに関する情報を記述する領域の空き領域に記述して送信されてくる前記3D情報を受信することができる。
前記互換モードは、既存の2次元画像データとの互換性を示すモノコンパチブルモード、既存のフレームパッキングの3D画像データとの互換性を示すフレームパッキングコンパチブルモード、並びに、既存のステレオスコピックの3D画像データとの互換性を示すステレオスコピックコンパチブルモードを含むことができる。
前記受信部は、垂直同期信号複数周期分のアクティブビデオ区間を用いて送信された前記立体視用画像データの1フレーム分のデータを受信することができる。
前記受信部は、前記垂直同期信号の各周期が不等間隔である複数周期分のアクティブビデオ区間を用いて送信された前記立体視用画像データの1フレーム分のデータを受信することができる。
前記立体視用画像データの送信元のデバイスに、前記画像処理装置自身の処理能力を示す能力情報を提供する能力情報提供部をさらに備えることができる。
本技術の他の側面は、また、画像処理装置の画像処理方法であって、受信部が、多視点の画像を生成する際に用いる立体視用画像データを受信するとともに、前記立体視用画像データのフォーマットの画像データのフォーマットとの互換性を示す互換モードを3D情報として受信し、モード判定部が、前記受信部により受信された前記3D情報に基づいて、前記受信部により受信される前記立体視用画像データの前記互換モードを判定し、同期制御部が、前記モード判定部により判定された前記互換モードに基づいて、前記受信部により受信される前記立体視用画像データに対する処理の同期を制御する画像処理方法である。
本技術の一側面においては、多視点の画像を生成する際に用いる立体視用画像データのフォーマットを参照して、画像データのフォーマットとの互換性を示す互換モードが判定され、前記互換モードを示す互換情報が3D情報として生成され、前記立体視用画像データと前記3D情報が、前記立体視用画像データの送信先に送信される。
本技術の他の側面においては、多視点の画像を生成する際に用いる立体視用画像データを受信するとともに、前記立体視用画像データのフォーマットの画像データのフォーマットとの互換性を示す互換モードが3D情報として受信され、受信された前記3D情報に基づいて、前記立体視用画像データの前記互換モードが判定され、前記互換モードに基づいて、前記立体視用画像データに対する処理の同期が制御される。
本技術によれば、通信を行うことができる。特に、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができる。
3D画像システムの符号化装置の主な構成例を示すブロック図である。 3D画像システムの、図1の符号化装置に対応する復号装置の主な構成例を示すブロック図である。 3D画像システムの符号化装置の他の構成例を示すブロック図である。 3D画像システムの、図3の符号化装置に対応する復号装置の主な構成例を示すブロック図である。 3D画像システムの符号化装置の、さらに他の構成例を示すブロック図である。 3D画像システムの、図5の符号化装置に対応する復号装置の主な構成例を示すブロック図である。 本技術を適用した伝送システムの主な構成例を示すブロック図である。 図7の再生装置の主な構成例を示すブロック図である。 図7の表示装置の主な構成例を示すブロック図である。 HDMI伝送系の主な構成例を示すブロック図である。 Vendor Specific infoFrame Packet Contentsの構成例を示す図である。 3D_Structureの拡張例を説明する図である。 従来の画像の伝送例を説明する図である。 本技術を適用した画像伝送の例を説明する図である。 本技術を適用した画像伝送の他の例を説明する図である。 本技術を適用した画像伝送のさらに他の例を説明する図である。 本技術を適用した画像伝送のさらに他の例を説明する図である。 本技術を適用した画像伝送のさらに他の例を説明する図である。 本技術を適用した画像伝送のさらに他の例を説明する図である。 本技術を適用した画像伝送のさらに他の例を説明する図である。 送信処理の流れの例を説明するフローチャートである。 受信処理の流れの例を説明するフローチャートである。 E-EDIDデータの構造例を示す図である。 Vendor-Specific Data Blockの構成例を示す図である。 3D_Structure_ALL_Xの拡張例を説明する図である。 3D_Structure_Xの拡張例を説明する図である。 図7の再生装置の他の構成例を示すブロック図である。 図7の表示装置の他の構成例を示すブロック図である。 送信処理の他の流れの例を説明するフローチャートである。 受信処理の他の流れの例を説明するフローチャートである。 3D画像システムの符号化装置の他の構成例を示すブロック図である。 互換情報と視差画像情報の記述例を示す図である。 図32の視差画像情報の詳細記述例を示す図である。 補助ストリーム内の互換情報と視差画像情報の記述例を示す図である。 図34の視差画像情報の詳細記述例を示す図である。 図31の符号化装置による符号化処理を説明するフローチャートである。 図31の符号化装置による符号化処理を説明するフローチャートである。 図31の符号化装置に対応する復号装置の構成例を示す図である。 図38の復号装置による復号処理を説明するフローチャートである。 3D画像システムの符号化装置の他の構成例を示すブロック図である。 図40の符号化装置による符号化処理を説明するフローチャートである。 図40の符号化装置による符号化処理を説明するフローチャートである。 図40の符号化装置に対応する復号装置の構成例を示す図である。 図43の復号装置による復号処理を説明するフローチャートである。 符号化対象の多重化パターンの例を示す図である。 多重化による効果の特徴を示す図である。 符号化対象の多重化パターンの他の例を示す図である。 符号化対象の多重化パターンのさらに他の例を示す図である。 3D画像システムの符号化装置の他の構成例を示すブロック図である。 図49の符号化装置による符号化処理を説明するフローチャートである。 図49の符号化装置による符号化処理を説明するフローチャートである。 図49の符号化装置に対応する復号装置の構成例を示す図である。 図52の復号装置による復号処理を説明するフローチャートである。 ビットストリームの構成例を示す図である。 図54の視差画像用の3DV方式のSubset SPSの記述例を示す図である。 図55の視差画像用拡張情報の記述例を示す図である。 図55の視差画像用VUI拡張情報の記述例を示す図である。 3DV方式の符号化データのNALヘッダの記述例を示す図である。 図58の視差画像用ヘッダ拡張情報の記述例を示す図である。 図54の3DV方式のSEIの記述例を示す図である。 ビットストリームの他の構成例を示す図である。 図61の画像用の3DV方式のSubset SPSの記述例を示す図である。 3DV方式がHEVC方式に準じた方式である場合のビットストリームの構成例を示す図である。 図63のSPSの記述例を示す図である。 図64のSubset SPSの記述例を示す図である。 図65のSubset SPSのVUI情報の記述例を示す図である。 図63の3DV方式のSEIの記述例を示す図である。 本技術を適用したコンピュータの主な構成例を示すブロック図である。 本技術を適用したテレビジョン装置の概略構成を示す図である。 本技術を適用した携帯電話機の概略構成を示す図である。 本技術を適用した記録再生装置の概略構成を示す図である。 本技術を適用した撮像装置の概略構成を示す図である。
以下、本技術を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。1.第1の実施の形態(伝送システム)2.第2の実施の形態(伝送システム)3.第3の実施の形態(伝送システム)4.第4の実施の形態(伝送システム)5.第5の実施の形態(伝送システム)6.本実施の形態におけるビットストリーム7.3DV方式がHEVC方式に準じた方式である場合のビットストリーム8.第6の実施の形態(コンピュータ)9.第7実施の形態(テレビジョン装置)10.第8実施の形態(携帯電話機)11.第9実施の形態(記録再生装置)12.第10実施の形態(撮像装置)
<1.第1の実施の形態>
[3D画像システムの例]
最初に、画像間の視差を利用して立体視を可能とする立体視画像(3D画像)を扱うシステムについて説明する。以下に説明する3D画像システムは、多視点の画像を生成し、表示する多視点方式の3D画像を扱うシステムである。この3D画像の場合、ユーザは、裸眼で(立体視用のメガネを用いずに)、画像を立体視することができる。
以下において、このような多視点の画像を生成し、表示する多視点方式の3D画像のフォーマットを3DVと称する。なお、ここでは、3DVは、AVC、MVC、後述するHEVC(High Efficiency Video Coding)等に準じたフォーマット(方式)であるものとする。
3DVフォーマットにおいては、多視点方式の3D画像データを伝送する際、送信側において3D画像データが符号化され、受信側においてその符号化データが復号される。また、3DVフォーマットは、従来の他の画像フォーマットとの互換性が確保されている。
つまり、3DVフォーマットにおいては、3D画像として構成される多視点の画像の中に、既存の符号化装置との互換性を確保するために既存の符号化方式で符号化される画像と、それ以外の画像が含まれる。以下においては、この既存の符号化方式で符号化される画像を互換画像と称し、互換画像を用いて互換画像の視点数より多い視点の画像を生成するための、前記互換画像以外の画像を補助画像と称する。
以下に、そのデータ伝送の様子の例を説明する。
[符号化装置の構成例]
最初に、既存の2D画像との互換性を確保するようなフォーマット(Mono Compatible Mode)で3D画像を伝送する例について説明する。
図1は、3D画像システムの符号化装置の主な構成例を示すブロック図である。図1に示される符号化装置50は、3D画像システムの送信側の装置であり、Mono Compatible Modeで3D画像を符号化する。
図1に示されるように、符号化装置50において、撮影部51Aは、所定の視点のHD(High Definition)画像を画像A1として撮影し、画像変換部52、視差画像生成部53、および視点間距離情報生成部56に供給する。撮影部51Bは、撮影部51Aから距離Δd1ABだけ水平方向に離れた位置で、画像A1とは異なる視点のHD画像を画像B1として撮影し、画像変換部52、視差画像生成部53、および視点間距離情報生成部56に供給する。撮影部51Cは、撮影部51Aから距離Δd1ACだけ撮影部51Bとは反対の水平方向に離れた位置で、画像A1および画像B1とは異なる視点のHD画像を画像C1として撮影し、画像変換部52、視差画像生成部53、および視点間距離情報生成部56に供給する。
なお、以下において、画像B1と画像C1に対応する視点は、3D画像として知覚可能な画像の視点のうち、より外側の視点であるものとする。これにより、符号化装置50に対応する復号装置は、画像A1乃至画像C1を用いて、画像B1および画像C1の視点より内側の視点の画像を補間(内挿)することで、多視点の画像を生成することができる。その結果、内側の視点の画像を用いて外側の視点の画像を補間(外挿)する場合に比べて、多視点の画像を高精度に生成することができる。
もちろん、符号化装置50に対応する復号装置が、画像B1と画像C1より外側の視点の画像を補間(外挿)するようにしてもよい。また、距離Δd1ABと距離Δd1ACは、固定であってもよいし、時間ごとに変化するようにしてもよい。
画像変換部52は、撮影部51A乃至撮影部51Cのうちの水平方向の位置が内側にある撮影部51Aから供給される画像A1を互換画像に決定する。画像変換部52は、互換画像として画像A1を指定する情報を互換情報生成部55に供給する。そして、画像変換部52は、互換画像である画像A1をそのままエンコーダ58に供給する。
また、画像変換部52は、画像A1以外の画像B1および画像C1を補助画像とし、所定の多重化方式で多重化する。例えば、画像変換部52は、図1に示されるように、画像B1および画像C1の水平方向の解像度を半減させ(以下、1/2解像度画像B1、および、1/2解像度画像C1と称する)、その解像度を半減させた画像B1および画像C1を水平方向に並べ、元の1フレームの画像サイズとなるようにする。このような多重化方式をサイドバイサイド(SBS(Side By Side))方式と称する。
画像変換部52は、多重化の結果得られる多重化画像をエンコーダ58に供給し、補助画像の多重化方式を示す情報を画像情報生成部54に供給する。
視差画像生成部53(視差画像生成部)は、撮影部51A乃至撮影部51Cから供給される画像A1乃至画像C1を用いて、画像A1乃至画像C1の各画素の視差を検出する。視差画像生成部53は、互換画像である画像A1の各画素の視差を表す視差画像A1'を生成し、そのままエンコーダ58に供給する。
また、視差画像生成部53は、補助画像である画像B1の各画素の視差を表す視差画像B1'と、補助画像である画像C1の各画素の視差を表す視差画像C1'を生成し、画像B1および画像C1と同様の方法(例えばサイドバイサイド方式)で多重化する。視差画像生成部53は、その結果得られる多重化画像をエンコーダ58に供給する。視差画像生成部53は、補助画像の視差画像の多重化方式を示す情報を視差画像情報生成部57に供給する。
画像情報生成部54は、画像変換部52から供給される情報に基づいて、補助画像の多重化方式を示す情報などを、互換画像および補助画像に関する情報である画像情報として生成し、エンコーダ58に供給する。
互換情報生成部55(生成部)は、画像変換部52から供給される情報に基づいて、互換画像を指定する情報、互換モードなどを、互換に関する情報である互換情報として生成し、エンコーダ58に供給する。
なお、互換モードとは、互換画像の符号化方法または多重化方法(多重化するかしないか、多重化方式など)を表すモードである。互換モードとしては、例えば、1視点の互換画像をAVC方式で符号化する符号化方法を表すモノモード(mono)、2視点の互換画像を多重化し、AVC方式で符号化する符号化方法を表すフレームパッキングモード(frame packing)、2視点の互換画像をMVC方式で符号化する符号化方法を表すステレオモード(stereo)などがある。
視点間距離情報生成部56(視点間距離情報生成部)は、撮影部51A乃至撮影部51Cから供給される画像A1乃至画像C1を用いて、画像A1乃至画像C1のうちの2枚の画像の視点間の距離(以下、視点間距離という)を検出する。例えば、視点間距離情報生成部56は、撮影部51Aと撮影部51Bの間の水平方向の距離Δd1AB、および、撮影部51Aと撮影部51Cの間の水平方向の距離Δd1ACを視点間距離として検出する。視点間距離情報生成部56は、視点間距離を表す情報などを、視点間距離に関する情報である視点間距離情報として生成し、エンコーダ58に供給する。
視差画像情報生成部57は、視差画像生成部53から供給される情報に基づいて、補助画像の視差画像の多重化方式を示す情報などを、視差画像に関する情報である視差画像情報として生成し、エンコーダ58に供給する。
エンコーダ58は、互換用エンコーダ61と補助用エンコーダ62により構成される。互換用エンコーダ61(互換画像符号化部)は、画像変換部52から供給される互換画像である画像A1を既存のAVC方式で符号化して各種の情報を付加し、その結果得られる符号化ストリームを互換ストリームとして多重化部59に供給する。
補助用エンコーダ62(補助画像符号化部)は、画像変換部52からの補助画像の多重化画像、並びに視差画像生成部53からの互換画像の視差画像A1'および補助画像の視差画像の多重化画像を所定の方式で符号化する。なお、補助用エンコーダ62における符号化方式としては、AVC方式、MVC方式、MPEG2(Moving Picture Experts Group phase 2)方式などを用いることができる。
また、補助用エンコーダ62は、符号化の結果得られる符号化画像に、画像情報生成部54からの画像情報、互換情報生成部55からの互換情報、視点間距離情報生成部56からの視点間距離情報、および視差画像情報生成部57からの視差画像情報などを付加して、符号化ストリームを生成する。補助用エンコーダ62は、その符号化ストリームを補助ストリームとして多重化部59に供給する。
多重化部59は、互換用エンコーダ61から供給される互換ストリームと補助用エンコーダ62から供給される補助ストリームから、それぞれTS(Transport Stream)を生成し、多重化する。多重化部59(伝送部)は、多重化の結果得られる多重化ストリームを送信する。
[復号装置の構成例]
図2は、図1の符号化装置50から送信される多重化ストリームを復号する(Mono Compatible Modeの)復号装置の構成例を示す図である。
図2の復号装置120は、分離部121、デコーダ122、画像情報取得部123、視点間距離情報取得部124、視差画像情報取得部125、互換情報取得部126、および画像生成部127により構成される。復号装置120は、符号化装置50から送信される多重化ストリームを復号して、1視点の画像または多視点の画像を生成し、図示せぬ表示装置に表示させる。
具体的には、復号装置120の分離部121(受信部)は、符号化装置50から送信されてくる多重化ストリームを受信し、TSごとに分離する。分離部121は、分離されたTSから互換ストリームと補助ストリームを抽出し、デコーダ122に供給する。
デコーダ122は、互換用デコーダ131と補助用デコーダ132により構成される。
デコーダ122の互換用デコーダ131(互換画像復号部)は、補助用デコーダ132から供給される互換ストリームを特定するための情報に基づいて、分離部121から供給される互換ストリームと補助ストリームのうち、互換ストリームを識別する。互換用デコーダ131は、互換ストリームに含まれる符号化された互換画像をAVC方式に対応する方式で復号し、その結果得られる画像A1を画像生成部127に供給する。
補助用デコーダ132は、分離部121から供給される補助ストリームに含まれる互換情報に基づいて、互換ストリームを特定するための情報を互換用デコーダ131に供給する。補助用デコーダ132は、互換情報に基づいて、分離部121から供給される互換ストリームと補助ストリームのうち、補助ストリームを識別する。補助用デコーダ132(補助画像復号部)は、分離部121から供給される補助ストリームに含まれる符号化された補助画像の多重化画像、互換画像の視差画像A'、および補助画像の視差画像の多重化画像を、図5の補助用エンコーダ62に対応する方式で復号する。
補助用デコーダ132は、復号の結果得られる補助画像の多重化画像、互換画像の視差画像A'、および補助画像の視差画像の多重化画像を画像生成部127に供給する。また、補助用デコーダ132は、補助ストリームに含まれる画像情報を画像情報取得部123に供給し、視点間距離情報を視点間距離情報取得部124に供給する。さらに、補助用デコーダ132は、補助ストリームに含まれる視差画像情報を視差画像情報取得部125に供給し、互換情報を互換情報取得部126に供給する。
画像情報取得部123は、補助用デコーダ132から供給される画像情報を取得し、画像生成部127に供給する。視点間距離情報取得部124は、補助用デコーダ132から供給される視点間距離情報を取得し、画像生成部127に供給する。
視差画像情報取得部125は、補助用デコーダ132から供給される視差画像情報を取得し、画像生成部127に供給する。互換情報取得部126は、補助用デコーダ132から供給される互換情報を取得し、画像生成部127に供給する。
画像生成部127は、視聴者からの表示指令に応じて、画像を出力し、図示せぬ表示装置に表示させる。具体的には、画像生成部127(生成部)は、視聴者からの多視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報、視点間距離情報取得部124からの視点間距離情報、視差画像情報取得部125からの視差画像情報、互換情報取得部126からの互換情報等に基づいて、互換画像、補助画像の多重化画像、互換画像の視差画像、および補助画像の視差画像の多重化画像を用いて、図示せぬ表示装置に対応する3以上の視点数の、互換画像や補助画像の解像度の半分の解像度の画像を生成する。
より詳細には、画像生成部127は、視差画像情報取得部125からの視差画像情報に含まれる補助画像の視差画像の多重化方式を示す情報に基づいて、例えばサイドバイサイド方式で多重化された、補助画像の視差画像の多重化画像から、各補助画像の視差画像を分離する。また、画像生成部127は、画像情報取得部123からの画像情報に含まれる補助画像の多重化方式を示す情報に基づいて、例えばサイドバイサイド方式で多重化された、補助画像の多重化画像から、各補助画像を分離する。
さらに、画像生成部127は、視点間距離情報と図示せぬ表示装置に対応する視点数に基づいて、生成する多視点の画像の各視点の位置を決定する。そして、画像生成部127は、互換画像、各補助画像、互換画像の視差画像、および各補助画像の視差画像を用いて、位置が決定された各視点の画像を生成する。そして、画像生成部127は、生成された各視点の画像の解像度を、互換画像や補助画像の解像度の1/視点数の解像度に変換して合成し、図示せぬ表示装置に表示させる。
このとき、合成後の多視点の画像は、視点ごとに視認可能な角度が異なるように表示され、視聴者は、任意の2視点の各画像を左右の各目で見ることにより、メガネを装着せずに3D画像を見ることができる。
また、画像生成部127は、視聴者からの2D画像の表示指令に応じて、デコーダ122の互換用デコーダ131から供給される互換画像である画像A1を出力して、図示せぬ表示装置に表示させる。これにより、視聴者は、2D画像を見ることができる。
[符号化装置の構成例]
次に、既存のフレームパッキングの3D画像との互換性を確保するようなフォーマット(Frame Packing Compatible Mode)で3D画像を伝送する例について説明する。
図3は、本技術を適用した符号化装置の他の構成例を示すブロック図である。図3に示す構成のうち、図1の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。図3に示される符号化装置140は、基本的に図1の符号化装置50と同様であるが、このFrame packing Compatible Modeの場合、4つの画像から1組の互換画像と1組の補助画像が生成される。そして、互換画像も補助画像のように例えばサイドバイサイド方式で多重化される。
図3の符号化装置140の構成は、主に、撮影部51A乃至撮影部51C、画像変換部52、視差画像生成部53、視点間距離情報生成部56、エンコーダ58の代わりに撮影部141A乃至撮影部141D、画像変換部142、視差画像生成部143、視点間距離情報生成部144、エンコーダ145が設けられている点が図5の構成と異なる。
符号化装置140は、多視点の画像のうちの2視点の画像を互換画像としてAVC方式で符号化を行うことにより、既存の2視点方式の3D画像を符号化する符号化装置との互換性を確保する。
具体的には、符号化装置140の撮影部141Aは、所定の視点のHD画像を画像A2として撮影し、画像変換部142、視差画像生成部143、および視点間距離情報生成部144に供給する。撮影部141Bは、撮影部141Aから距離Δd2ABだけ水平方向に離れた位置で、画像A2とは異なる視点のHD画像を画像B2として撮影し、画像変換部142、視差画像生成部143、および視点間距離情報生成部144に供給する。
撮影部141Cは、撮影部141Bから距離Δd2BCだけ撮影部141Aとは反対の水平方向に離れた位置で、画像A2および画像B2とは異なる視点のHD画像を画像C2として撮影し、画像変換部142、視差画像生成部143、および視点間距離情報生成部144に供給する。撮影部141Dは、撮影部141Aから距離Δd2ADだけ撮影部141Bとは反対の水平方向に離れた位置で、画像A2乃至画像C2とは異なる視点のHD画像を画像D2として撮影し、画像変換部142、視差画像生成部143、および視点間距離情報生成部144に供給する。
なお、画像C2と画像D2に対応する視点は、3D画像として知覚可能な画像の視点のうち、より外側の視点である。これにより、符号化装置140に対応する復号装置は、画像A2乃至画像D2を用いて、画像C2および画像D2の視点より内側の視点の画像を補間することで、多視点の画像を生成することができる。その結果、内側の視点の画像を用いて外側の視点の画像を補間する場合に比べて、多視点の画像を高精度に生成することができる。もちろん、図1の場合と同様に、画像の補間を外挿としてもよい。距離Δd2AB、距離Δd2BC、および距離Δd2ADは、固定であってもよいし、時間ごとに変化するようにしてもよい。
画像変換部142は、撮影部141A乃至撮影部141Dのうちの水平方向の位置が内側にある撮影部141Aから供給される画像A2と撮影部141Bから供給される画像B2を互換画像に決定する。そして、画像変換部142は、互換画像である画像A2および画像B2を所定の多重化方式で多重化し、エンコーダ145に供給する。
例えば、画像変換部142は、図3に示されるように、画像A2および画像B2をサイドバイサイド(Side By Side)方式で多重化する。また、画像変換部142は、互換画像として画像A2および画像B2を指定する情報を互換情報生成部55に供給する。
また、画像変換部142は、画像A2および画像B2以外の画像C2および画像D2を補助画像とし、所定の多重化方式で多重化する。例えば、画像変換部142は、この画像C2および画像D2もサイドバイサイド方式で多重化する。
画像変換部142は、多重化の結果得られる多重化画像をエンコーダ145に供給する。画像変換部142は、互換画像と補助画像の多重化方式を示す情報を画像情報生成部54に供給する。
視差画像生成部143は、撮影部141A乃至撮影部141Dから供給される画像A2乃至画像D2を用いて、画像A2乃至画像D2の各画素の視差を検出する。視差画像生成部143は、互換画像である画像A2の各画素の視差を表す視差画像A2'と、画像B2の各画素の視差を表す視差画像B2'を生成し、所定の多重化方式で多重化する。例えば、視差画像生成部143は、視差画像A2'および視差画像B2'をサイドバイサイド方式で多重化する。視差画像生成部143は、その結果得られる多重化画像をエンコーダ145に供給する。
また、視差画像生成部143は、補助画像である画像C2の各画素の視差を表す視差画像C2'と、補助画像である画像D2の各画素の視差を表す視差画像D2'を生成し、所定の多重化方式で多重化する。例えば、視差画像生成部143は、視差画像C2'および視差画像D2'をサイドバイサイド方式で多重化する。視差画像生成部143は、その結果得られる多重化画像をエンコーダ145に供給する。視差画像生成部143は、互換画像および補助画像の視差画像の多重化方式を示す情報を視差画像情報生成部57に供給する。
視点間距離情報生成部144は、撮影部141A乃至撮影部141Dから供給される画像A2乃至画像D2を用いて、画像A2乃至画像D2の視点間距離を検出する。例えば、視点間距離情報生成部144は、撮影部141Aと撮影部141Bの間の水平方向の距離Δd2AB、撮影部141Bと撮影部141Cの間の水平方向の距離Δd2BC、撮影部141Aと撮影部141Dの間の水平方向の距離Δd2ADを視点間距離として検出する。視点間距離情報生成部144は、視点間距離を表す情報などを視点間距離情報として生成し、エンコーダ145に供給する。
エンコーダ145は、互換用エンコーダ151と補助用エンコーダ152により構成される。互換用エンコーダ151は、画像変換部142から供給される互換画像の多重化画像を既存のAVC方式で符号化して各種の情報を付加し、その結果得られる符号化ストリームを互換ストリームとして多重化部59に供給する。
補助用エンコーダ152は、画像変換部142からの補助画像の多重化画像、並びに視差画像生成部143からの互換画像の視差画像の多重化画像および補助画像の視差画像の多重化画像を所定の方式で符号化する。なお、補助用エンコーダ152における符号化方式としては、例えば、AVC方式、MVC方式などを用いることができる。
また、補助用エンコーダ152は、符号化の結果得られる符号化画像に、画像情報生成部54からの画像情報、互換情報生成部55からの互換情報、視点間距離情報生成部144からの視点間距離情報、および視差画像情報生成部57からの視差画像情報などを付加して、符号化ストリームを生成する。補助用エンコーダ152は、その符号化ストリームを補助ストリームとして多重化部59に供給する。
[復号装置の構成例]
図4は、図3の符号化装置140から送信される多重化ストリームを復号する(Frame Packing Compatible Modeの)復号装置の構成例を示す図である。図4に示す構成のうち、図2の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図4の復号装置170の構成は、主に、画像生成部127の代わりに画像生成部171が設けられている点が図2の構成と異なる。復号装置170は、符号化装置140から送信されるFrame Packing Compatible Modeの多重化ストリームを復号して、2視点の画像または多視点の画像を生成し、図示せぬ表示装置に表示させる。
具体的には、復号装置170の画像生成部171は、視聴者からの表示指令に応じて、画像を出力し、図示せぬ表示装置に表示させる。詳細には、画像生成部171は、視聴者からの多視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報、視点間距離情報取得部124からの視点間距離情報、視差画像情報取得部125からの視差画像情報、互換情報取得部126からの互換情報等に基づいて、互換画像の多重化画像、補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像を用いて、図示せぬ表示装置に対応する3以上の視点数の、互換画像や補助画像の解像度の半分の解像度の画像を生成する。
より詳細には、画像生成部171は、視差画像情報取得部125からの視差画像情報に含まれる補助画像の視差画像の多重化方式を示す情報に基づいて、補助画像の視差画像の多重化画像から、各補助画像の視差画像を分離する。例えば、補助画像の視差画像がサイドバイサイド(Side By Side)方式で多重化されている場合、画像生成部171は、その視差画像を左右2つに分離する。
また、画像生成部171は、視差画像情報に含まれる互換画像の視差画像の多重化方式を示す情報に基づいて、互換画像の視差画像の多重化画像から、各互換画像の視差画像を分離する。例えば、互換画像の視差画像がサイドバイサイド(Side By Side)方式で多重化されている場合、画像生成部171は、その視差画像を左右2つに分離する。
さらに、画像生成部171は、画像情報取得部123からの画像情報に含まれる補助画像の多重化方式を示す情報に基づいて、補助画像の多重化画像から、各補助画像を分離する。例えば、補助画像がサイドバイサイド(Side By Side)方式で多重化されている場合、画像生成部171は、その補助画像を左右2つに分離する。
また、画像生成部171は、画像情報に含まれる互換画像の多重化方式を示す情報に基づいて、互換画像の多重化画像から、各互換画像を分離する。例えば、互換画像がサイドバイサイド(Side By Side)方式で多重化されている場合、画像生成部171は、その互換画像を左右2つに分離する。
また、画像生成部171は、視点間距離情報と図示せぬ表示装置に対応する視点数に基づいて、生成する多視点の画像の各視点の位置を決定する。そして、画像生成部171は、各互換画像、各補助画像、各互換画像の視差画像、および各補助画像の視差画像を用いて、位置が決定された各視点の画像を生成する。そして、画像生成部171は、生成された多視点の画像の解像度を、互換画像や補助画像の解像度の1/視点数の解像度に変換して合成し、図示せぬ表示装置に表示させる。
このとき、合成後の多視点の画像は、視点ごとに視認可能な角度が異なるように表示され、視聴者は、任意の2視点の各画像を左右の各目で見ることにより、メガネを装着せずに3D画像を見ることができる。
また、画像生成部171は、視聴者からの2視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報に基づいて、デコーダ122から供給される互換画像の多重化画像を、互換画像の解像度の半分の解像度の画像A2と画像B2に分離する。そして、画像生成部171は、分離された互換画像の解像度の半分の解像度の画像A2と画像B2を交互に出力して、図示せぬ表示装置に表示させる。このとき、視聴者は、画像A2の表示時に左目用のシャッタまたは右目用のシャッタの一方が開き、画像B2の表示時に他方が開くメガネを装着して、表示装置に交互に表示される画像A2と画像B2を見ることにより、3D画像を見ることができる。
なお、図3および図4の例において、互換画像および補助画像、並びに、それらの視差画像が、サイドバイサイド(Side By Side)方式の代わりに、トップアンドボトム(TAB(Top And Bottom)方式(Top Over Bottom(TOB)方式とも称する)で多重化されるようにしてもよい。
トップアンドボトム(TAB(Top And Bottom)方式は、多重化する2つの画像の垂直方向の解像度を半減させ、その解像度を半減させた両画像を垂直方向に並べ、元の1フレームの画像サイズとなるようにする多重化方式である。
[符号化装置の構成例]
次に、既存のステレオスコピックの3D画像との互換性を確保するようなフォーマット(Stereo Scopic Compatible Mode)で3D画像を伝送する例について説明する。なお、既存のステレオスコピックの3D画像の場合、互いに視差が形成される左眼用の画像と右眼用の画像とが交互に表示される。
図5は、本技術を適用した符号化装置の他の構成例を示すブロック図である。図5に示す構成のうち、図1の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。図5に示される符号化装置140は、基本的に図1の符号化装置50と同様であるが、このStereo Scopic Compatible Modeの場合、4つの画像から2つの互換画像と1組の補助画像が生成される。そして、互換画像同士は多重化されず、補助画像同士は例えばサイドバイサイド方式で多重化される。
図5の符号化装置180の構成は、主に、画像変換部142、エンコーダ145の代わりに画像変換部181、エンコーダ182が設けられている点が図3の構成と異なる。符号化装置180は、多視点の画像のうちの2視点の画像を互換画像として、MVC方式で符号化を行うことにより、既存の2視点方式の3D画像を符号化する符号化装置との互換性を確保する。
具体的には、符号化装置180の画像変換部181は、図14の画像変換部142と同様に、撮影部141A乃至撮影部141Dのうちの水平方向の位置が内側にある撮影部141Aから供給される画像A2と撮影部141Bから供給される画像B2を互換画像に決定する。例えば、画像A2を左眼用画像とし、画像B2を右眼用画像とする。
そして、画像変換部181は、互換画像である画像A1および画像A2を、そのまま(互換画像同士を多重化せずに)エンコーダ182に供給する。また、画像変換部181は、画像変換部142と同様に、互換画像として画像A2および画像B2を指定する情報を互換情報生成部55に供給する。
また、画像変換部181は、画像変換部142と同様に、画像A2および画像B2以外の画像C2および画像D2を補助画像とし、所定の多重化方式で多重化する。例えば、画像変換部142は、この画像C2および画像D2をサイドバイサイド方式で多重化する。
画像変換部181は、多重化の結果得られる多重化画像をエンコーダ182に供給し、補助画像の多重化方式を示す情報を画像情報生成部54に供給する。
エンコーダ182は、互換用エンコーダ191と補助用エンコーダ152により構成される。エンコーダ182の互換用エンコーダ191は、画像変換部181から供給される互換画像のうちの画像A2をベース画像として既存のAVC方式で符号化し、画像B2をディペンデント画像として既存のMVC方式で符号化を行う。互換用エンコーダ191は、その結果得られる符号化画像に各種の情報を付加して符号化ストリームを生成し、その符号化ストリームを互換ストリームとして多重化部59に供給する。
なお、視差情報は、図3の符号化装置140の場合と同様に生成される。
[復号装置の構成例]
図6は、図5の符号化装置180から送信される多重化ストリームを復号する(Frame Packing Compatible Modeの)復号装置の構成例を示す図である。図6に示す構成のうち、図4の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図6の復号装置200の構成は、主に、デコーダ122、画像生成部127の代わりにデコーダ201、画像生成部202が設けられている点が図2の構成と異なる。復号装置200は、符号化装置180から送信される多重化ストリームを復号して、2視点の画像または多視点の画像を生成し、図示せぬ表示装置に表示させる。
具体的には、復号装置200のデコーダ201は、互換用デコーダ211と補助用デコーダ132により構成される。デコーダ201の互換用デコーダ211は、図2の互換用デコーダ131と同様に、補助用デコーダ132から供給される互換ストリームを特定するための情報に基づいて、分離部121から供給される互換ストリームと補助ストリームのうちの互換ストリームを識別する。互換用デコーダ211は、互換ストリームに含まれる符号化された互換画像をMVC方式に対応する方式で復号し、その結果得られる画像A2と画像B2を画像生成部202に供給する。
画像生成部202は、視聴者からの表示指令に応じて、画像を出力し、図示せぬ表示装置に表示させる。詳細には、画像生成部202は、視聴者からの多視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報、視点間距離情報取得部124からの視点間距離情報、視差画像情報取得部125からの視差画像情報、互換情報取得部126からの互換情報等に基づいて、互換画像、補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像を用いて、図示せぬ表示装置に対応する3以上の視点数の、互換画像や補助画像の解像度の半分の解像度の画像を生成する。
より詳細には、画像生成部202は、視差画像情報取得部125からの視差画像情報に含まれる補助画像の視差画像の多重化方式を示す情報に基づいて、補助画像の視差画像の多重化画像から、各補助画像の視差画像を分離する。例えば、補助画像の視差画像がサイドバイサイド(Side By Side)方式で多重化されている場合、画像生成部202は、その補助画像の視差画像を左右2つに分離する。
また、画像生成部202は、視差画像情報に含まれる互換画像の視差画像の多重化方式を示す情報に基づいて、互換画像の視差画像の多重化画像から、各互換画像の視差画像を分離する。例えば、互換画像の視差画像がサイドバイサイド(Side By Side)方式で多重化されている場合、画像生成部202は、その互換画像の視差画像を左右2つに分離する。
さらに、画像生成部202は、画像情報取得部123からの画像情報に含まれる補助画像の多重化方式を示す情報に基づいて、補助画像の多重化画像から、各補助画像を分離する。例えば、互換画像がサイドバイサイド(Side By Side)方式で多重化されている場合、画像生成部202は、その互換画像を左右2つに分離する。
また、画像生成部202は、視点間距離情報と図示せぬ表示装置に対応する視点数に基づいて、生成する多視点の画像の各視点の位置を決定する。そして、画像生成部202は、各互換画像、各補助画像、各互換画像の視差画像、および各補助画像の視差画像を用いて、位置が決定された各視点の画像を生成する。そして、画像生成部202は、画像生成部127と同様に、生成された多視点の画像の解像度を、互換画像や補助画像の解像度の1/視点数の解像度に変換して合成し、図示せぬ表示装置に表示させる。
このとき、合成後の多視点の画像は、視点ごとに視認可能な角度が異なるように表示され、視聴者は、任意の2視点の各画像を左右の各目で見ることにより、メガネを装着せずに3D画像を見ることができる。
また、画像生成部202は、視聴者からの2視点方式の3D画像の表示指令に応じて、デコーダ122から供給される互換画像としての画像A2と画像B2を交互に出力して、図示せぬ表示装置に表示させる。このとき、視聴者は、画像A2の表示時に左目用のシャッタまたは右目用のシャッタの一方が開き、画像B2の表示時に他方が開くメガネを装着して、表示装置に交互に表示される画像A2と画像B2を見ることにより、3D画像を見ることができる。
[ベースバンドのデータ伝送]
例えば、上述した図2の復号装置120において、点線L1の左側(分離部121およびデコーダ122)を再生装置として構成し、点線L1の右側(画像生成部127)を表示装置として構成するとする。
再生装置としては、例えば、記録媒体に記録されている3D画像データを読み出して再生するプレーヤやレコーダ(再生機能を有するもの)が考えられる。また、セットトップボックスのような、外部から3D画像データを取得し、再生するネットワーク機器も考えられる。表示装置としては、CRTディスプレイ、LCD、有機ELディスプレイ、若しくはプロジェクタ等が考えられる。
互換画像、補助画像、およびそれらの視差画像に注目すると、この場合、再生装置から表示装置へ、これらの画像をベースバンドのデータとして伝送する必要がある。
図4に示される復号装置170の場合も同様である。互換画像、補助画像、およびそれらの視差画像に注目し、点線L2の左側の構成を再生装置とし、右側の構成を表示装置とすると、この再生装置と表示装置との間で、これらの画像をベースバンドのデータとして伝送させる必要がある。
図6に示される復号装置200の場合も同様である。互換画像、補助画像、およびそれらの視差画像に注目し、点線L3の左側の構成を再生装置とし、右側の構成を表示装置とすると、この再生装置と表示装置との間で、これらの画像をベースバンドのデータとして伝送させる必要がある。
このような再生装置と表示装置のようなAV機器間の通信の規格は多数存在する。しかしながら、図1乃至図6を参照して説明したような3DVフォーマットに準拠する3D画像フォーマットのデータを、ベースバンドで、AV機器間で伝送させる方法は無かった。
例えば、デジタル機器間を接続するインタフェースとして、HDMI(High Definition Multimedia Interface)がある。
HDMIは、デジタル家電向けのインタフェースであり、PC(Personal Computer)とディスプレイとの間の接続標準規格であるDVI(Digital Visual Interface)に、音声伝送機能や著作権保護機能(デジタルコンテンツ等の不正コピー防止機能)、色差伝送機能を加えるなど、AV(Audio Visual)家電向けにアレンジしたものである。2002年12月にHDMI1.0の仕様が策定された。
HDMIは非圧縮デジタル音声・映像を伝達し、画質・音質の劣化がない利点がある。HDMIでは現在フルスペック・ハイビジョン(フルHD:解像度は水平1920画素×垂直1080ライン)の機能を基本としている。映像・音声を非圧縮でプレーヤからテレビに側に転送できるため、デコーダなどの専用チップやソフトウェアを必要としない。接続機器同士が互いに認識できるインテリジェント機能も備えている。
また、映像・音声・制御信号が一本化したシングルケーブルのため、AV機器の配線を簡略化できるメリットもある。制御信号なども送信することができるので、各AV機器間の連携も容易である。
現在HDMIでは、例えばフレームパッキングやステレオスコピック等の既存の3D画像フォーマットにも対応している。
しかしながら、上述したように、3DVフォーマットのデータには、従来の3D画像フォーマットにおいては規定されていない情報が含まれる。したがって、このようなHDMI規格であっても、3DVフォーマットのデータを正しく伝送させることができない恐れがあった。
[伝送システムの構成]
そこで、以下においては、このような再生装置と表示装置との間で行われる、(デコードされた後の、)3DVフォーマットの3D画像データの伝送について説明する。
図7は、本技術を適用した伝送システムの主な構成例を示すブロック図である。図7に示される伝送システム300は、上述したように、復号後の3DVフォーマットの3D画像データを伝送するシステムである。
図7に示されるように、伝送システム300は、再生装置301および表示装置302を有し、それらがHDMIケーブル303によりデータ伝送可能に接続されている。
再生装置301は、記録媒体から読み出した、若しくは、他の装置から取得した3D画像データを再生し、HDMIケーブル303を介して、表示装置302へ供給する装置である。再生装置301は、上述した復号装置の点線L1乃至L3の左側の構成(互換画像、補助画像、およびそれらの視差画像に関する構成)を有する。
表示装置302は、再生装置301からHDMIケーブル303を介して伝送される3D画像データから、多視点の表示用画像を生成し、それをディスプレイに表示させる。表示装置302は、上述した復号装置の点線L1乃至L3の右側の構成(互換画像、補助画像、およびそれらの視差画像に関する構成)を有する。
伝送システム300においては、再生装置301から表示装置302へ、HDMIケーブル303を介して3D画像データが、HDMI規格に従って伝送される。
[再生装置の構成]
図8は、このHDMI規格に基づくデータ伝送の送信側デバイスである再生装置301のデータ伝送に関する部分の、主な構成例を示す図である。
図8に示されるように、再生装置301は、デコーダ311、モード判定部312、3D情報生成部313、および通信部314を有する。
デコーダ311は、符号化された3D画像データを復号し、ベースバンドの3D画像データをモード判定部312および通信部314に供給する。
モード判定部312は、供給された3D画像データの構成(フォーマット)を調べ、Mono Compatible Modeであるか、Frame Packing(Side by Side) Compatible Modeであるか、Frame Packing(Top and Bottom) Compatible Modeであるか、若しくは、Stereo Scopic Compatible Modeであるかを判定し、その判定結果を3D情報生成部313に供給する。
3D情報生成部313は、3DVフォーマットの画像データであること、および、モード判定部312により判定された互換性に関するモード等を示す情報を含む3D情報を生成し、伝送する3D画像データの所定の位置に挿入する。例えば、3D情報生成部313は、HDMI規格のVSIFPC(Vendor Specific infoFrame Packet Contents)を拡張し、3D情報を記述する。
通信部314は、HDMI規格に従って、表示装置302と通信を行う。例えば、通信部314は、デコーダ311から供給される3D画像データを表示装置302に送信する。
[表示装置の構成]
図9は、HDMI規格に基づくデータ伝送の受信側デバイスである表示装置302のデータ伝送に関する部分の、主な構成例を示す図である。
図9に示されるように、表示装置302は、通信部321、モード判定部322、同期設定部323、同期制御部324、画像生成部325、および表示部326を有する。
通信部321は、HDMI規格に従って、再生装置301と通信を行う。例えば、通信部321は、再生装置301から伝送された3D画像データを受信し、それをモード判定部322および画像生成部325に供給する。
モード判定部322は、通信部321から供給される3D画像データに含まれる3D画像情報を参照し、その3D画像データのモードを判定する。例えば、モード判定部322は、3D画像データのモードが、Mono Compatible Modeであるか、Frame Packing(Side by Side) Compatible Modeであるか、Frame Packing(Top and Bottom) Compatible Modeであるか、若しくは、Stereo Scopic Compatible Modeであるかを判定し、その判定結果を同期設定部323に通知する。
同期設定部323は、判定されたモードに応じて同期方法を設定する。同期制御部324は、同期設定部323に設定された同期方法に従って、画像生成部325および表示部326に同期信号を供給し、画像生成部325および表示部326の動作タイミングを制御する。
画像生成部325は、通信部321を介して供給された3D画像データ(互換画像、補助画像、およびそれらの視差画像)を用いて、ユーザ等に指定された、もしくは表示部326が対応可能な視点数の多視点の表示用画像を生成し、それを表示部326に供給して表示させる。
表示部326は、CRTディスプレイやLCD等のディスプレイを有し、画像生成部325から供給された多視点の表示用画像を、それぞれの視点方向に向けて表示する。
[HDMIデータ伝送]
次に、再生装置301の通信部314(HDMI送信部)および表示装置302の通信部321(HDMI受信部)について説明する。図10は、通信部314と、通信部321の詳細な構成例を示すブロック図である。
HDMI送信部である通信部314は、所定の数の垂直同期信号の区間から、水平帰線区間および垂直帰線区間を除いた区間である有効画像区間(以下、適宜、アクティブビデオ区間ともいう)において、非圧縮の1画面分の画像の画素データに対応する差動信号を、複数のチャネルで、HDMI受信部である通信部321に一方向に送信するとともに、水平帰線区間または垂直帰線区間において、少なくとも画像に付随する音声データや制御データ、その他の補助データ等に対応する差動信号を、複数のチャネルで、通信部321に一方向に送信する。
すなわち、通信部314は、HDMIトランスミッタ331を有する。HDMIトランスミッタ331は、例えば、符号化データを対応する差動信号に変換し、複数のチャネルである3つのTMDSチャネル#0,#1,#2で、HDMIケーブル303を介して接続されている通信部321に、一方向にシリアル伝送する。
また、HDMIトランスミッタ331は、符号化データに付随する音声データ、さらには、必要な制御データその他の補助データ等を、対応する差動信号に変換し、3つのTMDSチャネル#0,#1,#2でHDMIケーブル303を介して接続されている通信部321に、一方向にシリアル伝送する。
さらに、HDMIトランスミッタ331は、3つのTMDSチャネル#0,#1,#2で送信する画素データに同期したピクセルクロックを、TMDSクロックチャネルで、HDMIケーブル303を介して接続されている通信部321に送信する。ここで、1つのTMDSチャネル#i(i=0,1,2)では、ピクセルクロックの1クロックの間に、例えば10ビットのデータが送信される。
通信部321は、アクティブビデオ区間において、複数のチャネルで、通信部314から一方向に送信されてくる、画素データに対応する差動信号を受信するとともに、水平帰線区間または垂直帰線区間において、複数のチャネルで、通信部314から一方向に送信されてくる、音声データや制御データに対応する差動信号を受信する。
すなわち、通信部321は、HDMIレシーバ332を有する。HDMIレシーバ332は、TMDSチャネル#0,#1,#2で、HDMIケーブル303を介して接続されている通信部314から一方向に送信されてくる、画素データに対応する差動信号と、音声データや制御データに対応する差動信号を、同じく通信部314からTMDSクロックチャネルで送信されてくるピクセルクロックに同期して受信する。
通信部314と通信部321とからなるHDMIシステムの伝送チャネルには、通信部314から通信部321に対して、符号化データおよび音声データを、ピクセルクロックに同期して、一方向にシリアル伝送するための伝送チャネルとしての3つのTMDSチャネル#0乃至#2と、ピクセルクロックを伝送する伝送チャネルとしてのTMDSクロックチャネルの他に、DDC(Display Data Channel)333やCECライン334と呼ばれる伝送チャネルがある。
DDC333は、HDMIケーブル303に含まれる図示せぬ2本の信号線からなり、通信部314が、HDMIケーブル303を介して接続された通信部321から、E-EDIDを読み出すために使用される。
すなわち、通信部321は、HDMIレシーバ332の他に、自身の性能(Configuration/capability)に関する性能情報であるE-EDIDを記憶しているEDID ROM(Read Only Memory)335を有している。通信部314は、HDMIケーブル303を介して接続されている通信部321から、当該通信部321のE-EDIDを、DDC333を介して読み出し、そのE-EDIDに基づき、例えば、通信部321を有する電子機器が対応している画像のフォーマット(プロファイル)、例えば、RGB、YCbCr4:4:4、YCbCr4:2:2、YCbCr4:2:0等を認識する。
CECライン334は、HDMIケーブル303に含まれる図示せぬ1本の信号線からなり、通信部314と通信部321との間で、制御用のデータの双方向通信を行うのに用いられる。
また、HDMIケーブル303には、HPD(Hot Plug Detect)と呼ばれるピンに接続されるライン336が含まれている。ソース機器は、当該ライン336を利用して、シンク機器の接続を検出することができる。また、HDMIケーブル303には、ソース機器からシンク機器に電源を供給するために用いられるライン337が含まれている。さらに、HDMIケーブル303には、拡張用のリザーブライン338が含まれている。
[3D情報の記述]
以上のようなHDMI規格のデータ伝送において、3D情報生成部313は、上述したように例えば図11に示されるようなHDMI規格のVendor Specific infoFrame Packet Contentsを拡張し、モードを示す3D情報を記述する。
図11に示されるVendor Specific infoFrame Packet Contentsは、データとともに送信側から受信側に伝送される情報であり、今どのようなデータが伝送されているかを示す情報である。受信側の装置は、このVendor Specific infoFrame Packet Contentsを参照することにより、現在、どのようなデータが送信されているかを、容易に把握することができる。
図11に示されるように、Vendor Specific infoFrame Packet Contentsの斜線で示される部分には、3D画像データに関する情報を記述する欄(3D_Structure)がある。3D情報生成部313は、例えば、この領域(3D_Structure)の値を拡張し、3D情報を記述する。
例えば図12Aの表に示されるように、従来この3D_Structureの欄には、「0000」、「0110」、「0111」、「1000」、または「1001」等の値を設定することができる。3D情報生成部313は、この3D_Structureの空き(リザーブ)を利用して、例えば、図12Aに示されるように、値「1010」を3DVフォーマットを示す値として設定する。
受信側のモード判定部322は、予めこの値「1010」が3DVフォーマットを示すことを把握していればよい。例えば、このVendor Specific infoFrame Packet Contentsの3D_Structureを参照し、その値が「1010」である場合、モード判定部322は、伝送される画像データが3DVフォーマットであることを把握することができる。
また、例えば、図12Bに示されるように、3DVフォーマットの各モードも指定することができるようにしてもよい。図12Bの例の場合、値「1010」がMono Compatible Modeに割り当てられ、値「1011」がFrame Packing(Side by Side) Compatible Modeに割り当てられ、値「1100」がFrame Packing(Top and Bottom) Compatible Modeに割り当てられ、値「1101」がStereo Scopic Compatible Modeに割り当てられている。
3D情報生成部313は、モード判定部312により判定されたモードに対応する値を、このVendor Specific infoFrame Packet Contentsの3D_Structureに設定する。モード判定部322は、予めこれらの値を把握しているので、データ受信時にこの3D_Structure参照することにより、容易にモードを判定することができる。
[同期方法の拡張]
HDMIのデータ伝送においては、通常、図13に示されるように、水平同期信号351が1周期分、並びに、垂直同期信号352が1周期分のアクティブビデオ区間に1フレーム分の画像データが伝送される。
通信部314は、3D画像データを伝送する際、例えば各モードに応じてこのような同期方法拡張する。
Mono Compatible Modeの場合、例えば図14に示されるように、1フレーム分の3D画像データとして、互換画像、補助画像、およびそれらの視差画像により合計4フレーム分のデータを伝送する必要がある。
したがって、例えば図14に示されるように、通信部314が、これらの4フレーム分のデータを、水平同期信号351が1周期分、並びに、垂直同期信号352が1周期分のアクティブビデオ区間に伝送させるようにしてもよい。
また、例えば図15に示されるように、通信部314が、これらの4フレーム分のデータの伝送に、垂直同期信号2周期分のアクティブビデオ区間を使うようにしてもよい。もちろん、垂直同期信号3周期以上分のアクティブビデオ区間を使用するようにしてもよい。ただし、同期を正しくとることができるようにするために、垂直同期信号何周期分のアクティブビデオ区間を使用して、1フレーム分の3D画像データを伝送させるかを、再生装置301および表示装置302の双方が予め把握しておく必要がある。
このように垂直同期信号複数周期分のアクティブビデオ区間を使用して1フレーム分の3D画像データを伝送するようにすることにより、より詳細な伝送制御をより容易にすることができる。例えば、一部の情報のみを伝送させる場合、それ以外の周期のデータ伝送を中止すればよい。
Frame Packing(Side by Side) Compatible Modeの場合も、例えば図16に示されるように、1フレーム分の3D画像データとして、互換画像、補助画像、およびそれらの視差画像により合計4フレーム分のデータを伝送する必要がある。
したがって、例えば図16に示されるように、通信部314が、これらの4フレーム分のデータを、水平同期信号1周期および垂直同期信号1周期のアクティブビデオ区間に伝送させるようにしてもよい。もちろん、このFrame Packing(Side by Side) Compatible Modeの場合においても、上述したMono Compatible Modeの場合と同様に、垂直同期信号複数周期分のアクティブビデオ区間を使用して1フレーム分の3D画像データを伝送させるようにしてもよい。
Frame Packing(Top and Bottom) Compatible Modeの場合も、例えば図17に示されるように、1フレーム分の3D画像データとして、互換画像、補助画像、およびそれらの視差画像により合計4フレーム分のデータを伝送する必要がある。
したがって、例えば図17に示されるように、通信部314が、これらの4フレーム分のデータを、水平同期信号1周期および垂直同期信号1周期のアクティブビデオ区間に伝送させるようにしてもよい。もちろん、このFrame Packing(Top and Bottom) Compatible Modeの場合においても、上述したMono Compatible Modeの場合と同様に、垂直同期信号複数周期分のアクティブビデオ区間を使用して1フレーム分の3D画像データを伝送させるようにしてもよい。
Stereo Scopic Compatible Modeの場合も、例えば図18に示されるように、1フレーム分の3D画像データとして、互換画像、補助画像、およびそれらの視差画像により合計4フレーム分のデータを伝送する必要がある。
したがって、例えば図18に示されるように、通信部314が、これらの4フレーム分のデータを、水平同期信号1周期および垂直同期信号1周期のアクティブビデオ区間に伝送させるようにしてもよい。
なお、現在のHDMI規格(Ver. 1.4)では、垂直同期信号1周期のアクティブビデオ区間に、所謂4K×2K以上の解像度の画像データを伝送させることはできない。しかしながら、この制約を拡張し、垂直同期信号1周期のアクティブビデオ区間に5K×2Kの画像データを伝送させることができるようにしてもよい。
その場合のStereo Scopic Compatible Modeの伝送例を図19に示す。このようにすることにより、図18の例の場合よりも、高解像度の視差情報を伝送することができる。したがって、表示用画像において、より精密な奥行き表現が可能になる。
もちろん、このStereo Scopic Compatible Modeの場合においても、上述したMono Compatible Modeの場合と同様に、垂直同期信号複数周期分のアクティブビデオ区間を使用して1フレーム分の3D画像データを伝送させるようにしてもよい。
さらに、例えば図20に示されるように、垂直同期信号の間隔(周波数)を、一定でない不等間隔としてもよい。図20の例の場合、垂直同期信号の1周期目は2K分の長さであり、2周期目はその半分の1K分の長さであり、3周期目は1周期目と同じ2K分の長さである。
このように垂直同期信号の周波数を適宜変更し、伝送する3D画像データの構造に適切となるようにすることにより、3D画像データの構造に応じた、より詳細な伝送制御をより容易にすることができる。例えば、互換情報のみを伝送させる場合、2周期目と3周期目のデータ伝送を中止すればよい。
もちろん、垂直同期信号を不等間隔とするときの周期のパターンは任意であり、図20に示される例以外のパターンであってもよい。また、このように垂直同期信号を不等間隔とする方法は、Stereo Scopic Compatible Modeにも適用することができる。
[送信処理の流れ]
以上のような3D画像のデータ伝送について行われる各種処理について説明する。
図21のフローチャートを参照して、図8の再生装置301により実行される送信処理の流れの例を説明する。
送信処理が開始されると、再生装置301のモード判定部312は、ステップS101において、伝送するストリーム(3D画像データ)のモードを判定する。3D情報生成部313は、ステップS102において、ステップS101の判定結果に基づいて、ストリームのモードを示す3D情報を生成する。
ステップS103において、通信部314は、ステップS103により生成された3D情報を表示装置302に送信する。通信部314は、ステップS104において、ストリームを表示装置302に送信する。
このように処理を行うことにより、再生装置301は、伝送する3D画像データのモードを含む3D情報を受信側の表示装置302に供給することができる。これにより、再生装置301は、上述した3DVフォーマットのような、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができる。
[受信処理の流れ]
図22のフローチャートを参照して、図9の表示装置302により実行される受信処理の流れの例を説明する。
受信処理が開始されると、表示装置302の通信部321は、ステップS121において、再生装置301から送信された3D情報を受信する。ステップS122において、モード判定部322は、その3D情報を参照し、伝送されるストリーム(3D画像データ)のモードを判定する。
ステップS123において、同期設定部323は、ステップS122のモード判定結果に基づいて、例えば、図14乃至図20を参照して説明したような同期方法を設定する。ステップS124において、同期制御部324は、ステップS123において設定された同期方法で、画像生成部325や表示部326の同期を制御する。
ステップS125において、通信部321は、再生装置301から伝送されるストリーム(3D画像データ)を受信する。ステップS126において、画像生成部325は、ステップS125において受信された3D画像データを用いて、多視点の表示用画像を生成する。
ステップS127において、表示部326は、ステップS126の処理により生成された多視点の表示用画像を表示する。
このように処理を行うことにより、表示装置302は、伝送される3D画像データとともに、その3D画像データのモードを含む3D情報を受信することができ、さらにその3D情報から3D画像データのモードを容易に判定し、そのモードに従って適切な同期方法を設定することができる。したがって、表示装置302は、上述した3DVフォーマットのような、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができる。
なお、以上においては、HDMI規格に従ったデータ伝送を例に説明したが、HDMI規格以外の伝送規格に適用することもできる。
また、以上においては、3D画像データのデータ伝送における送信側の装置として再生装置301を用い、受信側の装置として表示装置302を用いて説明したが、送信側の装置および受信側の装置は、互いに3D画像データを送受信することができるものであればどのような装置であってもよい。
<2.第2の実施の形態>
[E-EDIDの拡張]
以上においては、3D画像データのモードに関する3D情報を3D画像データとともに伝送することにより、3DVのデータ伝送を実現するように説明した。これに限らず、例えば、さらに、3D画像データの伝送を開始する前に、受信側の表示装置302が自身の対応可能なモードに関する情報を、送信側の再生装置301に対して提供するようにしてもよい。
このようにすることにより、再生装置301は、表示装置302の能力に関する情報を取得し、その情報に基づいて3D画像データのモードを設定することができる。つまり、再生装置301は、より適切に3D画像データの送信を行うことができる。
再生装置301の通信部314(HDMI送信部)は、HDMIケーブル303を介して、表示装置302の通信部321(HDMI受信部)から、その通信部321のE-EDID(Enhanced Extended Display Identification Data)を、DDC(Display Data Channel)を介して読み出す。このE-EDIDには、表示装置302で取り扱われる解像度、復号処理の遅延時間、ビット深度、フレームレート等、表示装置302の能力に関する情報が含まれている。
図23は、E-EDIDのデータ構造例を示している。このE-EDIDは、基本ブロックと拡張ブロックとからなっている。基本ブロックの先頭には、“E-EDID1.3 Basic Structure”で表されるE-EDID1.3の規格で定められたデータが配置され、続いて“Preferred timing”で表される従来のEDIDとの互換性を保つためのタイミング情報、および“2nd timing”で表される従来のEDIDとの互換性を保つための“Preferred timing”とは異なるタイミング情報が配置されている。
また、基本ブロックには、“2nd timing”に続いて、“Monitor NAME”で表される表示装置の名前を示す情報、および“Monitor Range Limits”で表される、アスペクト比が4:3および16:9である場合についての表示可能な画素数を示す情報が順番に配置されている。
拡張ブロックの先頭には、“Speaker Allocation”で表される左右のスピーカに関する情報が配置され、続いて“VIDEO SHORT”で表される、表示可能な画像サイズ(解像度)、フレームレート、インターレースであるかプログレッシブであるかを示す情報、アスペクト比などの情報が記述されたデータ、“AUDIO SHORT”で表される、再生可能な音声コーデック方式、サンプリング周波数、カットオフ帯域、コーデックビット数などの情報が記述されたデータ、および“Speaker Allocation”で表される左右のスピーカに関する情報が順番に配置されている。
また、拡張ブロックには、“Speaker Allocation”に続いて、“Vendor Specific”で表されるメーカごとに固有に定義されたデータ、“3rd timing”で表される従来のEDIDとの互換性を保つためのタイミング情報、および“4th timing”で表される従来のEDIDとの互換性を保つためのタイミング情報が配置されている。
図24は、図23において斜線で示されるVendor Specific領域(Vendor Specific Data Block)のデータ構造例を示している。このVendor Specific領域には、1バイトのブロックである第0ブロック乃至第Nブロックが設けられている。
このVendor Specific領域の第13ブロック以降には、リザーブ領域が拡張され、表示装置302が対応可能な3Dフォーマットに関する情報が記述されている。表示装置302は、このVendor Specific Data Blockの3D_Structure_ALL_X、3D_Structure_X、および、3D_Detaile_Xを、リザーブ領域を活用して拡張し、3DVストリームや垂直方向の同期信号の単位や周期を定義する。
例えば、3D_Structure_ALL_Xの値を、図25に示される表のように拡張し、9番乃至13番に各モードを割り当てるようにしてもよい。
また、例えば、3D_Structure_Xの値を、図12に示される表のように拡張し、さらに、3D_Detail_Xの値を図26に示される表のように拡張し、上述したように垂直同期信号の複数周期分のアクティブビデオ領域を使って1フレーム分の3D画像データを伝送することや、垂直同期信号を不等間隔とすること等を定義するようにしてもよい。
[再生装置の構成]
図27は、その場合の再生装置301の主な構成例を示すブロック図である。この場合、再生装置301は、図27に示されるように、図8の構成に加え、受信側情報取得部411と同期設定部412を有する。
受信側情報取得部411は、3D画像データの伝送が開始される前に、表示装置302から供給される、受信側の装置としての能力を示す受信側情報を、通信部314を介して取得する。例えば、受信側情報取得部411は、受信側情報として、図23に示されるようなE-EDIDデータを取得する。上述したように、このE-EDIDデータのVendor Specific Data Blockは、図24に示されるように拡張され、3D_Structure_ALL_X、3D_Structure_X、および、3D_Detaile_X等の値が、図25や図26に示される表のように拡張されることにより、表示装置302が処理可能なモードが示される。
受信側情報取得部411は、このような受信側情報を取得すると、それを同期設定部412に供給する。同期設定部412は、受信側情報取得部411により取得された受信側情報と、モード判定部312により判定されたモードに従って、表示装置302が処理可能な同期方法を設定し、3D情報生成部313に通知する。
3D情報生成部313は、同期設定部412により設定された同期方法を示す3D情報を生成し、3D画像データに挿入する。
[表示装置の構成]
図28は、その場合の表示装置302の主な構成例を示すブロック図である。この場合、表示装置302は、図28に示されるように、図9の構成に加え、受信側情報提供部421を有する。
受信側情報提供部421は、例えば、図23に示されるようなE-EDIDを記憶しており、3D画像データの伝送が開始される前に、ネゴシエーション情報として、そのE-EDIDを、通信部321を介して送信側の再生装置301に送信する。
なお、この受信側情報提供部421は、図10に示されるEDIDROM335のように通信部321の内部に構成されるようにしてもよい。
[送信処理の流れ]
次に、図29のフローチャートを参照して、図27の再生装置301により実行される送信処理の流れの例を説明する。
送信処理が開始されると、ステップS201において、受信側情報取得部411は、受信側情報を取得する。ステップS202において、モード判定部312は、伝送するストリーム(3D画像データ)のモードを判定する。
ステップS203において、同期設定部412は、ステップS201において取得された受信側情報、および、ステップS202において判定されたストリームのモードに基づいて、表示装置302が処理可能で、かつ、ストリームのモードに対応した同期方法を設定する。
ステップS204において、3D情報生成部313は、ステップS203において設定された同期方法を示す3D情報を生成する。ステップS205において、通信部314は、ステップS204において生成された3D情報を表示装置302に送信する。また、ステップS206において、通信部314は、ストリームを表示装置302に送信する。
このように処理を行うことにより、再生装置301は、表示装置302の能力に応じて同期方法を設定することができ、さらにその3D情報を表示装置302に供給することができる。これにより、再生装置301は、上述した3DVフォーマットのような、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができる。
[受信処理の流れ]
図30のフローチャートを参照して、図28の表示装置302により実行される受信処理の流れの例を説明する。
受信処理が開始されると、表示装置302の受信側情報提供部421は、ステップS221において、通信部321を介して受信側情報を再生装置301に提供する。
ステップS222において、通信部321は、再生装置301から送信された3D情報を受信する。ステップS223において、モード判定部322は、その3D情報を参照し、伝送されるストリーム(3D画像データ)のモードを判定する。
ステップS224において、同期設定部323は、ステップS223のモード判定結果に基づいて同期方法を設定する。ステップS225において、同期制御部324は、ステップS224において設定された同期方法で、画像生成部325や表示部326の同期を制御する。
ステップS226において、通信部321は、再生装置301から伝送されるストリーム(3D画像データ)を受信する。ステップS227において、画像生成部325は、ステップS226において受信された3D画像データを用いて、多視点の表示用画像を生成する。
ステップS228において、表示部326は、ステップS227の処理により生成された多視点の表示用画像を表示する。
このように処理を行うことにより、表示装置302は、自身の処理能力を示す受信側情報を送信側の再生装置301に提供することができ、自信の能力に応じた同期方法を再生装置301に設定させることができる。そして表示装置302は、その同期方法を適切に設定することができる。したがって、表示装置302は、上述した3DVフォーマットのような、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができる。
なお、以上においては、HDMI規格に従ったデータ伝送を例に説明したが、HDMI規格以外の伝送規格に適用することもできる。
また、以上においては、3D画像データのデータ伝送における送信側の装置として再生装置301を用い、受信側の装置として表示装置302を用いて説明したが、送信側の装置および受信側の装置は、互いに3D画像データを送受信することができるものであればどのような装置であってもよい。
<3.第3の実施の形態>
[符号化装置の構成例]
図31は、本技術を適用した伝送システムの第3の実施の形態で伝送される3D画像を符号化する符号化装置の構成例を示すブロック図である。
図31に示す構成のうち、図3の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図31の符号化装置440の構成は、主に、視差画像生成部143、エンコーダ145、多重化部59の代わりに、視差画像生成部441、エンコーダ442、多重化部443が設けられている点が図3の構成と異なる。符号化装置440は、互換画像の視差画像を空間方向に多重化するのではなく、時間方向に多重化して符号化する。
具体的には、符号化装置440の視差画像生成部441は、撮影部141A乃至撮影部141Dから供給される画像A2乃至画像D2を用いて、画像A2乃至画像D2の各画素の視差を検出する。視差画像生成部441は、検出結果に基づいて、互換画像である画像A2の視差画像A2’および画像B2の視差画像B2’、並びに、補助画像である画像C2の視差画像C2’および画像D2の視差画像D2’を生成する。
また、視差画像生成部441は、図3の視差画像生成部143と同様に、視差画像C2’と視差画像D2’を、所定の多重化方式で空間方向に多重化する。さらに、視差画像生成部441は、視差画像A2’、視差画像B2’、および補助画像の視差画像の多重化画像を、時間方向に多重化する。視差画像生成部441は、その結果得られる、1フレーム時間内に1フレーム分の視差画像A2’、視差画像B2’、および補助画像の視差画像の多重化画像が存在する多重化画像を、時間多重化画像としてエンコーダ442に供給する。
また、視差画像生成部441は、補助画像の視差画像の多重化方式と、互換画像および補助画像の視差画像の多重化方式としての時間方向に多重化する方式(以下、フレームシーケンシャル方式という)とを示す情報を、視差画像情報生成部57に供給する。
エンコーダ442は、互換用エンコーダ151と補助用エンコーダ451により構成される。エンコーダ442の補助用エンコーダ451は、画像変換部142からの補助画像の多重化画像と視差画像生成部441からの時間多重化画像を3DV方式で符号化する。補助用エンコーダ451は、その結果得られる符号化ストリームを補助ストリームとして多重化部443に供給する。
多重化部443は、互換用エンコーダ151からの互換ストリーム、補助用エンコーダ451からの補助ストリーム、画像情報生成部54からの画像情報、互換情報生成部55からの互換情報、視点間距離情報生成部56からの視点間距離情報、および視差画像情報生成部57からの視差画像情報などを用いて、TSを生成する。多重化部443は、生成されたTSを多重化し、その結果得られる多重化ストリームを送信する。
なお、以下では、画像情報、互換情報、視点間距離情報、および視差画像情報をまとめて補助情報という。
[補助情報の記述例]
図32は、補助情報がPMTのディスクリプタに記述される場合の互換情報と視差画像情報の記述例を示す図である。
図32に示すように、補助情報がPMTのディスクリプタに記述される場合、PMTのディスクリプタとして、互換情報が配置されるディスクリプタ(3DV_view_structure_descriptor)、視差画像情報が配置されるディスクリプタ(depth_map_structure_descriptor)等が設けられる。
そして、ディスクリプタ(depth_map_structure_descriptor)には、図33に示すように、ディスクリプタタグ(descriptor_tag)、ディスクリプタ長(descriptor_length)に続いて、視差画像情報として、視差画像の数(num_of_depth_map)、視差画像が多重化されているかどうかを表すフラグ(is_frame_packing)、視差画像の多重化方式(frame_packing_mode)、多重化されている視差画像を指定する情報(comb_frame_packing_views)などが記述される。
なお、多重化方式としては、サイドバイサイド方式(SBS)、トップアンドボトム方式(TOB)、フレームシーケンシャル方式などがある。
また、符号化装置440では、補助情報がTSに含まれるものとしたが、補助情報は補助ストリームに含まれるようにしてもよい。
図34および図35は、補助情報が補助ストリームに含まれる場合の、補助ストリーム内の互換情報と視差画像情報の記述例を示す図である。
図34に示すように、互換情報(3DV_view_structure)と視差画像情報(depth_map_structure)は、例えば、補助ストリーム内のSEI(Supplemental Enhancement Information)に配置される。
視差画像情報(depth_map_structure)としては、図35に示すように、視差画像(depth map)の数(num_of_depth_map)、視差画像が多重化されているかどうかを表すフラグ(is_frame_packing)、視差画像の多重化方式(frame_packing_mode)、多重化されている視差画像を指定する情報(comb_frame_packing_views)などが記述される。
なお、図示は省略するが、画像情報は、視差画像ではなく、互換画像および補助画像についての情報であること以外視差画像情報と同様である。
[符号化装置の処理の説明]
図36および図37は、図31の符号化装置440による符号化処理を説明するフローチャートである。この符号化処理は、例えば、撮影部141A乃至撮影部141Dから画像A2乃至画像D2が出力されたとき開始される。
図36のステップS451において、視点間距離情報生成部144は、撮影部141A乃至撮影部141Dから供給される画像A2乃至画像D2を用いて、距離Δd2AB、距離Δd2BC、距離Δd2ADを視点間距離として検出する。
ステップS452において、視点間距離情報生成部144は、ステップS451で検出された視点間距離を表す情報などを視点間距離情報として生成し、多重化部443に入力する。
ステップS453において、画像変換部142は、撮影部141A乃至撮影部141Dのうちの水平方向の位置が内側にある撮影部141Aから供給される画像A2と、撮影部141Bから供給される画像B2を互換画像に決定し、互換画像および補助画像の多重化方式を決定する。画像変換部142は、互換画像として画像A2および画像B2を指定する情報を互換情報生成部55に供給し、互換画像および補助画像の多重化方式を画像情報生成部54に供給する。
ステップS454において、互換情報生成部55は、画像変換部142から供給される情報に基づいて、互換画像として画像A2および画像B2を指定する情報、互換モードとしてのフレームパッキングモードなどを互換情報として生成し、多重化部443に入力する。
ステップS455において、画像変換部142は、ステップS453で決定された互換画像の多重化方式に基づいて互換画像である画像A2と画像B2を多重化し、エンコーダ442に供給する。
ステップS456において、画像情報生成部54は、画像変換部142から供給される情報に基づいて、互換画像および補助画像の多重化方式を示す情報などを画像情報として生成し、多重化部443に入力する。
ステップS457において、画像変換部142は、画像A2および画像B2以外の画像C2および画像D2を補助画像として、ステップS453で決定された補助画像の多重化方式に基づいて補助画像を多重化し、補助画像の多重化画像を得る。
ステップS458において、画像変換部142は、互換画像の多重化画像と補助画像の多重化画像をエンコーダ442に入力する。
図37のステップS459において、視差画像生成部441は、撮影部141A乃至撮影部141Dから供給される画像A2乃至画像D2を用いて画像A2乃至画像D2の各画素の視差を検出し、視差画像A2’乃至視差画像D2’を生成する。
ステップS460において、視差画像生成部441は、補助画像の視差画像の多重化方式と、互換画像の視差画像および補助画像の視差画像の多重化画像の多重化方式を決定し、その多重化方式を示す情報を視差画像情報生成部57に供給する。
ステップS461において、視差画像情報生成部57は、視差画像生成部441から供給される情報に基づいて、補助画像の視差画像の多重化方式と、互換画像の視差画像および補助画像の視差画像の多重化画像の多重化方式を示す情報などを、視差画像情報として生成し、多重化部443に入力する。
ステップS462において、視差画像生成部441は、ステップS460で決定された多重化方式に基づいて、補助画像の視差画像C2’と視差画像D2’を空間方向に多重化し、互換画像の視差画像A2’および視差画像B2’と補助画像の視差画像の多重化画像を時間方向に多重化する。
ステップS463において、視差画像生成部441は、ステップS462の多重化の結果得られる時間多重化画像をエンコーダ442に入力する。
ステップS464において、エンコーダ442の互換用エンコーダ151は、画像変換部142から供給される互換画像の多重化画像を既存のAVC方式で符号化して各種の情報を付加し、その結果得られる符号化ストリームを互換ストリームとして多重化部443に供給する。
ステップS465において、補助用エンコーダ451は、画像変換部142からの補助画像の多重化画像と視差画像生成部441からの時間多重化画像を、3DV方式で符号化する。補助用エンコーダ451は、符号化の結果得られる符号化ストリームを補助用ストリームとして多重化部443に供給する。
ステップS466において、多重化部443は、互換用エンコーダ151から供給される互換ストリーム、補助用エンコーダ451から供給される補助ストリーム、および補助情報からTSを生成して多重化し、その結果得られる多重化ストリームを送信する。この多重化ストリームは、例えばBD等に記録されたり、放送用ストリームとして送信されたりする。そして、処理は終了する。
[復号装置の構成例]
図38は、図31の符号化装置440から送信される多重化ストリームを復号する復号装置の構成例を示す図である。
図38に示す構成のうち、図4の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図38の復号装置460の構成は、主に、分離部121、デコーダ122、画像生成部171の代わりに、デコーダ462、画像生成部463が設けられている点が図4の構成と異なる。復号装置460は、符号化装置440から送信される多重化ストリームを復号し、2視点の画像または多視点の画像を生成して、図示せぬ表示装置に表示させる。
具体的には、復号装置460の分離部461は、符号化装置440から送信されてくる多重化ストリームを受信し、TSごとに分離する。分離部461は、TSに含まれる互換ストリームと、TSに含まれる補助ストリームを抽出し、デコーダ462に供給する。また、分離部461は、TSに含まれる補助情報を抽出し、補助情報のうちの画像情報を画像情報取得部123に供給し、視点距離情報を視点間距離情報取得部124に供給する。さらに、分離部461は、補助情報のうちの視差画像情報を視差画像情報取得部125に供給し、互換情報を互換情報取得部126に供給する。
デコーダ462は、互換用デコーダ131と補助用デコーダ471により構成される。デコーダ462の補助用デコーダ471は、分離部461から供給される補助ストリームに含まれる補助画像の多重化画像と時間多重化画像を、図31の補助用エンコーダ451に対応する方式で復号する。補助用デコーダ471は、復号の結果得られる補助画像の多重化画像と時間多重化画像を画像生成部463に供給する。
画像生成部463は、視聴者からの表示指令に応じて画像を出力し、図示せぬ表示装置に表示させる。詳細には、画像生成部463は、視聴者からの多視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報、視点間距離情報取得部124からの視点間距離情報、視差画像情報取得部125からの視差画像情報、互換情報取得部126からの互換情報等に基づいて、互換画像の多重化画像、補助画像の多重化画像、および時間多重化画像を用いて、図示せぬ表示装置に対応する3以上の視点数の、互換画像や補助画像の解像度の半分の解像度の画像を生成する。
より詳細には、画像生成部463は、視差画像情報取得部125からの視差画像情報に含まれる互換画像の視差画像と補助画像の視差画像の多重化画像の多重化方式としてフレームシーケンシャル方式を示す情報に基づいて、時間多重化画像から、互換画像の視差画像である視差画像A2’および視差画像B2’、並びに、補助画像の視差画像の多重化画像を分離する。そして、画像生成部463は、視差画像情報に含まれる補助画像の視差画像の多重化方式に基づいて、補助画像の視差画像の多重化画像から、視差画像C2’と視差画像D2’を分離する。
さらに、画像生成部463は、図4の画像生成部171と同様に、画像情報取得部123からの画像情報に含まれる補助画像の多重化方式を示す情報に基づいて、補助画像の多重化画像から、各補助画像を分離する。また、画像生成部463は、画像生成部171と同様に、画像情報に含まれる互換画像の多重化方式を示す情報に基づいて、互換画像の多重化画像から、各互換画像を分離する。
また、画像生成部463は、画像生成部171と同様に、視点間距離情報と図示せぬ表示装置に対応する視点数に基づいて、生成する多視点の画像の各視点の位置を決定する。そして、画像生成部463は、画像生成部171と同様に、各互換画像、各補助画像、各互換画像の視差画像、および各補助画像の視差画像を用いて、位置が決定された各視点の画像を生成する。そして、画像生成部463は、画像生成部171と同様に、生成された多視点の画像の解像度を、互換画像や補助画像の解像度の1/視点数の解像度に変換して合成し、図示せぬ表示装置に表示させる。
このとき、合成後の多視点の画像は、視点ごとに視認可能な角度が異なるように表示され、視聴者は、任意の2視点の各画像を左右の各目で見ることにより、メガネを装着せずに3D画像を見ることができる。
また、画像生成部463は、画像生成部171と同様に、視聴者からの2視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報に基づいて、デコーダ462から供給される互換画像の多重化画像を、互換画像の解像度の半分の解像度の画像A2と画像B2に分離する。そして、画像生成部463は、画像生成部171と同様に、分離された互換画像の解像度の半分の解像度の画像A2と画像B2を交互に出力して、図示せぬ表示装置に表示させる。このとき、視聴者は、画像A2の表示時に左目用のシャッタまたは右目用のシャッタの一方が開き、画像B2の表示時に他方が開くメガネを装着して、表示装置に交互に表示される画像A2と画像B2を見ることにより、3D画像を見ることができる。
[復号処理の説明]
図39は、図38の復号装置460による復号処理を説明するフローチャートである。この復号処理は、例えば、図31の符号化装置440から送信される多重化ストリームが復号装置460に入力されたとき、開始される。
図39のステップS471において、復号装置460の分離部461は、符号化装置50から送信されてくる多重化ストリームを取得し、その多重化ストリームをTSごとに分離する。分離部461は、TSに含まれる互換ストリームと補助ストリームを抽出し、デコーダ462に供給する。また、分離部461は、TSに含まれる補助情報を抽出し、補助情報のうちの画像情報を画像情報取得部123に供給し、視点距離情報を視点間距離情報取得部124に供給する。さらに、分離部461は、補助情報のうちの視差画像情報を視差画像情報取得部125に供給し、互換情報を互換情報取得部126に供給する。
ステップS472において、画像生成部463は、視聴者から2視点方式の3D画像の表示が指令されたかどうかを判定する。ステップS472で視聴者から2視点方式の3D画像の表示が指令されていないと判定された場合、即ち多視点方式の3D画像の表示が指令された場合、処理はステップS473に進む。
ステップS473において、デコーダ462の互換用デコーダ131は、分離部461から供給される互換ストリームから符号化された互換画像を抽出し、その互換画像をAVC方式に対応する方式で復号する。そして、互換用デコーダ131は、復号の結果得られる画像A1を画像生成部463に供給する。
ステップS474において、補助用デコーダ471は、補助ストリームから符号化された補助画像の多重化画像と時間多重化画像を抽出し、図31の補助用エンコーダ451に対応する方式で復号する。補助用デコーダ471は、復号の結果得られる補助画像の多重化画像と時間多重化画像を画像生成部127に供給し、処理をステップS475に進める。
ステップS475において、画像情報取得部123は、分離部461から供給される画像情報を取得し、画像生成部463に入力する。ステップS476において、視点間距離情報取得部124は、分離部461から供給される視点間距離情報を取得し、画像生成部463に入力する。
ステップS477において、視差画像情報取得部125は、分離部461から供給される視差画像情報を取得し、画像生成部463に入力する。ステップS478において、互換情報取得部126は、分離部461から供給される互換情報を取得し、画像生成部463に供給する。
ステップS479において、画像生成部463は、視点間距離情報取得部124からの視点間距離情報と、図示せぬ表示装置に対応する視点数に基づいて、生成する多視点の画像の各視点の位置を決定する。
ステップS480において、画像生成部463は、ステップS479で決定された各視点の位置、画像情報取得部123からの画像情報、視差画像情報取得部125からの視差画像情報、互換情報取得部126からの互換情報等に基づいて、互換画像の多重化画像、補助画像の多重化画像、および時間多重化画像を用いて、各視点の、互換画像や補助画像の半分の解像度の画像を生成する。
ステップS481において、画像生成部463は、ステップS480で生成された各視点の画像の解像度を、互換画像や補助画像の解像度の1/視点数の解像度に変換し、変換後の各視点の画像を視点の位置に基づいて合成する。
ステップS482において、画像生成部463は、ステップS481の処理により得られる合成後の多視点の画像を図示せぬ表示装置に出力し、視点ごとに視認可能な角度が異なるように表示させる。そして、処理は終了する。
一方、ステップ472で視聴者から2視点方式の3D画像の表示が指令されたと判定された場合、処理はステップS483に進む。
ステップS483において、デコーダ462の互換用デコーダ131は、分離部461から供給される互換ストリームから符号化された互換画像の多重化画像を抽出し、AVC方式に対応する方式で復号する。互換用デコーダ131は、復号の結果得られる互換画像の多重化画像を画像生成部463に供給する。
ステップS484において、画像情報取得部123は、分離部461から供給される画像情報を画像生成部463に入力する。
ステップS485において、画像生成部463は、画像情報取得部123から供給される画像情報に含まれる互換画像の多重化方式を示す情報に基づいて、互換用デコーダ131による復号の結果得られる互換画像の多重化画像を分離する。
ステップS486において、画像生成部463は、分離された互換画像の解像度の半分の解像度の互換画像である画像A2および画像B2を、交互に図示せぬ表示装置に出力し、表示させる。そして、処理は終了する。
なお、復号装置460との互換性を有する互換ストリームのみを復号可能な復号装置では、補助ストリームが無視され、ステップS483,S485、およびS486の処理が行われる。但し、この場合、ステップS485の処理では、予め決められた多重化方式に基づいて、互換画像の多重化画像が分離される。
[ベースバンドのデータ伝送]
上述した図38の復号装置460において、点線L4の左側(分離部461およびデコーダ462)を再生装置として構成し、点線L3の右側(画像生成部463)を表示装置として構成したとき、その再生装置と表示装置は、それぞれ、上述した再生装置301、再生装置302と同様に構成される。
<4.第4の実施の形態>
[符号化装置の構成例]
図40は、本技術を適用した伝送システムの第4の実施の形態で伝送される3D画像を符号化する符号化装置の構成例を示すブロック図である。
図40に示す構成のうち、図31の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図40の符号化装置480の構成は、主に、視差画像生成部143、エンコーダ145、視差画像情報生成部57の代わりに視差画像生成部481、エンコーダ482、視差画像情報生成部483が設けられている点が図31の構成と異なる。符号化装置480は、互換画像に共通の視差値を表す共通視差画像と補助画像の共通視差画像を符号化する。
具体的には、符号化装置480の視差画像生成部481は、撮影部141A乃至撮影部141Dから供給される画像A2乃至画像D2を用いて、画像A2と画像B2の間の各画素の視差を検出し、画像C2と画像D2の間の各画素の視差を検出する。視差画像生成部481は、画像A2と画像B2の間の各画素の視差を表す視差値からなる視差画像を、互換画像の共通視差画像AB2’として生成し、エンコーダ482に供給する。また、視差画像生成部481は、画像C2と画像D2の間の各画素の視差を表す視差値からなる視差画像を、補助画像の共通視差画像CD2’として生成し、エンコーダ482に供給する。
また、視差画像生成部481は、互換画像および補助画像の視差画像が共通視差画像であることを示す情報を視差画像情報生成部483に供給する。
エンコーダ482は、互換用エンコーダ151と補助用エンコーダ491により構成される。補助用エンコーダ491は、画像変換部142からの補助画像の多重化画像、並びに視差画像生成部481からの互換画像の共通視差画像AB2’および補助画像の共通視差画像CD2’を3DV方式で符号化する。補助用エンコーダ491は、その結果得られる符号化ストリームを補助ストリームとして多重化部443に供給する。
視差画像情報生成部483は、視差画像生成部53から供給される情報に基づいて、互換画像と補助画像の視差画像が共通視差画像であることを示す情報などを、視差画像情報として生成し、多重化部443に供給する。
[符号化装置の処理の説明]
図41および図42は、図40の符号化装置480による符号化処理を説明するフローチャートである。この符号化処理は、例えば、撮影部141A乃至撮影部141Dから画像A2乃至画像D2が出力されたとき開始される。
図41のステップS491乃至S498の処理は、図36のステップS451乃至S458の処理と同様であるので、説明は省略する。
図42のステップS499において、視差画像生成部481は、撮影部141A乃至撮影部141Dから供給される画像A2乃至画像D2を用いて、画像A2と画像B2間の各画素の視差と、画像C2と画像D2の各画素の視差を検出する。そして、視差画像生成部481は、画像A2と画像B2の間の各画素の視差を表す視差値からなる共通視差画像AB2’と、画像C2と画像D2の間の各画素の視差を表す視差値からなる共通視差画像CD2’を生成する。
ステップS500において、視差画像情報生成部483は、視差画像生成部481から供給される情報に基づいて、互換画像と補助画像の視差画像が共通視差画像であることを示す情報などを、視差画像情報として生成し、多重化部443に入力する。
ステップS501において、視差画像生成部481は、ステップS499で生成された補助画像の共通視差画像CD2’と互換画像の共通視差画像AB2’をエンコーダ482に入力する。
ステップS502において、エンコーダ482の互換用エンコーダ151は、画像変換部142から供給される互換画像の多重化画像を既存のAVC方式で符号化し、その結果得られる符号化ストリームを互換ストリームとして多重化部443に供給する。
ステップS503において、補助用エンコーダ491は、画像変換部142からの補助画像の多重化画像、並びに、視差画像生成部481からの互換画像の共通視差画像、および補助画像の共通視差画像を3DV方式で符号化する。補助用エンコーダ491は、符号化の結果得られる符号化ストリームを補助用ストリームとして多重化部443に供給する。
ステップS504において、多重化部443は、互換用エンコーダ151から供給される互換ストリーム、補助用エンコーダ491から供給される補助ストリーム、および補助情報からTSを生成して多重化し、その結果得られる多重化ストリームを送信する。この多重化ストリームは、例えばBD等に記録されたり、放送用ストリームとして送信されたりする。そして、処理は終了する。
[復号装置の構成例]
図43は、図40の符号化装置480から送信される多重化ストリームを復号する復号装置の構成例を示す図である。
図43に示す構成のうち、図38の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図43の復号装置500の構成は、主に、デコーダ122、画像生成部171の代わりに、デコーダ501、画像生成部502が設けられている点が図38の構成と異なる。復号装置500は、符号化装置480から送信される多重化ストリームを復号し、2視点の画像または多視点の画像を生成して、図示せぬ表示装置に表示させる。
具体的には、復号装置500のデコーダ501は、互換用デコーダ131と補助用デコーダ511により構成される。デコーダ501の補助用デコーダ511は、分離部461から供給される補助ストリームに含まれる補助画像の多重化画像、互換画像の共通視差画像AB2’、および補助画像の共通視差画像CD2’を、図40の補助用エンコーダ491に対応する方式で復号する。補助用デコーダ511は、復号の結果得られる補助画像の多重化画像、共通視差画像AB2’、および共通視差画像CD2’を画像生成部502に供給する。
画像生成部502は、視聴者からの表示指令に応じて、画像を出力し、図示せぬ表示装置に表示させる。詳細には、画像生成部502は、視聴者からの多視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報、視点間距離情報取得部124からの視点間距離情報、視差画像情報取得部125からの視差画像情報、互換情報取得部126からの互換情報等に基づいて、互換画像の多重化画像、補助画像の多重化画像、共通視差画像AB2’、および共通視差画像CD2’を用いて、図示せぬ表示装置に対応する3以上の視点数の、互換画像や補助画像の解像度の半分の解像度の画像を生成する。
より詳細には、画像生成部502は、視差画像情報取得部125からの視差画像情報に含まれる互換画像と補助画像の視差画像が共通視差画像であることを示す情報に基づいて、共通視差画像AB2’と共通視差画像CD2’をそのままにする。
また、画像生成部502は、図3の画像生成部171と同様に、画像情報取得部123からの画像情報に含まれる補助画像の多重化方式を示す情報に基づいて、補助画像の多重化画像から、各補助画像を分離する。さらに、画像生成部502は、画像生成部171と同様に、画像情報に含まれる互換画像の多重化方式を示す情報に基づいて、互換画像の多重化画像から、各互換画像を分離する。
また、画像生成部502は、画像生成部171と同様に、視点間距離情報と図示せぬ表示装置に対応する視点数に基づいて、生成する多視点の画像の各視点の位置を決定する。そして、画像生成部502は、各互換画像、各補助画像、共通視差画像AB2’、および共通視差画像CD2’を用いて、位置が決定された各視点の画像を生成する。そして、画像生成部502は、画像生成部171と同様に、生成された多視点の画像の解像度を、互換画像や補助画像の解像度の1/視点数の解像度に変換して合成し、図示せぬ表示装置に表示させる。
このとき、合成後の多視点の画像は、視点ごとに視認可能な角度が異なるように表示され、視聴者は、任意の2視点の各画像を左右の各目で見ることにより、メガネを装着せずに3D画像を見ることができる。
また、画像生成部502は、画像生成部171と同様に、視聴者からの2視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報に基づいて、デコーダ501から供給される互換画像の多重化画像を、互換画像の解像度の半分の解像度の画像A2と画像B2に分離する。そして、画像生成部502は、画像生成部171と同様に、分離された互換画像の解像度の半分の解像度の画像A2と画像B2を交互に出力して、図示せぬ表示装置に表示させる。このとき、視聴者は、画像A2の表示時に左目用のシャッタまたは右目用のシャッタの一方が開き、画像B2の表示時に他方が開くメガネを装着して、表示装置に交互に表示される画像A2と画像B2を見ることにより、3D画像を見ることができる。
[復号装置の処理の説明]
図44は、図43の復号装置500による復号処理を説明するフローチャートである。この復号処理は、例えば、図40の符号化装置480から送信される多重化ストリームが復号装置500に入力されたとき、開始される。
図44のステップS511乃至S513の処理は、図39のステップS471乃至S473の処理と同様であるので、説明は省略する。
ステップS514において、補助用デコーダ511は、補助ストリームから符号化された補助画像の多重化画像、互換画像の共通視差画像AB2’、および補助画像の共通視差画像CD2’を抽出し、図40の補助用エンコーダ491における符号化方式に対応する方式で復号する。補助用デコーダ511は、復号の結果得られる補助画像の多重化画像、共通視差画像AB2’、および共通視差画像CD2’を画像生成部502に供給する。
ステップS515乃至S519の処理は、図39のステップS475乃至S479の処理と同様であるので、説明は省略する。
ステップS519の処理後、ステップS520において、画像生成部502は、ステップS519で決定された各視点の位置、画像情報取得部123からの画像情報、視差画像情報取得部125からの視差画像情報、互換情報取得部126からの互換情報等に基づいて、互換画像、補助画像の多重化画像、共通視差画像AB2’、および共通視差画像CD2'を用いて、各視点の、互換画像や補助画像の半分の解像度の画像を生成する。
ステップS521乃至S526の処理は、図39のステップS481乃至S486の処理と同様であるので、説明は省略する。
[ベースバンドのデータ伝送]
上述した図43の復号装置500において、点線L5の左側(分離部461およびデコーダ501)を再生装置として構成し、点線L3の右側(画像生成部502)を表示装置として構成したとき、その再生装置と表示装置は、それぞれ、上述した再生装置301、再生装置302と同様に構成される。
なお、符号化装置440および符号化装置480は、符号化装置140と同様に2視点の互換画像を多重化して符号化したが、図5の符号化装置180と同様に2視点の互換画像を多重化せずに符号化するようにしてもよい。また、符号化装置440および符号化装置480は、図1の符号化装置50と同様に、1視点の互換画像を符号化するようにしてもよい。
また、符号化装置140と符号化装置180は、互換画像と補助画像の視差画像を多重化せずに符号化するようにしてもよい。さらに、符号化装置50は、補助画像の視差画像を多重化せずに符号化するようにしてもよい。
<符号化対象の多重化パターンの例>
図45は、互換画像の視点数が2であり、補助画像の視点数が2である場合の、符号化対象の多重化パターンの例を示す図である。
図45の(1)に示すように、図3の符号化装置140は、互換画像である画像A2と画像B2を空間方向に多重化し、AVC方式で符号化する。また、符号化装置140は、補助画像である画像C2と画像D2、互換画像の視差画像である視差画像A2’と視差画像B2’、並びに、補助画像の視差画像である視差画像C2’と視差画像D2’をそれぞれ空間方向に多重化して、MVC方式に準ずる3DV方式で符号化する。
なお、符号化装置140は、図45の(2)に示すように、視差画像A2’乃至D2’を多重化せず、MVC方式に準ずる3DV方式で符号化するようにしてもよい。さらに、図45の(3)に示すように、図40の符号化装置480は、互換画像の視差画像である視差画像A2’と視差画像B2’の代わりに、共通視差画像AB2’を符号化し、補助画像の視差画像である視差画像C2’と視差画像D2’の代わりに、共通視差画像CD2’を符号化する。
また、図45の(4)に示すように、図31の符号化装置440は、互換画像の視差画像である視差画像A2’と視差画像B2’を空間方向に多重化せず、視差画像A2’、視差画像B2’、および補助画像の視差画像の多重化画像をフレームシーケンシャル方式で多重化し、MVC方式に準ずる3DV方式で符号化する。
さらに、図45の(5)に示すように、図5の符号化装置180は、互換画像である画像A2と画像B2を多重化せずに、画像A2をAVC方式で符号化し、画像B2を、画像A2をベースビューとしたMVC方式で符号化する。また、符号化装置180は、補助画像である画像C2と画像D2、互換画像の視差画像である視差画像A2’と視差画像B2’、並びに、補助画像の視差画像である視差画像C2’と視差画像D2’をそれぞれ空間方向に多重化し、MVC方式に準ずる3DV方式で符号化する。
なお、符号化装置180は、図45の(6)に示すように、視差画像A2’乃至D2’を多重化せず、MVC方式に準ずる3DV方式で符号化するようにしてもよい。また、符号化装置180は、図45の(7)に示すように、符号化装置480と同様に、視差画像A2’と視差画像B2’の代わりに共通視差画像AB2’を符号化し、視差画像C2’と視差画像D2’の代わりに共通視差画像CD2’を符号化するようにしてもよい。
さらに、符号化装置180は、図45の(8)に示すように、符号化装置440と同様に、視差画像A2’と視差画像B2’を空間方向に多重化せず、視差画像A2’、視差画像B2’、および補助画像の視差画像の多重化画像をフレームシーケンシャル方式で多重化し、MVC方式に準ずる3DV方式で符号化するようにすることもできる。
図46は、図45の(1)乃至(8)に示した多重化パターンでの多重化による効果の特徴を示す図である。
図46の表では、効果の項目「互換性」、「画質」、および「データ量」が設けられ、図45の(1)乃至(8)に示した多重化パターンにおける各項目の効果の度合が表されている。なお、図46の表において、丸は、効果があることを表し、二重丸は、顕著な効果があることを表す。
図45の(1)に示した多重化パターンで多重化が行われる場合、互換画像の多重化方式および符号化方式が既存の方式と同一となり、互換性が確保される。また、視差画像が、互換画像と同様に空間方向に多重化されるので、例えば、復号装置側に用意されている互換画像を分離する分離部を用いて視差画像を分離することができる。従って、復号装置側で視差画像を分離できることが保証される。よって、この場合、互換性において顕著な効果があり、図46の項目「互換性」に対応して二重丸が記述されている。
また、図45の(2)に示した多重化パターンで多重化が行われる場合、互換画像の多重化方式および符号化方式が既存の方式と同一となり、互換性が確保される。また、視差画像の解像度が多重化前の画像と同一の解像度であるので精度が高い。その結果、復号装置において、視差画像を用いて生成される所定の視点の画像の精度が向上する。従って、この場合、互換性と、視差画像を用いて生成される画像の画質とにおいて効果があり、図46の項目「互換性」と「画質」に対応して丸が記述されている。
さらに、図45の(3)に示した多重化パターンで多重化が行われる場合、互換画像の符号化方式および多重化方式が既存の方式と同一となり、互換性が確保される。また、多重化前の画像と同一の解像度の互換画像および補助画像の視差画像のデータ量が、2視点分の視差画像のデータ量に削減される。従って、この場合、互換性とデータ量において効果があり、図46の項目「互換性」と「データ量」に対応して丸が記述されている。
また、図45の(4)に示した多重化パターンで多重化が行われる場合、互換画像の符号化方式および多重化方式が既存の方式と同一となり、互換性が確保される。また、視差画像が時間方向に多重化されるので、各時刻における視差画像のデータ量が、図45の(3)の場合に比べてより削減され、伝送可能なデータ量が増加する。従って、多重化前の画像と同一の解像度の視差画像を伝送可能なほど伝送帯域に余裕がない状況であっても、多重化前の画像と同一の解像度の視差画像を伝送することができるので、復号装置において、視差画像を用いて生成される所定の視点の画像の精度が向上する。よって、この場合、互換性と視差画像を用いて生成される画像の画質に効果があり、データ量において顕著な効果がある。従って、図46の項目「互換性」と「画質」に対応して丸が記述され、「データ量」に対応して二重丸が記述されている。
図45の(1)乃至(4)に示した多重化パターンでの多重化は、例えば、放送、ATSC(Advanced Television Systems Committee)2.0規格等に準拠したIP(Internet Protocol)と融合した放送である次世代放送、またはインターネット配信のアプリケーション用の画像を符号化対象とするときに行われる。
さらに、図45の(5)に示した多重化パターンで多重化が行われる場合、互換画像の符号化方式および多重化方式が既存の方式と同一となり、互換性が確保される。また、各視差画像の解像度が画像の解像度の半分であるので、互換画像および補助画像の視差画像のデータ量が、2視点分の視差画像のデータ量に削減される。従って、この場合、互換性とデータ量に効果があり、図46の項目「互換性」と「データ量」に対応して丸が記述されている。
また、図45の(6)に示した多重化パターンで多重化が行われる場合、図45の(2)と同様に、互換性が確保されるとともに、復号装置において視差画像を用いて生成される所定の視点の画像の精度が向上する。従って、この場合、互換性と視差画像を用いて生成される画像の画質に効果があり、図46の項目「互換性」と「画質」に対応して丸が記述されている。
また、図45の(7)に示した多重化パターンで多重化が行われる場合、図45の(3)と同様に、互換性が確保されるとともに、視差画像のデータ量が削減される。従って、この場合、互換性とデータ量に効果があり、図46の項目「互換性」と「データ量」に対応して丸が記述されている。
図45の(8)に示した多重化パターンで多重化が行われる場合、図45の(4)と同様に、互換性が確保される。また、図45の(4)と同様に、各時刻における視差画像のデータ量が、図45の(7)の場合に比べてより削減され、その結果、復号装置において視差画像を用いて生成される所定の視点の画像の精度が向上する。従って、この場合、互換性と視差画像を用いて生成される画像の画質に効果があり、データ量において顕著な効果がある。よって、図46の項目「互換性」と「画質」に対応して丸が記述され、「データ量」に対応して二重丸が記述されている。
また、図45の(5)、(7)、および(8)に示した多重化パターンでの多重化は、例えば、BD、放送、次世代放送、またはインターネット配信のアプリケーション用の画像を符号化対象とするときに行われる。さらに、図45の(6)に示した多重化パターンでの多重化は、例えば、BD、次世代放送、またはインターネット配信のアプリケーション用の画像を符号化対象とするときに行われる。
図47は、互換画像の視点数が1であり、補助画像の視点数が2である場合の、符号化対象の多重化パターンの例を示す図である。
図47の(1)に示すように、図1の符号化装置50は、互換画像である画像A1をAVC方式で符号化する。また、符号化装置50は、補助画像である画像B1と画像C1、および、補助画像の視差画像である視差画像B1’と視差画像C1’をそれぞれ時間方向に多重化する。そして、符号化装置50は、互換画像の視差画像である視差画像A1’、補助画像の多重化画像、および補助画像の視差画像の多重化画像を、MVC方式に準ずる3DV方式で符号化する。
なお、符号化装置50は、図47の(2)に示すように、視差画像A1’乃至C1’を多重化せず、MVC方式に準ずる3DV方式で符号化するようにしてもよい。また、図47の(3)に示すように、符号化装置50は、符号化装置480と同様に、補助画像の視差画像の多重化画像の代わりに、補助画像である画像Bと画像Cの共通視差画像BC1’を符号化するようにすることもできる。
さらに、図47の(4)に示すように、符号化装置50は、符号化装置440と同様に、視差画像B1’と視差画像C1’を空間方向に多重化せず、視差画像A1’乃至視差画像C1’をフレームシーケンシャル方式で多重化し、MVC方式に準ずる3DV方式で符号化するようにすることもできる。
なお、図47の(1)乃至(4)に示した多重化パターンでの多重化による効果、および、その多重化パターンでの多重化を行うときの符号化対象は、それぞれ、図45の(5)乃至(8)に示した多重化パターンでの多重化による効果および符号化対象と同様である。但し、図47の(1)に示した多重化パターンでの多重化では、互換画像の視差画像の解像度は互換画像と同一であるので、この多重化による効果としての視差画像のデータ量の削減は、補助画像の視差画像についてのみの効果である。
図48は、互換画像の視点数が2であり、補助画像の視点数が0である場合の、符号化対象の多重化パターンの例を示す図である。
互換画像の視点数が2であり、補助画像の視点数が0である場合、図48の(1)に示すように、図3の符号化装置140の場合と同様に、互換画像である画像A2と画像B2が空間方向に多重化されて、AVC方式で符号化される。また、互換画像の視差画像である視差画像A2’と視差画像B2’が空間方向に多重化されて、AVC方式に準ずる3DV方式で符号化される。
なお、図48の(2)に示すように、視差画像A2’と視差画像B2’は多重化されず、MVC方式に準ずる3DV方式で符号化されるようにしてもよい。また、図48の(3)に示すように、符号化装置480の場合と同様に、視差画像A2’と視差画像B2’の代わりに共通視差画像AB2’が符号化されるようにすることもできる。
また、図48の(4)に示すように、符号化装置440の場合と同様に、視差画像A2’と視差画像B2’が、時間方向に多重化されるのではなく、フレームシーケンシャル方式で多重化され、符号化されるようにすることもできる。
さらに、図48の(5)に示すように、符号化装置180の場合と同様に、互換画像である画像A2と画像B2が多重化されずに、画像A2がAVC方式で符号化されるとともに、画像B2が、画像A2をベースビューとしたMVC方式で符号化されるようにすることもできる。
また、この場合、図48の(6)に示すように、図48の(2)と同様に、視差画像が多重化されずに符号化されたり、図48の(7)に示すように、図48の(3)と同様に、共通視差画像AB2’が符号化されたりするようにすることもできる。また、図48の(8)に示すように、図48の(4)と同様に、互換画像の視差画像がフレームシーケンシャル方式で多重化され、符号化されるようにすることもできる。
なお、図47の(1)乃至(8)に示した多重化パターンでの多重化による効果、および、その多重化パターンでの多重化を行うときの符号化対象は、それぞれ、図45の(1)乃至(8)に示した多重化パターンでの多重化による効果および符号化対象と同一である。
また、上述した説明では、フレームシーケンシャル方式で多重化される視差画像の解像度は、多重化前の画像と同一の解像度であったが、多重化前の画像の解像度より低下させるようにしてもよい。また、補助画像も、視差画像と同様にフレームシーケンシャル方式で多重化されるようにしてもよい。
さらに、上述した説明では、符号化装置において、画像の多重化方式を示す情報と視差画像の多重化方式を示す情報が伝送されたが、図45、図47、および図48に示した多重化パターンを識別する情報を伝送するようにしてもよい。
また、符号化装置は、符号化対象の画像に対応するアプリケーションを識別するフラグを伝送するようにしてもよい。
<5.第5の実施の形態>
[符号化装置の構成例]
図49は、本技術を適用した伝送システムの第5の実施の形態で伝送される3D画像を符号化する符号化装置の構成例を示すブロック図である。
図49に示す構成のうち、図3の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図49の符号化装置520の構成は、主に、エンコーダ145、多重化部443の代わりにエンコーダ523、伝送部524が設けられている点、および、多重化部521と多重化情報生成部522が新たに設けられている点が図3の構成と異なる。
符号化装置520は、互換画像の多重化画像、補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像をフレームシーケンシャル方式で多重化し、符号化する。
具体的には、符号化装置520の多重化部521は、画像変換部142による多重化の結果得られる互換画像および補助画像の多重化画像、並びに、視差画像生成部143による多重化の結果得られる互換画像および補助画像の視差画像の多重化画像を、フレームシーケンシャル方式で多重化する。
そして、多重化部521は、多重化の結果得られる、1フレーム時間内に、互換画像の多重化画像、互換画像の視差画像の多重化画像、補助画像の多重化画像、および補助画像の視差画像の多重化画像が順に存在する多重化画像を、時間方向多重化画像としてエンコーダ523に供給する。
また、多重化部521は、互換画像および補助画像の多重化画像、並びに、互換画像および補助画像の視差画像の多重化画像が、フレームシーケンシャル方式で多重化されていること、時間多重化画像内の画像の配置順等を示す情報を、多重化情報生成部522およびエンコーダ523に供給する。
多重化情報生成部522は、多重化部521から供給される情報に基づいて、その情報などを、互換画像および補助画像、並びに、互換画像および補助画像の視差画像の多重化に関する全体多重化情報として生成し、伝送部524に供給する。
エンコーダ523は、互換用エンコーダ531と補助用エンコーダ532により構成される。エンコーダ523は、多重化部521から供給される情報に基づいて、多重化部521から供給される時間多重化画像のうちの、互換画像の多重化画像を互換用エンコーダ531に供給する。また、エンコーダ523は、多重化部521から供給される情報に基づいて、時間多重化画像のうちの補助画像の多重化画像並びに互換画像および補助画像の視差画像の多重化画像を、補助用エンコーダ532に供給する。
エンコーダ523の互換用エンコーダ531は、時間多重化画像のうちの、互換画像の多重化画像を既存のAVC方式で符号化する。補助用エンコーダ532は、時間多重化画像のうちの補助画像の多重化画像並びに互換画像および補助画像の視差画像の多重化画像を、3DV方式で符号化する。このとき、補助画像の多重化画像は、互換画像の多重化画像を参照して符号化され、補助画像の視差画像の多重化画像は、互換画像の視差画像の多重化画像を参照して符号化される。
エンコーダ523は、互換用エンコーダ531または補助用エンコーダ532で符号化された結果得られる時間多重化画像の符号化データからなるビットストリームを伝送部524に供給する。
伝送部524は、エンコーダ523から供給されるビットストリーム、画像情報生成部54からの画像情報、互換情報生成部55からの互換情報、視点間距離情報生成部144からの視点間距離情報、視差画像情報生成部57からの視差画像情報、多重化情報生成部522からの全体多重化情報などを用いて、TSを生成する。多重化部443は、生成されたTSを送信する。
[符号化装置の処理の説明]
図50および図51は、図49の符号化装置520による符号化処理を説明するフローチャートである。この符号化処理は、例えば、撮影部141A乃至撮影部141Dから画像A2乃至画像D2が出力されたとき開始される。
図50のステップS531乃至S537の処理は、図36のステップS451乃至S457の処理と同様であるので、説明は省略する。
ステップS537の処理後、ステップS538において、画像変換部142は、互換画像の多重化画像と補助画像の多重化画像を多重化部521に入力し、処理を図51のステップS539に進める。
図51のステップS539において、視差画像生成部143は、撮影部141A乃至撮影部141Dから供給される画像A2乃至画像D2を用いて画像A2乃至画像D2の各画素の視差を検出し、視差画像A2’乃至視差画像D2’を生成する。
ステップS540において、視差画像生成部143は、互換画像の視差画像と補助画像の視差画像の多重化方式を決定し、その多重化方式を示す情報を視差画像情報生成部57に供給する。
ステップS541において、視差画像情報生成部57は、視差画像生成部143から供給される情報に基づいて、互換画像の視差画像と補助画像の視差画像の多重化方式を示す情報などを、視差画像情報として生成し、伝送部524に入力する。
ステップS542において、視差画像生成部143は、ステップS540で決定された互換画像の視差画像の多重化方式に基づいて、互換画像の視差画像A2’と視差画像B2’を多重化し、補助画像の視差画像の多重化方式に基づいて補助画像の視差画像C2’と視差画像D2’を多重化する。
ステップS543の処理後、ステップS544において、多重化部521は、画像変換部142による多重化の結果得られる互換画像および補助画像の多重化画像、並びに、視差画像生成部143による多重化の結果得られる互換画像および補助画像の視差画像の多重化画像を、フレームシーケンシャル方式で多重化する。多重化部521は、多重化の結果得られる多重化画像を、時間方向多重化画像としてエンコーダ523に供給する。
また、多重化部521は、互換画像および補助画像の多重化画像並びに視差画像の多重化画像がフレームシーケンシャル方式で多重化されていること、時間多重化画像内の画像の配置順等を示す情報を、多重化情報生成部522およびエンコーダ523に供給する。
ステップS545において、多重化情報生成部522は、多重化部521から供給される情報に基づいて、その情報などを全体多重化情報として生成し、伝送部524に入力する。
ステップS546において、互換用エンコーダ531は、エンコーダ523によって多重化部521からの情報に基づいて入力される、時間多重化画像のうちの互換画像の多重化画像を既存のAVC方式で符号化する。
ステップS547において、補助用エンコーダ532は、エンコーダ523によって多重化部521からの情報に基づいて入力される、時間多重化画像のうちの補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像を、3DV方式で符号化する。エンコーダ523は、ステップS546およびS547の符号化の結果得られる時間多重化画像の符号化データからなるビットストリームを伝送部524に供給する。
ステップS548において、伝送部524は、エンコーダ523からのビットストリーム、補助情報、および多重化情報生成部522からの全体多重化情報からTSを生成し、送信する。このTSは、例えばBD等に記録されたり、放送用ストリームとして送信されたりする。そして、処理は終了する。
以上のように、符号化装置520は、互換画像の多重化画像、補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像の符号化データから1本のビットストリームを生成する。従って、1本のビットストリームのみを復号可能なデコーダを有する復号装置において、符号化装置520により生成されたビットストリームを復号することができる。
なお、上述した説明では、互換画像の視差画像、補助画像、および補助画像の視差画像が、互換画像の符号化方式に準ずる3DV方式で符号化されるものとしたが、互換画像の符号化方式に準じないMPEG2(Moving Picture Experts Group phase 2)方式等で符号化されるようにしてもよい。
[復号装置の構成例]
図52は、図49の符号化装置520から送信されるTSを復号する復号装置の構成例を示す図である。
図52に示す構成のうち、図4の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図52の復号装置540の構成は、主に、分離部121、デコーダ122、画像生成部171の代わりに受信部541、デコーダ542、画像生成部544が設けられている点、および、多重化情報取得部543が新たに設けられている点が図4の構成と異なる。復号装置540は、符号化装置520から送信されるTSに含まれる時間多重化画像のビットストリームを復号し、2視点の画像または多視点の画像を生成して、図示せぬ表示装置に表示させる。
具体的には、復号装置540の受信部541は、符号化装置520から送信されてくるTSを受信する。受信部541は、TSに含まれる時間多重化画像のビットストリームを抽出し、デコーダ542に供給する。また、受信部541は、TSに含まれる補助情報を抽出し、補助情報のうちの画像情報を画像情報取得部123に供給し、視点距離情報を視点間距離情報取得部124に供給する。さらに、受信部541は、補助情報のうちの視差画像情報を視差画像情報取得部125に供給し、互換情報を互換情報取得部126に供給する。また、受信部541は、TSに含まれる全体多重化情報を抽出し、多重化情報取得部543に供給する。
デコーダ542は、互換用デコーダ551と補助用デコーダ552により構成される。デコーダ542の互換用デコーダ551は、受信部541から供給されるビットストリームに含まれる互換画像の多重化画像の符号化データをAVC方式に対応する方式で復号し、画像生成部544に供給する。
補助用デコーダ552は、受信部541から供給されるビットストリームに含まれる補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像の符号化データを、図49の補助用エンコーダ532における符号化方式に対応する方式で復号する。補助用デコーダ552は、復号の結果得られる補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像を画像生成部544に供給する。
多重化情報取得部543は、受信部541から供給される全体多重化情報を取得し、画像生成部544に供給する。
画像生成部544は、視聴者からの表示指令に応じて、画像を出力し、図示せぬ表示装置に表示させる。具体的には、画像生成部544は、視聴者からの多視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報、視点間距離情報取得部124からの視点間距離情報、視差画像情報取得部125からの視差画像情報、互換情報取得部126からの互換情報、多重化情報取得部543からの全体多重化情報等に基づいて、互換画像の多重化画像、補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像を用いて、図示せぬ表示装置に対応する3以上の視点数の、互換画像や補助画像の解像度の半分の解像度の画像を生成する。
より詳細には、画像生成部544は、多重化情報取得部543からの全体多重化情報に基づいて、補助用デコーダ552から供給される補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像を識別する。また、画像生成部544は、図4の画像生成部171と同様に、視差画像情報取得部125からの視差画像情報に含まれる補助画像の視差画像の多重化方式を示す情報に基づいて、補助画像の視差画像の多重化画像から、各補助画像の視差画像を分離する。また、画像生成部544は、画像生成部171と同様に、視差画像情報に含まれる互換画像の視差画像の多重化方式を示す情報に基づいて、互換画像の視差画像の多重化画像から、各互換画像の視差画像を分離する。
さらに、画像生成部544は、画像生成部171と同様に、画像情報取得部123からの画像情報に含まれる補助画像の多重化方式を示す情報に基づいて、補助画像の多重化画像から、各補助画像を分離する。また、画像生成部544は、画像生成部171と同様に、画像情報に含まれる互換画像の多重化方式を示す情報に基づいて、互換画像の多重化画像から、各互換画像を分離する。
また、画像生成部544は、画像生成部171と同様に、視点間距離情報と図示せぬ表示装置に対応する視点数に基づいて、生成する多視点の画像の各視点の位置を決定する。そして、画像生成部544は、画像生成部171と同様に、各互換画像、各補助画像、各互換画像の視差画像、および各補助画像の視差画像を用いて、位置が決定された各視点の画像を生成する。そして、画像生成部544は、生成された多視点の画像の解像度を、互換画像や補助画像の解像度の1/視点数の解像度に変換して合成し、図示せぬ表示装置に表示させる。
このとき、合成後の多視点の画像は、視点ごとに視認可能な角度が異なるように表示され、視聴者は、任意の2視点の各画像を左右の各目で見ることにより、メガネを装着せずに3D画像を見ることができる。
また、画像生成部544は、画像生成部171と同様に、視聴者からの2視点方式の3D画像の表示指令に応じて、画像情報取得部123からの画像情報に基づいて、デコーダ542から供給される互換画像の多重化画像を、互換画像の解像度の半分の解像度の画像A2と画像B2に分離する。そして、画像生成部544は、画像生成部171と同様に、分離された互換画像の解像度の半分の解像度の画像A2と画像B2を交互に出力して、図示せぬ表示装置に表示させる。このとき、視聴者は、画像A2の表示時に左目用のシャッタまたは右目用のシャッタの一方が開き、画像B2の表示時に他方が開くメガネを装着して、表示装置に交互に表示される画像A2と画像B2を見ることにより、3D画像を見ることができる。
[復号装置の処理の説明]
図53は、図52の復号装置540による復号処理を説明するフローチャートである。この復号処理は、例えば、図49の符号化装置520から送信されるTSが復号装置540に入力されたとき、開始される。
図53のステップS551において、復号装置540の受信部541は、符号化装置520から送信されてくるTSを受信する。受信部541は、TSに含まれるビットストリームを抽出し、デコーダ542に供給する。また、受信部541は、TSに含まれる補助情報を抽出し、補助情報のうちの画像情報を画像情報取得部123に供給し、視点距離情報を視点間距離情報取得部124に供給する。さらに、受信部541は、補助情報のうちの視差画像情報を視差画像情報取得部125に供給し、互換情報を互換情報取得部126に供給する。また、受信部541は、TSに含まれる全体多重化情報を抽出し、多重化情報取得部543に供給する。
ステップS552において、画像生成部544は、視聴者から2視点方式の3D画像の表示が指令されたかどうかを判定する。ステップS552で視聴者から2視点方式の3D画像の表示が指令されていないと判定された場合、即ち多視点方式の3D画像の表示が指令された場合、処理はステップS553に進む。
ステップS553において、デコーダ542の互換用デコーダ551は、受信部541から供給されるビットストリームから互換画像の多重化画像の符号化データを抽出し、AVC方式に対応する方式で復号する。そして、互換用デコーダ551は、復号の結果得られる互換画像の多重化画像を画像生成部544に供給する。
ステップS554において、補助用デコーダ552は、受信部541から供給されるビットストリームから補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像の符号化データを抽出し、図49の補助用エンコーダ532に対応する方式で復号する。補助用デコーダ552は、復号の結果得られる補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像を画像生成部544に供給し、処理をステップS555に進める。
ステップS555乃至S558の処理は、図39のステップS475乃至S478の処理と同様であるので、説明は省略する。
ステップS558の処理後、ステップS559において、多重化情報取得部543は、受信部541から供給される全体多重化情報を取得し、画像生成部544に入力する。
ステップS560において、画像生成部544は、視点間距離情報取得部124からの視点間距離情報と、図示せぬ表示装置に対応する視点数に基づいて、生成する多視点の画像の各視点の位置を決定する。
ステップS561において、画像生成部544は、ステップS560で決定された各視点の位置、画像情報取得部123からの画像情報、視差画像情報取得部125からの視差画像情報、互換情報取得部126からの互換情報、多重化情報取得部543からの全体多重化情報等に基づいて、互換画像の多重化画像、補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像を用いて、各視点の、互換画像や補助画像の半分の解像度の画像を生成する。そして、処理はステップS562に進む。
ステップS562乃至S567の処理は、図39のステップS481乃至S486の処理と同様であるので、説明は省略する。但し、ステップS564の処理では、互換用デコーダ551は、互換ストリームではなく、受信部541から供給されるビットストリームから互換画像の多重化画像を抽出する。
なお、復号装置540との互換性を有する互換画像のみを復号可能な復号装置では、処理可能な互換画像の符号化データ以外の符号化データが無視され、ステップS564,S566、およびS567の処理が行われる。但し、この場合、ステップS566の処理では、予め決められた多重化方式に基づいて、互換画像の多重化画像が分離される。
以上のように、復号装置540は、互換画像の多重化画像、補助画像の多重化画像、互換画像の視差画像の多重化画像、および補助画像の視差画像の多重化画像の符号化データから生成された1本のビットストリームを復号することができる。
[ベースバンドのデータ伝送]
上述した図52の復号装置540において、点線L5の左側(受信部541およびデコーダ542)を再生装置として構成し、点線L5の右側(画像生成部544)を表示装置として構成したとき、その再生装置と表示装置は、それぞれ、上述した再生装置301、再生装置302と同様に構成される。
<6.本実施の形態におけるビットストリーム>
[ビットストリームの構成例]
図54は、本実施の形態で生成されるアクセスユニット単位のビットストリーム(符号化ストリーム)の構成例を示す図である。
なお、図54の例では、互換画像が1920×1080画素のL画像とR画像であり、補助画像が1920×1080画素のO画像である。また、L視差画像、R視差画像、およびO視差画像のサイズは、960×1080画素である。さらに、L画像はAVC方式で符号化され、R画像はMVC方式で符号化され、O画像、L視差画像、R視差画像、およびO視差画像は3DV方式で符号化される。また、L画像、R画像、O画像、L視差画像、R視差画像、O視差画像のビューIDは、それぞれ、0,1,2,3,4,5である。なお、ビューIDとは、各視点の画像および視差画像に固有のIDである。
図54に示すように、アクセスユニット単位のビットストリームには、例えば、先頭から順に、アクセスユニットデリミタ(AUD),SPS(Sequence Parameter Set)、画像用のMVC方式のSubset SPS(SubsetSPS1)、視差画像用の3DV方式のSubset SPS(Subset SPS2),PPS(Picture Parameter Set),AVC方式のSEI,MVC方式のSEI,3DV方式のSEI、符号化データのNAL(Network Abstraction Layer)ユニットが配置される。
アクセスユニットデリミタのNALユニットは、アクセスユニットの境界を表すNALユニットである。SPSのNALユニットは、AVC方式で定義されるプロファイルのうちのL画像のプロファイルを表すprofile_idc(図54の例では100)を含むSPSのNALユニットである。画像用のSubset SPSのNALユニットは、MVC方式で定義されるプロファイルのうちのR画像およびO画像のプロファイルを表すprofile_idc(図54の例では128)を含むSubset SPSのNALユニットである。視差画像用のSubset SPSのNALユニットは、3DV方式で視差画像用のプロファイルとして定義されるプロファイルのうちの、L視差画像、R視差画像、およびO視差画像のプロファイルを表すprofile_idc(図54の例では138)を含むSubset SPSのNALユニットである。
AVC方式のSEIのNALユニットは、L画像のSEIのNALユニットである。MVC方式のSEIのNALユニットは、L画像とR画像のSEIのNALユニットである。3DV方式のSEIのNALユニットは、L画像、R画像、O画像、L視差画像、R視差画像、およびO視差画像のSEIのNALユニットである。
符号化データのNALユニットとしては、先頭から順に、L画像の符号化データ、デリミタ(MVC DD)、R画像の符号化データ、デリミタ(3DV DD)、O画像の符号化データ、デリミタ(3DV DD)、L視差画像の符号化データ、デリミタ(3DV DD)、R視差画像の符号化データ、デリミタ(3DV DD)、O視差画像の符号化データのNALユニットが配置される。
L画像の符号化データのNALユニットには、NALユニットのタイプとしてAVC方式のピクチャであることを表す1または5を含むNALヘッダが付加される。また、デリミタ(MVC DD)のNALユニットは、MVC方式の符号化データの先頭を表すNALユニットである。R画像の符号化データのNALユニットには、NALユニットのタイプとしてMVC方式の符号化データを表す20を含むNALヘッダが付加される。また、デリミタ(3DV DD)のNALユニットは、3DV方式の符号化データの先頭を表すNALユニットである。また、O画像、L視差画像、R視差画像、およびO視差画像の符号化データのNALユニットには、NALユニットのタイプとして3DV方式の符号化データを表す21を含むNALヘッダが付加される。
[視差画像用の3DV方式のSubset SPSの記述例]
図55は、図54の視差画像用の3DV方式のSubset SPSの記述例を示す図である。
図55に示すように、視差画像用の3DV方式のSubset SPSには、L視差画像、R視差画像、およびO視差画像のプロファイルを表すprofile_idc(図55の例では138)を含むSPS(seq_parameter_set_data)と、3DV方式で定義されているprofile_idcごとの情報とが記述されている。
具体的には、視差画像用の3DV方式のSubset SPSには、profile_idcが138であるときの情報として、視差画像用拡張情報(seq_parameter_set_depth_extension)、視差画像用VUI拡張情報が含まれるかどうかを表す視差画像用VUI情報フラグ(depth_vui_parameters_present_flag)等が記述される。また、視差画像用VUI情報フラグが、視差画像用VUI拡張情報が含まれることを表す場合には、視差画像用VUI拡張情報(depth_vui_parameters__extension)も記述される。
なお、視差画像用の3DV方式のSubset SPSを復号時に参照する場合、即ち、L視差画像、R視差画像、およびO視差画像を復号する場合、IDRピクチャの復号時と同様に、参照画像はリセットされる。
図56は、図55の視差画像用拡張情報の記述例を示す図である。
図56に示すように、視差画像用拡張情報は、MVC方式のSubset SPS内の拡張情報(seq_parameter_set_mvc_extension)と同様に記述される情報と、各視差画像に対応する画像のビューID(ref_view_id)とからなる。
なお、図56では、MVC方式のSubset SPS内の拡張情報と同様に記述される情報は展開されて視差画像用拡張情報に含められる。従って、各視差画像のビューID(view_id)と、各視差画像に対応する画像のビューIDとを、視差画像ごとにまとめて記述することができる。即ち、視差画像の数を表す情報(num_views_minus1)を記述し、その数だけ、視差画像のビューIDと、その視差画像に対応する画像のビューIDを読み出させる記述を行うことができる。
これに対して、MVC方式のSubset SPS内の拡張情報と同様に記述される情報が展開されずに視差画像用拡張情報に含められる場合、視差画像用拡張情報のほかに、視差画像の数を表す情報を記述し、その数だけ、視差画像に対応する画像のビューIDを読み出させる記述を行う必要がある。その結果、視差画像の数を表す情報の記述と、その数だけ情報を読み出させる記述が重複する。
従って、図56に示すように、MVC方式のSubset SPS内の拡張情報と同様に記述される情報が展開されて視差画像用拡張情報に含められる場合、その情報が展開されずに視差画像用拡張情報に含められる場合に比べて、視差画像用拡張情報のデータ量を削減することができる。
図57は、図55の視差画像用VUI拡張情報の記述例を示す図である。
図57に示すように、視差画像用VUI拡張情報は、以下の点を除いて、MVC方式のVUI拡張情報(mvc_vui_parameters__extension)と同様に記述される。即ち、視差画像用VUI情報には、視差画像の各画素の、その視差画像に対応する画像上の位置のタイプを表す位置タイプが含まれるかどうかを表す位置タイプフラグ(depth_loc_info_present_flag)と解像度変換前の視差画像のサイズを表す変換前サイズ情報が含まれるかどうかを表す変換前サイズ情報フラグ(video_src_info_present_flag)が含まれる。また、位置タイプフラグが、位置タイプが含まれることを表す場合、視差画像用VUI情報には位置タイプも含まれ、変換前サイズ情報フラグが、変換前サイズ情報が含まれることを表す場合、視差画像用VUI情報には変換前サイズ情報も含まれる。
位置タイプは、トップフィールドの位置タイプ(depth_sample_loc_type_top_field)とボトムフィールドの位置タイプ(depth_sample_loc_type_bottom_field)からなる。トップフィールドおよびボトムフィールドの位置タイプは、それぞれ、MVC方式のVUI拡張情報に含まれるトップフィールドの位置タイプ(chroma_sample_loc_type_top_field)やボトムフィールドの位置タイプ(chroma_sample_loc_type_bottom_field)と同様に記述される。
また、変換前サイズ情報は、解像度変換前の視差画像の横方向のマクロブロック数を表す情報(pic_width_in_mbs_minus1)および縦方向のマクロブロック数を表す情報(pic_height_in_mbs_minus1)、アスペクト比を表すアスペクト情報が含まれるかどうかを表すアスペクト比フラグ(aspect_ratio_info_present_flag)等により構成される。なお、アスペクト比フラグが、アスペクト情報が含まれることを表す場合、変換前サイズ情報にはアスペクト情報も含まれる。
アスペクト情報は、アスペクト比に固有のIDであるアスペクト比ID(aspect_ratio_idc)等からなる。なお、このアスペクト比IDは、予め定義されているアスペクト比に付与されるほか、定義されていないアスペクト比全体に対しても付与される。そして、アスペクト情報に含まれるアスペクト比IDが、定義されていないアスペクト比全体に対して付与されたアスペクト比ID(Extended_SAR)である場合、アスペクト情報には、解像度変換前の視差画像のアスペクト比における横方向の値(sar_width)と縦方向の値(sar_height)も含まれる。
[3DV方式の符号化データのNALヘッダの記述例]
図58は、NALユニットタイプとして21を含む、3DV方式の符号化データのNALユニットのNALヘッダの記述例を示す図である。
図58に示すように、3DV方式の符号化データのNALヘッダには、NALユニットタイプが21であるときの情報として、視差画像用ヘッダ拡張情報が含まれているかどうかを表す視差画像用ヘッダ拡張情報フラグ(depth_extension_flag)等が記述される。ここで、視差画像用ヘッダ拡張情報は、3DV方式の視差画像の符号化データのNALヘッダに記述されるものである。
視差画像用ヘッダ拡張情報フラグが、視差画像用ヘッダ拡張情報が含まれていることを表す場合、3DV方式の符号化データのNALヘッダには、視差画像用ヘッダ拡張情報(nal_unit_header_depth_extension)も記述される。一方、視差画像用ヘッダ拡張情報フラグが、視差画像用ヘッダ拡張情報が含まれていないことを表す場合、3DV方式の符号化データのNALヘッダには、MVC方式用ヘッダ拡張情報(nal_unit_header_mvc_extension)も記述される。
図59は、図58の視差画像用ヘッダ拡張情報の記述例を示す図である。
図59に示すように、視差画像用ヘッダ拡張情報は、視差画像に対応する画像のビューID(ref_view_id)を含む点を除いて、MVC方式用ヘッダ拡張情報と同様に構成される。
[3DV方式のSEIの記述例]
図60は、図54の3DV方式のSEIの記述例を示す図である。
図60に示すように、3DV方式のSEIは、MVC方式のSEIと同様に、SEIのメッセージが記述される。
即ち、3DV方式のSEIには、オペレーションポイントを指定するかどうかを表すオペレーションポイントフラグ(operation_point_flag)が記述され、オペレーションポイントフラグが、オペレーションポイントを指定しないことを表す場合、アクセスユニット内の全ての画像および視差画像にSEIのメッセージを適応するかどうかを表す全コンポーネントフラグ(all_view_components_in_au_flag)が記述される。また、全コンポーネントフラグが、アクセスユニット内の全ての画像および視差画像に適応しないことを表す場合、SEIのメッセージを適応する画像および視差画像のビューIDの数(num_view_components_minus1)とビューID(sei_view_id)が記述される。
一方、オペレーションポイントフラグが、オペレーションポイントを指定することを表す場合、SEIのメッセージを適応するオペレーションポイントのうちの適応対象の画像および視差画像のビューID(sei_op_view_id)と、そのオペレーションポイントの番号(sei_op_temporal_id)とが記述される。そして、SEIのメッセージ(sei_rbsp)が記述される。なお、3DV方式のSEIでは、複数のSEIのメッセージを記述することが可能である。
なお、図54の例では、R画像とO画像のプロファイルが同一であるものとしたが、異なるようにすることもできる。
[ビットストリームの他の構成例]
図61は、図54においてR画像とO画像のプロファイルが異なる場合のアクセスユニット単位のビットストリームの構成例を示す図である。
図61のビットストリームの構成は、画像用のMVC方式のSubset SPSと視差画像用の3DV方式のSubset SPSのほかに、画像用の3DV方式のSubset SPSが配置される点が、図54のビットストリームの構成と異なっている。
画像用のMVC方式のSubset SPSのNALユニット(Subset SPS1)は、MVC方式で定義されるプロファイルのうちのR画像のプロファイルを表すprofile_idc(図61の例では128)を含むSubset SPSのNALユニットである。画像用の3DV方式のSubset SPS(Subset SPS2)のNALユニットは、3DV方式で画像用のプロファイルとして定義されるプロファイルのうちのO画像のプロファイルを表すprofile_idc(図61の例では148)を含むSubset SPSのNALユニットである。視差画像用のSubset SPS(Subset SPS3)のNALユニットは、3DV方式で視差画像用のプロファイルとして定義されるプロファイルのうちの、L視差画像、R視差画像、およびO視差画像のプロファイルを表すprofile_idc(図61の例では138)を含むSubset SPSのNALユニットである。
[画像用の3DV方式のSubset SPSの記述例]
図62は、図61の画像用の3DV方式のSubset SPSの記述例を示す図である。
図62に示すように、画像用の3DV方式のSubset SPSは、画像Oのプロファイルを表すprofile_idc(図62の例では148)を含むSPS(seq_parameter_set_data)と、3DV方式で定義されているprofile_idcごとの情報とが記述されている。
具体的には、画像用の3DV方式のSubset SPSには、profile_idcが148であるときの情報として、MVC方式のSubset SPSと同様に、MVC方式の拡張情報(seq_parameter_set_mvc_extension)、MVC方式のVUI拡張情報が含まれるかどうかを表すMVC方式VUI情報フラグ(mvc_vui_parameters_present_flag)等が記述される。また、MVC方式VUI情報フラグが、MVC方式のVUI拡張情報が含まれることを表す場合には、MVC方式のVUI拡張情報(mvc_vui_parameters_extension)も記述される。また、profile_idcが138であるときの情報としては、図55と同様の情報が記述される。
なお、3DV方式は、AVC方式やMVC方式ではなく、HEVC方式に準じた多視点方式での表示用の画像を符号化するための方式であるようにしてもよい。この場合のビットストリームについて以下に説明する。なお、本明細書では、HEVC方式が、JCTVC(Joint Collaborative Team on Video Coding)のHEVC Working Draft(Thomas Wiegand,Woo-jin Han,Benjamin Bross,Jens-Rainer Ohm,Gary J. Sullivian,“WD3:Working Draft3 of High-Efficiency Video Coding”,JCTVc-E603_d5(version5), 2011年5月20日)の記載に基づくものであるとする。
<7.3DV方式がHEVC方式に準じた方式である場合のビットストリーム>
[ビットストリームの構成例]
図63は、3DV方式がHEVC方式に準じた方式である場合のアクセスユニット単位のビットストリームの構成例を示す図である。
なお、図63の例では、図54の例と同様のL視点画像、R視点画像、およびO視点画像が符号化対象とされ、L画像がAVC方式で符号化され、L視差画像、R視点画像、およびO視点画像が3DV方式で符号化される。
図63のビットストリームは、画像用の3DV方式のSubset SPS(SubsetSPS1)と視差画像用の3DV方式のSubset SPS(Subset SPS2)をSPS内に記述可能である点、HEVC方式のSEIと3DV方式のSEIのNALユニットに、それぞれ別のNALユニットのタイプを含むNALヘッダが付加される点が、図54のビットストリームと異なっている。
図63のビットストリームでは、画像用の3DV方式のSubset SPSと視差画像用の3DV方式のSubset SPSをSPS内にのみ記述させたり、SPSとは別に記述させたり、SPSに記述させるとともにSPSとは別に記述させたりすることができる。なお、画像用の3DV方式のSubset SPSと視差画像用の3DV方式のSubset SPSが、SPSと別に記述されることは、BD規格に準拠して、HEVC方式の符号化データと3DV方式の符号化データを別のES(Elementary Stream)として生成する場合に好適である。
また、図63のビットストリームでは、HEVC方式のSEIのNALユニットと3DV方式のSEIのNALユニットに付加されるNALヘッダに含まれるNALユニットのタイプが異なるため、復号時にHEVC方式のSEIや3DV方式のSEIのNALユニットを容易に抽出することができる。
[SPSの記述例]
図64は、図63のSPSの記述例を示す図である。
図64のSPSの記述は、Subset SPSの情報が含まれるかどうかを表すSubset SPS情報フラグ(subset_seq_present_flag)が記述される点、および、Subset SPS情報フラグがSubset SPSの情報が含まれることを表す場合にSubset SPSの情報が記述される点を除いて、HEVC方式のSPSの記述と同様である。
図64に示すように、Subset SPSの情報は、Subset SPSの数(num_subset_seq)と、Subset SPSを含むかどうかを表すSubset SPSフラグ(subset_seq_info_present_flag)を含む。また、Subset SPSフラグが、Subset SPSを含むことを表す場合、Subset SPSの情報には、Subset SPS(subset_seq_parameter_set_data)も含まれる。
以上のように、Subset SPSの情報としてSubset SPSの数が記述されるので、復号時にSPSの記述を読み出すだけで、Subset SPSが存在するかどうかを認識することができる。また、Subset SPSフラグが記述されるので、Subset SPSをSPS内に記述せずにSPSとは別に記述することができ、Subset SPSの記述の重複を防止することができる。
[Subset SPSの記述例]
図65は、図64のSubset SPSの記述例を示す図である。
図65のSubset SPSの記述は、Subset SPSを適応する画像および視差画像のビューIDの数(num_subset_seq_views)、Subset SPSの適応対象が視差画像であるかどうかを表す視差画像用フラグ(depth_extension_flag)、およびSubset SPSの適応時にSPSを無効にするかどうかを表す無効フラグ(seq_param_override_flag)が記述される点を除いて、HEVC方式のSPSの記述と同様である。
視差画像用フラグが、Subset SPSの適応対象が視差画像であることを表す場合、Subset SPSには、適応対象の視差画像に対応する画像のビューID(ref_view_id)が記述される。また、無効フラグが、Subset SPSの適応時にSPSを無効にすることを表す場合、Subset SPSには、SPSと同様に、プロファイルを表す情報(subset_seq_profile_idc)等が記述される。
また、Subset SPSの記述のうちのSPSの記述と同様の記述としては、例えば、適応する画像および視差画像がクロッピングされているかどうかを表す情報(subset_seq_frame_cropping_flag)、VUI情報(subset_seq_vui_parameters)を含むかどうかを表すVUI情報フラグ(subset_seq_vui_parameters_present_flag)等がある。VUI情報フラグがVUI情報を含むことを表す場合、SPSと同様にVUI情報も記述される。一方、VUI情報フラグがVUI情報を含まないことを表す場合、SPSと同様にVUI情報が記述されない。この場合、VUI情報としてはSPSのVUI情報が適応される。
[Subset SPSのVUI情報の記述例]
図66は、図65のSubset SPSのVUI情報の記述例を示す図である。
図66のSubset SPSのVUI情報の記述は、適応対象の変換前サイズ情報が含まれるかどうかを表す変換前サイズ情報フラグ(video_src_info_present_flag)が記述される点を除いて、HEVC方式のSPSのVUI情報の記述と同様である。
なお、変換前サイズ情報フラグが適応対象の変換前サイズ情報が含まれることを表す場合、図66のVUI情報には、変換前サイズ情報が記述される。即ち、解像度変換前の適応対象の横方向のマクロブロック数を表す情報(src_pic_width_in_mbs_minus1)および縦方向のマクロブロック数を表す情報(src_pic_height_in_mbs_minus1)、アスペクト比を表すアスペクト情報が含まれるかどうかを表すアスペクト比フラグ(src_aspect_ratio_info_present_flag)等が記述される。
そして、アスペクト比フラグが、アスペクト情報が含まれることを表す場合、変換前サイズ情報には、アスペクト比ID(src_aspect_ratio_idc)等からなるアスペクト情報も含まれる。そして、アスペクト情報に含まれるアスペクト比IDが、定義されていないアスペクト比全体に対して付与されたアスペクト比ID(Extended_SAR)である場合、アスペクト情報には、解像度変換前の適応対象のアスペクト比における横方向の値(sar_width)と縦方向の値(sar_height)も含まれる。
なお、図66のSubset SPSのVUI情報は、SPSのVUI情報と異なる点だけ記述されるようにしてもよい。この場合、Subset SPSのVUI情報のうちの記述されない情報については、SPSのVUI情報に含まれる情報が適用される。
[SEIの記述例]
図67は、図63の3DV方式のSEIの記述例を示す図である。
図67の3DV方式のSEIの記述は、SEIメッセージのタイプ(nesting_type)、全コンポーネントフラグ(all_view_components_in_au_flag)等が記述される点を除いて、SEIメッセージのタイプのSEIメッセージの記述と同様である。
SEIメッセージのタイプとしては、MVC方式のSEIメッセージ、3DV方式のSEIメッセージ、ユーザにより定義されたSEIメッセージなどがある。また、全コンポーネントフラグが、アクセスユニット内の全ての画像および視差画像に適応しないことを表す場合、3DV方式のSEIには、SEIのメッセージを適応する画像および視差画像のビューIDの数(num_view_components_minus1)と、その数だけのビューID(nesting_sei_view_id)も記述される。
なお、上述した再生装置301は、復号された3D画像データに基づいて、画像情報、互換情報、視点間距離情報、視差画像情報、画像の多重化パターンを識別する情報、視差画像の多重化パターンを識別する情報等も3D情報として生成するようにしてもよい。
<8.第6の実施の形態>
[コンピュータ]
上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。この場合、例えば、図68に示されるようなコンピュータとして構成されるようにしてもよい。
図68において、コンピュータ600のCPU(Central Processing Unit)601は、ROM(Read Only Memory)602に記憶されているプログラム、または記憶部613からRAM(Random Access Memory)603にロードされたプログラムに従って各種の処理を実行する。RAM603にはまた、CPU601が各種の処理を実行する上において必要なデータなども適宜記憶される。
CPU601、ROM602、およびRAM603は、バス604を介して相互に接続されている。このバス604にはまた、入出力インタフェース610も接続されている。
入出力インタフェース610には、キーボード、マウスなどよりなる入力部611、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)などよりなるディスプレイ、並びにスピーカなどよりなる出力部612、ハードディスクなどより構成される記憶部613、モデムなどより構成される通信部614が接続されている。通信部614は、インターネットを含むネットワークを介しての通信処理を行う。
入出力インタフェース610にはまた、必要に応じてドライブ615が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア621が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部613にインストールされる。
上述した一連の処理をソフトウエアにより実行させる場合には、そのソフトウエアを構成するプログラムが、ネットワークや記録媒体からインストールされる。
この記録媒体は、例えば、図68に示されるように、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されている磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc - Read Only Memory),DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、若しくは半導体メモリなどよりなるリムーバブルメディア621により構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに配信される、プログラムが記録されているROM602や、記憶部613に含まれるハードディスクなどで構成される。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
<9.第7実施の形態>
[テレビジョン装置の構成例]
図69は、本技術を適用したテレビジョン装置の概略構成を例示している。テレビジョン装置900は、アンテナ901、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、表示部906、音声信号処理部907、スピーカ908、外部インタフェース部909を有している。さらに、テレビジョン装置900は、制御部910、ユーザインタフェース部911等を有している。
チューナ902は、アンテナ901で受信された放送波信号から所望のチャンネルを選局して復調を行い、得られた符号化ビットストリームをデマルチプレクサ903に出力する。
デマルチプレクサ903は、符号化ビットストリームから視聴対象である番組の映像や音声のパケットを抽出して、抽出したパケットのデータをデコーダ904に出力する。また、デマルチプレクサ903は、EPG(Electronic Program Guide)等のデータのパケットを制御部910に供給する。なお、スクランブルが行われている場合、デマルチプレクサ等でスクランブルの解除を行う。
デコーダ904は、パケットの復号化処理を行い、復号処理化によって生成された映像データを映像信号処理部905、音声データを音声信号処理部907に出力する。
映像信号処理部905は、映像データに対して、ノイズ除去やユーザ設定に応じた映像処理等を行う。映像信号処理部905は、表示部906に表示させる番組の映像データや、ネットワークを介して供給されるアプリケーションに基づく処理による画像データなどを生成する。また、映像信号処理部905は、項目の選択などのメニュー画面等を表示するための映像データを生成し、それを番組の映像データに重畳する。映像信号処理部905は、このようにして生成した映像データに基づいて駆動信号を生成して表示部906を駆動する。
表示部906は、映像信号処理部905からの駆動信号に基づき表示デバイス(例えば液晶表示素子等)を駆動して、番組の映像などを表示させる。
音声信号処理部907は、音声データに対してノイズ除去などの所定の処理を施し、処理後の音声データのD/A変換処理や増幅処理を行いスピーカ908に供給することで音声出力を行う。
外部インタフェース部909は、外部機器やネットワークと接続するためのインタフェースであり、HDMI規格等に準拠して映像データや音声データ等を送受信する。
制御部910にはユーザインタフェース部911が接続されている。ユーザインタフェース部911は、操作スイッチやリモートコントロール信号受信部等で構成されており、ユーザ操作に応じた操作信号を制御部910に供給する。
制御部910は、CPU(Central Processing Unit)やメモリ等を用いて構成されている。メモリは、CPUにより実行されるプログラムやCPUが処理を行う上で必要な各種のデータ、EPGデータ、ネットワークを介して取得されたデータ等を記憶する。メモリに記憶されているプログラムは、テレビジョン装置900の起動時などの所定タイミングでCPUにより読み出されて実行される。CPUは、プログラムを実行することで、テレビジョン装置900がユーザ操作に応じた動作となるように各部を制御する。
なお、テレビジョン装置900では、チューナ902、デマルチプレクサ903、映像信号処理部905、音声信号処理部907、外部インタフェース部909等と制御部910を接続するためバス912が設けられている。
このように構成されたテレビジョン装置では、外部I/F部909に本願の画像処理装置(画像処理方法)の機能が設けられる。このため、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができる。
<10.第8実施の形態>
[携帯電話機の構成例]
図70は、本技術を適用した携帯電話機の概略構成を例示している。携帯電話機920は、通信部922、音声コーデック923、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、制御部931を有している。これらは、バス933を介して互いに接続されている。
また、通信部922にはアンテナ921が接続されており、音声コーデック923には、スピーカ924とマイクロホン925が接続されている。さらに制御部931には、操作部932が接続されている。
携帯電話機920は、音声通話モードやデータ通信モード等の各種モードで、音声信号の送受信、電子メールや画像データの送受信、画像撮影、またはデータ記録等の各種動作を行う。
音声通話モードにおいて、マイクロホン925で生成された音声信号は、音声コーデック923で音声データへの変換やデータ圧縮が行われて通信部922に供給される。通信部922は、音声データの変調処理や周波数変換処理等を行い、送信信号を生成する。また、通信部922は、送信信号をアンテナ921に供給して図示しない基地局へ送信する。また、通信部922は、アンテナ921で受信した受信信号の増幅や周波数変換処理および復調処理等を行い、得られた音声データを音声コーデック923に供給する。音声コーデック923は、音声データのデータ伸張やアナログ音声信号への変換を行いスピーカ924に出力する。
また、データ通信モードにおいて、メール送信を行う場合、制御部931は、操作部932の操作によって入力された文字データを受け付けて、入力された文字を表示部930に表示する。また、制御部931は、操作部932におけるユーザ指示等に基づいてメールデータを生成して通信部922に供給する。通信部922は、メールデータの変調処理や周波数変換処理等を行い、得られた送信信号をアンテナ921から送信する。また、通信部922は、アンテナ921で受信した受信信号の増幅や周波数変換処理および復調処理等を行い、メールデータを復元する。このメールデータを、表示部930に供給して、メール内容の表示を行う。
なお、携帯電話機920は、受信したメールデータを、記録再生部929で記憶媒体に記憶させることも可能である。記憶媒体は、書き換え可能な任意の記憶媒体である。例えば、記憶媒体は、RAMや内蔵型フラッシュメモリ等の半導体メモリ、ハードディスク、磁気ディスク、光磁気ディスク、光ディスク、USBメモリ、またはメモリカード等のリムーバブルメディアである。
データ通信モードにおいて画像データを送信する場合、カメラ部926で生成された画像データを、画像処理部927に供給する。画像処理部927は、画像データの符号化処理を行い、符号化データを生成する。
多重分離部928は、画像処理部927で生成された符号化データと、音声コーデック923から供給された音声データを所定の方式で多重化して通信部922に供給する。通信部922は、多重化データの変調処理や周波数変換処理等を行い、得られた送信信号をアンテナ921から送信する。また、通信部922は、アンテナ921で受信した受信信号の増幅や周波数変換処理および復調処理等を行い、多重化データを復元する。この多重化データを多重分離部928に供給する。多重分離部928は、多重化データの分離を行い、符号化データを画像処理部927、音声データを音声コーデック923に供給する。
画像処理部927は、符号化データの復号化処理を行い、画像データを生成する。また、画像処理部927は、この画像データを表示部930に供給して、受信した画像の表示を行ったり、画像データをHDMI規格等に準拠して送信したりする。音声コーデック923は、音声データをアナログ音声信号に変換してスピーカ924に供給して、受信した音声を出力する。
このように構成された携帯電話装置では、画像処理部927に本願の画像処理装置(画像処理方法)の機能が設けられる。このため、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができる。
<11.第9実施の形態>
[記録再生装置の構成例]
図71は、本技術を適用した記録再生装置の概略構成を例示している。記録再生装置940は、例えば受信した放送番組のオーディオデータとビデオデータを、記録媒体に記録して、その記録されたデータをユーザの指示に応じたタイミングでユーザに提供する。また、記録再生装置940は、例えば他の装置からオーディオデータやビデオデータを取得し、それらを記録媒体に記録させることもできる。さらに、記録再生装置940は、記録媒体に記録されているオーディオデータやビデオデータを復号して出力することで、モニタ装置等において画像表示や音声出力を行うことができるようにする。
記録再生装置940は、チューナ941、外部インタフェース部942、エンコーダ943、HDD(Hard Disk Drive)部944、ディスクドライブ945、セレクタ946、デコーダ947、OSD(On-Screen Display)部948、制御部949、ユーザインタフェース部950を有している。
チューナ941は、図示しないアンテナで受信された放送信号から所望のチャンネルを選局する。チューナ941は、所望のチャンネルの受信信号を復調して得られた符号化ビットストリームをセレクタ946に出力する。
外部インタフェース部942は、IEEE1394インタフェース、ネットワークインタフェース部、USBインタフェース、フラッシュメモリインタフェース、HDMI等の少なくともいずれかで構成されている。外部インタフェース部942は、外部機器やネットワーク、メモリカード等と接続するためのインタフェースであり、記録する映像データや音声データ等のデータ受信を行う。
エンコーダ943は、外部インタフェース部942から供給された映像データや音声データが符号化されていないとき所定の方式で符号化を行い、符号化ビットストリームをセレクタ946に出力する。
HDD部944は、映像や音声等のコンテンツデータ、各種プログラムやその他のデータ等を内蔵のハードディスクに記録し、また再生時等にそれらを当該ハードディスクから読み出す。
ディスクドライブ945は、装着されている光ディスクに対する信号の記録および再生を行う。光ディスク、例えばDVDディスク(DVD−Video、DVD−RAM、DVD−R、DVD−RW、DVD+R、DVD+RW等)やBlu−rayディスク等である。
セレクタ946は、映像や音声の記録時には、チューナ941またはエンコーダ943からのいずれかの符号化ビットストリームを選択して、HDD部944やディスクドライブ945のいずれかに供給する。また、セレクタ946は、映像や音声の再生時に、HDD部944またはディスクドライブ945から出力された符号化ビットストリームをデコーダ947に供給する。
デコーダ947は、符号化ビットストリームの復号化処理を行う。デコーダ947は、復号処理化を行うことにより生成された映像データをOSD部948に供給する。また、デコーダ947は、復号処理化を行うことにより生成された音声データを出力する。
OSD部948は、項目の選択などのメニュー画面等を表示するための映像データを生成し、それをデコーダ947から出力された映像データに重畳して出力する。
制御部949には、ユーザインタフェース部950が接続されている。ユーザインタフェース部950は、操作スイッチやリモートコントロール信号受信部等で構成されており、ユーザ操作に応じた操作信号を制御部949に供給する。
制御部949は、CPUやメモリ等を用いて構成されている。メモリは、CPUにより実行されるプログラムやCPUが処理を行う上で必要な各種のデータを記憶する。メモリに記憶されているプログラムは、記録再生装置940の起動時などの所定タイミングでCPUにより読み出されて実行される。CPUは、プログラムを実行することで、記録再生装置940がユーザ操作に応じた動作となるように各部を制御する。
このように構成された記録再生装置では、外部I/F部942に本願の画像処理装置(画像処理方法)の機能が設けられる。このため、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができる。
<12.第10実施の形態>
[撮像装置の構成例]
図72は、本技術を適用した撮像装置の概略構成を例示している。撮像装置960は、被写体を撮像し、被写体の画像を表示部に表示させたり、それを画像データとして、記録媒体に記録する。
撮像装置960は、光学ブロック961、撮像部962、カメラ信号処理部963、画像データ処理部964、表示部965、外部インタフェース部966、メモリ部967、メディアドライブ968、OSD部969、制御部970を有している。また、制御部970には、ユーザインタフェース部971が接続されている。さらに、画像データ処理部964や外部インタフェース部966、メモリ部967、メディアドライブ968、OSD部969、制御部970等は、バス972を介して接続されている。
光学ブロック961は、フォーカスレンズや絞り機構等を用いて構成されている。光学ブロック961は、被写体の光学像を撮像部962の撮像面に結像させる。撮像部962は、CCDまたはCMOSイメージセンサを用いて構成されており、光電変換によって光学像に応じた電気信号を生成してカメラ信号処理部963に供給する。
カメラ信号処理部963は、撮像部962から供給された電気信号に対してニー補正やガンマ補正、色補正等の種々のカメラ信号処理を行う。カメラ信号処理部963は、カメラ信号処理後の画像データを画像データ処理部964に供給する。
画像データ処理部964は、カメラ信号処理部963から供給された画像データの符号化処理を行う。画像データ処理部964は、符号化処理を行うことにより生成された符号化データを外部インタフェース部966やメディアドライブ968に供給する。また、画像データ処理部964は、外部インタフェース部966やメディアドライブ968から供給された符号化データの復号化処理を行う。画像データ処理部964は、復号化処理を行うことにより生成された画像データを表示部965に供給する。また、画像データ処理部964は、カメラ信号処理部963から供給された画像データを表示部965に供給する処理や、OSD部969から取得した表示用データを、画像データに重畳させて表示部965に供給する。
OSD部969は、記号、文字、または図形からなるメニュー画面やアイコンなどの表示用データを生成して画像データ処理部964に出力する。
外部インタフェース部966は、例えば、USB入出力端子、HDMI入出力端子などで構成され、画像の印刷を行う場合に、プリンタと接続される。また、外部インタフェース部966には、必要に応じてドライブが接続され、磁気ディスク、光ディスク等のリムーバブルメディアが適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて、インストールされる。さらに、外部インタフェース部966は、LANやインターネット等の所定のネットワークに接続されるネットワークインタフェースを有する。制御部970は、例えば、ユーザインタフェース部971からの指示にしたがって、メモリ部967から符号化データを読み出し、それを外部インタフェース部966から、ネットワークを介して接続される他の装置に供給させることができる。また、制御部970は、ネットワークを介して他の装置から供給される符号化データや画像データを、外部インタフェース部966を介して取得し、それを画像データ処理部964に供給したりすることができる。
メディアドライブ968で駆動される記録メディアとしては、例えば、磁気ディスク、光磁気ディスク、光ディスク、または半導体メモリ等の、読み書き可能な任意のリムーバブルメディアが用いられる。また、記録メディアは、リムーバブルメディアとしての種類も任意であり、テープデバイスであってもよいし、ディスクであってもよいし、メモリカードであってもよい。もちろん、非接触ICカード等であってもよい。
また、メディアドライブ968と記録メディアを一体化し、例えば、内蔵型ハードディスクドライブやSSD(Solid State Drive)等のように、非可搬性の記憶媒体により構成されるようにしてもよい。
制御部970は、CPUやメモリ等を用いて構成されている。メモリは、CPUにより実行されるプログラムやCPUが処理を行う上で必要な各種のデータ等を記憶する。メモリに記憶されているプログラムは、撮像装置960の起動時などの所定タイミングでCPUにより読み出されて実行される。CPUは、プログラムを実行することで、撮像装置960がユーザ操作に応じた動作となるように各部を制御する。
このように構成された撮像装置では、外部I/F部966に本願の画像処理装置(画像処理方法)の機能が設けられる。このため、多視点の画像を生成可能なフォーマットの画像データを正しく伝送することができる。
本明細書において、システムとは、複数のデバイス(装置)により構成される装置全体を表すものである。
また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。つまり、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
300 伝送システム, 301 再生装置, 302 表示装置, 303 HDMIケーブル, 311 デコーダ, 312 モード判定部, 313 3D情報生成部, 314 通信部, 321 通信部, 322 モード判定部, 323 同期設定部, 324 同期制御部, 325 画像生成部, 326 表示部, 411 受信側情報取得部, 412 同期設定部, 421 受信側情報提供部

Claims (22)

  1. 多視点の画像を生成する際に用いる立体視用画像データのフォーマットを参照して、画像データのフォーマットとの互換性を示す互換モードを判定するモード判定部と、
    前記モード判定部により判定された前記互換モードを示す互換情報を3D情報として生成する生成部と、
    前記立体視用画像データと前記生成部により生成された前記3D情報を、前記立体視用画像データの送信先に送信する送信部と
    を備える画像処理装置。
  2. 前記生成部は、前記立体視用画像データのフォーマットを示すフォーマット情報を前記3D情報として生成する
    請求項1に記載の画像処理装置。
  3. 前記生成部は、前記立体視用画像データのうちの画像データの多重化方式を示す画像多重化情報と、前記立体視用画像データのうちの視差画像データの多重化方式を示す視差画像多重化情報とを前記3D情報として生成する
    請求項2に記載の画像処理装置。
  4. 前記生成部は、前記立体視用画像データのうちの画像データの多重化パターン、または、前記立体視用画像データのうちの視差画像データの多重化パターンを識別する識別情報を前記3D情報として生成する
    請求項2に記載の画像処理装置。
  5. 前記送信部は、前記3D情報を、HDMI(High Definition Multimedia Interface)規格のVSIFPC(Vendor Specific InfoFrame Packet Contents)に記述して送信する
    請求項2に記載の画像処理装置。
  6. 前記送信部は、前記3D情報を、VSIFPCの3D画像データに関する情報を記述する領域の空き領域に記述して送信する
    請求項5に記載の画像処理装置。
  7. 前記互換モードは、既存の2次元画像データとの互換性を示すモノコンパチブルモード、既存のフレームパッキングの3D画像データとの互換性を示すフレームパッキングコンパチブルモード、並びに、既存のステレオスコピックの3D画像データとの互換性を示すステレオスコピックコンパチブルモードを含む
    請求項2に記載の画像処理装置。
  8. 前記送信部は、前記立体視用画像データの1フレーム分のデータを、垂直同期信号複数周期分のアクティブビデオ区間を用いて送信する
    請求項1に記載の画像処理装置。
  9. 前記垂直同期信号の各周期を不等間隔に設定する間隔設定部をさらに備え、
    前記送信部は、前記立体視用画像データの1フレーム分のデータを、前記間隔設定部により設定された周期のアクティブビデオ区間を用いて送信する
    請求項8に記載の画像処理装置。
  10. 前記立体視用画像データの送信先のデバイスから、前記デバイスの処理能力を示す能力情報を取得する能力情報取得部と、
    前記能力情報取得部により取得された前記能力情報が示す前記デバイスの処理能力に基づいて、前記立体視用画像データの同期方法を設定する同期設定部と
    をさらに備え、
    前記生成部は、前記同期設定部により設定された同期方法を示す同期情報を前記3D情報として生成する
    請求項1に記載の画像処理装置。
  11. 画像処理装置の画像処理方法であって、
    モード判定部が、多視点の画像を生成する際に用いる立体視用画像データのフォーマットを参照して、画像データのフォーマットとの互換性を示す互換モードを判定し、
    生成部が、前記モード判定部により判定された前記互換モードを示す互換情報を3D情報として生成し、
    送信部が、前記立体視用画像データと前記生成部により生成された前記3D情報を、前記立体視用画像データの送信先に送信する
    画像処理方法。
  12. 多視点の画像を生成する際に用いる立体視用画像データを受信するとともに、前記立体視用画像データのフォーマットの画像データのフォーマットとの互換性を示す互換モードを3D情報として受信する受信部と、
    前記受信部により受信された前記3D情報に基づいて、前記受信部により受信される前記立体視用画像データの前記互換モードを判定するモード判定部と、
    前記モード判定部により判定された前記互換モードに基づいて、前記受信部により受信される前記立体視用画像データに対する処理の同期を制御する同期制御部と
    を備える画像処理装置。
  13. 前記受信部は、前記立体視用画像データのフォーマットを示すフォーマット情報を前記3D情報として受信する
    請求項12に記載の画像処理装置。
  14. 前記受信部は、前記立体視用画像データのうちの画像データの多重化方式を示す画像多重化情報と、前記立体視用画像データのうちの視差画像データの多重化方式を示す視差画像多重化情報とを前記3D情報として生成する
    請求項13に記載の画像処理装置。
  15. 前記受信部は、前記立体視用画像データのうちの画像データの多重化パターン、または、前記立体視用画像データのうちの視差画像データの多重化パターンを識別する識別情報を前記3D情報として受信する
    請求項13に記載の画像処理装置。
  16. 前記受信部は、HDMI(High Definition Multimedia Interface)規格のVSIFPC(Vendor Specific InfoFrame Packet Contents)に記述して送信されてくる前記3D情報を受信する
    請求項13に記載の画像処理装置。
  17. 前記受信部は、VSIFPCの3D画像データに関する情報を記述する領域の空き領域に記述して送信されてくる前記3D情報を受信する
    請求項16に記載の画像処理装置。
  18. 前記互換モードは、既存の2次元画像データとの互換性を示すモノコンパチブルモード、既存のフレームパッキングの3D画像データとの互換性を示すフレームパッキングコンパチブルモード、並びに、既存のステレオスコピックの3D画像データとの互換性を示すステレオスコピックコンパチブルモードを含む
    請求項13に記載の画像処理装置。
  19. 前記受信部は、垂直同期信号複数周期分のアクティブビデオ区間を用いて送信された前記立体視用画像データの1フレーム分のデータを受信する
    請求項12に記載の画像処理装置。
  20. 前記受信部は、前記垂直同期信号の各周期が不等間隔である複数周期分のアクティブビデオ区間を用いて送信された前記立体視用画像データの1フレーム分のデータを受信する 請求項19に記載の画像処理装置。
  21. 前記立体視用画像データの送信元のデバイスに、前記画像処理装置自身の処理能力を示す能力情報を提供する能力情報提供部をさらに備える
    請求項12に記載の画像処理装置。
  22. 画像処理装置の画像処理方法であって、
    受信部が、多視点の画像を生成する際に用いる立体視用画像データを受信するとともに、前記立体視用画像データのフォーマットの画像データのフォーマットとの互換性を示す互換モードを3D情報として受信し、
    モード判定部が、前記受信部により受信された前記3D情報に基づいて、前記受信部により受信される前記立体視用画像データの前記互換モードを判定し、
    同期制御部が、前記モード判定部により判定された前記互換モードに基づいて、前記受信部により受信される前記立体視用画像データに対する処理の同期を制御する
    画像処理方法。
JP2012531952A 2010-09-03 2011-08-31 画像処理装置および方法 Abandoned JPWO2012029885A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010198120 2010-09-03
JP2010198120 2010-09-03
JP2011131677 2011-06-13
JP2011131677 2011-06-13
PCT/JP2011/069842 WO2012029885A1 (ja) 2010-09-03 2011-08-31 画像処理装置および方法

Publications (1)

Publication Number Publication Date
JPWO2012029885A1 true JPWO2012029885A1 (ja) 2013-10-31

Family

ID=45772962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012531952A Abandoned JPWO2012029885A1 (ja) 2010-09-03 2011-08-31 画像処理装置および方法

Country Status (9)

Country Link
US (1) US20130141534A1 (ja)
EP (1) EP2613538A4 (ja)
JP (1) JPWO2012029885A1 (ja)
KR (1) KR20130108260A (ja)
CN (1) CN103081480A (ja)
BR (1) BR112013004460A2 (ja)
MX (1) MX2013002134A (ja)
RU (1) RU2013108080A (ja)
WO (1) WO2012029885A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011296953A1 (en) * 2010-09-03 2013-03-14 Sony Corporation Encoding device, encoding method, decoding device, and decoding method
JP5232319B2 (ja) 2011-10-20 2013-07-10 株式会社東芝 通信装置及び通信方法
JP2013168867A (ja) * 2012-02-16 2013-08-29 Canon Inc 画像処理装置、その制御方法およびプログラム
JP2013168866A (ja) * 2012-02-16 2013-08-29 Canon Inc 画像処理装置、その制御方法およびプログラム
JP5390667B2 (ja) 2012-06-11 2014-01-15 株式会社東芝 映像送信機器及び映像受信機器
KR101917224B1 (ko) * 2012-09-18 2018-11-13 엘지이노텍 주식회사 영상데이터 전송장치
JP6260926B2 (ja) * 2013-06-12 2018-01-17 株式会社リコー 通信装置、通信システム、通信装置の動作方法及びプログラム
JP2015005878A (ja) 2013-06-20 2015-01-08 ソニー株式会社 再生装置、再生方法、および記録媒体
JP6415179B2 (ja) * 2014-08-20 2018-10-31 キヤノン株式会社 画像処理装置、画像処理方法、および撮像装置並びにその制御方法
WO2016111199A1 (ja) * 2015-01-09 2016-07-14 ソニー株式会社 画像処理装置、画像処理方法、およびプログラム、並びに記録媒体
JP5808509B2 (ja) * 2015-01-22 2015-11-10 株式会社東芝 映像受信機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455999A (en) * 1987-08-27 1989-03-02 Toshiba Corp Stereoscopic video display device
US5416510A (en) * 1991-08-28 1995-05-16 Stereographics Corporation Camera controller for stereoscopic video system
JP2004274253A (ja) * 2003-03-06 2004-09-30 Sharp Corp 映像記録装置および映像送信装置
KR100828358B1 (ko) * 2005-06-14 2008-05-08 삼성전자주식회사 영상 디스플레이 모드 전환 방법, 장치, 및 그 방법을 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체
JP2007065067A (ja) * 2005-08-29 2007-03-15 Seijiro Tomita 立体映像表示装置
JP4793366B2 (ja) 2006-10-13 2011-10-12 日本ビクター株式会社 多視点画像符号化装置、多視点画像符号化方法、多視点画像符号化プログラム、多視点画像復号装置、多視点画像復号方法、及び多視点画像復号プログラム
KR101362941B1 (ko) * 2006-11-01 2014-02-17 한국전자통신연구원 스테레오스코픽 콘텐츠 재생에 이용되는 메타 데이터의복호화 방법 및 장치
KR100962696B1 (ko) * 2007-06-07 2010-06-11 주식회사 이시티 부호화된 스테레오스코픽 영상 데이터 파일의 구성방법
KR100918862B1 (ko) * 2007-10-19 2009-09-28 광주과학기술원 참조영상을 이용한 깊이영상 생성방법 및 그 장치, 생성된깊이영상을 부호화/복호화하는 방법 및 이를 위한인코더/디코더, 그리고 상기 방법에 따라 생성되는 영상을기록하는 기록매체
JP2010088092A (ja) * 2008-09-02 2010-04-15 Panasonic Corp 立体映像伝送システム、映像表示装置および映像出力装置
KR101154051B1 (ko) * 2008-11-28 2012-06-08 한국전자통신연구원 다시점 영상 송수신 장치 및 그 방법
WO2010095410A1 (ja) * 2009-02-20 2010-08-26 パナソニック株式会社 記録媒体、再生装置、集積回路
CN101668205B (zh) * 2009-09-25 2011-04-20 南京邮电大学 基于残差宏块自适应下采样立体视频压缩编码方法

Also Published As

Publication number Publication date
EP2613538A4 (en) 2014-08-13
MX2013002134A (es) 2013-04-03
BR112013004460A2 (pt) 2016-06-07
RU2013108080A (ru) 2014-08-27
KR20130108260A (ko) 2013-10-02
US20130141534A1 (en) 2013-06-06
CN103081480A (zh) 2013-05-01
EP2613538A1 (en) 2013-07-10
WO2012029885A1 (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
WO2012029885A1 (ja) 画像処理装置および方法
TWI514846B (zh) Transmission device, three-dimensional image data transmission method, receiving device and three-dimensional image data receiving method
TWI437873B (zh) Three-dimensional image data transmission device, three-dimensional image data transmission method, three-dimensional image data receiving device and three-dimensional image data receiving method
TWI504231B (zh) 傳輸裝置,傳輸方法,接收裝置,接收方法及傳輸/接收系統
EP2451170A1 (en) Stereoscopic image data transmitter and method for transmitting stereoscopic image data
US9338430B2 (en) Encoding device, encoding method, decoding device, and decoding method
JP2011120261A (ja) 立体画像データ送信装置、立体画像データ送信方法、立体画像データ受信装置および立体画像データ受信方法
WO2012029884A1 (ja) 符号化装置および符号化方法、並びに復号装置および復号方法
JP2011166757A (ja) 送信装置、送信方法および受信装置
US9762884B2 (en) Encoding device, encoding method, decoding device, and decoding method for encoding multiple viewpoints for compatibility with existing mode allowing fewer viewpoints
EP2506580A1 (en) Stereoscopic image data transmission device, stereoscopic image data transmission method, and stereoscopic image data reception device
JP5477499B2 (ja) 送信装置および立体画像データ送信方法
JP5621944B2 (ja) 送信装置および送信方法
JP5583866B2 (ja) 送信装置、立体画像データ送信方法、受信装置および立体画像データ受信方法
JP2015029331A (ja) 送受信システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20150402