JPWO2012014835A1 - Rack for baking - Google Patents

Rack for baking Download PDF

Info

Publication number
JPWO2012014835A1
JPWO2012014835A1 JP2012526489A JP2012526489A JPWO2012014835A1 JP WO2012014835 A1 JPWO2012014835 A1 JP WO2012014835A1 JP 2012526489 A JP2012526489 A JP 2012526489A JP 2012526489 A JP2012526489 A JP 2012526489A JP WO2012014835 A1 JPWO2012014835 A1 JP WO2012014835A1
Authority
JP
Japan
Prior art keywords
setter
sic
rack
holding means
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012526489A
Other languages
Japanese (ja)
Other versions
JP5722897B2 (en
Inventor
常夫 古宮山
常夫 古宮山
啓之 堀田
啓之 堀田
信宏 松本
信宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2012526489A priority Critical patent/JP5722897B2/en
Publication of JPWO2012014835A1 publication Critical patent/JPWO2012014835A1/en
Application granted granted Critical
Publication of JP5722897B2 publication Critical patent/JP5722897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0031Treatment baskets for ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0037Supports specially adapted for semi-conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F2003/1042Sintering only with support for articles to be sintered
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9623Ceramic setters properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D2005/0081Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Ceramic Products (AREA)

Abstract

複数枚の平板状セッターをセッター保持手段により垂直方向に多段に保持して、電子セラミック素子を多段焼成するための焼成用ラックである。セッター保持手段が、0.01〜30%のSiを含有するSi−SiC、再結晶SiC、Si3N4−SiCの何れかの材質からなり、該セッター保持手段は、各平板状セッターをその外周側面の70〜100%を露出させた状態で保持する。これによりエネルギー効率や量産効率に優れ、かつ、多段焼成における各段の均熱性に優れた焼成用ラックとなる。This is a firing rack for firing a plurality of stages of an electronic ceramic element by holding a plurality of flat setters in multiple stages in the vertical direction by a setter holding means. The setter holding means is made of any material of Si-SiC containing 0.01 to 30% Si, recrystallized SiC, Si3N4-SiC, and the setter holding means attaches each flat plate-like setter to the outer peripheral side surface. Hold 70 to 100% exposed. Thereby, it becomes a rack for baking excellent in energy efficiency and mass production efficiency, and excellent in the soaking | uniform-heating property of each step | level in multistage baking.

Description

本発明は、主に電子セラミック素子の多段焼成に適した焼成用ラックに関するものである。   The present invention mainly relates to a firing rack suitable for multi-stage firing of electronic ceramic elements.

一般に電子セラミック素子は、主原料となるセラミックスの微粉体に焼結助材や成形助剤を加えて混合した後、成形により未焼成素子とし、該未焼成素子をセッターと呼ばれるセラミック製の板に載置して焼成炉に装入し、炉内を所定の温度と雰囲気条件に制御しながら焼成して製造される。   In general, an electronic ceramic element is obtained by adding a sintering aid and a molding aid to a ceramic fine powder as a main raw material and mixing them, and then forming an unfired element by molding. The unfired element is formed into a ceramic plate called a setter. It is mounted and placed in a firing furnace, and is fired and manufactured while controlling the interior of the furnace at a predetermined temperature and atmospheric conditions.

セッターは複数段に積み重ねて使用されるのが通常であり、複数段重ねられるセッター間に、各々空間を形成する構造として、例えば、図9に示すように、上面周縁に突起部8を形成したトレーに、平板状セッターを嵌合させたものを積み重ねていく構造(特許文献1)が開示されている。その他、セッター自体の上面周縁に、段積みに耐えうる強度を確保するように形成された周壁部を形成して皿状とし、この皿状セッターを積層する構造も知られている(特許文献2)。   The setter is usually used by being stacked in a plurality of stages, and as a structure for forming a space between the setters stacked in a plurality of stages, for example, as shown in FIG. A structure (Patent Document 1) is disclosed in which a flat plate-like setter is stacked on a tray. In addition, a structure is also known in which a peripheral wall portion formed so as to ensure strength enough to withstand stacking is formed on the upper surface periphery of the setter itself to form a dish shape, and this dish-like setter is laminated (Patent Document 2). ).

しかし、図9に示すようにトレーにセッターを完全に嵌め込んだ構造では、セッターの外周側面がトレーにより覆われてしまう。しかもセッターを段積みしていく場合、突起部8により炉内ガスの流れが阻害されるうえ、最下段のセッターの下面全面が、炉体と、直接或いはトレーを介して接触し、炉体からの熱伝導の影響を大きく受けるため、各段における均熱化が困難であり、例えば、最下段のセッターで熱処理を施された電子セラミック素子は、上段で熱処理を施された電子セラミック素子に比べて、製品の歩留まりが悪いという問題があった。   However, in the structure in which the setter is completely fitted into the tray as shown in FIG. 9, the outer peripheral side surface of the setter is covered with the tray. Moreover, when stacking the setters, the flow of the gas in the furnace is obstructed by the protrusions 8, and the entire lower surface of the lowermost setter is in contact with the furnace body directly or via a tray. It is difficult to equalize heat at each stage because it is greatly affected by the heat conduction of, for example, an electro-ceramic element that has been heat-treated at the lowermost setter compared to an electro-ceramic element that has been heat-treated at the upper stage. There was a problem that the yield of the product was bad.

また、特許文献2のように周囲に皿状セッターを段積みしていく場合、周壁部により炉内ガスの流れが阻害されるうえ、段積みに耐えうる強度を確保するように形成された周壁部がセッター全体に対して占める重量や体積が、エネルギー効率や量産効率の高効率化を妨げているという問題があった。   Further, when stacking a plate-like setter around the periphery as in Patent Document 2, the peripheral wall is formed so that the flow of the gas in the furnace is inhibited by the peripheral wall and the strength to withstand the stacking is ensured. There is a problem that the weight and volume that the part occupies with respect to the entire setter hinders high efficiency in energy efficiency and mass production efficiency.

特開2000−74571号公報JP 2000-74571 A 特開2009−227527号公報JP 2009-227527 A

従って本発明の目的は前記した従来の問題点を解決し、電子セラミック素子を多段焼成する際のエネルギー効率や量産効率に優れ、かつ、多段焼成における各段の均熱性に優れた焼成用ラックを提供することである。   Accordingly, an object of the present invention is to solve the above-mentioned conventional problems, and to provide a firing rack that is excellent in energy efficiency and mass production efficiency when multi-stage firing of an electronic ceramic element and excellent in heat uniformity of each stage in multi-stage firing. Is to provide.

上記課題を解決するためになされた本発明の焼成用ラックは、複数枚の平板状セッターをセッター保持手段により垂直方向に多段に保持する焼成用ラックであって、該セッター保持手段が、0.01〜30%のSiを含有するSi−SiC、再結晶SiC、Si−SiCの何れかの材質からなり、該セッター保持手段は、各平板状セッターをその外周側面の70〜100%を露出させた状態で保持するものであることを特徴とするものである。The firing rack of the present invention made to solve the above-mentioned problems is a firing rack that holds a plurality of flat plate setters in multiple stages in the vertical direction by setter holding means, and the setter holding means has a structure of 0. It is made of any material of Si-SiC containing 01-30% Si, recrystallized SiC, Si 3 N 4 -SiC, and the setter holding means sets each flat plate-like setter to 70-100% of its outer peripheral side surface. Is held in an exposed state.

請求項2記載の発明は、請求項1に記載の焼成用ラックにおいて、セッター保持手段が、セッター保持機構を備えた複数本の垂直支柱と、該垂直支柱の下端部を支持する下端支持枠と、該垂直支柱の上端部を支持する上端支持枠を有し、該セッター保持機構が、垂直支柱の内側面に形成した複数の凹部または凸部、あるいは、平板状セッターを挟んで対面する垂直支柱間に渡した梁、の少なくとも何れかからなることを特徴とするものであり、請求項3に記載のように、垂直支柱が、その4隅の垂直辺を構成する角部垂直支柱、および、該角部垂直支柱間に垂直配置された中間垂直支柱からなるようにしてもよい。   The invention according to claim 2 is the firing rack according to claim 1, wherein the setter holding means includes a plurality of vertical columns provided with a setter holding mechanism, and a lower end support frame that supports a lower end of the vertical column. A vertical support that has an upper end support frame that supports the upper end of the vertical support, and the setter holding mechanism faces a plurality of recesses or protrusions formed on the inner surface of the vertical support, or a flat setter It is characterized in that it consists of at least one of the beams passed between, the vertical struts as claimed in claim 3, corner vertical struts constituting the vertical sides of the four corners, and You may make it consist of the intermediate | middle vertical support | pillar arrange | positioned perpendicularly between this corner | angular part vertical support | pillar.

請求項4記載の発明は、請求項1に記載の焼成用ラックにおいて、セッター保持手段が、周辺部に複数の段積み用突起を備えた枠状の平板部材からなり、平板状セッターを保持させた状態で多段に積層されたことを特徴とするものである。   According to a fourth aspect of the present invention, in the firing rack according to the first aspect, the setter holding means comprises a frame-shaped flat plate member having a plurality of stacking protrusions in the peripheral portion, and holds the flat setter. It is characterized in that it is laminated in multiple stages.

請求項5に記載の発明は、請求項1に記載の焼成用ラックにおいて、セッター保持手段が、複数の段積み用突起を備え対向配置された一対の直線部材と、各段積み用突起の上部凹面間に掛け渡された梁とからなり、これらの梁の上に平板状セッターを保持させた状態で多段に積層されたことを特徴とするものである。   According to a fifth aspect of the present invention, in the firing rack according to the first aspect, the setter holding means includes a pair of linear members arranged to face each other with a plurality of stacking protrusions, and upper portions of the stacking protrusions. It consists of beams spanned between concave surfaces, and is laminated in multiple stages in a state where a flat plate-like setter is held on these beams.

なお、セッター保持手段を構成する部材が0.01〜30%のSiを含有するSi−SiCからなる場合には、その化学組成はSiC:70〜99%、Si:1〜30%であり、SiC+Siを100%としてさらにAl:0.01〜0.2%、Fe:0.01〜0.2%、Ca:0.01〜0.2%を含有するものであることが好ましい。請求項11に記載のように、平板状セッターの材質もまた0.01〜30%のSiを含有するSi−SiCであることが好ましい。   In addition, when the member which comprises a setter holding means consists of Si-SiC containing 0.01-30% Si, the chemical composition is SiC: 70-99%, Si: 1-30%, It is preferable that SiC + Si is 100% and further contains Al: 0.01 to 0.2%, Fe: 0.01 to 0.2%, and Ca: 0.01 to 0.2%. As described in claim 11, it is preferable that the material of the flat setter is also Si—SiC containing 0.01 to 30% of Si.

またセッター保持手段を構成する部材が再結晶SiCからなる場合には、その化学組成はSiC:99〜100%であり、SiCを100%としてさらにAl:0.01〜0.2%、Fe:0.01〜0.2%、Ca:0.01〜0.2%を含有するものであることが好ましい。   Further, when the member constituting the setter holding means is made of recrystallized SiC, the chemical composition is SiC: 99 to 100%, SiC is set to 100%, Al: 0.01 to 0.2%, Fe: It is preferable to contain 0.01 to 0.2% and Ca: 0.01 to 0.2%.

またセッター保持手段を構成する部材がSi−SiCからなる場合には、その化学組成はSiC:70〜80%、Si:20〜30%であり、SiC+Siを100%としてさらにAl:0.1〜0.5%、Fe:0.1〜0.5%、Ca:0.01〜0.2%を含有するものであることが好ましい。Also when the members constituting the setter holding means comprises a Si 3 N 4 -SiC, the chemical composition SiC: 70~80%, Si 3 N 4: is 20~30%, SiC + Si 3 N 4 100 It is preferable to further contain Al: 0.1 to 0.5%, Fe: 0.1 to 0.5%, and Ca: 0.01 to 0.2%.

本発明の焼成用ラックは、0.01〜30%のSiを含有するSi−SiC、再結晶SiC、Si−SiCの何れかの材質からなるセッター保持手段によって、複数枚の平板状セッターを、その外周側面の70〜100%を露出させた状態で保持するものである。これらの材質からなるセッター保持手段は一般的に用いられているアルミナ等に比較して熱輻射率が大きく、しかも平板状セッターの外周側面の70〜100%を露出させているため、平板状セッター上の電子セラミック素子に炉内の雰囲気温度を速やかに伝達することができる。従って多段焼成における各段の均熱性に優れる。Firing rack of the present invention, Si-SiC containing 0.01 to 30% Si, recrystallization SiC, by setter holding means composed of any of the material of the Si 3 N 4 -SiC, a plurality of plate-shaped The setter is held in a state where 70 to 100% of the outer peripheral side surface is exposed. The setter holding means made of these materials has a higher heat emissivity than the generally used alumina and the like, and 70 to 100% of the outer peripheral side surface of the flat plate setter is exposed. The atmosphere temperature in the furnace can be quickly transmitted to the upper electronic ceramic element. Therefore, it is excellent in the soaking | uniform-heating property of each stage in multistage baking.

また、これらの材質からなるセッター保持手段は一般的に用いられているアルミナ等に比較して高温条件下における強度が大きく、その分だけ小型軽量化を図ることができる。従って電子セラミック素子を多段焼成する際のエネルギー効率や量産効率に優れる。   Further, the setter holding means made of these materials has a higher strength under high-temperature conditions than that of generally used alumina or the like, and the size and weight can be reduced accordingly. Therefore, it is excellent in energy efficiency and mass production efficiency when the electronic ceramic element is fired in multiple stages.

また従来、各セッター間に突起部で空間を形成しながら、セッターを複数段に段積みしていく場合、段積みに耐えうる強度を確保するように形成された突起部が占める重量や体積が、エネルギー効率や量産効率の高効率化を妨げている問題があったが、請求項2の発明の焼成用ラックは、複数本の垂直支柱と、該垂直支柱の下端部を支持する下端支持枠と、該垂直支柱の上端部を支持する上端支持枠を有し、複数枚の平板状セッターを垂直方向で多段に保持するセッター保持機構を備える構造であり、段積みに耐えうる強度を確保するように形成された突起部が不要となり、従来に比べて、エネルギー効率や量産効率の高効率化を図ることができる。   Conventionally, when the setters are stacked in multiple stages while forming spaces between the setters, the weight and volume occupied by the protrusions formed to ensure the strength to withstand the stacking are However, the firing rack according to the invention of claim 2 has a plurality of vertical struts and a lower end support frame that supports the lower end portions of the vertical struts. And a structure including a setter holding mechanism for holding a plurality of flat plate-like setters in multiple stages in the vertical direction, and having an upper end support frame that supports the upper end portion of the vertical column, and ensuring strength that can withstand stacking. Thus, the projecting portion formed as described above becomes unnecessary, and energy efficiency and mass production efficiency can be improved as compared with the conventional case.

また、従来、各セッター間に突起部で空間を形成しながら、セッターを複数段に段積みしていく場合、最下段のセッターの下面全面が、炉体と、直接或いはトレーを介して接触し、炉体からの熱伝導の影響を大きく受けるため、例えば、最下段のセッターで熱処理を施された電子セラミック素子は、上段で熱処理を施された電子セラミック素子に比べて製品の歩留まりが悪い等、各段における均熱化が困難である問題があったが、請求項2の発明の焼成用ラックによれは、最下段のセッターの下部面と炉体との間にも空間が形成され、炉体からの熱伝導の影響を低減するとともに、該セッター保持機構は、各平板状セッターの外周側面の70〜100%を各垂直支柱の間から露出させる。これにより、焼結に有害なバインダー分解ガスの排出等、炉内ガスの流れが阻害されにくくなり、各段を構成するセッターへの熱伝達がより均一になるので、各段における均熱化を図ることができる。   Conventionally, when the setters are stacked in multiple stages while forming spaces between the setters with protrusions, the entire lower surface of the lowermost setter contacts the furnace body directly or via a tray. In order to be greatly affected by the heat conduction from the furnace body, for example, an electronic ceramic element subjected to heat treatment with the lowermost setter has a lower product yield than an electronic ceramic element subjected to heat treatment at the upper stage, etc. In addition, there was a problem that it is difficult to perform soaking at each stage, but according to the rack for firing of the invention of claim 2, a space is also formed between the lower surface of the lowermost setter and the furnace body, While reducing the influence of heat conduction from the furnace body, the setter holding mechanism exposes 70 to 100% of the outer peripheral side surface of each flat plate-like setter from between each vertical column. This makes it difficult for the flow of gas in the furnace, such as the discharge of binder decomposition gas harmful to sintering, to be disturbed, and the heat transfer to the setters that make up each stage becomes more uniform. Can be planned.

請求項3の発明によれば、セッターをより安定的に保持することができる。また、特に、中間垂直支柱間に梁を渡す構成によれば、該梁を介して各段のセッターの中央部への熱伝導が行われるため、角部垂直支柱からの熱伝導の影響を受けるセッターの縁部との均熱化を図ることができる。   According to invention of Claim 3, a setter can be hold | maintained more stably. Further, in particular, according to the configuration in which the beam is passed between the intermediate vertical columns, heat conduction is performed to the center portion of the setter at each stage through the beam, and therefore, it is affected by the heat conduction from the corner vertical column. It is possible to achieve soaking with the setter edge.

請求項4の発明によれば、セッター保持手段が周辺部に複数の段積み用突起を備えた枠状の平板部材からなり、平板状セッターを保持させた状態で多段に積層した構成としたので、セッター保持手段の熱容量を小さくして電子セラミック素子を多段焼成する際のエネルギー効率や量産効率を高めることができる。また、炉内ガスとの接触性に優れ、多段焼成における各段の均熱性に優れる。   According to the invention of claim 4, the setter holding means is composed of a frame-like flat plate member provided with a plurality of stacking projections in the peripheral portion, and is configured to be laminated in multiple stages while holding the flat plate setter. The heat capacity of the setter holding means can be reduced to increase the energy efficiency and mass production efficiency when firing the electronic ceramic element in multiple stages. Moreover, it is excellent in the contact property with the gas in a furnace, and is excellent in the soaking | uniform-heating property of each step | level in multistage baking.

請求項5記載の発明によれば、セッター保持手段が複数の段積み用突起を備え対向配置された一対の直線部材と、各段積み用突起の上部凹面間に掛け渡された梁とからなり、これらの梁の上に平板状セッターを保持させた状態で多段に積層した構成としたので、請求項4の発明と同様の効果を得ることができる。   According to the invention described in claim 5, the setter holding means comprises a pair of linear members provided with a plurality of stacking protrusions and arranged opposite to each other, and a beam spanned between the upper concave surfaces of the stacking protrusions. Since the multi-layered structure in which the flat setter is held on these beams is used, the same effect as that of the invention of claim 4 can be obtained.

第1の実施形態の焼成用ラックを示す全体斜視図である。It is a whole perspective view which shows the rack for baking of 1st Embodiment. 平板状セッターを焼成用ラックに挿入した状態を示す斜視図である。It is a perspective view which shows the state which inserted the flat setter in the rack for baking. 第1の実施形態の変形例を示す全体斜視図である。It is a whole perspective view which shows the modification of 1st Embodiment. 本発明のセッター保持手段を構成するSi−SiCの熱輻射率のグラフである。It is a graph of the thermal emissivity of Si-SiC which comprises the setter holding means of this invention. 第2の実施形態の焼成用ラックを示す全体斜視図である。It is a whole perspective view which shows the rack for baking of 2nd Embodiment. 平板状セッターを焼成用ラックに挿入した状態を示す側面図である。It is a side view which shows the state which inserted the flat setter in the rack for baking. 第3の実施形態の焼成用ラックを示す全体斜視図である。It is a whole perspective view which shows the rack for baking of 3rd Embodiment. 平板状セッターを焼成用ラックに挿入した状態を示す側面図である。It is a side view which shows the state which inserted the flat setter in the rack for baking. 従来のセッターを複数段に積み重ねた状態の説明図である。It is explanatory drawing of the state which piled up the conventional setter in the multistage.

(第1の実施形態)
図1と図2は本発明の第1の実施形態を示すものである。本実施形態の焼成用ラック1は略立方体形状を有し、セッター保持手段は、4隅の垂直辺を構成する4本の角部垂直支柱2と、該4本の角部垂直支柱2(2a、2b、2c、2d)の下端部を支持する略ロ字状の下端支持枠4と、該4本の垂直支柱2の上端部を支持する略ロ字状の上端支持枠3から構成されている。図1に示すように、該焼成用ラック1は、平板状セッター7を挿入して使用するものである。
(First embodiment)
1 and 2 show a first embodiment of the present invention. The firing rack 1 of the present embodiment has a substantially cubic shape, and the setter holding means includes four corner vertical struts 2 constituting the vertical sides of the four corners, and the four corner vertical struts 2 (2a 2b, 2c, 2d), and a substantially lower-shaped lower end support frame 4 that supports the lower end portions of the four vertical support columns 2, and a substantially lower-shaped upper end support frame 3 that supports the upper end portions of the four vertical columns 2. Yes. As shown in FIG. 1, the firing rack 1 is used by inserting a flat setter 7.

各角部垂直支柱2の内側面には、該平板状セッター7の挿入方向に対して平行に水平溝部21が形成され、セッター保持機構を構成している。平板状セッター7は、該水平溝部21位置に挿入されて保持される。該水平溝部21は複数形成されており、各水平溝部21に複数の平板状セッター7を保持させることにより、図2に示すような、多段焼成用焼成治具を構成することができる。このように、ラックに平板状セッターを挿入して多段焼成用焼成治具を構成することにより、従来の各セッター間に突起部で空間を形成しながらセッターを段積みしていく構成に比べて、エネルギー効率や量産効率の高効率化を図ることができる。セッター保持機構の形態は、該水平溝部21に限定されず、その他、角部垂直支柱2の内側面に形成した複数の凹部または凸部、あるいは、平板状セッターを挟んで対面する角部垂直支柱2間に渡した梁等の形状を採用してもよい。   A horizontal groove portion 21 is formed on the inner side surface of each corner vertical support 2 in parallel to the insertion direction of the flat plate-like setter 7 to constitute a setter holding mechanism. The flat setter 7 is inserted and held at the position of the horizontal groove 21. A plurality of the horizontal groove portions 21 are formed, and by holding a plurality of flat plate-like setters 7 in each horizontal groove portion 21, a multistage firing firing jig as shown in FIG. 2 can be configured. In this way, by constructing a firing jig for multi-stage firing by inserting a flat setter into the rack, compared to the conventional configuration in which the setters are stacked while forming a space at the protruding portion between each setter Therefore, energy efficiency and mass production efficiency can be improved. The form of the setter holding mechanism is not limited to the horizontal groove portion 21. In addition, a plurality of concave portions or convex portions formed on the inner surface of the corner vertical column 2, or a corner vertical column facing each other with a flat setter interposed therebetween You may employ | adopt the shape of the beam etc. which passed between two.

本実施形態の焼成用ラック1は、隣接する角部垂直支柱間(2aと2b間、及び、2cと2d間)に垂直配置された中間垂直支柱5(5aと5b)を、平板状セッター7を挟む対面位置に対で備えている。該一対の中間垂直支柱(5aと5b)は、各々の内側面に複数の水平孔部51を有し、平板状セッター7を挟む対面位置で対をなす水平孔部51間には梁6が渡されている。該梁6の高さは、各水平溝部21に保持される平板状セッター7の中央部を下面から支持するように、配置されている。これにより、セッターをより安定的に保持することができるため、セッターの薄肉化を図ることができる。また、該梁を介して、各段のセッターの中央部への熱伝導が行われるため、角部垂直支柱2からの熱伝導の影響を受けるセッターの縁部との均熱化を図ることができる。ただし、例えば図3に示すように、中間垂直支柱5を備えない焼成用ラック1とすることもできる。   The firing rack 1 according to the present embodiment includes intermediate vertical struts 5 (5a and 5b) arranged vertically between adjacent corner vertical struts (between 2a and 2b and between 2c and 2d), and a flat setter 7 It is provided in a pair at the facing position across. The pair of intermediate vertical struts (5a and 5b) has a plurality of horizontal hole portions 51 on each inner surface, and a beam 6 is formed between the horizontal hole portions 51 that form a pair at a facing position across the flat plate-like setter 7. Has been passed. The height of the beam 6 is arranged so as to support the central portion of the flat plate-like setter 7 held in each horizontal groove portion 21 from the lower surface. Thereby, since a setter can be hold | maintained more stably, thickness reduction of a setter can be achieved. In addition, since heat conduction is performed to the center of the setter at each stage through the beam, it is possible to achieve a uniform temperature with the edge of the setter that is affected by heat conduction from the corner vertical column 2. it can. However, for example, as shown in FIG. 3, a baking rack 1 that does not include the intermediate vertical column 5 may be used.

各角部垂直支柱2の内側面に形成された水平溝部21に保持された平板状セッター4の外周側面長さを、例えば図2に示すように、(L1+L2)×2とすると、本実施形態では、角部垂直支柱2の幅sと、中間垂直支柱5の幅tによって被覆される外周側面の割合が、{(s+t)×4} / {(L1+L2)×2}×100=5〜30%となり、平板状セッター4の外周側面の70〜95%は、焼成炉内で露出される構造を有している。これにより、各段のセッター全面における良好な炉内ガス流れを確保することができる。   If the outer peripheral side surface length of the flat plate-like setter 4 held in the horizontal groove portion 21 formed on the inner side surface of each corner vertical support 2 is, for example, as shown in FIG. 2, (L1 + L2) × 2, this embodiment Then, the ratio of the outer peripheral side surface covered by the width s of the corner vertical column 2 and the width t of the intermediate vertical column 5 is {(s + t) × 4} / {(L1 + L2) × 2} × 100 = 5-30. %, And 70 to 95% of the outer peripheral side surface of the flat setter 4 has a structure exposed in the firing furnace. Thereby, the favorable in-furnace gas flow can be ensured on the entire setter surface of each stage.

また、図9に示す従来例のように、各セッター間に突起部8で空間を形成しながら、セッターを複数段に段積みしていく場合、最下段のセッターの下面全面が、焼成炉の炉体と、直接或いはトレーを介して接触し、炉体からの熱伝導の影響を大きく受けるため、例えば、最下段のセッターで熱処理を施された電子セラミック素子は、上段で熱処理を施された電子セラミック素子に比べて製品の歩留まりが悪い等、各段における均熱化が困難である問題があったが、本発明では、複数本の角部垂直支柱2および中間垂直支柱5(以下、垂直支柱という)と、該垂直支柱の下端部を支持する下端支持枠4と、該垂直支柱の上端部を支持する上端支持枠3を有し、該セッター保持機構は、該垂直支柱の内側面に形成した複数の水平溝部21からなる構成を採用することにより、最下段のセッターの下部面と炉体との間にも空間が形成され、炉体からの熱伝導の影響を低減することができる。   Further, as in the conventional example shown in FIG. 9, when the setters are stacked in a plurality of stages while forming spaces between the setters with the protrusions 8, the entire lower surface of the lowermost setter is the firing furnace. To contact the furnace body directly or via a tray and be greatly affected by heat conduction from the furnace body, for example, an electroceramic element that has been heat-treated in the lowermost setter has been heat-treated in the upper stage There is a problem that it is difficult to equalize heat at each stage, such as a product yield lower than that of an electronic ceramic element. However, in the present invention, a plurality of corner vertical struts 2 and intermediate vertical struts 5 (hereinafter referred to as vertical struts). A lower end support frame 4 that supports the lower end portion of the vertical column, and an upper end support frame 3 that supports the upper end portion of the vertical column. The setter holding mechanism is provided on the inner surface of the vertical column. Consists of a plurality of horizontal grooves 21 formed By employing the formed space in between the lower surface and the furnace of the lowermost setter is formed, it is possible to reduce the influence of heat conduction from the furnace body.

なお、焼成用ラック自体が傾いた際にもセッターを安定保持しておく観点から、垂直支柱2、5の下端部および上端部は、各々、下端支持枠4および上端支持枠3に形成された嵌合部と嵌合して固定され、焼成ラック全体を水平な床面に対して30度傾斜させた際、下端支持枠に対する垂直支柱の傾斜角度が2°以下であることが好ましい。傾斜角度が2°以上の場合、使用時の振動が大きくなり、焼成時の炉内搬送に伴う振動で秘焼成物が損傷する問題が生じる危険性があるが、本発明の前記構成によれば、当該問題を効果的に回避することができる。   From the viewpoint of stably holding the setter even when the firing rack itself is tilted, the lower ends and the upper ends of the vertical support columns 2 and 5 are formed on the lower support frame 4 and the upper support frame 3, respectively. When the entire firing rack is inclined by 30 degrees with respect to the horizontal floor surface by being fitted and fixed to the fitting portion, the inclination angle of the vertical column with respect to the lower end support frame is preferably 2 ° or less. When the inclination angle is 2 ° or more, vibration during use increases, and there is a risk that the secret fired product may be damaged due to vibration accompanying conveyance in the furnace during firing. The problem can be effectively avoided.

上記のように、本発明の構成によれば、焼成炉の炉体からの熱伝導の影響が低減され、かつ、良好な空気流れが確保にされるため、各段を構成するセッターへの熱伝達がより均一になり、各段における均熱化を図ることができる。   As described above, according to the configuration of the present invention, since the influence of heat conduction from the furnace body of the firing furnace is reduced and a good air flow is ensured, the heat to the setter constituting each stage Transmission becomes more uniform, and soaking can be achieved at each stage.

(セッター保持手段の材質)
本発明の焼成用ラックは通常、不活性ガス雰囲気下で、1300〜1450℃程度の高温条件下で使用される。このため本発明においては、セッター保持手段が0.01〜30%のSiを含有するSi−SiC、再結晶SiC、Si−SiCの何れかの材質から構成される。
(Material of setter holding means)
The firing rack of the present invention is usually used under a high temperature condition of about 1300 to 1450 ° C. in an inert gas atmosphere. Therefore, in the present invention, Si-SiC setter holding means contains 0.01 to 30% Si, recrystallization SiC, Si 3 N 4 consisting of any of the material of the -SiC.

Si−SiCはSiCの粒子間にSiを含浸させたSi含浸SiCと呼ばれる材質である。その化学組成として、SiCを70〜99%、Siを1〜30%、更に、微量成分として外配で(SiC+Siを100%としてさらに)Alを0.01〜0.2%、Feを0.01〜0.2%、Caを0.01〜0.2%含有することが好ましい。Siの含有率が30%を超えると、強度の低下や熱輻射率の低下を招くので好ましくない。   Si-SiC is a material called Si-impregnated SiC in which Si is impregnated between SiC particles. As its chemical composition, SiC is 70 to 99%, Si is 1 to 30%, Al is 0.01 to 0.2%, Fe is 0.1 to 0.2%, and Fe is 0.1 to 0.2% as a trace component (with SiC + Si as 100%). It is preferable to contain 01 to 0.2% and Ca to 0.01 to 0.2%. If the Si content exceeds 30%, the strength and the heat radiation rate are lowered, which is not preferable.

また、算術平均による表面粗さがRa=0.1〜30μm、弾性率が200〜400GPa、強度が100〜400MPaで、室温における熱伝導率が150〜240W/m・k、気孔率が1%以下であることが好ましい。このような、化学組成および物性を有する材質とすることにより、焼成用ラック1の軽量化かつ高強度化および長寿命化を図ることができる。   In addition, the arithmetic average surface roughness is Ra = 0.1-30 μm, the elastic modulus is 200-400 GPa, the strength is 100-400 MPa, the thermal conductivity at room temperature is 150-240 W / m · k, and the porosity is 1%. The following is preferable. By using a material having such a chemical composition and physical properties, it is possible to reduce the weight, increase the strength, and extend the life of the firing rack 1.

このSi−SiCからなるセッター保持手段の熱輻射率は、図4のグラフ中に実線に示すように、波長8μmで80〜100%、波長12μmで20〜40%、波長19μmで60〜80%であることが好ましい。熱輻射率は、化学組成と表面粗さにより規定することができ、本発明では前記のように、化学組成として、SiCを70〜99%、Siを1〜30%、更に、微量成分として外配でAlを0.01〜0.2%、Feを0.01〜0.2%、Caを0.01〜0.2%含有する構成を採用し、表面粗さをRa=0.1〜30μm、より好ましくは、Ra=10〜30μmとする構成を採用することにより、当該熱輻射率を実現している。なお、図4の破線は、化学組成として、従来のセッターの主成分として一般的に使用されるアルミナを採用した場合の熱輻射率である。図4に示すように、従来のセッターの主成分として一般的に使用されるアルミナに変えてSi−SiCを用いることにより、各構成部材(2、5、3、4)の熱輻射率を高め、炉内における各構成部材(2、3、4)からの輻射熱を効果的に利用してエネルギー効率の高い焼成を可能としている。   As shown by the solid line in the graph of FIG. 4, the thermal emissivity of the setter holding means made of Si—SiC is 80 to 100% at a wavelength of 8 μm, 20 to 40% at a wavelength of 12 μm, and 60 to 80% at a wavelength of 19 μm. It is preferable that The thermal emissivity can be defined by the chemical composition and the surface roughness. In the present invention, as described above, as the chemical composition, SiC is 70 to 99%, Si is 1 to 30%, and the trace component is external. The composition containing 0.01 to 0.2% Al, 0.01 to 0.2% Fe, and 0.01 to 0.2% Ca is adopted, and the surface roughness is Ra = 0.1. The thermal radiation rate is realized by adopting a configuration of Ra = 10-30 μm, more preferably Ra = 10-30 μm. In addition, the broken line of FIG. 4 is a heat radiation rate at the time of employ | adopting the alumina generally used as a main component of the conventional setter as a chemical composition. As shown in FIG. 4, the heat emissivity of each component (2, 5, 3, 4) is increased by using Si-SiC instead of alumina which is generally used as a main component of a conventional setter. The radiant heat from each constituent member (2, 3, 4) in the furnace is effectively used to enable firing with high energy efficiency.

セッター保持手段を構成する各構成部材(2、5、3、4)の表層には、化学組成としてSiOを90%以上含有する厚さ1〜10μmの被膜を備えることが好ましい。該被膜により、雰囲気ガスによる各構成部材(2、5、3、4)の反応劣化を抑制し、焼成用ラックの長寿命化を図ることができる。It is preferable that the surface layer of each constituent member (2, 5, 3, 4) constituting the setter holding means is provided with a coating having a thickness of 1 to 10 μm containing 90% or more of SiO 2 as a chemical composition. With this coating, reaction deterioration of each component (2, 5, 3, 4) due to the atmospheric gas can be suppressed, and the lifetime of the firing rack can be extended.

上記したSi−SiCの他に、再結晶SiCまたはSi−SiCを用いることもできる。再結晶SiCはSiCの粒子間を再結晶操作により融着させて緻密化したもので、その化学組成はSiC:99〜100%である。しかしSiCを100%としてさらにAl:0.01〜0.2%、Fe:0.01〜0.2%、Ca:0.1〜0.2%を微量成分として含有するものである。In addition to the Si—SiC described above, recrystallized SiC or Si 3 N 4 —SiC can also be used. Recrystallized SiC is obtained by fusing and densifying SiC particles by a recrystallization operation, and its chemical composition is SiC: 99 to 100%. However, SiC is 100% and further contains Al: 0.01 to 0.2%, Fe: 0.01 to 0.2%, and Ca: 0.1 to 0.2% as trace components.

またSi−SiCはSiをボンドとするSiCであり、Si−SiCよりも更に高温領域での使用に適する。その化学組成はSiC:70〜80%、Si:20〜30%であり、SiC+Siを100%としてさらにAl:0.1〜0.5%、Fe:0.1〜0.5%、Ca:0.01〜0.2%を含有するものである。なおこれらの3種類の材質は以下に説明する第2、第3の実施形態についても同様に採用される。Si 3 N 4 —SiC is SiC having Si 3 N 4 as a bond, and is more suitable for use in a higher temperature region than Si—SiC. Its chemical composition SiC: 70~80%, Si 3 N 4: 20 to 30%, even Al and SiC + Si 3 N 4 as 100%: 0.1~0.5%, Fe: 0.1~0 0.5%, Ca: 0.01-0.2% is contained. These three types of materials are similarly adopted in the second and third embodiments described below.

なお、平板状セッター7の材質は特に限定されるものではないが、使用温度に耐えるためにはセッター保持手段と同じ材質であることが好ましく、特に0.01〜30%のSiを含有するSi−SiCであることが好ましい。この材質は高温強度が大きいため、セッターの薄肉化を図ることができるからである。平板状セッター7の形状は必ずしも平坦な板とする必要はなく、例えばハニカム状としたり、メッシュ状としたりすることも可能である。これらの形状とすれば平板状セッター7を貫通して炉内ガスが流れるので、より均熱化を図ることができる。なお焼成温度が比較的低温である場合には、チタンなどの耐熱金属製のメッシュを採用することもできる。   The material of the flat setter 7 is not particularly limited, but is preferably the same material as the setter holding means in order to withstand the operating temperature, and in particular Si containing 0.01 to 30% Si. -SiC is preferred. This is because this material has high strength at high temperatures, so that the setter can be thinned. The shape of the flat plate-like setter 7 is not necessarily a flat plate, and may be, for example, a honeycomb shape or a mesh shape. If it is set as these shapes, since the gas in a furnace will flow through the flat plate-shaped setter 7, a more uniform temperature can be achieved. When the firing temperature is relatively low, a mesh made of a heat-resistant metal such as titanium can be used.

(第2の実施形態)
図5と図6は、本発明の第2の実施形態を示すものである。本実施形態の焼成用ラック1は、セッター保持手段が、周辺部に複数の段積み用突起11を備えた枠状の平板部材10からなるものである。図5の実施形態では、長方形の平板部材10は左右両側に四角形の孔12を備え、この部分に平板状セッター7が載せられる。平板部材10の一辺の左右両端と対向する辺の中央部には段積み用突起11が突設され、孔12を囲む位置には段積み用突起11よりも低い位置決め用突起13が突設されている。
(Second Embodiment)
5 and 6 show a second embodiment of the present invention. In the firing rack 1 of the present embodiment, the setter holding means is composed of a frame-shaped flat plate member 10 provided with a plurality of stacking protrusions 11 on the periphery. In the embodiment of FIG. 5, the rectangular flat plate member 10 includes square holes 12 on both the left and right sides, and the flat plate-like setter 7 is placed on this portion. A stacking protrusion 11 protrudes from the center of the side of the flat plate member 10 facing the left and right ends, and a positioning protrusion 13 lower than the stacking protrusion 11 protrudes from a position surrounding the hole 12. ing.

図6はこのセッター保持手段に平板状セッター7を保持させ、多段に積層した状態の側面図であり、平板状セッター7は点線で表示してある。このようにこの実施形態においても、平板状セッター7の外周側面の70%以上は、焼成炉内で露出される。またその材質は熱輻射率の高いSi−SiC、再結晶SiC、Si−SiCの何れかであるから、第1の実施形態と同様に優れた均熱性を確保することができる。また、セッター保持手段に平板状セッター7を保持させた上で段積みすることができるので、第1の実施形態に比較して取り扱い性に優れる利点がある。FIG. 6 is a side view showing a state in which the setter holding means holds the flat setter 7 and is laminated in multiple stages, and the flat setter 7 is indicated by a dotted line. Thus, also in this embodiment, 70% or more of the outer peripheral side surface of the flat setter 7 is exposed in the firing furnace. In addition, since the material is any one of Si—SiC, recrystallized SiC, and Si 3 N 4 —SiC having a high heat radiation rate, excellent heat uniformity can be ensured as in the first embodiment. Further, since the setter holding means can hold the flat setter 7 and stack them, there is an advantage that the handleability is excellent as compared with the first embodiment.

(第3の実施形態)
図7と図8は、本発明の第3の実施形態を示すものである。本実施形態の焼成用ラック1は、セッター保持手段が、複数の段積み用突起15を備え対向配置された一対の直線部材16と、各段積み用突起15の上部凹面17間に掛け渡された梁18とからなるものである。段積み用突起15は山型の突起であり、その下側には凹部19が形成されている。梁18は断面角型の棒状体であり、その両端が段積み用突起15の上部凹面17に嵌め込まれ、その上に平板状セッター7が載せられる。
(Third embodiment)
7 and 8 show a third embodiment of the present invention. In the firing rack 1 of the present embodiment, the setter holding means is spanned between a pair of linear members 16 provided with a plurality of stacking projections 15 and facing each other, and the upper concave surface 17 of each stacking projection 15. The beam 18 is made up of. The stacking protrusion 15 is a mountain-shaped protrusion, and a recess 19 is formed below the protrusion. The beam 18 is a rod-shaped body having a square cross section, and both ends thereof are fitted into the upper concave surface 17 of the stacking projection 15, and the flat plate-like setter 7 is placed thereon.

図8はこれらの梁18の上に平板状セッター7を保持させ、多段に積層した状態の側面図であり、平板状セッター7は点線で表示してある。図8のように下側の凹部19は梁18の上側に嵌め込まれ、積層状態を安定させる。   FIG. 8 is a side view showing a state in which the flat plate-like setters 7 are held on these beams 18 and stacked in multiple stages, and the flat plate-like setters 7 are indicated by dotted lines. As shown in FIG. 8, the lower concave portion 19 is fitted on the upper side of the beam 18 to stabilize the laminated state.

図8に示したように、この実施形態においては、平板状セッター7の外周側面の約100%を焼成炉内で露出させることができる。またその材質は熱輻射率の高いSi−SiC、再結晶SiC、Si−SiCの何れかであるから、第1の実施形態と同様に優れた均熱性を確保することができる。第3の実施形態のものも、セッター保持手段に平板状セッター7を保持させた上で段積みすることができるので、第1の実施形態に比較して取り扱い性に優れる利点がある。As shown in FIG. 8, in this embodiment, about 100% of the outer peripheral side surface of the flat setter 7 can be exposed in the firing furnace. In addition, since the material is any one of Si—SiC, recrystallized SiC, and Si 3 N 4 —SiC having a high heat radiation rate, excellent heat uniformity can be ensured as in the first embodiment. Since the setter holding means can hold the flat plate-like setter 7 in the third embodiment, it can be stacked, so that there is an advantage that the handleability is excellent as compared with the first embodiment.

Figure 2012014835
Figure 2012014835

本発明の焼成用ラックに、150mm×150mm×2mmの平板状セッターを挿入して、15段積み構造の焼成治具を構成したもの(実施例1)と、150mm×150mm×5mmのセッターで上面周縁に15mmの突起部を有するものを15段に積み上げて構成したもの(比較例1)を使用して、同一の焼成条件下で、セラミックコンデンサーの焼成(1300℃、10時間)を行った。表1には、各段における製品歩留まりを調べた結果(「製品歩留まり(%)」)、各段を構成するセッターの端部と中央部の温度差を測定した結果(「セッター温度差(℃)」)、最上段のセッター中央部の温度と各段を構成するセッター中央部の温度差(「セッター中央温度差(℃)」を、各々示している。   A plate setter of 150 mm × 150 mm × 2 mm was inserted into the baking rack of the present invention to form a baking jig having a 15-layer structure (Example 1), and a setter of 150 mm × 150 mm × 5 mm A ceramic capacitor was fired (1300 ° C., 10 hours) under the same firing conditions using a structure (Comparative Example 1) in which 15 mm protrusions on the periphery were stacked in 15 steps. Table 1 shows the results of examining the product yield at each stage (“Product Yield (%)”), and the results of measuring the temperature difference between the end and the center of the setter constituting each stage (“Setter temperature difference (° C. ) "), The temperature of the center of the uppermost setter and the temperature difference of the center of the setter constituting each stage (" setter central temperature difference (° C) ".

表1に示すように、本発明の焼成用ラックを使用することにより、各段における均熱化を図り、製品歩留まりを向上することができる。   As shown in Table 1, by using the firing rack of the present invention, it is possible to achieve a uniform temperature at each stage and improve the product yield.

Figure 2012014835
Figure 2012014835

材質の影響を調べるため、表2に示す各成分比で、本発明の請求項1に係る焼成用ラックを構成し(実施例2〜6、比較例2〜4)、150mm×150mm×2mmの平板状セッターを挿入して、15段積み構造の焼成治具を構成した。これを使用して、同一の焼成条件下で、セラミックコンデンサーの焼成(1300℃、10時間)を行った。表2には、実施例2〜6、比較例2〜4に係る焼成用ラックの物性(弾性率、曲げ強度、熱伝導率、気孔率、輻射率)を測定した結果、中断の製品歩留まり調べた結果、焼成用ラック自体の寿命(「多段棚組の寿命(回)」)を、各々示している。   In order to investigate the influence of the material, the racks for firing according to claim 1 of the present invention were configured with each component ratio shown in Table 2 (Examples 2 to 6, Comparative Examples 2 to 4), and the dimensions were 150 mm × 150 mm × 2 mm. A flat setter was inserted to form a baking jig having a 15-layer structure. Using this, the ceramic capacitor was fired (1300 ° C., 10 hours) under the same firing conditions. Table 2 shows the results of measuring the yield of suspended products as a result of measuring the physical properties (elastic modulus, bending strength, thermal conductivity, porosity, emissivity) of the racks for firing according to Examples 2-6 and Comparative Examples 2-4. As a result, the lifetimes of the firing racks themselves (“lifetime of the multistage shelf assembly (times)”) are shown.

表2に示す実施例2、3、4は0.01〜30%のSiを含有するSi−SiC、実施例5は再結晶SiC、実施例6はSi−SiCであり、比較例2はSi含有率が過剰のSi−SiC、比較例3はアルミナ、比較例4はアルミナーシリカである。表2に示すように、0.01〜30%のSiを含有するSi−SiC、再結晶SiC、Si−SiCの何れかの材質で請求項1に係る焼成用ラックを構成することにより、製品歩留まりの向上および、焼成用ラックの長寿命化を図ることができる。一方、比較例2〜4の化学組成を有する部材で、本発明の請求項1に係る焼成用ラックを構成した場合、製品歩留まりの悪化とともに、特に棚組み寿命の顕著な低下が観察された。Examples 2, 3, and 4 shown in Table 2 are Si-SiC containing 0.01 to 30% Si, Example 5 is recrystallized SiC, Example 6 is Si 3 N 4 -SiC, and Comparative Example 2 is Si-SiC having an excessive Si content, Comparative Example 3 is alumina, and Comparative Example 4 is alumina-silica. As shown in Table 2, configuring Si-SiC containing 0.01 to 30% Si, recrystallization SiC, the firing rack according to claim 1 in any of the material of the Si 3 N 4 -SiC Thus, it is possible to improve the product yield and extend the life of the firing rack. On the other hand, when the rack for firing according to claim 1 of the present invention was configured with the members having the chemical compositions of Comparative Examples 2 to 4, a remarkable decrease in shelf life was observed especially as the product yield deteriorated.

1 焼成用ラック
2(2a、2b、2c、2d)角部垂直支柱
21 水平溝部
3 上端支持枠
4 下端支持枠
5(5aと5b)中間垂直支柱
51 水平孔部
6 梁
7 平板状セッター
8 突起部
10 平板部材
11 段積み用突起
12 四角形の孔
13 位置決め用突起
15 段積み用突起
16 直線部材
17 上部凹面
18 梁
19 凹部
DESCRIPTION OF SYMBOLS 1 Rack for baking 2 (2a, 2b, 2c, 2d) corner | angular part vertical support | pillar 21 horizontal groove part 3 upper end support frame 4 lower end support frame 5 (5a and 5b) intermediate | middle vertical support | pillar 51 horizontal hole part 6 beam 7 flat plate setter 8 protrusion Part 10 Flat member 11 Stacking protrusion 12 Square hole 13 Positioning protrusion 15 Stacking protrusion 16 Linear member 17 Upper concave surface 18 Beam 19 Recessed part

Claims (11)

複数枚の平板状セッターをセッター保持手段により垂直方向に多段に保持する焼成用ラックであって、該セッター保持手段が、0.01〜30%のSiを含有するSi−SiC、再結晶SiC、Si−SiCの何れかの材質からなり、該セッター保持手段は、各平板状セッターをその外周側面の70〜100%を露出させた状態で保持するものであることを特徴とする焼成用ラック。A firing rack that holds a plurality of flat plate-like setters in a multi-stage in the vertical direction by a setter holding means, wherein the setter holding means includes Si-SiC containing 0.01 to 30% Si, recrystallized SiC, It is made of any material of Si 3 N 4 —SiC, and the setter holding means holds each flat plate-like setter in a state where 70 to 100% of the outer peripheral side surface is exposed. Rack. セッター保持手段が、セッター保持機構を備えた複数本の垂直支柱と、該垂直支柱の下端部を支持する下端支持枠と、該垂直支柱の上端部を支持する上端支持枠を有し、
該セッター保持機構が、垂直支柱の内側面に形成した複数の凹部または凸部、あるいは、平板状セッターを挟んで対面する垂直支柱間に渡した梁、の少なくとも何れかからなることを特徴とする請求項1に記載の焼成用ラック。
The setter holding means has a plurality of vertical columns provided with a setter holding mechanism, a lower end support frame that supports the lower end portion of the vertical column, and an upper end support frame that supports the upper end portion of the vertical column,
The setter holding mechanism is composed of at least one of a plurality of concave portions or convex portions formed on the inner surface of the vertical column, or a beam passed between the vertical columns facing each other across the flat plate-like setter. The firing rack according to claim 1.
垂直支柱が、その4隅の垂直辺を構成する角部垂直支柱、および、該角部垂直支柱間に垂直配置された中間垂直支柱からなることを特徴とする請求項2に記載の焼成用ラック。   3. The rack for firing according to claim 2, wherein the vertical struts are composed of corner vertical struts constituting vertical sides of the four corners, and intermediate vertical struts arranged vertically between the corner vertical struts. . セッター保持手段が、周辺部に複数の段積み用突起を備えた枠状の平板部材からなり、平板状セッターを保持させた状態で多段に積層されたことを特徴とする請求項1に記載の焼成用ラック。   The setter holding means is composed of a frame-shaped flat plate member having a plurality of stacking projections on the periphery, and is stacked in multiple stages in a state where the flat plate-like setter is held. Rack for baking. セッター保持手段が、複数の段積み用突起を備え対向配置された一対の直線部材と、各段積み用突起の上部凹面間に掛け渡された梁とからなり、これらの梁の上に平板状セッターを保持させた状態で多段に積層されたことを特徴とする請求項1に記載の焼成用ラック。   The setter holding means is composed of a pair of linear members provided with a plurality of stacking projections and facing each other, and a beam spanned between the upper concave surfaces of each of the stacking projections. A flat plate is formed on these beams. The rack for firing according to claim 1, wherein the setters are stacked in a multistage manner. セッター保持手段を構成する部材が、Si−SiCからなり、その化学組成はSiC:70〜99%、Si:1〜30%であり、SiC+Siを100%として、さらにAl:0.01〜0.2%、Fe:0.01〜0.2%、Ca:0.01〜0.2%を含有することを特徴とする請求項1〜4の何れかに記載の焼成用ラック。   The member which comprises a setter holding means consists of Si-SiC, The chemical composition is SiC: 70-99%, Si: 1-30%, SiC + Si is made into 100%, Furthermore, Al: 0.01-0. It contains 2%, Fe: 0.01-0.2%, Ca: 0.01-0.2%, The rack for baking in any one of Claims 1-4 characterized by the above-mentioned. セッター保持手段を構成する部材の熱輻射率が、波長8μmで80〜100%、波長12μmで20〜40%、波長19μmで60〜80%であることを特徴とする請求項6に記載の焼成用ラック。   The firing of claim 6, wherein the members constituting the setter holding means have a heat radiation rate of 80 to 100% at a wavelength of 8 µm, 20 to 40% at a wavelength of 12 µm, and 60 to 80% at a wavelength of 19 µm. Rack. セッター保持手段を構成する部材の算術平均による表面粗さがRa=0.1〜30μm、弾性率が200〜400GPa、強度が100〜400MPaで、室温における熱伝導率が150〜240W/m・k、気孔率が1%以下であることを特徴とする請求項6又は7に記載の焼成用ラック。   The surface roughness according to the arithmetic average of the members constituting the setter holding means is Ra = 0.1 to 30 μm, the elastic modulus is 200 to 400 GPa, the strength is 100 to 400 MPa, and the thermal conductivity at room temperature is 150 to 240 W / m · k. The rack for firing according to claim 6 or 7, wherein the porosity is 1% or less. セッター保持手段を構成する部材が再結晶SiCからなり、その化学組成はSiC:99〜100%であり、SiCを100%としてさらにAl:0.01〜0.2%、Fe:0.01〜0.2%、Ca:0.01〜0.2%を含有することを特徴とする請求項1〜4の何れかに記載の焼成用ラック。   The member constituting the setter holding means is made of recrystallized SiC, and its chemical composition is SiC: 99 to 100%, with SiC as 100%, further Al: 0.01 to 0.2%, Fe: 0.01 to The rack for firing according to any one of claims 1 to 4, comprising 0.2% and Ca: 0.01 to 0.2%. セッター保持手段を構成する部材がSi−SiCからなり、その化学組成はSiC:70〜80%、Si:20〜30%であり、SiC+Siを100%としてさらにAl:0.1〜0.5%、Fe:0.1〜0.5%、Ca:0.01〜0.2%を含有することを特徴とする請求項1〜4の何れかに記載の焼成用ラック。The member constituting the setter holding means is made of Si 3 N 4 —SiC, and its chemical composition is SiC: 70 to 80%, Si 3 N 4 : 20 to 30%, and SiC + Si 3 N 4 is taken as 100% and further Al : 0.1-0.5%, Fe: 0.1-0.5%, Ca: 0.01-0.2% is contained, The any one of Claims 1-4 characterized by the above-mentioned. Rack for baking. 平板状セッターの材質が、0.01〜30%のSiを含有するSi−SiCであることを特徴とする請求項1〜4の何れかに記載の焼成用ラック。   The firing rack according to any one of claims 1 to 4, wherein the material of the flat setter is Si-SiC containing 0.01 to 30% Si.
JP2012526489A 2010-07-26 2011-07-25 Rack for baking Active JP5722897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012526489A JP5722897B2 (en) 2010-07-26 2011-07-25 Rack for baking

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010167311 2010-07-26
JP2010167311 2010-07-26
PCT/JP2011/066826 WO2012014835A1 (en) 2010-07-26 2011-07-25 Rack for firing
JP2012526489A JP5722897B2 (en) 2010-07-26 2011-07-25 Rack for baking

Publications (2)

Publication Number Publication Date
JPWO2012014835A1 true JPWO2012014835A1 (en) 2013-09-12
JP5722897B2 JP5722897B2 (en) 2015-05-27

Family

ID=45530043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012526489A Active JP5722897B2 (en) 2010-07-26 2011-07-25 Rack for baking

Country Status (6)

Country Link
JP (1) JP5722897B2 (en)
KR (1) KR101726912B1 (en)
CN (1) CN103097845B (en)
MY (1) MY184778A (en)
TW (1) TWI528013B (en)
WO (1) WO2012014835A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857358B2 (en) * 2013-08-30 2016-02-10 日本碍子株式会社 rack
CN105745185B (en) 2013-10-07 2018-11-20 圣戈本陶瓷及塑料股份有限公司 Refractory product
CN103743204B (en) * 2014-01-08 2015-09-09 长兴明晟冶金炉料有限公司 Spherical furnace material baking oven
CN107024113A (en) * 2016-01-31 2017-08-08 湖南大学 A kind of vertical sintering equipment of emery wheel
TWI612024B (en) * 2016-06-29 2018-01-21 丸十股份有限公司 Burning jig for ceramic compact
JP6811196B2 (en) * 2018-01-10 2021-01-13 日本碍子株式会社 Baking setter
KR102206851B1 (en) 2018-04-18 2021-01-22 주식회사 엘지화학 Cartridge for cell firing
KR102610471B1 (en) * 2018-08-22 2023-12-05 주식회사 엘지화학 Firing apparatus for solid oxide fuel cell and method for manufacturing the same
TWI684739B (en) * 2019-04-19 2020-02-11 群翊工業股份有限公司 Substrate baking apparatus and baking method
CN114207372A (en) * 2019-08-16 2022-03-18 日本碍子株式会社 Frame for firing and jig for firing
CN112496319A (en) * 2019-09-16 2021-03-16 宿迁启祥电子科技有限公司 Sintering device and preparation method of tungsten alloy material
CN113634821B (en) * 2021-08-04 2022-06-03 江苏陆氏金刚石工具有限公司 Bearing device for preventing diamond saw blades from being bonded with each other

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061660A (en) * 1992-06-25 1994-01-11 Ngk Insulators Ltd Creep resistant si-sic sintered body
JPH07280207A (en) * 1994-04-14 1995-10-27 Ngk Insulators Ltd Radiant tube
JPH10311686A (en) * 1997-05-13 1998-11-24 Ngk Insulators Ltd Shelf assembling structure for furnace
JP2000319721A (en) * 1999-05-07 2000-11-21 Ngk Insulators Ltd Ceramic tube, and induction heating furnace using the same
JP2001328870A (en) * 2000-05-19 2001-11-27 Taiyo Yuden Co Ltd Method for burning ceramic, tunnel type burning furnace, method and apparatus for procuding ceramic electronic part and housing unit for burning ceramic electronic part
JP2002274946A (en) * 2001-03-22 2002-09-25 Ngk Insulators Ltd Silicon carbide heat treating tool
JP2003014378A (en) * 2001-06-27 2003-01-15 Maruju:Kk Sintering jig
JP2005082450A (en) * 2003-09-09 2005-03-31 Ngk Insulators Ltd SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
JP2005298311A (en) * 2004-04-16 2005-10-27 Ngk Insulators Ltd Ceramic composite material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4392693T1 (en) * 1992-06-08 1994-09-08 Ngk Insulators Ltd Inserts resistant to temperature changes, creep and oxidation resistant
JP2000074571A (en) 1998-09-03 2000-03-14 Toshiba Ceramics Co Ltd Calcination jig
JP2000111269A (en) * 1998-09-30 2000-04-18 Toshiba Ceramics Co Ltd Tool for burning
JP4869048B2 (en) * 2006-02-15 2012-02-01 日本碍子株式会社 Flat tile firing kiln tool
JP4818300B2 (en) 2008-03-25 2011-11-16 日本碍子株式会社 Electronic component firing setter and method for manufacturing the same
JP4787308B2 (en) * 2008-12-01 2011-10-05 日本碍子株式会社 Shelves for firing
CN201476585U (en) * 2009-08-06 2010-05-19 江西雅华工业陶瓷有限公司 Integral frame type ceramic product calcining-endure plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061660A (en) * 1992-06-25 1994-01-11 Ngk Insulators Ltd Creep resistant si-sic sintered body
JPH07280207A (en) * 1994-04-14 1995-10-27 Ngk Insulators Ltd Radiant tube
JPH10311686A (en) * 1997-05-13 1998-11-24 Ngk Insulators Ltd Shelf assembling structure for furnace
JP2000319721A (en) * 1999-05-07 2000-11-21 Ngk Insulators Ltd Ceramic tube, and induction heating furnace using the same
JP2001328870A (en) * 2000-05-19 2001-11-27 Taiyo Yuden Co Ltd Method for burning ceramic, tunnel type burning furnace, method and apparatus for procuding ceramic electronic part and housing unit for burning ceramic electronic part
JP2002274946A (en) * 2001-03-22 2002-09-25 Ngk Insulators Ltd Silicon carbide heat treating tool
JP2003014378A (en) * 2001-06-27 2003-01-15 Maruju:Kk Sintering jig
JP2005082450A (en) * 2003-09-09 2005-03-31 Ngk Insulators Ltd SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
JP2005298311A (en) * 2004-04-16 2005-10-27 Ngk Insulators Ltd Ceramic composite material

Also Published As

Publication number Publication date
MY184778A (en) 2021-04-21
KR20130130676A (en) 2013-12-02
JP5722897B2 (en) 2015-05-27
TW201224382A (en) 2012-06-16
CN103097845A (en) 2013-05-08
TWI528013B (en) 2016-04-01
WO2012014835A1 (en) 2012-02-02
KR101726912B1 (en) 2017-04-13
CN103097845B (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5722897B2 (en) Rack for baking
US9279618B2 (en) Kiln tool plate for firing ceramic material
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JP6891991B2 (en) Manufacturing method of silicon nitride sintered substrate
KR20210153616A (en) High-density corrosion-resistant layer arrangement for electrostatic chucks
JP7468769B2 (en) Manufacturing method of silicon nitride sintered substrate
JP2002114579A (en) Sintering setter
JP6766509B2 (en) Manufacturing method of silicon nitride sintered substrate
KR20150099749A (en) Thermal shielding system
JP2012158507A (en) Setter for firing electronic component
KR102341028B1 (en) Rack
JP2017165598A (en) Burning tool
JP2016147778A (en) Method for producing inorganic powder sintered compact
JP6386916B2 (en) Sintered silicon carbide ceramics
JP2005082450A (en) SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
KR20090015632A (en) Rack setter for firing
KR20130102232A (en) Multi holes type of ceramics setter
US20210207888A1 (en) Firing setter
JP4457750B2 (en) Method for firing ceramic molded body
JP5212291B2 (en) Method for firing molded body and holder for firing the molded body
JP2009143730A (en) Method of firing plate-like ceramic molding and plate-like ceramic molding
JP2001174164A (en) Table plate for pusher type tunnel furnace
JPH0397682A (en) Production of vessel having setter and method for calcining aluminum nitride substrate by using this vessel
JP2004115324A (en) Firing table for ceramic product
JP2005075710A (en) Tool for calcining ferrite

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150326

R150 Certificate of patent or registration of utility model

Ref document number: 5722897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150