JPWO2011024743A1 - Bow structure - Google Patents

Bow structure Download PDF

Info

Publication number
JPWO2011024743A1
JPWO2011024743A1 JP2010550384A JP2010550384A JPWO2011024743A1 JP WO2011024743 A1 JPWO2011024743 A1 JP WO2011024743A1 JP 2010550384 A JP2010550384 A JP 2010550384A JP 2010550384 A JP2010550384 A JP 2010550384A JP WO2011024743 A1 JPWO2011024743 A1 JP WO2011024743A1
Authority
JP
Japan
Prior art keywords
bow
linear heating
yield strength
ship
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010550384A
Other languages
Japanese (ja)
Inventor
石川 忠
忠 石川
中島 清孝
清孝 中島
裕二 船津
裕二 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JPWO2011024743A1 publication Critical patent/JPWO2011024743A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/06Shape of fore part
    • B63B1/063Bulbous bows
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

この船首構造は、バルバスバウの外殻部材が、線状加熱加工を受けた線状加熱部と線状加熱加工を受けていない非線状加熱部とを有する複数の鋼板を備え、前記各鋼板のそれぞれについて、前記鋼板内の前記線状加熱部の室温での降伏強度YP(LH,RT)を前記非線状加熱部の室温での降伏強度YP(AR,RT)で割って得られた降伏強度の比αが1.2以下である。The bow structure includes a plurality of steel plates in which the outer shell member of the Barbasse bow has a linear heating portion that has undergone linear heating processing and a non-linear heating portion that has not undergone linear heating processing, Yield obtained by dividing the yield strength YP (LH, RT) at room temperature of the linear heating part in the steel sheet by the yield strength YP (AR, RT) at room temperature of the non-linear heating part. The intensity ratio α is 1.2 or less.

Description

本発明は、衝突時に自らが変形することにより衝突した相手側の船の損傷を防止できる緩衝効果を有し、これにより衝突安全性を向上させた船首構造に関する。
本願は、2009年8月24日に、日本に出願された特願2009−193476号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a bow structure that has a buffering effect that can prevent damage to a partner ship that collides due to deformation of itself during a collision, thereby improving collision safety.
This application claims priority based on Japanese Patent Application No. 2009-193476 filed in Japan on August 24, 2009, the contents of which are incorporated herein by reference.

現在の大型船は、航行時における波の抵抗によるエネルギーロスを少しでも軽減させるために、船首水線下にバルバスバウ(球状船首)を備えている。このバルバスバウに用いる曲率の大きな曲板を製造するために、その成形過程で、線状加熱による曲げ加工、すなわち線状加熱加工が多用されている。   Today's large ships are equipped with a Barbasse bow (spherical bow) under the bowline to reduce any energy loss due to wave resistance during navigation. In order to produce a curved plate having a large curvature used for this Barbasse bow, bending by linear heating, that is, linear heating, is frequently used in the molding process.

この線状加熱加工は、ガスバーナー等を用いて鋼板表面を線状に局所加熱し、加熱部分が熱膨張してその周囲からの拘束により塑性変形する現象を利用する加工方法である。そして、この線状加熱加工では、作業効率を高めるために加熱直後に水冷することが一般的に行われており、線状加熱加工後の鋼板は、加熱された部分に焼きが入り、局所的に降伏強度が上昇している。   This linear heating process is a processing method that utilizes a phenomenon in which a steel plate surface is locally heated linearly using a gas burner or the like, and the heated portion is thermally expanded and plastically deformed by restraint from the periphery. In this linear heating process, water cooling is generally performed immediately after heating in order to increase work efficiency, and the steel sheet after the linear heating process is baked into the heated part and locally The yield strength has increased.

そのため、そのような曲板を用いたバルバスバウは、表面に沿った強度が不均一であり、変形しにくい。このようなバルバスバウを備えた船が他船に衝突した場合、例えば図9Aに示すように、自船200(第一の船)の船首200aが他船201(第二の船)の船腹201aに食い込んで船腹201aを破壊、さらには破壊部位201bが拡大して船体に穴があく(船体が破口する)虞があった。本発明において、“自船”とは、バルバスバウを備えた船を意味し、“他船”とは、“自船”に衝突される船を意味する。   For this reason, the Barbasu bow using such a curved plate has nonuniform strength along the surface and is not easily deformed. When a ship equipped with such a Barbus bow collides with another ship, for example, as shown in FIG. 9A, the bow 200a of the own ship 200 (first ship) is placed on the hull 201a of the other ship 201 (second ship). There was a risk that the hull 201a would be broken and the hull 201a was broken, and further, the broken portion 201b was enlarged and the hull was perforated (the hull was broken). In the present invention, “own ship” means a ship equipped with a Barbus bow, and “other ship” means a ship that collides with the “own ship”.

従来、船の衝突安全性を向上させる手段(構造)としては、船殻の二重構造化など、船体構造面からの検討が主体であった。しかしながら、近年では、衝突時のエネルギー吸収性能に優れた鋼材を適用することが検討されている。   Conventionally, as a means (structure) for improving the collision safety of a ship, examination from the hull structure aspect such as a double hull structure has been mainly performed. However, in recent years, it has been studied to apply a steel material excellent in energy absorption performance at the time of collision.

その例として、下記特許文献1には、船側外板などに、従来の国際船級協会連合(IACS)の統一規格材に比べて降伏応力σyと一様伸びεuとの積(σy×εu)を20%以上増加させた鋼材、または引張試験において一様伸びεuまでのエネルギー吸収量を20%以上増加させた鋼材、または降伏応力σyが同等以上でかつ一様伸びεuを20%以上増加させた鋼材、を適用した船体構造が開示されている。この構成では、従来と変わらない船体構造のままでありながらも、船体に破口が生じるまでに吸収できるエネルギー量を増加させることが可能となっている。   As an example, in Patent Document 1 below, the product of the yield stress σy and the uniform elongation εu (σy × εu) is given to the outer skin of the ship, etc., compared to the conventional standard material of the International Classification Society Association (IACS). Steel material increased by 20% or more, or steel material whose energy absorption up to the uniform elongation εu in the tensile test was increased by 20% or more, or the yield stress σy was equal or higher and the uniform elongation εu was increased by 20% or more. A hull structure to which steel material is applied is disclosed. With this configuration, it is possible to increase the amount of energy that can be absorbed before a breakage occurs in the hull, while maintaining the hull structure that is not different from the conventional one.

しかし、自船の船首が他船の船腹に衝突した場合には、例えエネルギー吸収量を50%以上向上した鋼板を他船が使用していても、自船の船首が変形しない場合は他船の船腹を貫通する虞がある。その場合は、上述の吸収エネルギー量の増加が期待できないという問題がある。   However, if the ship's bow collides with the hull of another ship, even if the ship's bow does not deform, even if the ship uses a steel plate that has improved energy absorption by 50% or more, the other ship There is a risk of penetrating the ship's hull. In that case, there is a problem that the increase in the amount of absorbed energy cannot be expected.

このような問題に対して、自船の船首が他船と衝突した場合であっても、緩衝効果を発揮する船首部を設計することも検討されている。
例えば、下記特許文献2には、一般的な船体建造に用いられる鉄鋼材料よりも柔らかい材料を用いて船首部が建造され、柔構造を有する船首部が開示されている。
しかし、この特許文献2には、柔らかい材料として、大型船舶への適用が困難なアルミニウム材が示されているのみで、鋼材を用いて柔構造を得ることについては特に開示されていない。
In order to solve such a problem, it is also considered to design a bow portion that exhibits a buffering effect even when the bow of the ship collides with another ship.
For example, Patent Literature 2 below discloses a bow portion having a flexible structure in which the bow portion is constructed using a material softer than a steel material used for general hull construction.
However, this Patent Document 2 only shows an aluminum material that is difficult to apply to a large ship as a soft material, and does not particularly disclose obtaining a flexible structure using a steel material.

また、下記特許文献3には、バルバスバウにおける球状突起(バルブ部)の根本部の外板に、降伏応力が235MPa以下の低降伏点鋼からなる低強度部が設けられた船首構造が開示されている。この構造においては、根本部の横方向の曲げ強度を低下させて、船首部が衝突の反力で折れ曲がることにより、他船の船腹に衝突船の船首部が食い込むことが防止されている。   Further, Patent Document 3 below discloses a bow structure in which a low strength portion made of a low yield point steel having a yield stress of 235 MPa or less is provided on the outer plate of the base portion of a spherical protrusion (valve portion) in Barbus Bau. Yes. In this structure, the bending strength in the lateral direction of the base portion is reduced and the bow portion is bent by the reaction force of the collision, so that the bow portion of the collision ship is prevented from biting into the flank of another ship.

この特許文献3では、バルバスバウの鉛直方向の強度は十分確保しつつ、バルバスバウの水平方向の構造強度を低下させることにより、図9Bに示すように、衝突時にバルバスバウ300aの根元部300bが船体幅方向に容易に変形して、衝突部300cの接触面積を増大させる。この構造は、この接触面積の増大によって衝突船(自船)300及び被衝突船(他船)301双方の破口(穴の発生)を防止するが、根元部300bの折れ曲がりは、低降伏点鋼を使用した部位の局所的な変形により生じており、折れ曲がる際のエネルギー吸収量は大きなものではない。   In this patent document 3, while maintaining the strength of the vertical direction of the barbasse bow sufficiently, the structural strength in the horizontal direction of the barbusbau is reduced, so that the root part 300b of the barbusbau 300a is aligned in the hull width direction as shown in FIG. To easily increase the contact area of the collision part 300c. This structure prevents the breakage (occurrence of holes) of both the collision ship (own ship) 300 and the collision ship (other ship) 301 due to the increase in the contact area, but the bending of the root part 300b is a low yield point. It is caused by local deformation of the site where steel is used, and the amount of energy absorbed when it is bent is not large.

さらに、バルバスバウ300aが折れ曲がることにより、自船300と他船301とがより接近し、両者の距離が大きなエネルギー吸収を伴わずに小さくなる。その結果、図9Bに示すように、衝突船300の舳先部分300dが被衝突船301に接触して被衝突船301の船腹301aに貫入する場合があるので、衝突事故による損傷がさらに増大する可能性もある。
したがって、バルバスバウ300aが変形し、自船300の舳先部分300dと他船301とが接触するまでの間も、衝突エネルギーの吸収量を大きくする必要がある。
なお、図9Bの点線部分は、衝突船300が被衝突船301に衝突する前のバルバスバウ300aの位置を示す。
Further, when the barbus bow 300a is bent, the own ship 300 and the other ship 301 come closer to each other, and the distance between the two becomes smaller without significant energy absorption. As a result, as shown in FIG. 9B, the tip portion 300d of the collision ship 300 may come into contact with the collision ship 301 and penetrate into the hull 301a of the collision ship 301, which may further increase the damage due to the collision accident. There is also sex.
Accordingly, it is necessary to increase the amount of collision energy absorbed until the barbus bow 300a is deformed and the tip portion 300d of the ship 300 contacts the other ship 301.
9B indicates the position of the Barbus bow 300a before the collision ship 300 collides with the ship to be collided 301.

ところで、通常の線状加熱加工は、鋼板表面での最高到達温度が600〜1100℃程度で行われている。しかしながら、加工精度が低下したり、加熱時間が長くなったりする場合がある。そこで、近年では、下記特許文献4に開示されているように、最高加熱温度が500℃程度の低温で繰返し線状加熱加工を行う方法も提案されている。そのような条件で曲げ加工された曲板を用いて船首部分が形成される船舶では、衝突時のエネルギー吸収量が多くて緩衝効果の高い船首が求められている。
また、線状加熱による曲げ加工の作業性を向上させるために、加熱速度を上げて加熱時間を短くした条件(最高到達温度が400〜600℃の低温の条件)において曲げ変形量が大きい厚鋼板が求められている。このような厚鋼板として、特許文献5には、室温での降伏強度が235MPa以上、400℃での降伏強度が180MPa以下、0℃でのシャルピー平均吸収エネルギーが100J以上の厚鋼板が開示されている。
By the way, the normal linear heat processing is performed by the highest ultimate temperature on the steel plate surface being about 600-1100 degreeC. However, there are cases where the processing accuracy decreases and the heating time becomes long. Thus, in recent years, as disclosed in Patent Document 4 below, a method of repeatedly performing linear heating at a low temperature of about 500 ° C. has been proposed. In a ship in which a bow portion is formed using a bent plate bent under such conditions, a bow having a high shock absorption effect due to a large amount of energy absorption at the time of collision is required.
In addition, in order to improve the workability of bending work by linear heating, a thick steel plate with a large amount of bending deformation under conditions where the heating time is increased and the heating time is shortened (low temperature condition where the maximum temperature reaches 400 to 600 ° C.). Is required. As such a thick steel plate, Patent Document 5 discloses a thick steel plate having a yield strength at room temperature of 235 MPa or more, a yield strength at 400 ° C. of 180 MPa or less, and a Charpy average absorbed energy at 0 ° C. of 100 J or more. Yes.

特開2002−087373号公報JP 2002-087373 A 特開平7−329881号公報Japanese Patent Laid-Open No. 7-329881 特開2004−314825号公報JP 2004-314825 A 特開2006−205181号公報JP 2006-205181 A 特許4308312号公報Japanese Patent No. 4308312

本発明は、上記事情に鑑みてなされたものであって、船首のバルバスバウの部分が、線状加熱加工されて所定の曲率が付与された鋼板を用いて建造されている船舶において、船舶が衝突した際に、バルバスバウのバルブ部ができるだけ全体的に均一に変形し、変形時における大きなエネルギー吸収量を実現できる船首構造の条件を明らかにすることを目的とする。また、船体構造設計を変更することなく、衝突時に相手方の船の損傷を効果的に防止できる緩衝効果を備えた船首構造を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a ship collides with a ship in which a portion of the barbasse bow of the bow is constructed using a steel plate that is linearly heated and given a predetermined curvature. The purpose of this is to clarify the conditions of the bow structure in which the valve portion of the Barbus Bau is deformed as uniformly as possible as a whole, and a large amount of energy can be absorbed during the deformation. It is another object of the present invention to provide a bow structure having a buffering effect that can effectively prevent damage to the other ship in the event of a collision without changing the hull structure design.

上記の課題を解決するために、本発明の一態様では、次のような船首構造とした。
(1)船首構造は、バルバスバウの外殻部材が、線状加熱加工を受けた線状加熱部と線状加熱加工を受けていない非線状加熱部とを有する複数の鋼板を備え、前記各鋼板のそれぞれについて、前記鋼板内の前記線状加熱部の室温での降伏強度YP(LH,RT)を前記非線状加熱部の室温での降伏強度YP(AR,RT)で割って得られた降伏強度の比αが1.2以下である。
(2)上記(1)に記載の船首構造では、前記バルバスバウの前記外殻部材を成す前記鋼板は、線状加熱加工前の室温での降伏強度が235MPa〜470MPaである鋼板としてもよい。
(3)上記(1)および(2)に記載の船首構造では、前記バルバスバウの前記外殻部材を成す前記鋼板は、加熱側の最高表面温度がAc1点未満で線状加熱加工されることにより曲率が付与され、前記線状加熱加工前における400℃での降伏強度が150MPa以下である鋼板としてもよい。
In order to solve the above-described problem, in one aspect of the present invention, the following bow structure is provided.
(1) The bow structure includes a plurality of steel plates in which the outer shell member of the Barbasse bow has a linear heating part that has undergone linear heating and a non-linear heating part that has not undergone linear heating. For each steel plate, it is obtained by dividing the yield strength YP (LH, RT) at room temperature of the linear heating part in the steel plate by the yield strength YP (AR, RT) at room temperature of the non-linear heating part. The yield strength ratio α is 1.2 or less.
(2) In the bow structure as described in said (1), the said steel plate which comprises the said outer shell member of the said Barbus Bau is good also as a steel plate whose yield strength in the room temperature before linear heat processing is 235 MPa-470 MPa.
(3) In the bow structure according to the above (1) and (2), the steel plate constituting the outer shell member of the Barbasse bow is subjected to linear heating processing with a maximum surface temperature on the heating side of less than Ac1 point. It is good also as a steel plate which a curvature is provided by and the yield strength in 400 degreeC before the said linear heat processing is 150 Mpa or less.

本発明によれば、バルバスバウを有する自船の船首が他船の船腹に衝突するような事態を起こした場合に、衝突船側(自船側)のバルバスバウのバルブ部側面がより均一に座屈変形することにより、衝突エネルギーを大きく吸収することができる。また、衝突エネルギーを吸収しながら衝突面がつぶれることで、被衝突船(他船)の損傷を極力低減できるようになり、これによって被衝突船の沈没や油流出による海洋汚染の予防に貢献することができる。   According to the present invention, when a situation occurs in which the bow of the own ship having the Barbus bow collides with the hull of another ship, the valve side surface of the Barbus bow on the collision ship side (own ship side) is more uniformly buckled and deformed. Thus, the collision energy can be greatly absorbed. In addition, by colliding the collision surface while absorbing the collision energy, it is possible to reduce the damage of the ship to be collided (other ships) as much as possible, thereby contributing to the prevention of marine pollution due to the sinking of the ship and the oil spill. be able to.

線状加熱によって曲げ角度120度となるまで曲げ加工された鋼板を示す図である。It is a figure which shows the steel plate bent to the bending angle of 120 degree | times by linear heating. 線状加熱によって曲げ角度120度となるまで曲げ加工された上記鋼板から作製される試験片を示す図である。It is a figure which shows the test piece produced from the said steel plate bent to the bending angle of 120 degree | times by linear heating. 線状加熱を受けた鋼板の座屈性を調べるための試験方法を説明する図である。It is a figure explaining the test method for investigating the buckling property of the steel plate which received the linear heating. 線状加熱を受けた鋼板に荷重を付加した場合の荷重の大きさPとブロックの変位Δとの関係を示す図である。It is a figure which shows the relationship between the magnitude | size P of the load at the time of applying a load to the steel plate which received the linear heating, and the displacement (DELTA) of a block. 図2に示した試験におけるEA比(αが1.0の場合の吸収エネルギーとの比)とαの値との関係を示す図である。It is a figure which shows the relationship between EA ratio (ratio with absorbed energy in case (alpha) is 1.0) and the value of (alpha) in the test shown in FIG. 鋼板の400℃での降伏強度YP(AR,400℃)と、線状加熱部の室温での降伏強度YP(LH,RT)を非線状加熱部の室温での降伏強度YP(AR,RT)で割った比YP(LH,RT)/YP(AR,RT)との関係を示す図である。The yield strength YP (AR, 400 ° C.) of the steel sheet at 400 ° C. and the yield strength YP (LH, RT) of the linear heating part at room temperature are the yield strength YP (AR, RT) of the non-linear heating part at room temperature. It is a figure which shows the relationship with ratio YP (LH, RT) / YP (AR, RT) divided by). 船首構造と船側構造との衝突シミュレーションにおける船側の構造モデルを示す図である。It is a figure which shows the structural model of the ship side in the collision simulation of a bow structure and a ship side structure. 船首構造が船側構造に貫入した際に、貫入量とバルバスバウで吸収する相対エネルギー吸収能との推移を示す図である。It is a figure which shows transition of the amount of penetration and the relative energy absorptivity absorbed by Barbus Bau when a bow structure penetrates into a ship side structure. αと鋼板のエネルギー吸収能を基準例(α=1)のときの鋼板のエネルギー吸収能で割ったエネルギー吸収能の比との関係を示す図である。It is a figure which shows the relationship between (alpha) and the ratio of the energy absorptivity divided by the energy absorptivity of the steel plate in the case of a reference example ((alpha) = 1). 船首構造に緩衝効果を有さない船が衝突した場合の衝突船と被衝突船それぞれの変形を示す模式図である。It is a schematic diagram which shows each deformation | transformation of a collision ship and a ship to be collided when the ship which does not have a buffering effect collides with the bow structure. 船首構造に緩衝効果を有する船が衝突した場合の衝突船と被衝突船それぞれの変形を示す模式図である。It is a schematic diagram which shows each deformation | transformation of a collision ship and a ship to be collided when the ship which has a buffer effect collides with the bow structure. 船首構造に本発明の緩衝効果を有する船が衝突した場合の衝突船と被衝突船それぞれの変形を示す模式図である。It is a schematic diagram which shows a deformation | transformation of each of a collision ship and a ship to be collided when the ship which has the buffer effect of this invention collides with the bow structure. バルバスバウを有する船首の内部構造の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the internal structure of the bow which has a Barbus bow. バルバスバウを有する船首の内部構造の概略を示す斜視図である。It is a perspective view which shows the outline of the internal structure of the bow which has a Barbus bow.

本発明者らは、バルバスバウを有する船舶の船首が他船の船腹に衝突するような事故を起こした場合について十分に検討し、図9Cに示すように、バルバスバウ100aのバルブ部分100bがより均一に座屈変形をすることができれば、より多くの衝突エネルギーを吸収することができるという知見を得た。以下に、本発明者らの知見について具体的に述べる。図9Cに示すように、衝突船100のバルバスバウ100aが座屈変形することによって、衝突による衝撃力は緩和される。その結果、被衝突船101の船腹101aの局所的な破断や破損を回避でき、破口の発生を防止できる。なお、図9Cの点線部分は、衝突船100が被衝突船101に衝突する前のバルバスバウ100aの位置を示す。   The present inventors have fully studied the case where an accident occurs in which the bow of a ship having a Barbus bow collides with the hull of another ship, and as shown in FIG. 9C, the valve portion 100b of the Barbus bow 100a becomes more uniform. It was found that more buckling energy can be absorbed if buckling deformation is possible. Hereinafter, the findings of the present inventors will be specifically described. As shown in FIG. 9C, the impact force due to the collision is alleviated by the buckling deformation of the Barbus bow 100a of the collision ship 100. As a result, local breakage and breakage of the hull 101a of the ship 101 can be avoided, and the occurrence of breakage can be prevented. 9C indicates the position of the Barbus bow 100a before the collision ship 100 collides with the collision ship 101.

バルバスバウのバルブ部は、前述のように線状加熱加工されて曲率が付与された鋼板を用いて構成されている。そのため、単に特許文献3で用いられているような低降伏点鋼を用いて建造しても、鋼板の熱を受けた部分では加工後の降伏強度が高くなる。その結果、局所的に熱が付与された部分と付与されていない部分とで鋼板の降伏強度に不均一が生じている。   The valve portion of the Barbus Bau is configured using a steel plate that has been linearly heated and provided with a curvature as described above. Therefore, even if it is constructed using a low-yield point steel as used in Patent Document 3, the yield strength after processing becomes high at the portion that receives heat from the steel sheet. As a result, the yield strength of the steel sheet is non-uniform between the part to which heat is locally applied and the part to which heat is not applied.

そのような鋼板を用いた場合、衝突の際に、バルバスバウは、不均一に変形する。そのため、構造部材としてのエネルギー吸収能は、降伏強度が鋼板内部で均一である鋼板に比べて低下している懸念がある。よって、衝突の際に被衝突船の局所的な破断や破損を回避するために十分な量の衝突エネルギーの吸収量を期待できない可能性がある。   When such a steel plate is used, the Barbasse bow deforms unevenly during a collision. Therefore, there is a concern that the energy absorbing ability as a structural member is lower than that of a steel plate whose yield strength is uniform inside the steel plate. Therefore, there is a possibility that a sufficient amount of collision energy absorption cannot be expected in order to avoid local breakage or damage of the ship to be collided.

そこで、次に示すような実験をおこなった。
まず、質量%で、C:0.02〜0.15%、Si:0.05〜0.3%、Mn:0.5〜1.8%、Al:0.004〜0.05%を含有し、不純物としてのP、Sを、P:0.03%以下、S:0.05%以下に制限した鋼を用いて室温と400℃における降伏強度を変化させた各種鋼板1を作製した。これらの鋼板1は、略正方形状であり、その寸法は、一辺約500mmかつ厚さ約10mmであった。図1Aに示すように、最高加熱温度が500℃となる条件で、実船での最大曲げ角度と考えられる曲げ角度が120度となるまでそれらの鋼板に線状加熱による曲げ加工を繰り返した。
Therefore, the following experiment was conducted.
First, in mass%, C: 0.02 to 0.15%, Si: 0.05 to 0.3%, Mn: 0.5 to 1.8%, Al: 0.004 to 0.05% Various steel plates 1 were produced in which the yield strength at room temperature and 400 ° C. was changed using steel containing P and S as impurities, and P: 0.03% or less and S: 0.05% or less. . These steel plates 1 had a substantially square shape, and the dimensions were about 500 mm on a side and about 10 mm in thickness. As shown in FIG. 1A, under the condition that the maximum heating temperature is 500 ° C., the steel plates were repeatedly bent by linear heating until the bending angle considered to be the maximum bending angle on an actual ship reached 120 degrees.

曲げ加工された鋼板1の線状加熱を受けた部位(線状加熱部)2と線状加熱を受けていない部位(非線状加熱部)3とのそれぞれについて、図1Bに示すように線状加熱を行った側の鋼板表面から鋼板表面を含む各試験片4を切り出し加工した。この加工によって、鋼板1の厚さの半分である板厚5mmのNKU1号引張試験片(財団法人日本海事協会(NK;Nippon Kaiji Kyokai)鋼船規則・同検査要領(K編 材料)で規定されているU1号試験片)を作製した。
各試験片について室温において引張試験を実施し、それぞれ降伏強度を求めた。室温での線状加熱部の降伏強度をYP(LH,RT)とし、室温での非線状加熱部の降伏強度をYP(AR,RT)とする。その比率αをα=YP(LH,RT)/YP(AR,RT)として、線状加熱部と非線状加熱部との降伏強度の違いを評価した。また、非線状加熱部については、400℃での降伏強度YP(AR,400℃)も求めた。
As shown in FIG. 1B, each of the part (linear heating part) 2 that has undergone linear heating of the bent steel sheet 1 and the part (non-linear heating part) 3 that has not undergone linear heating, as shown in FIG. Each test piece 4 including the steel plate surface was cut out from the steel plate surface on the side subjected to the shape heating. By this processing, the NKU No. 1 tensile test piece (Nick Nippon Kaiji Kyokai) (Nippon Kaiji Kyokai) Steel Ship Rules and Inspection Procedures (K-knitted materials), which is half the thickness of the steel plate 1, is 5 mm thick. U1 test piece).
Each test piece was subjected to a tensile test at room temperature to determine the yield strength. The yield strength of the linear heating part at room temperature is YP (LH, RT), and the yield strength of the non-linear heating part at room temperature is YP (AR, RT). The ratio α was α = YP (LH, RT) / YP (AR, RT), and the difference in yield strength between the linear heating part and the non-linear heating part was evaluated. Moreover, about the non-linear heating part, the yield strength YP (AR, 400 degreeC) in 400 degreeC was also calculated | required.

次に、鋼板を船首に使用した場合にバルバスバウが均一に座屈するためのαの条件について調べた。
αの値が異なる種々の鋼板(一辺約500mmかつ厚さ約10mm)を用いて、上記と同様に作製された120度の曲げ角度を有する試験片を作製し、図2に示すように両端部をブロック5で拘束しながら一方から荷重Pを付与した。そのときの荷重の大きさとブロックの変位Δとの関係を測定した。αの値が1.0、1.2、1.4である3個の試験片の測定例を図3に示す。
なお、α=1.0の鋼板については、線状加熱加工を適用せず、機械的に曲げ加工を行って120度の曲げ角度となるようにした後、塑性変形の影響を排除するために降伏強度が変化しない程度の焼き戻し処理を行っている。
Next, the condition of α for the barbasse bow to buckle uniformly when using a steel plate at the bow was examined.
Using various steel plates with different values of α (side of about 500 mm and thickness of about 10 mm), test pieces having a bending angle of 120 degrees made in the same manner as described above were prepared, as shown in FIG. The load P was applied from one side while restraining with the block 5. The relationship between the magnitude of the load and the block displacement Δ was measured. FIG. 3 shows a measurement example of three test pieces having an α value of 1.0, 1.2, and 1.4.
In addition, in order to eliminate the influence of plastic deformation after α-1.0 steel plate is mechanically bent to a bending angle of 120 degrees without applying linear heating. Tempering is performed to such an extent that the yield strength does not change.

αが1.4の場合には、鋼板の線状加熱部の降伏強度が高いため、その領域のすぐ外側に歪みが集中した。その歪集中部で折れ曲がりが生じたため、荷重Pが十分に上昇することなく変位Δが大きくなった。したがって、図3に示すように、鋼板のエネルギー吸収能が低下した。
αが1.2の場合には、鋼板は、αが1.0の場合と類似した荷重−変位曲線を示した。したがって、図3に示すように、その鋼板は、エネルギー吸収能が十分であった。
When α was 1.4, since the yield strength of the linearly heated portion of the steel sheet was high, strain was concentrated just outside the region. Since bending occurred at the strain concentration portion, the displacement Δ increased without the load P sufficiently rising. Therefore, as shown in FIG. 3, the energy absorption capacity of the steel sheet was lowered.
When α was 1.2, the steel sheet showed a load-displacement curve similar to that when α was 1.0. Therefore, as shown in FIG. 3, the steel sheet had sufficient energy absorption capability.

図3に示した荷重Pと変位Δとがなす面積(荷重曲線と変位軸とがなす面積)を吸収エネルギーEA(TP)と定義し、αが1.0の時のEA(TP)の値を基準値とした。そして、αとEA(TP)との関係を図4に示した。この図より、鋼板のαが1.2以下であれば、線状加熱加工によって鋼板に降伏強度が不均一な部分が形成されても、降伏強度が均一な鋼板の変形と同様に高いエネルギー吸収能が期待できることが判った。   The area formed by the load P and the displacement Δ shown in FIG. 3 (the area formed by the load curve and the displacement axis) is defined as absorbed energy EA (TP), and the value of EA (TP) when α is 1.0. Was used as a reference value. The relationship between α and EA (TP) is shown in FIG. From this figure, if α of the steel sheet is 1.2 or less, even if a portion having a non-uniform yield strength is formed on the steel sheet by linear heating, high energy absorption is achieved as in the deformation of the steel sheet with a uniform yield strength. It was found that Noh can be expected.

線状加熱部の降伏強度が非線状加熱部の降伏強度の比αを1.2以下とするためには、線状加熱加工にともなう線状加熱部の降伏強度の変化ができるだけ小さい鋼板を用いることが望ましい。   In order to make the yield strength ratio α of the non-linear heating part the yield strength of the linear heating part to 1.2 or less, a steel plate in which the change in the yield strength of the linear heating part due to the linear heating process is as small as possible is used. It is desirable to use it.

本発明者らは、検討の結果、線状加熱加工にともなう線状加熱部の降伏強度の変化をできるだけ小さくするために、線状加熱部の最高到達温度が低い条件でも曲げ変形量が大きい特許文献5に記載のような鋼板を使用できることを見出した。さらに、鋼板表面の最高到達温度がAc1点未満で繰返し線状加熱加工する場合には、図5に示すように、鋼板の400℃における降伏強度が線状加熱による曲げ加工性と良い対応関係にあることを見出した。図5中の中塗りの菱形は、最高加熱温度が500℃の条件におけるデータであり、図5中の中抜きの丸は、最高加熱温度がAc1直下の条件におけるデータである。すなわち、500℃以上Ac1点未満の最高加熱温度で線状加熱を行った場合には、比αの値は、図5の斜線部に相当する。この図5から、400℃での降伏強度が150MPa以下である鋼板を用い、鋼板表面の最高到達温度がAc1点未満でこの鋼板を繰返し線状加熱加工する場合には、線状加熱部の降伏強度と非線状加熱部の降伏強度との比αを1.2以下に確実に管理できることが判明した。As a result of the study, the inventors have found that the amount of bending deformation is large even under conditions where the maximum temperature of the linear heating part is low in order to minimize the change in the yield strength of the linear heating part due to the linear heating process. It discovered that the steel plate as described in the literature 5 could be used. Furthermore, when the maximum temperature of the steel sheet surface is repeatedly linear heating process is less than A c1 point, as shown in FIG. 5, the bending yield strength at 400 ° C. of the steel sheet by a linear heating processability and good correspondence between I found out. The diamonds in the middle coat in FIG. 5 are data under conditions where the maximum heating temperature is 500 ° C., and the hollow circles in FIG. 5 are data under conditions where the maximum heating temperature is directly under Ac 1 . That is, when linear heating is performed at a maximum heating temperature of 500 ° C. or more and less than A c1 point, the value of the ratio α corresponds to the hatched portion in FIG. From FIG. 5, when using a steel sheet having a yield strength at 400 ° C. of 150 MPa or less, and when the steel sheet is repeatedly linearly heat-processed with a maximum temperature of less than Ac 1 point, It has been found that the ratio α between the yield strength and the yield strength of the non-linear heating part can be reliably managed to 1.2 or less.

このAc1点は、実際の測定のほか、例えば、組成の関数で下記式(1)により簡易的に求めることができる。
c1(℃)=750.8−26.6[C]+17.6[Si]
−11.6[Mn]−22.9[Cu]−23[Ni]
+24.1[Cr]+22.5[Mo]−39.7[V]
−5.7[Ti]+232.4[Nb]−169.4[Al]
−894.7[B] ・・・・・(1)
ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[Ti]、[Nb]、[Al]、[B]は、それぞれ鋼中のC、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、Nb、Al、Bの含有率(質量%)を示す。
鋼板表面の最高到達温度の下限は、特に規定しない。しかしながら、線状加熱温度が低すぎると鋼板が十分な剛性を有しているため、ほとんど変形が生じない。そのため、鋼板の変形量を確保するために300℃以上であることが好ましい。
In addition to actual measurement, this Ac1 point can be easily obtained by the following equation (1) as a function of composition, for example.
A c1 (° C.) = 750.8−26.6 [C] +17.6 [Si]
-11.6 [Mn] -22.9 [Cu] -23 [Ni]
+24.1 [Cr] +22.5 [Mo] -39.7 [V]
-5.7 [Ti] +232.4 [Nb] -169.4 [Al]
-894.7 [B] (1)
Here, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [Ti], [Nb], [Al], [B] Respectively show the content (mass%) of C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al, and B in steel.
The lower limit of the maximum temperature reached on the steel sheet surface is not specified. However, if the linear heating temperature is too low, the steel sheet has sufficient rigidity, so that almost no deformation occurs. Therefore, it is preferable that it is 300 degreeC or more in order to ensure the deformation amount of a steel plate.

以上では、衝突船側の船首が均一に座屈変形するための鋼板の条件について説明した。衝突船側の船首が座屈変形するためには、基本的に、船首に使用する鋼板の降伏強度を被衝突船の降伏強度よりも小さくする必要がある。
しかし、船に使用する鋼板の降伏強度は、国際船級協会連合(IACS)の統一規格を満たす必要がある。また、従来の内骨構造を有する船首構造で、鋼板には、波動衝撃に耐えられる強度が必要である。さらに、あまり鋼板の強度を低下させると変形時の大きなエネルギー吸収効果が期待できなくなる。
In the above, the conditions of the steel plate for uniformly buckling deformation of the bow on the collision ship side have been described. In order for the bow on the collision ship side to buckle and deform, basically, it is necessary to make the yield strength of the steel plate used for the bow smaller than the yield strength of the ship to be collided.
However, the yield strength of steel plates used in ships must meet the unified standard of the International Classification Societies Association (IACS). In addition, in a bow structure having a conventional inner bone structure, the steel sheet needs to have strength to withstand wave shock. Furthermore, if the strength of the steel sheet is lowered too much, a large energy absorption effect during deformation cannot be expected.

以上の点を考慮すると、鋼板の降伏強度は、235MPa以上であることが望ましい。また、鋼板の降伏強度の上限は、通常、船に使用されている鋼板の降伏強度から判断して、400MPa以下とすることが望ましい。さらに、衝突時により確実にバルバスバウが座屈変形するためには、320MPa以下がより望ましい。
したがって、線状加熱加工前において、室温での降伏強度が235MPa以上470MPa以下の鋼板をバルバスバウの曲率を有する部位(外殻部材)に使用することが好ましい。この場合には、線状加熱加工によって曲率を付与された鋼板の線状加熱を受けていない部位(非線状加熱部)の降伏強度も上記と同様の降伏強度である。
なお、鋼板の降伏強度が235MPa未満であっても、板厚を増加することなどの別の対策により、船体としての強度を確保する手段を採用してもよい。なお、このような場合であっても、経済性の観点から鋼板の降伏強度が100MPa以上であることが好ましい。
Considering the above points, the yield strength of the steel sheet is preferably 235 MPa or more. In addition, the upper limit of the yield strength of the steel sheet is usually preferably 400 MPa or less as judged from the yield strength of the steel sheet used in the ship. Furthermore, 320 MPa or less is more desirable in order for the Barbasu bow to buckle and deform more reliably during a collision.
Therefore, it is preferable to use a steel plate having a yield strength at room temperature of 235 MPa or more and 470 MPa or less for a portion (outer shell member) having a Barbasse bow curvature before linear heat processing. In this case, the yield strength of the portion (non-linear heating portion) that has not been subjected to linear heating of the steel sheet that has been given a curvature by linear heating is also the same as the above.
In addition, even if the yield strength of the steel plate is less than 235 MPa, means for ensuring the strength as a hull may be adopted by another measure such as increasing the plate thickness. Even in such a case, the yield strength of the steel sheet is preferably 100 MPa or more from the viewpoint of economy.

以上のような条件を満たす鋼板としては、特許文献5に示される鋼板を用いることが望ましい。しかしながら、外殻部材に使用される曲率を付与された鋼板は、特許文献5に示される鋼板と線状加熱条件との組み合わせによって得られる鋼板に限られるものではない。比αが1.2以下を満たすことができるならば、他の鋼板または線状加熱条件を用いてもよい。例えば、線状加熱加工による強度の変化が小さい鋼板を鋼板表面の最高到達温度がAc1点以上の条件で繰返し線状加熱加工して、比αが1.2以下の鋼板を作製してもよい。この鋼板の室温における降伏強度は、特に制限されない。例えば、鋼板の室温における降伏強度は、235MPa未満であってもよく、235MPa以上470MPa以下であってもよい。As a steel plate satisfying the above conditions, it is desirable to use a steel plate shown in Patent Document 5. However, the steel plate provided with the curvature used for the outer shell member is not limited to the steel plate obtained by the combination of the steel plate shown in Patent Document 5 and the linear heating condition. If the ratio α can satisfy 1.2 or less, other steel plates or linear heating conditions may be used. For example, even when a steel sheet having a small change in strength due to linear heat processing is repeatedly subjected to linear heat processing on the condition that the maximum temperature reached on the surface of the steel sheet is equal to or higher than the Ac1 point, a steel sheet having a ratio α of 1.2 or less is produced. Good. The yield strength of this steel sheet at room temperature is not particularly limited. For example, the yield strength at room temperature of the steel sheet may be less than 235 MPa or 235 MPa or more and 470 MPa or less.

図9Bのように曲げ変形により折れ曲がることを防止する必要がある。そこで、バルバスバウ100aが図9Cのように船体長手水平方向に沿って均一に座屈する構造について検討した。   It is necessary to prevent bending by bending deformation as shown in FIG. 9B. Therefore, a structure in which the Barbus bow 100a buckles uniformly along the hull longitudinal horizontal direction as shown in FIG. 9C was examined.

衝突時にバルバスバウが変形するためには、衝突方向である船体長手水平方向に沿って配置されている部材は、変形しやすい鋼材で構成されている必要がある。バルバスバウが均一に座屈するためには、船体長手方向に沿って配置されている部材の変形を船体長手方向に対して交わる方向に配置されている部材によって拘束して、バルバスバウの折れ曲りを防止することが有効である。   In order for the Barbus bow to be deformed at the time of a collision, the member arranged along the hull longitudinal horizontal direction, which is the collision direction, needs to be made of a steel material that is easily deformed. In order for the Barbus bow to buckle uniformly, the deformation of the members arranged along the longitudinal direction of the hull is restrained by the members arranged in the direction intersecting with the longitudinal direction of the hull to prevent the Barbus bow from being bent. It is effective.

バルバスバウの形状や内部構造は、様々であるが、曲率を有する外殻部材と内部構造部材とにより構成される。さらに、この内部構造部材は、バルバスバウの骨格を形成し、一般的には、縦肋骨と横肋骨との組み合わせにより構成される。   Although the shape and internal structure of the Barbus bow are various, it is comprised by the outer shell member and internal structure member which have a curvature. Furthermore, this internal structural member forms the skeleton of Barbus Bau and is generally constituted by a combination of longitudinal ribs and lateral ribs.

図10Aおよび図10Bにバルバスバウの構造の一例について概略を示す。バルバスバウを構成する内部構造部材111は、船体衝突方向である船体長手水平方向を基準に考えると、船体長手水平方向に平行あるいは直角に配置されている多くの部材と船体長手方向に対して角度を持って配置されている一部の部材とによって構成されている。   FIG. 10A and FIG. 10B schematically show an example of the structure of the Barbasse bow. The internal structural member 111 that constitutes the Barbassau has an angle with respect to the longitudinal direction of a number of members arranged parallel to or at right angles to the horizontal direction of the hull, considering the horizontal direction of the hull, which is the hull collision direction. It is comprised by the one part member arrange | positioned.

そこで、船体長手水平方向に対して角度を持って配置されている部材を船体長手水平方向に平行あるいは直角に配置されている部材のいずれかに分類する。すなわち、バルバスバウを構成する内部構造部材111を次のように定義されるL部材111bとW部材111aとに分類する。L部材111bは、船体長手水平方向に対し、45度以下の角度を有する部材である。また、W部材111aは、船体長手水平方向に対し、45度より大きい角度を有する部材である。   Therefore, the members arranged at an angle with respect to the hull longitudinal horizontal direction are classified as either members arranged parallel or perpendicular to the hull longitudinal horizontal direction. That is, the internal structural member 111 constituting the Barbus bow is classified into an L member 111b and a W member 111a defined as follows. The L member 111b is a member having an angle of 45 degrees or less with respect to the hull longitudinal horizontal direction. The W member 111a is a member having an angle larger than 45 degrees with respect to the horizontal direction of the hull.

L部材111bには、衝突時の変形を受け持たせ、W部材111aには、その変形を拘束する機能を受け持たせる。L部材111bに変形を受け持たせるために、L部材111bには、W部材111aの降伏強度よりも低い降伏強度の鋼材を使用することが好ましい。その結果、W部材111aがL部材111bに対して容易に変形してしまうことを防止することができる。
さらに、この構造により、L部材111bが腰折れを生じて倒れこむように変形することを防止することができ、バルバスバウは、船体長手水平方向に沿って変形する。
同様に、外殻部材110についても、L部材とW部材とに分類することができ、L部材には、W部材の降伏強度よりも低い降伏強度の鋼材が使用されることが好ましい。このように、バルバスバウを構成する外殻部材および内部構造部材について、船体長手水平方向に対して45度以下の角度を有するL部材の降伏強度は、船体長手水平方向に対して45度より大きい角度を有するW部材の降伏強度よりも低くなるように設計されることが好ましい。
The L member 111b is given a deformation at the time of collision, and the W member 111a is given a function of restraining the deformation. In order to give deformation to the L member 111b, it is preferable to use a steel material having a yield strength lower than the yield strength of the W member 111a for the L member 111b. As a result, it is possible to prevent the W member 111a from being easily deformed with respect to the L member 111b.
Furthermore, with this structure, the L member 111b can be prevented from being deformed so as to collapse due to hip breakage, and the barbass bow is deformed along the horizontal direction of the hull longitudinal direction.
Similarly, the outer shell member 110 can also be classified into an L member and a W member, and a steel material having a yield strength lower than the yield strength of the W member is preferably used for the L member. As described above, regarding the outer shell member and the internal structural member constituting the Barbasse bow, the yield strength of the L member having an angle of 45 degrees or less with respect to the hull longitudinal horizontal direction is larger than 45 degrees with respect to the hull longitudinal horizontal direction. It is preferable to design so that it may become lower than the yield strength of W member which has these.

さらに、バルバスバウが均一に座屈変形するためには、外殻を構成する外殻部材110が蛇腹状に座屈変形する必要がある。加えて、外殻部材110は、均一に変形する必要があるため、線状加熱加工後も降伏強度が大きく変化しない鋼板を用いる必要がある。
以降は、L部材がW部材よりも降伏強度が低いことを前提とする。
Further, in order for the Barbasu bow to be uniformly buckled and deformed, the outer shell member 110 constituting the outer shell needs to be buckled and deformed in a bellows shape. In addition, since the outer shell member 110 needs to be uniformly deformed, it is necessary to use a steel plate whose yield strength does not change greatly even after linear heat processing.
Thereafter, it is assumed that the L member has a lower yield strength than the W member.

以上、本発明の実施形態について説明したが、実施例により、本発明の効果について具体的に説明する。   Although the embodiments of the present invention have been described above, the effects of the present invention will be specifically described by way of examples.

船首構造に使用する鋼板として、表1に示す実施例1〜8及び比較例1〜6の成分組成を有する一辺約500mmかつ板厚約10mmの鋼板を用意した。各鋼板について、室温の引張試験と400℃での引張試験とを実施して、室温での降伏強度YP(AR,RT)と400℃での降伏強度YP(AR,400℃)とを求めた。さらに、加熱側表面の最高加熱温度が500℃となる条件で、実船での最大曲げ角度を考慮して曲げ角度が120度となるまで各鋼板について線状加熱加工を繰り返した。これらの曲げ加工された鋼板の線状加熱を受けた部位から上記と同様の試験片を切り出した。これらの試験片について室温での引張試験を実施し、それぞれ降伏強度YP(LH,RT)を求めた。   As a steel plate used for the bow structure, a steel plate having a component composition of Examples 1 to 8 and Comparative Examples 1 to 6 shown in Table 1 and having a side of about 500 mm and a plate thickness of about 10 mm was prepared. Each steel plate was subjected to a tensile test at room temperature and a tensile test at 400 ° C. to obtain a yield strength YP (AR, RT) at room temperature and a yield strength YP (AR, 400 ° C.) at 400 ° C. . Furthermore, the linear heating process was repeated for each steel plate under the condition that the maximum heating temperature on the heating side surface was 500 ° C., taking into account the maximum bending angle on an actual ship until the bending angle reached 120 degrees. Test pieces similar to those described above were cut out from the portions of these bent steel sheets that had undergone linear heating. These test pieces were subjected to a tensile test at room temperature, and yield strengths YP (LH, RT) were obtained.

表2に実施例1〜8の鋼板及び比較例1〜6の鋼板について、YP(AR,RT)、YP(LH,RT)、YP(AR,400℃)、YP(AR,RT)とYP(LH,RT)との比αの値を示す。
実施例1〜8の鋼板は、αが1.2以下であった。加えて、これらの鋼板は、YP(AR,RT)が235〜400MPaで、YP(AR,400℃)が170MPa以下であった。また、比較例1〜6の鋼板は、αが1.2超であった。
Table 2 shows YP (AR, RT), YP (LH, RT), YP (AR, 400 ° C.), YP (AR, RT) and YP for the steel plates of Examples 1-8 and Comparative Examples 1-6. The value of the ratio α with (LH, RT) is shown.
In the steel plates of Examples 1 to 8, α was 1.2 or less. In addition, these steel sheets had a YP (AR, RT) of 235 to 400 MPa and a YP (AR, 400 ° C.) of 170 MPa or less. Moreover, (alpha) of the steel plate of Comparative Examples 1-6 was more than 1.2.

また、船首構造に使用する鋼板として、表1に示す実施例9及び10の成分組成を有する一辺約500mmかつ板厚約10mmの鋼板を用意した。各鋼板について、室温の引張試験と600℃の引張試験とを実施して、室温での降伏強度YP(AR,RT)と600℃での降伏強度YP(AR,600℃)とを求めた。ここでは、Ac1点以上での線状加熱を行うため、400℃での降伏強度YP(AR,400℃)の代わりに600℃での降伏強度YP(AR,600℃)を求めている(表2中の*)。さらに、加熱側表面の最高加熱温度が1000℃となる条件で、実船での最大曲げ角度を考慮して曲げ角度が120度となるまで各鋼板について線状加熱加工を繰り返した。これらの曲げ加工された鋼板の線状加熱を受けた部位から上記と同様の試験片を切り出した。これらの試験片について室温での引張試験を実施し、それぞれ降伏強度YP(LH,RT)を求めた。Moreover, as a steel plate used for the bow structure, a steel plate having a component composition of Examples 9 and 10 shown in Table 1 and having a side of about 500 mm and a plate thickness of about 10 mm was prepared. About each steel plate, the room temperature tensile test and the 600 degreeC tensile test were implemented, and the yield strength YP (AR, RT) in room temperature and the yield strength YP (AR, 600 degreeC) in 600 degreeC were calculated | required. Here, in order to perform linear heating at the Ac1 point or higher, the yield strength YP (AR, 600 ° C.) at 600 ° C. is obtained instead of the yield strength YP (AR, 400 ° C.) at 400 ° C. ( * In Table 2). Furthermore, the linear heating process was repeated for each steel plate under the condition that the maximum heating temperature on the heating side surface was 1000 ° C., taking into account the maximum bending angle on an actual ship until the bending angle reached 120 degrees. Test pieces similar to those described above were cut out from the portions of these bent steel sheets that had undergone linear heating. These test pieces were subjected to a tensile test at room temperature, and yield strengths YP (LH, RT) were obtained.

表2に実施例9及び10の鋼板について、YP(AR,RT)、YP(LH,RT)、YP(AR,600℃)(YP(AR,400℃)の列の*参照)、YP(AR,RT)とYP(LH,RT)との比αの値を示す。
実施例9及び10の鋼板は、αが1.2以下であった。加えて、これらの鋼板は、YP(AR,RT)が235MPa未満であった。
In Table 2, for the steel plates of Examples 9 and 10, YP (AR, RT), YP (LH, RT), YP (AR, 600 ° C.) (see * in the column of YP (AR, 400 ° C.)), YP ( The value of the ratio α between AR, RT) and YP (LH, RT) is shown.
In the steel plates of Examples 9 and 10, α was 1.2 or less. In addition, these steel sheets had a YP (AR, RT) of less than 235 MPa.

Figure 2011024743
Figure 2011024743

Figure 2011024743
Figure 2011024743

次に、表1、2の鋼板を用いてバルバスバウを構成した場合のエネルギー吸収能をシミュレーションにより求めた。
図6に、原油タンカーの船側構造の船体長手方向の船体中央部における1/4シミュレーションモデルを示す。船側構造におけるB−B’部に沿ってオイルカーゴ部分の仕切り構造に対応する横隔壁12が配置されている。船側構造における衝突位置A、Dをオイルカーゴ部分の中央位置に設定したので、衝突中心13に対して船体長手方向にも対称なモデルとなる。C−C’部に沿う部分は、船体構造で最も重要な部材である舷側厚板部分11である。また、A−A’部は、衝突位置の垂直方向を示し、D−D’部は、衝突位置の水平方向を示している。
Next, the energy absorptivity in the case where Barbusbau was constituted using the steel plates shown in Tables 1 and 2 was determined by simulation.
FIG. 6 shows a 1/4 simulation model in the center of the hull in the longitudinal direction of the hull longitudinal structure of the ship side structure of the crude oil tanker. A transverse partition wall 12 corresponding to the partition structure of the oil cargo portion is disposed along the BB ′ portion in the ship side structure. Since the collision positions A and D in the ship side structure are set at the center position of the oil cargo portion, the model is symmetric with respect to the collision center 13 in the longitudinal direction of the hull. A portion along the CC ′ portion is a heel side thick plate portion 11 which is the most important member in the hull structure. The AA ′ portion indicates the vertical direction of the collision position, and the DD ′ portion indicates the horizontal direction of the collision position.

衝突により生じた変形が大きくなると、衝突部に近いD−D’部やA−A’部だけでなく、衝突中心13より離れたC−C’部にも塑性変形が生じる。そのため、船体構造の最重要部材である舷側厚板部分11を塑性損傷する。その結果、鋼材の破壊抵抗が著しく低下して、船体構造に大規模な損傷を引き起こす危険がある。そこで、上記のモデルを用いて、衝突部分全体が変形して衝突した時のバルバスバウのエネルギー吸収能について計算した。尚、エネルギー吸収能は、本来、エネルギーを示す単位(J)で示されるが、数値計算のため、ここでは無次元化した値とした。   When the deformation caused by the collision increases, plastic deformation occurs not only in the D-D 'and A-A' portions close to the collision portion but also in the C-C 'portion far from the collision center 13. Therefore, the heel side thick plate portion 11 which is the most important member of the hull structure is plastically damaged. As a result, the fracture resistance of the steel material is significantly reduced, and there is a risk of causing large-scale damage to the hull structure. Therefore, using the above model, the energy absorption capacity of Barbusbau when the entire collision part deformed and collided was calculated. The energy absorption ability is originally indicated by the unit (J) indicating energy, but is a non-dimensional value here for numerical calculation.

図7に、実施例1と比較例1との鋼板を用いて構成したバルバスバウを備えた船首構造を、図6のモデルの船側構造に衝突させた際の、船首貫入量とバルバスバウの衝突時の相対エネルギー吸収能との関係を示す。船首貫入量は、バルバスバウが被衝突船の船側へ衝突後に変形して貫入した量を示す。
実施例1に関しては、船首構造に用いたそれぞれの鋼板のαが1.2以下で、図9Cのように変位すると仮定した。また、バルバスバウの外殻部材の降伏強度は、船側構造で使用されている鋼材の降伏強度の60%に当たる240MPaとした。
比較例1に関しては、船首構造に使用されているそれぞれの鋼板の特性が表2に示す強度特性であると仮定した。
なお、シミュレーションに際しては、線状加熱した部分の降伏強度と線状加熱されていない部分の降伏強度との両方が220MPaである条件での相対エネルギー吸収能の計算結果を基準例(ref)とした。実施例、比較例のそれぞれの相対エネルギー吸収能について基準例からの低下割合を表2のEA/EA(ref)で示した。
In FIG. 7, when the bow structure provided with the barbus bow composed of the steel plates of Example 1 and Comparative Example 1 is collided with the ship side structure of the model of FIG. The relationship with relative energy absorption ability is shown. The amount of penetration of the bow indicates the amount that Barbus Bau has deformed and penetrated after colliding with the ship side of the ship to be collided.
Regarding Example 1, it was assumed that α of each steel plate used in the bow structure was 1.2 or less and displaced as shown in FIG. 9C. Moreover, the yield strength of the outer shell member of the Barbasse bow was 240 MPa, which corresponds to 60% of the yield strength of the steel used in the ship side structure.
For Comparative Example 1, it was assumed that the characteristics of each steel plate used in the bow structure were the strength characteristics shown in Table 2.
In the simulation, the calculation result of the relative energy absorption capacity under the condition that both the yield strength of the linearly heated portion and the yield strength of the non-linearly heated portion is 220 MPa was used as a reference example (ref). . The reduction ratio from the reference example with respect to the relative energy absorption capacity of each of the examples and comparative examples is shown by EA / EA (ref) in Table 2.

船首構造側の鋼板のαが1.2以下で、この鋼板の降伏強度が船側構造側の降伏強度よりも低い場合には、図9Cに示すように船首構造が座屈する。そのため、実施例1は、船側構造との衝突面と外殻部材でのエネルギー吸収量とが比較例1よりも増大するため、図7に示すようにエネルギー吸収能が飛躍的に向上する。   When α of the steel plate on the bow structure side is 1.2 or less and the yield strength of this steel plate is lower than the yield strength on the boat side structure side, the bow structure buckles as shown in FIG. 9C. Therefore, in the first embodiment, the collision surface with the ship-side structure and the energy absorption amount at the outer shell member are larger than those in the first comparative example, so that the energy absorption capability is dramatically improved as shown in FIG.

同様に実施例2〜10及び比較例2〜6の鋼板についても、図7に示した船首貫入量6mまでの相対エネルギー吸収能を計算した。表2に示すように、実施例2〜10の鋼板を用いた船首構造では、αが1.2以下であるため、これらの船首構造は、十分なエネルギー吸収能を有していた。一方、比較例2〜6の鋼板を用いた船首構造では、αが1.2よりも大きいため、これらの船首構造は、実施例2〜9に比べ、エネルギー吸収能が大きく低下していた。   Similarly, with respect to the steel plates of Examples 2 to 10 and Comparative Examples 2 to 6, the relative energy absorption capacity up to the bow penetration of 6 m shown in FIG. 7 was calculated. As shown in Table 2, in the bow structure using the steel plates of Examples 2 to 10, since α was 1.2 or less, these bow structures had sufficient energy absorbing ability. On the other hand, in the bow structure using the steel plates of Comparative Examples 2 to 6, since α is larger than 1.2, the energy absorption capacity of these bow structures is greatly reduced as compared with Examples 2 to 9.

さらに、表2の情報を纏めて、図8にαとEA/EA(ref)との関係を示した。図8に示すように、αが1.2より大きくなると、EA/EA(ref)は、大きく低下した。このエネルギー吸収能の大きな低下は、バルバスバウの変形モードが図9Cから図9Aまたは図9Bへと移行するためと考えられる。したがって、線状加熱加工によって鋼板に降伏強度が不均一な部分が形成されても、バルバスバウの外殻部にαが1.2以下である鋼板を用いることによって、高いエネルギー吸収能を有する船首構造を構成できる。   Furthermore, the information in Table 2 is summarized, and FIG. 8 shows the relationship between α and EA / EA (ref). As shown in FIG. 8, when α is greater than 1.2, EA / EA (ref) is greatly reduced. This large decrease in the energy absorption capability is considered to be due to the transition of the deformation mode of Barbusbau from FIG. 9C to FIG. 9A or FIG. 9B. Therefore, even if a portion having a non-uniform yield strength is formed on a steel sheet by linear heating, a bow structure having a high energy absorption capacity is obtained by using a steel sheet having an α of 1.2 or less for the outer shell portion of the Barbasse bow. Can be configured.

以上のことから、線状加熱された鋼板をバルバスバウの外殻部に用いて、線状加熱部と非線状加熱部の降伏強度の比αが1.2以下となるように船首構造を決定することにより、衝突時の船首側のエネルギー吸収能を増大させて、相手方の船の重大な損傷を防止できる。さらに、この鋼板として、室温での降伏強度が235MPa以上400MPa以下であり、400℃での降伏強度が170MPa以下である鋼板を用いてもよい。この場合、フェライトへの転位の導入に関わらず、Ac1点未満の加熱条件で線状加熱加工されて曲率を付与する場合の曲げ加工性を確保することができる。このような船首構造は、船体構造設計の変更を生じることなく、座屈変形による緩衝効果を備える。Based on the above, the bow structure is determined so that the ratio α of the yield strength of the linear heating part and the non-linear heating part is 1.2 or less, using the linearly heated steel plate for the outer shell of the Barbasse bow. By doing so, the energy absorption capacity of the bow side at the time of a collision can be increased, and the serious damage of the other ship can be prevented. Furthermore, as this steel plate, a steel plate having a yield strength at room temperature of 235 MPa or more and 400 MPa or less and a yield strength at 400 ° C. of 170 MPa or less may be used. In this case, regardless of the introduction of dislocations into the ferrite, it is possible to ensure bending workability when the film is linearly heated under a heating condition less than the Ac1 point to give a curvature. Such a bow structure has a buffering effect due to buckling deformation without causing a change in the hull structure design.

船体構造設計の変更を生じることなく、衝突時に相手方の船の損傷を効果的に防止できる緩衝効果を備えた船首構造を提供することができる。   It is possible to provide a bow structure having a buffering effect that can effectively prevent damage to a partner ship in the event of a collision without causing a change in the hull structure design.

1 鋼板
2 線状加熱を受けた部位(線状加熱部)
3 線状加熱を受けていない部位(非線状加熱部)
4 試験片
5 ブロック
1 Steel plate 2 Part subjected to linear heating (linear heating part)
3 Parts not receiving linear heating (non-linear heating part)
4 specimens 5 blocks

上記の課題を解決するために、本発明の一態様では、次のような船首構造とした。
(1)船首構造は、バルバスバウの外殻部材が、線状加熱加工を受けた線状加熱部と線状加熱加工を受けていない非線状加熱部とを有する複数の鋼板を備え、前記各鋼板のそれぞれについて、前記鋼板内の前記線状加熱部の室温での降伏強度YP(LH,RT)を前記非線状加熱部の室温での降伏強度YP(AR,RT)で割って得られた降伏強度の比αが1.2以下であり、前記バルバスバウの前記外殻部材を成す前記鋼板は、加熱側の最高表面温度がAc1点未満で線状加熱加工されることにより曲率が付与され、前記線状加熱加工前における400℃での降伏強度が150MPa以下の鋼板である。
(2)上記(1)に記載の船首構造では、前記バルバスバウの前記外殻部材を成す前記鋼板は、線状加熱加工前の室温での降伏強度が235MPa〜470MPaである鋼板としてもよい
In order to solve the above-described problem, in one aspect of the present invention, the following bow structure is provided.
(1) The bow structure includes a plurality of steel plates in which the outer shell member of the Barbasse bow has a linear heating part that has undergone linear heating and a non-linear heating part that has not undergone linear heating. For each steel plate, it is obtained by dividing the yield strength YP (LH, RT) at room temperature of the linear heating part in the steel plate by the yield strength YP (AR, RT) at room temperature of the non-linear heating part. the ratio of yield strength α is Ri der 1.2, said steel sheet forming the outer shell member of the bulbous bow is the curvature by the maximum surface temperature of the heating side is linear heating process is less than Ac1 point grant was is the yield strength at 400 ° C. before the linear heating processing Ru following steel der 150 MPa.
(2) In the bow structure as described in said (1), the said steel plate which comprises the said outer shell member of the said Barbus Bau is good also as a steel plate whose yield strength in the room temperature before linear heat processing is 235 MPa-470 MPa .

Claims (3)

バルバスバウの外殻部材が、
線状加熱加工を受けた線状加熱部と線状加熱加工を受けていない非線状加熱部とを有する複数の鋼板を備え、
前記各鋼板のそれぞれについて、前記鋼板内の前記線状加熱部の室温での降伏強度YP(LH,RT)を前記非線状加熱部の室温での降伏強度YP(AR,RT)で割って得られた降伏強度の比αが1.2以下である
ことを特徴とする船首構造。
The outer shell of Barbus Bau
Comprising a plurality of steel plates having a linear heating part that has undergone linear heating and a non-linear heating part that has not undergone linear heating;
For each of the steel plates, the yield strength YP (LH, RT) at room temperature of the linear heating portion in the steel plate is divided by the yield strength YP (AR, RT) at room temperature of the non-linear heating portion. A bow structure having a yield strength ratio α of 1.2 or less.
前記バルバスバウの前記外殻部材を成す前記鋼板は、線状加熱加工前の室温での降伏強度が235MPa〜470MPaである
ことを特徴とする請求項1に記載の船首構造。
2. The bow structure according to claim 1, wherein the steel sheet constituting the outer shell member of the Barbasse bow has a yield strength at room temperature before linear heat processing of 235 MPa to 470 MPa.
前記バルバスバウの前記外殻部材を成す前記鋼板は、加熱側の最高表面温度がAc1点未満で線状加熱加工されることにより曲率が付与され、前記線状加熱加工前における400℃での降伏強度が150MPa以下である
ことを特徴とする請求項1または2に記載の船首構造。
The steel sheet constituting the outer shell member of the Barbasse bow is given a curvature by being linearly heated when the maximum surface temperature on the heating side is less than Ac1 point, and yield at 400 ° C. before the linear heating process. The bow structure according to claim 1 or 2, wherein the strength is 150 MPa or less.
JP2010550384A 2009-08-24 2010-08-23 Bow structure Pending JPWO2011024743A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009193476 2009-08-24
JP2009193476 2009-08-24
PCT/JP2010/064148 WO2011024743A1 (en) 2009-08-24 2010-08-23 Bow structure

Publications (1)

Publication Number Publication Date
JPWO2011024743A1 true JPWO2011024743A1 (en) 2013-01-31

Family

ID=43627848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010550384A Pending JPWO2011024743A1 (en) 2009-08-24 2010-08-23 Bow structure

Country Status (2)

Country Link
JP (1) JPWO2011024743A1 (en)
WO (1) WO2011024743A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103144739B (en) * 2013-03-11 2015-08-19 韩通(上海)新能源船舶设计研发有限公司 The initiatively manufacture method of divergence type bulbous bow
RU2652502C1 (en) * 2017-04-05 2018-04-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Ship hull bulb bow

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329881A (en) * 1994-06-06 1995-12-19 Ishikawajima Harima Heavy Ind Co Ltd Shock absorber of marine vessel
JPH0890089A (en) * 1994-09-22 1996-04-09 Yamamoto Suiatsu Kogyosho:Kk Device for bending and method therefor
JP2002087373A (en) * 2000-09-13 2002-03-27 Nkk Corp Hull structure superior in collision resisting performance
JP2004314825A (en) * 2003-04-17 2004-11-11 National Maritime Research Institute Vessel having lateral bending absorption type bow
JP2006205181A (en) * 2005-01-25 2006-08-10 Nippon Steel Corp Manufacturing method of thick steel plate having excellent hot bending property, and method for bending thick steel plate
JP4308312B1 (en) * 2008-01-08 2009-08-05 新日本製鐵株式会社 Thick steel plate excellent in bending workability by linear heating and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08164887A (en) * 1994-12-14 1996-06-25 Mitsubishi Heavy Ind Ltd Collision energy absorption type bulbous bow structure
JPH11152540A (en) * 1997-11-18 1999-06-08 Sumitomo Metal Ind Ltd Steel small in deterioration of toughness caused by linear heating
JP4959167B2 (en) * 2005-09-27 2012-06-20 新日本製鐵株式会社 Thermal processing method for steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329881A (en) * 1994-06-06 1995-12-19 Ishikawajima Harima Heavy Ind Co Ltd Shock absorber of marine vessel
JPH0890089A (en) * 1994-09-22 1996-04-09 Yamamoto Suiatsu Kogyosho:Kk Device for bending and method therefor
JP2002087373A (en) * 2000-09-13 2002-03-27 Nkk Corp Hull structure superior in collision resisting performance
JP2004314825A (en) * 2003-04-17 2004-11-11 National Maritime Research Institute Vessel having lateral bending absorption type bow
JP2006205181A (en) * 2005-01-25 2006-08-10 Nippon Steel Corp Manufacturing method of thick steel plate having excellent hot bending property, and method for bending thick steel plate
JP4308312B1 (en) * 2008-01-08 2009-08-05 新日本製鐵株式会社 Thick steel plate excellent in bending workability by linear heating and its manufacturing method

Also Published As

Publication number Publication date
WO2011024743A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
ES2396114T3 (en) Seamless steel tube for air bag accumulators and procedure for its production
CN102893049B (en) Impact absorbing member
BR112012011685B1 (en) STEEL SHEET FOR SHIP HULL
CN103144739B (en) The initiatively manufacture method of divergence type bulbous bow
KR20080106200A (en) Stainless steel sheet for structural members excellent in impact-absorbing characteristics
JP5015349B2 (en) Bow structure
Song et al. Achievement of high yield strength and strain hardening rate by forming fine ferrite and dislocation substructures in duplex lightweight steel
WO2011024743A1 (en) Bow structure
JP5047865B2 (en) Bow structure with excellent collision safety
JP4869094B2 (en) Impact property prediction method for marine steel
US20040025985A1 (en) Energy absorbing shape memory alloys
JP5061649B2 (en) Thick steel plate with a thickness of 50 mm or more with excellent brittle crack propagation stopping characteristics
JP2016172926A (en) Liner for composite container accumulator, composite container accumulator and manufacturing method of liner for composite container accumulator
JP6981546B2 (en) Thick steel plate and its manufacturing method
WO2004092004A1 (en) Marine vessel having lateral bending buffering bow
JP5091733B2 (en) Stainless steel for low Ni body parts with excellent workability and shock absorption performance
KR101687687B1 (en) Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet
KR101594913B1 (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
JP5167918B2 (en) Barbusbau with excellent collision energy absorption capability
JP5167917B2 (en) Barbusbau with excellent collision energy absorption capability
JP2009248929A (en) Bulbous bow excellent in collision energy absorption capacity
JP2017125229A (en) Manufacturing method of molding member
JP7173416B1 (en) WELDED JOINT, WELDED JOINT DESIGN METHOD, WELDED JOINT MANUFACTURING METHOD, AND HULL STRUCTURE
JP5004783B2 (en) Automotive food panels with excellent pedestrian protection
WO2022234792A1 (en) Skeleton member

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403