JP5015349B2 - Bow structure - Google Patents

Bow structure Download PDF

Info

Publication number
JP5015349B2
JP5015349B2 JP2011500400A JP2011500400A JP5015349B2 JP 5015349 B2 JP5015349 B2 JP 5015349B2 JP 2011500400 A JP2011500400 A JP 2011500400A JP 2011500400 A JP2011500400 A JP 2011500400A JP 5015349 B2 JP5015349 B2 JP 5015349B2
Authority
JP
Japan
Prior art keywords
yield strength
bow
ship
linear heating
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011500400A
Other languages
Japanese (ja)
Other versions
JPWO2011024715A1 (en
Inventor
忠 石川
清孝 中島
裕二 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011500400A priority Critical patent/JP5015349B2/en
Application granted granted Critical
Publication of JP5015349B2 publication Critical patent/JP5015349B2/en
Publication of JPWO2011024715A1 publication Critical patent/JPWO2011024715A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/18Improving safety of vessels, e.g. damage control, not otherwise provided for preventing collision or grounding; reducing collision damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/46Stems
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/02Metallic materials
    • B63B2231/04Irons, steels or ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、衝突時に自らが変形することにより衝突した相手側の船の損傷を防止できる緩衝効果を有し、これにより衝突安全性を向上させた船首構造に関する。
本願は、2009年8月24日に、日本に出願された特願2009−193475号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a bow structure that has a buffering effect that can prevent damage to a partner ship that collides due to deformation of itself during a collision, thereby improving collision safety.
This application claims priority on August 24, 2009 based on Japanese Patent Application No. 2009-193475 for which it applied to Japan, and uses the content here.

現在の大型船は、航行時における波の抵抗によるエネルギーロスを少しでも軽減させるために、船首水線下にバルバスバウ(球状船首)を備えている。このバルバスバウに用いる曲率の大きな曲板を製造するために、その成形過程で、線状加熱による曲げ加工、すなわち線状加熱加工が多用されている。   Today's large ships are equipped with a Barbasse bow (spherical bow) under the bowline to reduce any energy loss due to wave resistance during navigation. In order to produce a curved plate having a large curvature used for this Barbasse bow, bending by linear heating, that is, linear heating, is frequently used in the molding process.

この線状加熱加工は、鋼板表面を、ガスバーナー等を用いて加熱側表面の最高到達温度が600℃〜1100℃程度になるように線状に局所加熱する加工方法である。この線状加熱加工では、加熱部分が熱膨張してその周囲からの拘束により塑性変形する現象を利用する。また、この線状加熱加工では、作業効率を高めるために加熱直後に水冷することが一般的に行われており、線状加熱加工後の鋼板は、加熱された部分に焼きが入り、局所的に降伏強度が上昇している。   This linear heating process is a processing method in which the steel sheet surface is locally heated in a linear manner using a gas burner or the like so that the highest temperature on the heating side surface is about 600 ° C. to 1100 ° C. In this linear heating process, a phenomenon is used in which the heated portion is thermally expanded and plastically deformed by restraint from the surroundings. In this linear heating process, water cooling is generally performed immediately after heating in order to increase work efficiency, and the steel sheet after the linear heating process is baked into the heated part and locally The yield strength has increased.

そのため、そのような曲板を用いたバルバスバウは、表面に沿った強度が不均一であり、変形しにくい。このようなバルバスバウを備えた船が他船に衝突した場合、例えば図10Aに示すように、自船200の船首200aが他船201の船腹201aに食い込んで船腹201aを破壊、さらには破壊部位201bが拡大して船体に穴があく(船体が破口する)虞があった。   For this reason, the Barbasu bow using such a curved plate has nonuniform strength along the surface and is not easily deformed. When a ship equipped with such a barbus bow collides with another ship, for example, as shown in FIG. 10A, the bow 200a of the own ship 200 bites into the ship 201a of the other ship 201 to destroy the ship 201a, and further, the destruction part 201b. There was a risk that the hull would expand and there would be a hole in the hull (the hull would break).

従来、船の衝突安全性を向上させる手段(構造)としては、船殻の二重構造化など、主に船体構造の面から検討を行なっている。しかしながら、近年では、衝突時のエネルギー吸収性能に優れた鋼材を適用することが検討されている。   Conventionally, as a means (structure) for improving the collision safety of a ship, studies have been made mainly from the aspect of a hull structure such as a double hull structure. However, in recent years, it has been studied to apply a steel material excellent in energy absorption performance at the time of collision.

その例として、下記特許文献1には、船側外板などに、従来の国際船級協会連合(IACS)の統一規格材に比べて降伏応力σyと一様伸びεuとの積(σy×εu)を20%以上増加させた鋼材、または引張試験において一様伸びεuまでのエネルギー吸収量を20%以上増加させた鋼材、または降伏応力σyが同等以上で、かつ一様伸びεuを20%以上増加させた鋼材、を適用した船体構造が開示されている。この構成では、従来と変わらない船体構造のままでありながらも、船体に破口が生じるまでに吸収できるエネルギー量を増加させることが可能となっている。   As an example, in Patent Document 1 below, the product of the yield stress σy and the uniform elongation εu (σy × εu) is given to the outer skin of the ship, etc., compared to the conventional standard material of the International Classification Society Association (IACS). Steel that has been increased by 20% or more, or steel that has increased the amount of energy absorption up to the uniform elongation εu by 20% or more in the tensile test, or the yield stress σy is equal to or greater and the uniform elongation εu is increased by 20% or more. A hull structure to which a steel material is applied is disclosed. With this configuration, it is possible to increase the amount of energy that can be absorbed before a breakage occurs in the hull, while maintaining the hull structure that is not different from the conventional one.

しかし、自船の船首が他船の船腹に衝突した場合には、たとえエネルギー吸収量が50%以上向上した鋼板を他船が使用していても、自船の船首が変形しない場合は他船の船腹を貫通する虞がある。その場合は、上述の吸収エネルギー量の増加が期待できないという問題がある。   However, if the ship's bow collides with the other ship's hull, even if the ship's bow does not deform, even if the ship uses a steel plate that has improved its energy absorption by 50% or more, There is a risk of penetrating the ship's hull. In that case, there is a problem that the increase in the amount of absorbed energy cannot be expected.

このような問題に対して、自船の船首が他船と衝突した場合であっても、緩衝効果を発揮する船首部を設計することも検討されている。
例えば、下記特許文献2には、一般的な船体建造に用いられる鉄鋼材料よりも柔らかい材料を用いて船首部が建造され、柔構造を有する船首部が開示されている。
しかし、この特許文献2には、柔らかい材料として、大型船舶への適用が困難なアルミニウム材が示されているのみで、鋼材を用いて柔構造を得ることについては特に開示されていない。
In order to solve such a problem, it is also considered to design a bow portion that exhibits a buffering effect even when the bow of the ship collides with another ship.
For example, Patent Literature 2 below discloses a bow portion having a flexible structure in which the bow portion is constructed using a material softer than a steel material used for general hull construction.
However, this Patent Document 2 only shows an aluminum material that is difficult to apply to a large ship as a soft material, and does not particularly disclose obtaining a flexible structure using a steel material.

また、下記特許文献3には、バルバスバウにおける球状突起(バルブ部)の根本部の外板に、降伏応力が235MPa以下の低降伏点鋼からなる低強度部が設けられた船首構造が開示されている。この構造においては、根本部の横方向の曲げ強度を低下させて、船首部が衝突の反力で折れ曲がることにより、他船の船腹に衝突船の船首部が食い込むことが防止されている。   Further, Patent Document 3 below discloses a bow structure in which a low strength portion made of a low yield point steel having a yield stress of 235 MPa or less is provided on the outer plate of the base portion of a spherical protrusion (valve portion) in Barbus Bau. Yes. In this structure, the bending strength in the lateral direction of the base portion is reduced and the bow portion is bent by the reaction force of the collision, so that the bow portion of the collision ship is prevented from biting into the flank of another ship.

この特許文献3では、バルバスバウの鉛直方向の強度は十分確保しつつ、バルバスバウの水平方向の構造強度を低下させることにより、図10Bに示すように、衝突時にバルバスバウ300aの根元部300bが船体幅方向に容易に変形して、衝突部300cの接触面積を増大させる。この構造は、この接触面積の増大によって衝突船(自船)300及び被衝突船(他船)301双方の破口(穴の発生)を防止する。しかしながら、根元部300bの折れ曲がりは、低降伏点鋼を使用した部位の局所的な変形により生じており、根元部300bの折れ曲がりによって、衝突エネルギーは、十分に吸収されない。   In this Patent Document 3, the horizontal portion strength of the Barbus Bau is reduced while reducing the structural strength in the horizontal direction of the Barbus Bau while ensuring a sufficient strength in the vertical direction of the Barbus Bau, as shown in FIG. To easily increase the contact area of the collision part 300c. This structure prevents the breakage (generation of holes) of both the collision ship (own ship) 300 and the collision ship (other ship) 301 due to the increase in the contact area. However, the bending of the root portion 300b is caused by local deformation of the portion using the low yield point steel, and the collision energy is not sufficiently absorbed by the bending of the root portion 300b.

また、バルバスバウ300aが折れ曲がることにより、自船300と他船301とがより接近し、両者の距離が十分大きなエネルギー吸収を伴わずに小さくなる。その結果、図10Bに示すように、衝突船300の舳先部分300dが被衝突船301に接触して被衝突船301の船腹301aに貫入する場合があるので、衝突事故による損傷がさらに増大する可能性もある。
したがって、バルバスバウ300aが変形した後に、自船300の舳先部分300dと他船301の船腹とが接触するまでの間も、衝突エネルギーの吸収量を大きくする必要がある。
なお、図10Bの点線部分は、衝突船300が被衝突船301に衝突する前のバルバスバウ300aの位置を示す。
Further, when the barbus bow 300a is bent, the own ship 300 and the other ship 301 come closer to each other, and the distance between the two becomes smaller without sufficiently absorbing energy. As a result, as shown in FIG. 10B, the tip portion 300d of the collision ship 300 may come into contact with the collision ship 301 and penetrate into the hull 301a of the collision ship 301, which may further increase the damage due to the collision accident. There is also sex.
Therefore, it is necessary to increase the absorption amount of the collision energy after the barbus bow 300a is deformed and until the tip portion 300d of the own ship 300 comes into contact with the hull of the other ship 301.
The dotted line portion in FIG. 10B indicates the position of the Barbus bow 300a before the collision ship 300 collides with the collision ship 301.

特開2002−087373号公報JP 2002-087373 A 特開平7−329881号公報Japanese Patent Laid-Open No. 7-329881 特開2004−314825号公報JP 2004-314825 A

本発明は、上記事情に鑑みてなされたものであって、船首のバルバスバウの部分が、通常の加熱条件(加熱側の最高加熱温度:600〜1100℃)で線状加熱加工されて所定の曲率が付与された鋼板を用いて建造されている船舶において、船舶が衝突した際に、バルバスバウのバルブ部ができるだけ全体的に均一に変形し、変形時における大きなエネルギー吸収量を実現できる船首構造の条件を明らかにすることを目的とする。また、船体構造設計を変更することなく、衝突時に他船の損傷を効果的に防止できる緩衝効果を備えた船首構造を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the portion of the bow of the bassus bow is linearly heated under normal heating conditions (maximum heating temperature on the heating side: 600 to 1100 ° C.) and has a predetermined curvature. The conditions of the bow structure that can realize a large amount of energy absorption at the time of deformation of the valve part of the Barbus Bau as much as possible when the ship collides. The purpose is to clarify. It is another object of the present invention to provide a bow structure having a buffering effect that can effectively prevent damage to other ships in the event of a collision without changing the hull structure design.

上記の課題を解決するために、本発明の一態様では、次のような船首構造とした。
(1)衝突エネルギー吸収能に優れた船首構造は、バルバスバウの外殻部材が、加熱側の最高表面温度が600℃以上で線状加熱加工されることにより曲率が付与され、前記線状加熱加工前において、室温での降伏強度が120MPa〜200MPa未満であり、600℃での降伏強度が室温での降伏強度の0.6倍以下である鋼板からなる。
(2)上記(1)に記載の衝突エネルギー吸収能に優れた船首構造では、前記バルバスバウの前記外殻部材を成す前記鋼板は、前記加熱側の最高表面温度が600℃以上で曲げ角度が120度となるまで線状加熱加工した場合、前記線状加熱部の室温での降伏強度YP(LH,RT)を非線状加熱部の室温での降伏強度YP(AR,RT)で割って得られた降伏強度の比αが1.2以下である鋼板であってもよい。
(3)上記(1)または(2)に記載の衝突エネルギー吸収能に優れた船首構造では、前記バルバスバウを構成する前記外殻部材及び内部構成部材について、船体長手水平方向に対して45度以下の角度を有するL部材の降伏強度は、船体長手水平方向に対して45度より大きい角度を有するW部材の降伏強度よりも低くても良い。
In order to solve the above-described problem, in one aspect of the present invention, the following bow structure is provided.
(1) The bow structure with excellent collision energy absorption capability is such that the outer shell member of Barbusbau is given a curvature by being linearly heated at a maximum surface temperature on the heating side of 600 ° C. or higher. Before, it consists of a steel plate whose yield strength at room temperature is 120 MPa to less than 200 MPa, and whose yield strength at 600 ° C. is not more than 0.6 times the yield strength at room temperature.
(2) In the bow structure with excellent collision energy absorption capability as described in (1) above, the steel plate constituting the outer shell member of the Barbasse bow has a maximum surface temperature on the heating side of 600 ° C or higher and a bending angle of 120 ° C. Is obtained by dividing the yield strength YP (LH, RT) of the linear heating portion at room temperature by the yield strength YP (AR, RT) of the non-linear heating portion at room temperature. A steel sheet having a yield strength ratio α of 1.2 or less may be used.
(3) In the bow structure excellent in the collision energy absorption capability according to the above (1) or (2), the outer shell member and the inner component member constituting the Barbus bow are 45 degrees or less with respect to the horizontal direction of the hull longitudinal direction. The yield strength of the L member having an angle of may be lower than the yield strength of the W member having an angle greater than 45 degrees with respect to the horizontal direction of the hull.

本発明によれば、バルバスバウを有する自船の船首が他船の船腹に衝突するような事態を起こした場合に、衝突船側(自船側)のバルバスバウのバルブ部側面がより均一に座屈変形することにより、衝突エネルギーを大きく吸収することができる。また、衝突エネルギーを吸収しながら衝突面がつぶれることで、被衝突船(他船)の損傷を極力低減できるようになり、これによって被衝突船の沈没や油流出による海洋汚染の予防に貢献することができる。   According to the present invention, when a situation occurs in which the bow of the own ship having the Barbus bow collides with the hull of another ship, the valve side surface of the Barbus bow on the collision ship side (own ship side) is more uniformly buckled and deformed. Thus, the collision energy can be greatly absorbed. In addition, by colliding the collision surface while absorbing the collision energy, it is possible to reduce the damage of the ship to be collided (other ships) as much as possible, thereby contributing to the prevention of marine pollution due to the sinking of the ship and the oil spill. be able to.

鋼板の降伏強度と試験温度との関係を示す図である。It is a figure which shows the relationship between the yield strength of a steel plate, and test temperature. 線状加熱によって曲げ角度120度となるまで曲げ加工された鋼板を示す図である。It is a figure which shows the steel plate bent to the bending angle of 120 degree | times by linear heating. 線状加熱によって曲げ角度120度となるまで曲げ加工された上記鋼板から作製される試験片を示す図である。It is a figure which shows the test piece produced from the said steel plate bent to the bending angle of 120 degree | times by linear heating. 鋼板の600℃での降伏強度と鋼板の室温での降伏強度との比YP(AR,600℃)/YP(AR,RT)と、αとの関係を示す図である。It is a figure which shows the relationship between (alpha) and ratio YP (AR, 600 degreeC) / YP (AR, RT) of the yield strength in 600 degreeC of a steel plate, and the yield strength in room temperature of a steel plate. 線状加熱を受けた鋼板の座屈性を調べるための試験方法を説明する図である。It is a figure explaining the test method for investigating the buckling property of the steel plate which received the linear heating. 線状加熱を受けた鋼板に荷重を付加した場合の荷重の大きさPとブロックの変位Δとの関係を示す図である。It is a figure which shows the relationship between the magnitude | size P of the load at the time of applying a load to the steel plate which received the linear heating, and the displacement (DELTA) of a block. 図4に示した試験におけるEA比(αが1.0の場合の吸収エネルギーとの比)とαの値との関係を示す図である。It is a figure which shows the relationship between EA ratio (ratio with the absorption energy in case (alpha) is 1.0) and the value of (alpha) in the test shown in FIG. 船首構造と船側構造との衝突シミュレーションにおける船側の構造モデルを示す図である。It is a figure which shows the structural model of the ship side in the collision simulation of a bow structure and a ship side structure. 船首構造が船側構造に貫入した際に、貫入量とバルバスバウで吸収する相対エネルギー吸収能との推移を示す図である。It is a figure which shows transition of the amount of penetration and the relative energy absorptivity absorbed by Barbus Bau when a bow structure penetrates into a ship side structure. αと鋼板のエネルギー吸収能を基準例(α=1)のときの鋼板のエネルギー吸収能で割ったエネルギー吸収能の比との関係を示す図である。It is a figure which shows the relationship between (alpha) and the ratio of the energy absorptivity divided by the energy absorptivity of the steel plate in the case of a reference example ((alpha) = 1). 船首構造に緩衝効果を有さない船が衝突した場合の衝突船と被衝突船それぞれの変形を示す模式図である。It is a schematic diagram which shows each deformation | transformation of a collision ship and a ship to be collided when the ship which does not have a buffering effect collides with the bow structure. 船首構造に緩衝効果を有する船が衝突した場合の衝突船と被衝突船それぞれの変形を示す模式図である。It is a schematic diagram which shows each deformation | transformation of a collision ship and a ship to be collided when the ship which has a buffer effect collides with the bow structure. 船首構造に本発明の緩衝効果を有する船が衝突した場合の衝突船と被衝突船それぞれの変形を示す模式図である。It is a schematic diagram which shows a deformation | transformation of each of a collision ship and a ship to be collided when the ship which has the buffer effect of this invention collides with the bow structure. バルバスバウを有する船首の内部構造の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the internal structure of the bow which has a Barbus bow. バルバスバウを有する船首の内部構造の概略を示す斜視図である。It is a perspective view which shows the outline of the internal structure of the bow which has a Barbus bow.

本発明者らは、バルバスバウを有する船舶の船首が他船の船腹に衝突するような事故を起こした場合について十分に検討し、図10Cに示すように、バルバスバウ100aのバルブ部分100bがより均一に座屈変形をすることができれば、より多くの衝突エネルギーを吸収することができるという知見を得た。図10Cに示すように、衝突船100のバルバスバウ100aが座屈変形することによって、衝突による衝撃力は緩和される。その結果、被衝突船101の船腹101aの局所的な破断や破損を回避でき、破口の発生を防止できる。なお、図10Cの点線部分は、衝突船100が被衝突船101に衝突する前のバルバスバウ100aの位置を示す。   The present inventors have fully studied the case where an accident occurs in which the bow of a ship having a Barbus bow collides with the hull of another ship, and as shown in FIG. 10C, the valve portion 100b of the Barbus bow 100a is made more uniform. It was found that more buckling energy can be absorbed if buckling deformation is possible. As shown in FIG. 10C, the impact force due to the collision is alleviated by the buckling deformation of the Barbus bow 100a of the collision ship 100. As a result, local breakage and breakage of the hull 101a of the ship 101 can be avoided, and the occurrence of breakage can be prevented. The dotted line portion in FIG. 10C indicates the position of the Barbus bow 100a before the collision ship 100 collides with the collision ship 101.

バルバスバウのバルブ部は、前述のように線状加熱加工されて曲率が付与された鋼板を用いて構成されている。この線状加熱加工によって、鋼板の熱を受けた部分では降伏強度が高くなる。その結果、局所的に熱が付与された部分と付与されていない部分とで鋼板の降伏強度に不均一が生じている。   The valve portion of the Barbus Bau is configured using a steel plate that has been linearly heated and provided with a curvature as described above. By this linear heating process, the yield strength is increased in the portion where the heat of the steel sheet is received. As a result, the yield strength of the steel sheet is non-uniform between the part to which heat is locally applied and the part to which heat is not applied.

そのような鋼板を用いた場合、衝突の際に、バルバスバウは、不均一に変形する。そのため、その鋼板を用いた構造部材のエネルギー吸収能は、降伏強度が鋼板内部で均一である鋼板を用いた構造部材に比べて低下している懸念がある。よって、衝突の際に被衝突船の局所的な破断または破損を回避するために十分な量の衝突エネルギーの吸収量を期待できない可能性がある。   When such a steel plate is used, the Barbasse bow deforms unevenly during a collision. Therefore, there is a concern that the energy absorption capacity of the structural member using the steel plate is lower than that of the structural member using the steel plate whose yield strength is uniform inside the steel plate. Therefore, it may not be possible to expect a sufficient amount of collision energy absorption to avoid local breakage or breakage of the ship to be collided in the event of a collision.

そのため、図10Bのように曲げ変形により折れ曲がることを防止する必要がある。そこで、発明者らは、バルバスバウ100aが図10Cのように船体長手水平方向に沿って均一に座屈する構造について検討した。   Therefore, it is necessary to prevent bending due to bending deformation as shown in FIG. 10B. Therefore, the inventors examined a structure in which the Barbus bow 100a is buckled uniformly along the horizontal direction of the hull as shown in FIG. 10C.

衝突時にバルバスバウが変形するためには、衝突方向である船体長手水平方向に沿って配置されている部材は、変形しやすい鋼材で構成されている必要がある。バルバスバウが均一に座屈するためには、船体長手方向に沿って配置されている部材の変形を船体長手方向に対して交わる方向に配置されている部材によって拘束して、バルバスバウの折れ曲りを防止することが有効である。   In order for the Barbus bow to be deformed at the time of a collision, the member arranged along the hull longitudinal horizontal direction, which is the collision direction, needs to be made of a steel material that is easily deformed. In order for the Barbus bow to buckle uniformly, the deformation of the members arranged along the longitudinal direction of the hull is restrained by the members arranged in the direction intersecting with the longitudinal direction of the hull to prevent the Barbus bow from being bent. It is effective.

バルバスバウの形状および内部構造は、様々であるが、曲率を有する外殻部材と内部構造部材とにより構成される。さらに、この内部構造部材は、バルバスバウの骨格を形成し、一般的には、縦肋骨と横肋骨との組み合わせにより構成される。   Although the shape and internal structure of the Barbus bow are various, it is comprised by the outer shell member and internal structure member which have a curvature. Furthermore, this internal structural member forms the skeleton of Barbus Bau and is generally constituted by a combination of longitudinal ribs and lateral ribs.

図11Aおよび図11Bにバルバスバウの構造の一例について概略を示す。バルバスバウを構成する内部構造部材111は、船体衝突方向である船体長手水平方向を基準に、船体長手水平方向に平行あるいは直角に配置されている複数の部材と、船体長手方向に対して所定の角度で配置されている一部の部材とによって構成されている。   FIG. 11A and FIG. 11B schematically show an example of the structure of the Barbasse bow. The internal structural member 111 that constitutes the Barbassau has a plurality of members arranged parallel to or perpendicular to the hull longitudinal horizontal direction with respect to the hull longitudinal horizontal direction, which is the hull collision direction, and a predetermined angle with respect to the hull longitudinal direction. It is comprised by the one part member arrange | positioned by.

具体的に、内部構造部材を構成している複数の部材は、船体長手水平方向に平行に配置されている部材あるいは直角に配置されている部材のいずれかに分類される。すなわち、バルバスバウを構成する内部構造部材111は、次のように定義されるL部材111bとW部材111aとに分類される。L部材111bは、船体長手水平方向に対し、45度以下の角度を有する部材である。また、W部材111aは、船体長手水平方向に対し、45度より大きい角度を有する部材である。   Specifically, the plurality of members constituting the internal structural member are classified as either a member arranged parallel to the hull longitudinal horizontal direction or a member arranged perpendicularly. That is, the internal structural member 111 constituting the Barbus bow is classified into an L member 111b and a W member 111a defined as follows. The L member 111b is a member having an angle of 45 degrees or less with respect to the hull longitudinal horizontal direction. The W member 111a is a member having an angle larger than 45 degrees with respect to the horizontal direction of the hull.

L部材111bは、衝突時に変形する部材であり、W部材111aは、L部材111bの変形を拘束する部材である。L部材111bが変形するためには、L部材111bには、W部材111aの降伏強度よりも低い降伏強度の鋼材を使用することが好ましい。その結果、W部材111aがL部材111bに対して容易に変形してしまうことを防止することができる。
さらに、この構造により、単純曲げのようなL部材111bの局所変形を防止することができ、バルバスバウは、船体長手水平方向に沿って変形する。
同様に、外殻部材110についても、L部材とW部材とに分類することができ、L部材には、W部材の降伏強度よりも低い降伏強度の鋼材が使用されることが好ましい。このように、バルバスバウを構成する外殻部材および内部構造部材について、船体長手水平方向に対して45度以下の角度を有するL部材の降伏強度は、船体長手水平方向に対して45度より大きい角度を有するW部材の降伏強度よりも低くなるように設計されることが好ましい。
The L member 111b is a member that deforms at the time of a collision, and the W member 111a is a member that restrains deformation of the L member 111b. In order to deform the L member 111b, it is preferable to use a steel material having a yield strength lower than the yield strength of the W member 111a for the L member 111b. As a result, it is possible to prevent the W member 111a from being easily deformed with respect to the L member 111b.
Furthermore, this structure can prevent local deformation of the L member 111b such as simple bending, and the Barbus bow is deformed along the horizontal direction of the hull longitudinal direction.
Similarly, the outer shell member 110 can also be classified into an L member and a W member, and a steel material having a yield strength lower than the yield strength of the W member is preferably used for the L member. As described above, regarding the outer shell member and the internal structural member constituting the Barbasse bow, the yield strength of the L member having an angle of 45 degrees or less with respect to the hull longitudinal horizontal direction is larger than 45 degrees with respect to the hull longitudinal horizontal direction. It is preferable to design so that it may become lower than the yield strength of W member which has these.

さらに、バルバスバウが均一に座屈変形するためには、外殻を構成する外殻部材110が蛇腹状に座屈変形する必要がある。加えて、外殻部材110は、均一に変形する必要があるため、線状加熱加工後も降伏強度が大きく変化しない鋼板を用いる必要がある。
以降は、L部材の降伏強度がW部材よりも低いことを前提として説明する。
Further, in order for the Barbasu bow to be uniformly buckled and deformed, the outer shell member 110 constituting the outer shell needs to be buckled and deformed in a bellows shape. In addition, since the outer shell member 110 needs to be uniformly deformed, it is necessary to use a steel plate whose yield strength does not change greatly even after linear heat processing.
In the following description, it is assumed that the yield strength of the L member is lower than that of the W member.

バルバスバウの曲率を有する部位に、加熱側の最高表面温度が600℃以上で線状加熱加工して曲率を付与した鋼板を用いる場合に、線状加熱加工にともなう線状加熱部の降伏強度の変化ができるだけ小さい鋼板を用いることが望ましい。その結果、外殻部材110で吸収できるエネルギー量が増加するため、バルバスバウが十分な量の衝突エネルギーを吸収できる。線状加熱にともなう線状加熱部の降伏強度の変化をできるだけ小さくするためには、できるだけ少ない熱の付与で所定の曲率に加工できる鋼板が望ましい。   Changes in the yield strength of the linear heating part due to linear heating when using a steel plate with a curvature that is obtained by linear heating at a heating surface maximum surface temperature of 600 ° C. or more at the part having the curvature of Barbasse bow It is desirable to use a steel plate having as small a size as possible. As a result, since the amount of energy that can be absorbed by the outer shell member 110 increases, the Barbasse bow can absorb a sufficient amount of collision energy. In order to minimize the change in the yield strength of the linear heating portion that accompanies the linear heating, a steel plate that can be processed into a predetermined curvature with the application of as little heat as possible is desirable.

そこで、局所的な熱の付与による加工の容易さ(線状加熱加工特性)について検討するため、高温における鋼板の降伏強度を調べた。
室温での降伏強度は同一クラスの鋼材であるが、高温での降伏強度が異なる2種類の鋼A、Bを用いて試料となる鋼板を作製した。これらの鋼板の高温での降伏強度の違いは、高温でも安定な微細析出物の含有量が異なるためである。これらの鋼板を用い、種々の温度で引張試験を実施した。
図1に鋼板の降伏強度と引張試験を実施した試験温度との関係を示す。各試験温度における降伏強度には、降伏点あるいは0.2%耐力の値を用いた。さらに、鋼板の降伏強度の代わりに、試験温度での測定値YP(AR,試験温度)を室温での測定値YP(AR,RT)で割った値を用いた。
Therefore, the yield strength of the steel sheet at high temperatures was examined in order to examine the ease of processing (linear heat processing characteristics) by applying local heat.
Although the yield strength at room temperature is a steel material of the same class, a steel plate as a sample was prepared using two types of steels A and B having different yield strengths at high temperatures. The difference in yield strength of these steel plates at high temperatures is because the content of stable fine precipitates is different even at high temperatures. Using these steel plates, tensile tests were performed at various temperatures.
FIG. 1 shows the relationship between the yield strength of the steel sheet and the test temperature at which the tensile test was performed. For the yield strength at each test temperature, the yield point or 0.2% proof stress value was used. Furthermore, instead of the yield strength of the steel sheet, a value obtained by dividing the measured value YP (AR, test temperature) at the test temperature by the measured value YP (AR, RT) at room temperature was used.

図1に示されるように、試験温度が高くなると、ある温度において降伏強度がゼロとなる。その温度は、力学的溶融温度と定義されている。
最高到達温度が1000℃程度の通常の線状加熱加工では、力学的溶融温度が線状加熱特性に影響を与えると考えられる。しかしながら、力学的溶融温度は、容易には測定できない。
As shown in FIG. 1, when the test temperature increases, the yield strength becomes zero at a certain temperature. That temperature is defined as the mechanical melting temperature.
In ordinary linear heating processing with a maximum temperature of about 1000 ° C., it is considered that the mechanical melting temperature affects the linear heating characteristics. However, the mechanical melting temperature cannot be easily measured.

図1より、鋼A、Bとも力学的溶融温度より低い温度である600℃における降伏強度の値が、力学的溶融温度に相関することが認められた。そのため、線状加熱による加工性を評価するための指標として600℃における降伏強度に着目し、次のような実験を行った。   From FIG. 1, it was confirmed that the yield strength value at 600 ° C., which is lower than the mechanical melting temperature of both steels A and B, correlates with the mechanical melting temperature. Therefore, paying attention to the yield strength at 600 ° C. as an index for evaluating workability by linear heating, the following experiment was conducted.

質量%で、C:0.1%、Si:0.3%、Mn:1.0%、Al:0.005%を含有し、不純物としてのP、Sを、P:0.03%以下、S:0.01%以下に制限した鋼に、高温強度を高めるCr、Nbの含有量を調整して、室温と600℃における降伏強度を変化させた各種鋼板1を作製した。これらの鋼板1は、略正方形状であり、その寸法は、一辺約500mmかつ厚さ約10mmであった。なお、図1においても、同様の方法(鋼板組成及び寸法)で作製された鋼板が使用されている。図2Aに示すように、曲げ角度が120度となるまでそれらの鋼板に線状加熱加工(加熱側の最高加熱温度1000℃)を繰り返した。   In mass%, C: 0.1%, Si: 0.3%, Mn: 1.0%, Al: 0.005%, P and S as impurities, P: 0.03% or less , S: Various steel plates 1 with varying yield strength at room temperature and 600 ° C. were prepared by adjusting the contents of Cr and Nb, which increase the high temperature strength, to steel limited to 0.01% or less. These steel plates 1 had a substantially square shape, and the dimensions were about 500 mm on a side and about 10 mm in thickness. In addition, also in FIG. 1, the steel plate produced by the same method (steel plate composition and dimension) is used. As shown in FIG. 2A, linear heating processing (maximum heating temperature 1000 ° C. on the heating side) was repeated on the steel plates until the bending angle reached 120 degrees.

曲げ加工された鋼板1の線状加熱を受けた部位(線状加熱部)2と線状加熱を受けていない部位(非線状加熱部)3とのそれぞれについて、図2Bに示すように線状加熱を行った側の鋼板表面から鋼板表面を含む試験片4を切り出し加工した。この加工によって、鋼板1の厚さの半分である板厚5mmのNKU1号引張試験片(財団法人日本海事協会(NK;Nippon Kaiji Kyokai)鋼船規則・同検査要領(K編 材料)で規定されているU1号試験片)を作製した。
各試験片について室温において引張試験を実施し、それぞれ降伏強度を求めた。室温での線状加熱部の降伏強度をYP(LH,RT)とし、室温での非線状加熱部の降伏強度をYP(AR,RT)とする。その比率αをα=YP(LH,RT)/YP(AR,RT)として、線状加熱部と非線状加熱部との降伏強度の違いを評価した。また、非線状加熱部については、600℃での降伏強度YP(AR,600℃)も求めた。
As shown in FIG. 2B, each of the part (linear heating part) 2 that has undergone linear heating of the bent steel sheet 1 and the part (non-linear heating part) 3 that has not undergone linear heating have a line as shown in FIG. The test piece 4 including the steel plate surface was cut out from the steel plate surface on the side subjected to the shape heating. By this processing, the NKU No. 1 tensile test piece (Nick Nippon Kaiji Kyokai) (Nippon Kaiji Kyokai) Steel Ship Rules and Inspection Procedures (K-knitted materials), which is half the thickness of the steel plate 1, is 5 mm thick. U1 test piece).
Each test piece was subjected to a tensile test at room temperature to determine the yield strength. The yield strength of the linear heating part at room temperature is YP (LH, RT), and the yield strength of the non-linear heating part at room temperature is YP (AR, RT). The ratio α was α = YP (LH, RT) / YP (AR, RT), and the difference in yield strength between the linear heating part and the non-linear heating part was evaluated. Moreover, about the non-linear heating part, the yield strength YP (AR, 600 degreeC) in 600 degreeC was also calculated | required.

図3に、鋼板の線状加熱部と非線状加熱部との降伏強度の比αと、鋼板の600℃での降伏強度と鋼板の室温での降伏強度との比YP(AR,600℃)/YP(AR,RT)との関係を示す。
その結果、図3に示すように、600℃での降伏強度が室温での降伏強度の0.6倍以下では、線状加熱部と非線状加熱部の降伏強度の違いを示すαの値を1.2以下に抑制できた。
FIG. 3 shows a ratio YP (AR, 600 ° C.) of the yield strength ratio α between the linear heating portion and the non-linear heating portion of the steel plate and the yield strength of the steel plate at 600 ° C. and the yield strength at room temperature of the steel plate. ) / YP (AR, RT).
As a result, as shown in FIG. 3, when the yield strength at 600 ° C. is not more than 0.6 times the yield strength at room temperature, the value of α indicating the difference in yield strength between the linear heating portion and the non-linear heating portion. Can be suppressed to 1.2 or less.

次に、鋼板を船首に使用した場合にバルバスバウが均一に座屈するためのαの条件について調べた。
αの値が異なる種々の鋼板(一辺約500mmかつ厚さ約10mm)を用いて、上記と同様に作製された120度の曲げ角度を有する試験片を作製し、図4に示すように両端部をブロック5で拘束しながら一方から荷重Pを付与した。そのときの荷重の大きさとブロックの変位Δとの関係を測定した。αの値が1.0、1.18、1.4である3個の試験片の測定例を図5に示す。
なお、α=1.0の鋼板については、線状加熱加工を適用せず、機械的に曲げ加工を行って120度の曲げ角度となるようにした後、塑性変形の影響を排除するために降伏強度が変化しない程度の焼き戻し処理を行っている。
Next, the condition of α for the barbasse bow to buckle uniformly when using a steel plate at the bow was examined.
Using various steel plates having different values of α (about 500 mm on a side and about 10 mm in thickness), test pieces having a bending angle of 120 degrees made in the same manner as described above were prepared, as shown in FIG. The load P was applied from one side while restraining with the block 5. The relationship between the magnitude of the load and the block displacement Δ was measured. FIG. 5 shows a measurement example of three test pieces having α values of 1.0, 1.18, and 1.4.
In addition, in order to eliminate the influence of plastic deformation after α-1.0 steel plate is mechanically bent to a bending angle of 120 degrees without applying linear heating. Tempering is performed to such an extent that the yield strength does not change.

αが1.4の場合には、鋼板の線状加熱部の降伏強度が高いため、その領域のすぐ外側に歪みが集中した。その歪集中部で折れ曲がりが生じたため、荷重Pが十分に上昇することなく変位Δが大きくなった。したがって、図5に示すように、鋼板のエネルギー吸収能が低下した。
αが1.18の場合には、鋼板は、αが1.0の場合と類似した荷重−変位曲線を示した。したがって、図5に示すように、その鋼板は、エネルギー吸収能が十分であった。
When α was 1.4, since the yield strength of the linearly heated portion of the steel sheet was high, strain was concentrated just outside the region. Since bending occurred at the strain concentration portion, the displacement Δ increased without the load P sufficiently rising. Therefore, as shown in FIG. 5, the energy absorption capacity of the steel sheet was lowered.
When α was 1.18, the steel sheet showed a load-displacement curve similar to that when α was 1.0. Therefore, as shown in FIG. 5, the steel sheet had sufficient energy absorption capability.

図5に示した荷重Pと変位Δとがなす面積(荷重曲線と変位軸とがなす面積)を吸収エネルギーEA(TP)と定義し、αが1.0の時のEA(TP)の値を基準値とした。そして、αとEA(TP)との関係を図6に示した。この図より、鋼板のαが1.2以下であれば、加熱側の最高表面温度が600℃以上の線状加熱加工によって鋼板に降伏強度が不均一な部分が形成されても、降伏強度が均一な鋼板の変形と同様に高いエネルギー吸収能が期待できる。したがって、加熱側の最高表面温度が600℃以上で曲げ角度が120度となるまで線状加熱加工した場合に、αが1.2以下であることが好ましい。   The area formed by the load P and the displacement Δ shown in FIG. 5 (the area formed by the load curve and the displacement axis) is defined as absorbed energy EA (TP), and the value of EA (TP) when α is 1.0. Was used as a reference value. The relationship between α and EA (TP) is shown in FIG. From this figure, if the α of the steel sheet is 1.2 or less, the yield strength is high even if a portion having a non-uniform yield strength is formed on the steel sheet by linear heating with the maximum surface temperature on the heating side of 600 ° C or higher. High energy absorption ability can be expected as well as uniform deformation of the steel sheet. Therefore, α is preferably 1.2 or less when linear heating is performed until the maximum surface temperature on the heating side is 600 ° C. or higher and the bending angle is 120 degrees.

以上の図3及び図6の結果から、600℃以上の温度で線状加熱加工によってバルバスバウ用の曲率の付与された鋼板(曲板)を作製する際、600℃での降伏強度が室温での降伏強度の0.6倍以下である鋼板を用いる。このような鋼板から上記αの値が1.2以下となるような曲板を作製すれば、その曲板は、曲板内の降伏強度の不均一性が小さくなる。このような曲板から構成されるバルバスバウは、衝突の際に均一に座屈することができ、大きな衝突エネルギー吸収能を発揮できることが認められた。   From the results of FIG. 3 and FIG. 6 described above, when producing a steel plate (curved plate) with a curvature for Barbasse bow by linear heating at a temperature of 600 ° C. or higher, the yield strength at 600 ° C. is at room temperature. A steel plate having a yield strength of 0.6 times or less is used. If a curved plate having the α value of 1.2 or less is produced from such a steel plate, the curved plate has less uneven yield strength in the curved plate. It was recognized that the Barbasse bow composed of such curved plates can be buckled uniformly during a collision and can exhibit a large impact energy absorption ability.

以上では、衝突船側の船首が均一に座屈変形するための鋼板の条件について説明した。衝突船側の船首が座屈変形するためには、基本的に、船首に使用する鋼板の降伏強度を被衝突船の降伏強度よりも小さくする必要がある。
しかし、船に使用する鋼板の降伏強度は、国際船級協会連合(IACS)の統一規格を満たす必要がある。また、従来の内骨構造を有する船首構造で、鋼板には、波動衝撃に耐えられる強度が必要である。さらに、あまり鋼板の強度を低下させると変形時の大きなエネルギー吸収効果が期待できなくなる。
In the above, the conditions of the steel plate for uniformly buckling deformation of the bow on the collision ship side have been described. In order for the bow on the collision ship side to buckle and deform, basically, it is necessary to make the yield strength of the steel plate used for the bow smaller than the yield strength of the ship to be collided.
However, the yield strength of steel plates used in ships must meet the unified standard of the International Classification Societies Association (IACS). In addition, in a bow structure having a conventional inner bone structure, the steel sheet needs to have strength to withstand wave shock. Furthermore, if the strength of the steel sheet is lowered too much, a large energy absorption effect during deformation cannot be expected.

以上の点を考慮すると、鋼板の降伏強度は、120MPa以上である必要がある。また、バルバスバウが衝突時に確実に座屈変形するためには、鋼板の降伏強度が220MPa以下である必要がある。バルバスバウの座屈変形をさらに確実にするためには、200MPa未満が望ましい。
したがって、線状加熱加工前において、室温での降伏強度が120MPa以上220MPa以下の鋼板をバルバスバウの曲率を有する部位(外殻部材)に使用する。このため、線状加熱加工によって曲率を付与された鋼板の線状加熱を受けていない部位(非線状加熱部)の降伏強度も上記と同様の降伏強度である。
Considering the above points, the yield strength of the steel sheet needs to be 120 MPa or more. Further, in order for the Barbasu bow to be surely buckled and deformed at the time of collision, the yield strength of the steel plate needs to be 220 MPa or less. In order to further ensure the buckling deformation of the Barbasse bow, less than 200 MPa is desirable.
Therefore, a steel plate having a yield strength at room temperature of 120 MPa or more and 220 MPa or less is used as a portion (outer shell member) having a Barbasse bow curvature before linear heat processing. For this reason, the yield strength of the site | part (non-linear heating part) which has not received the linear heating of the steel plate which gave the curvature by linear heating processing is also the yield strength similar to the above.

以上、本発明の実施形態について説明したが、実施例により、本発明の効果について具体的に説明する。   Although the embodiments of the present invention have been described above, the effects of the present invention will be specifically described by way of examples.

船首構造に使用する鋼板として、表1に示す成分組成を有する一辺約500mmかつ板厚約10mmの鋼板を用意した。各鋼板について、室温の引張試験と600℃の引張試験とを実施して、室温での降伏強度YP(AR,RT)と600℃での降伏強度YP(AR,600℃)とを求めた。さらに、加熱側表面の最高加熱温度が1000℃となる条件で、曲げ角度が120度となるまで各鋼板について線状加熱加工を繰り返した。これらの曲げ加工された鋼板の線状加熱を受けた部位から上記と同様の試験片を切り出した。すなわち、線状加熱部について切り出し加工を行って、線状加熱を行った側の鋼板表面を含むように鋼板の厚さの半分である板厚5mmのNKU1号引張試験片(財団法人日本海事協会(NK;Nippon Kaiji Kyokai)鋼船規則・同検査要領(K編 材料)で規定されているU1号試験片)を作製した。これらの試験片について室温での引張試験を実施し、それぞれ降伏強度YP(LH,RT)を求めた。   As a steel plate used for the bow structure, a steel plate having a component composition shown in Table 1 and having a side of about 500 mm and a plate thickness of about 10 mm was prepared. About each steel plate, the room temperature tensile test and the 600 degreeC tensile test were implemented, and the yield strength YP (AR, RT) in room temperature and the yield strength YP (AR, 600 degreeC) in 600 degreeC were calculated | required. Further, the linear heating process was repeated for each steel plate until the bending angle reached 120 degrees under the condition that the maximum heating temperature on the heating side surface was 1000 ° C. Test pieces similar to those described above were cut out from the portions of these bent steel sheets that had undergone linear heating. That is, the NKU No. 1 tensile test piece having a thickness of 5 mm, which is half the thickness of the steel sheet so as to include the steel sheet surface on the side subjected to the linear heating, is cut out for the linear heating part (Japan Maritime Association) (NK; Nippon Kaiji Kyokai) A U1 test piece defined in the steel ship regulations and inspection procedures (K knitting material) was produced. These test pieces were subjected to a tensile test at room temperature, and yield strengths YP (LH, RT) were obtained.

表2に参考例1〜3、実施例1〜の鋼板及び比較例1〜6の鋼板について、YP(AR,RT)、YP(LH,RT)、YP(AR,600℃)と、それらの比率α=YP(LH,RT)/YP(AR,RT)とβ=YP(AR,600℃)/YP(AR,RT)との値を示す。
参考例1〜3、実施例1〜の鋼板は、YP(AR,RT)が120〜220MPaで、αが1.2以下で、βが0.6以下であった。また、比較例1〜6では、βが0.6超であった。
Table 2 shows YP (AR, RT), YP (LH, RT), YP (AR, 600 ° C.) and the steel plates of Reference Examples 1 to 3 , Examples 1 to 3 and Comparative Examples 1 to 6. The ratio α = YP (LH, RT) / YP (AR, RT) and β = YP (AR, 600 ° C.) / YP (AR, RT) are shown.
The steel plates of Reference Examples 1 to 3 and Examples 1 to 3 had YP (AR, RT) of 120 to 220 MPa, α of 1.2 or less, and β of 0.6 or less. Moreover, in Comparative Examples 1 to 6, β was more than 0.6.

Figure 0005015349
Figure 0005015349

Figure 0005015349
Figure 0005015349

次に、表1、2の鋼板を用いてバルバスバウを構成した場合のエネルギー吸収能をシミュレーションにより求めた。
図7に、原油タンカーの船側構造の船体長手方向の中央部における1/4シミュレーションモデルを示す。船側構造におけるB−B’部に沿ってオイルカーゴ部分の仕切り構造に対応する横隔壁12が配置されている。船側構造における衝突位置A、Dをオイルカーゴ部分の中央位置に設定したので、衝突中心13に対して船体長手方向にも対称なモデルとなる。C−C’部に沿う部分は、船体構造で最も重要な部材である舷側厚板部分11である。また、A−A’部は、衝突位置の垂直方向を示し、D−D’部は、衝突位置の水平方向を示している。
Next, the energy absorptivity in the case where Barbusbau was constituted using the steel plates shown in Tables 1 and 2 was determined by simulation.
FIG. 7 shows a 1/4 simulation model in the center in the longitudinal direction of the ship side structure of the crude oil tanker. A transverse partition wall 12 corresponding to the partition structure of the oil cargo portion is disposed along the BB ′ portion in the ship side structure. Since the collision positions A and D in the ship side structure are set at the center position of the oil cargo portion, the model is symmetric with respect to the collision center 13 in the longitudinal direction of the hull. A portion along the CC ′ portion is a heel side thick plate portion 11 which is the most important member in the hull structure. The AA ′ portion indicates the vertical direction of the collision position, and the DD ′ portion indicates the horizontal direction of the collision position.

衝突により生じた変形が大きくなると、衝突部に近いD−D’部やA−A’部だけでなく、衝突中心13より離れたC−C’部にも塑性変形が生じる。そのため、船体構造の最重要部材である舷側厚板部分11を塑性損傷する。その結果、鋼材の破壊抵抗が著しく低下して、船体構造に大規模な損傷を引き起こす危険がある。そこで、上記のモデルを用いて、衝突部分全体が変形して衝突した時のバルバスバウのエネルギー吸収能について計算した。尚、エネルギー吸収能は、本来、エネルギーを示す単位(J)で示されるが、数値計算のため、ここでは無次元化した値とした。   When the deformation caused by the collision increases, plastic deformation occurs not only in the D-D 'and A-A' portions close to the collision portion but also in the C-C 'portion far from the collision center 13. Therefore, the heel side thick plate portion 11 which is the most important member of the hull structure is plastically damaged. As a result, the fracture resistance of the steel material is significantly reduced, and there is a risk of causing large-scale damage to the hull structure. Therefore, using the above model, the energy absorption capacity of Barbusbau when the entire collision part deformed and collided was calculated. The energy absorption ability is originally indicated by the unit (J) indicating energy, but is a non-dimensional value here for numerical calculation.

図8に、参考例1、2と比較例1との鋼板を用いて構成したバルバスバウを備えた船首構造を、図7のモデルの船側構造に衝突させた際の、船首貫入量とバルバスバウの衝突時の相対エネルギー吸収能との関係を示す。船首貫入量は、バルバスバウが被衝突船の船側へ衝突後に船体長手水平方向に変形して貫入した量を示す。
参考例1及び参考例2は、いずれも船首構造に用いた鋼板のαが1.18で、図10Cのように変位する。参考例1では、バルバスバウの外殻部材の降伏強度は、船側構造で使用されている鋼材の降伏強度の50%に当たる200MPaとした。参考例2では、バルバスバウの外殻部材の降伏強度は、船側構造で使用されている鋼材の降伏強度の53.5%に当たる214MPaとした。
比較例1に関しては、船首構造に使用されている鋼板の特性が表2に示す強度特性であると仮定した。
なお、シミュレーションに際しては、線状加熱した部分の降伏強度と線状加熱されていない部分の降伏強度との両方が220MPaである条件での相対エネルギー吸収能の計算結果を基準例(ref)とした。実施例、比較例のそれぞれの相対エネルギー吸収能について基準例からの低下割合を表2のEA/EA(ref)で示した。
FIG. 8 shows the collision between the bow penetration amount and the Barbus bow when the bow structure including the Barbus bow constructed using the steel plates of Reference Examples 1 and 2 and Comparative Example 1 is collided with the ship side structure of the model of FIG. The relationship with the relative energy absorption capacity of the hour is shown. The amount of penetration of the bow indicates the amount of penetration of Barbusbau after deforming in the horizontal direction of the hull after colliding with the ship side of the ship to be collided.
In both Reference Example 1 and Reference Example 2, α of the steel plate used in the bow structure is 1.18, and the steel plate is displaced as shown in FIG. 10C. In Reference Example 1, the yield strength of the outer shell member of Barbus Bau was set to 200 MPa corresponding to 50% of the yield strength of the steel material used in the ship side structure. In Reference Example 2, the yield strength of the outer shell member of Barbus Bau was 214 MPa, corresponding to 53.5% of the yield strength of the steel used in the ship side structure.
Regarding Comparative Example 1, it was assumed that the characteristics of the steel sheet used in the bow structure were the strength characteristics shown in Table 2.
In the simulation, the calculation result of the relative energy absorption capacity under the condition that both the yield strength of the linearly heated portion and the yield strength of the non-linearly heated portion is 220 MPa was used as a reference example (ref). . The reduction ratio from the reference example with respect to the relative energy absorption capacity of each of the examples and comparative examples is shown by EA / EA (ref) in Table 2.

船首構造側の鋼板のαが1.2以下で、この鋼板の降伏強度が船側構造側の降伏強度よりも低い場合には、図10Cに示すように船首構造が座屈する。そのため、参考例1は、船側構造との衝突面と外殻部材のエネルギー吸収量とが比較例1よりも増大するため、図8に示すようにエネルギー吸収能が飛躍的に向上する。参考例2の場合でも、衝突面積は、実施例1よりも小さくなるが、外殻部材のエネルギー吸収量が増加するため、比較例1よりもエネルギー吸収能が増大した。 When the α of the steel plate on the bow structure side is 1.2 or less and the yield strength of this steel plate is lower than the yield strength on the boat side structure side, the bow structure buckles as shown in FIG. 10C. Therefore, in Reference Example 1, the collision surface with the ship-side structure and the energy absorption amount of the outer shell member are larger than those in Comparative Example 1, so that the energy absorption capability is dramatically improved as shown in FIG. Even in the case of Reference Example 2, the collision area is smaller than that of Example 1, but the energy absorption capacity of the outer shell member is increased, so that the energy absorption capacity is increased as compared with Comparative Example 1.

同様に実施例及び比較例2〜6の鋼板についても、図8に示した船首貫入量6mまでの相対エネルギー吸収能を計算した。表2に示すように、実施例の鋼板を用いた船首構造では、YP(AR,RT)が120〜220MPaであり、βが0.6以下であるため、これらの船首構造は、十分なエネルギー吸収能を有していた。一方、比較例2〜6の鋼板を用いた船首構造では、YP(AR,RT)が220MPa超であったり、βが0.6超であったりするため、これらの船首構造は、実施例の鋼板に比べ、エネルギー吸収能が大きく低下していた。 Similarly, with respect to the steel plates of Examples 1 to 3 and Comparative Examples 2 to 6, the relative energy absorption capacity up to the bow penetration of 6 m shown in FIG. 8 was calculated. As shown in Table 2, in the bow structure using the steel plates of Examples 1 and 2 , YP (AR, RT) is 120 to 220 MPa, and β is 0.6 or less. It had sufficient energy absorption capability. On the other hand, in the bow structure using the steel sheets of the comparative examples 2~6, YP (AR, RT) is Deattari 220MPa greater, since β is Deattari than 0.6, these bow structures, Example 1 Compared with the steel sheets of ~ 3 , the energy absorption ability was greatly reduced.

さらに、表2の情報を纏めて、図9にαとEA/EA(ref)との関係を示した。図9に示すように、αが1.2より大きくなると、EA/EA(ref)は、大きく低下した。このエネルギー吸収能の大きな低下は、バルバスバウの変形モードが図10Cから図10Aまたは図10Bへと移行するためと考えられる。したがって、600℃以上の線状加熱加工によって鋼板に降伏強度が不均一な部分が形成されても、バルバスバウの外殻部材にαが1.2以下である鋼板を用いることによって、高いエネルギー吸収能を有する船首構造を構成できる。   Furthermore, the information in Table 2 is summarized and FIG. 9 shows the relationship between α and EA / EA (ref). As shown in FIG. 9, when α is greater than 1.2, EA / EA (ref) is greatly reduced. This large decrease in the energy absorption capability is considered to be due to the transition of the deformation mode of Barbusbau from FIG. 10C to FIG. 10A or FIG. 10B. Therefore, even if a portion having a non-uniform yield strength is formed on a steel sheet by linear heating at 600 ° C. or higher, a high energy absorption capacity can be obtained by using a steel sheet having α of 1.2 or less for the outer shell member of Barbusau. The bow structure which has can be comprised.

以上のことから、船首構造に、降伏強度が120MPa以上220MPa以下であり、線状加熱加工前における600℃での降伏強度が室温での降伏強度の0.6倍以下である鋼板をバルバスバウの外殻部材に用いることにより、衝突時の船首側のエネルギー吸収能を増大させて、相手方の船の重大な損傷を防止できる。さらに、このような鋼板は、通常の加熱条件(600℃以上)で線状加熱加工されて曲率を付与された後の線状加熱部と非線状加熱部の降伏強度の比αが1.2以下となる。そのような鋼板を外殻部材に用いた船首構造は、船体構造設計の変更を生じることなく、座屈変形による緩衝効果を備える。   From the above, a steel plate with a yield strength of 120 MPa or more and 220 MPa or less and a yield strength at 600 ° C. before linear heating processing of 0.6% or less of the yield strength at room temperature is removed from the barbasse bow. By using it as a shell member, the energy absorption capacity on the bow side at the time of collision can be increased, and serious damage to the partner ship can be prevented. Further, such a steel sheet has a yield strength ratio α between the linear heating portion and the non-linear heating portion after linear heating processing and imparting curvature under normal heating conditions (600 ° C. or higher) is 1. 2 or less. The bow structure using such a steel plate as an outer shell member has a buffering effect due to buckling deformation without causing a change in the hull structure design.

船体構造設計の変更を生じることなく、衝突時に相手方の船の損傷を効果的に防止できる緩衝効果を備えた船首構造を提供することができる。   It is possible to provide a bow structure having a buffering effect that can effectively prevent damage to a partner ship in the event of a collision without causing a change in the hull structure design.

1 鋼板
2 線状加熱を受けた部位(線状加熱部)
3 線状加熱を受けていない部位(非線状加熱部)
4 試験片
5 ブロック
1 Steel plate 2 Part subjected to linear heating (linear heating part)
3 Parts not receiving linear heating (non-linear heating part)
4 specimens 5 blocks

Claims (3)

バルバスバウの外殻部材が、
加熱側の最高表面温度が600℃以上で線状加熱加工されることにより曲率が付与され、前記線状加熱加工前において、室温での降伏強度が120MPa〜200MPa未満であり、600℃での降伏強度が室温での降伏強度の0.6倍以下である鋼板からなる、
ことを特徴とする衝突エネルギー吸収能に優れた船首構造。
The outer shell of Barbus Bau
Curvature is imparted by linear heating processing at a maximum surface temperature on the heating side of 600 ° C. or higher, and the yield strength at room temperature is 120 MPa to less than 200 MPa before the linear heating processing, and yield at 600 ° C. It consists of a steel plate whose strength is 0.6 times or less of the yield strength at room temperature,
A bow structure with excellent collision energy absorption capability.
前記バルバスバウの前記外殻部材を成す前記鋼板は、
前記加熱側の最高表面温度が600℃以上で曲げ角度が120度となるまで線状加熱加工した場合、
前記線状加熱部の室温での降伏強度YP(LH,RT)を非線状加熱部の室温での降伏強度YP(AR,RT)で割って得られた降伏強度の比αが1.2以下である、
ことを特徴とする請求項に記載の衝突エネルギー吸収能に優れた船首構造。
The steel plate constituting the outer shell member of the Barbus Bau,
When linear heating is performed until the maximum surface temperature on the heating side is 600 ° C. or higher and the bending angle is 120 degrees,
The yield strength ratio α obtained by dividing the yield strength YP (LH, RT) of the linear heating portion at room temperature by the yield strength YP (AR, RT) of the non-linear heating portion at room temperature is 1.2. Is
Bow structure which is excellent in impact energy absorbing ability according to claim 1, characterized in that.
前記バルバスバウを構成する前記外殻部材および内部構造部材について、船体長手水平方向に対して45度以下の角度を有するL部材の降伏強度は、船体長手水平方向に対して45度より大きい角度を有するW部材の降伏強度よりも低い、
ことを特徴とする請求項1または請求項2に記載の衝突エネルギー吸収能に優れた船首構造。
Regarding the outer shell member and the internal structural member constituting the Barbus bow, the yield strength of the L member having an angle of 45 degrees or less with respect to the hull longitudinal horizontal direction has an angle greater than 45 degrees with respect to the hull longitudinal horizontal direction. Lower than the yield strength of the W member,
3. A bow structure having excellent collision energy absorption capability according to claim 1 or 2 .
JP2011500400A 2009-08-24 2010-08-20 Bow structure Active JP5015349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500400A JP5015349B2 (en) 2009-08-24 2010-08-20 Bow structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009193475 2009-08-24
JP2009193475 2009-08-24
PCT/JP2010/064067 WO2011024715A1 (en) 2009-08-24 2010-08-20 Bow structure
JP2011500400A JP5015349B2 (en) 2009-08-24 2010-08-20 Bow structure

Publications (2)

Publication Number Publication Date
JP5015349B2 true JP5015349B2 (en) 2012-08-29
JPWO2011024715A1 JPWO2011024715A1 (en) 2013-01-31

Family

ID=43627821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011500400A Active JP5015349B2 (en) 2009-08-24 2010-08-20 Bow structure

Country Status (4)

Country Link
JP (1) JP5015349B2 (en)
KR (2) KR101325885B1 (en)
CN (1) CN102481969B (en)
WO (1) WO2011024715A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336248B (en) * 2011-08-11 2015-10-21 舟山欣臻船舶设计有限公司 Large-scale bulbous bow bow module
CN104029787A (en) * 2014-06-16 2014-09-10 桂平市大众船舶修造厂 Stem of cargo ship
CN109866871A (en) * 2019-02-19 2019-06-11 中国舰船研究设计中心 A kind of full ship anti-collision structure of ship topside

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329881A (en) * 1994-06-06 1995-12-19 Ishikawajima Harima Heavy Ind Co Ltd Shock absorber of marine vessel
JPH0890089A (en) * 1994-09-22 1996-04-09 Yamamoto Suiatsu Kogyosho:Kk Device for bending and method therefor
JPH08164887A (en) * 1994-12-14 1996-06-25 Mitsubishi Heavy Ind Ltd Collision energy absorption type bulbous bow structure
JP2002087373A (en) * 2000-09-13 2002-03-27 Nkk Corp Hull structure superior in collision resisting performance
JP2004314825A (en) * 2003-04-17 2004-11-11 National Maritime Research Institute Vessel having lateral bending absorption type bow
JP2007056348A (en) * 2005-08-26 2007-03-08 Nippon Steel Corp Steel plate easily processed for bending by linear heating, and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3499126B2 (en) * 1998-03-03 2004-02-23 新日本製鐵株式会社 Steel plate for hull excellent in impact energy absorption capacity and method of manufacturing the same
JP4733950B2 (en) * 2004-09-21 2011-07-27 新日本製鐵株式会社 Linear heating deformation method of steel sheet
JP4846242B2 (en) * 2005-01-25 2011-12-28 新日本製鐵株式会社 Bending method of thick steel plate with excellent heat bending characteristics
JP4959167B2 (en) * 2005-09-27 2012-06-20 新日本製鐵株式会社 Thermal processing method for steel sheet
JP4308312B1 (en) * 2008-01-08 2009-08-05 新日本製鐵株式会社 Thick steel plate excellent in bending workability by linear heating and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329881A (en) * 1994-06-06 1995-12-19 Ishikawajima Harima Heavy Ind Co Ltd Shock absorber of marine vessel
JPH0890089A (en) * 1994-09-22 1996-04-09 Yamamoto Suiatsu Kogyosho:Kk Device for bending and method therefor
JPH08164887A (en) * 1994-12-14 1996-06-25 Mitsubishi Heavy Ind Ltd Collision energy absorption type bulbous bow structure
JP2002087373A (en) * 2000-09-13 2002-03-27 Nkk Corp Hull structure superior in collision resisting performance
JP2004314825A (en) * 2003-04-17 2004-11-11 National Maritime Research Institute Vessel having lateral bending absorption type bow
JP2007056348A (en) * 2005-08-26 2007-03-08 Nippon Steel Corp Steel plate easily processed for bending by linear heating, and method for producing the same

Also Published As

Publication number Publication date
CN102481969A (en) 2012-05-30
KR101325885B1 (en) 2013-11-05
JPWO2011024715A1 (en) 2013-01-31
KR20130081724A (en) 2013-07-17
KR20120036371A (en) 2012-04-17
CN102481969B (en) 2014-06-18
WO2011024715A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
CN103144739B (en) The initiatively manufacture method of divergence type bulbous bow
WO2011062000A1 (en) Thick steel plate for ship hull and process for production thereof
JP5015349B2 (en) Bow structure
KR20080106200A (en) Stainless steel sheet for structural members excellent in impact-absorbing characteristics
KR20180014169A (en) Method for producing energy-storing container made of lightweight steel
JP5047865B2 (en) Bow structure with excellent collision safety
JP4869094B2 (en) Impact property prediction method for marine steel
US20040025985A1 (en) Energy absorbing shape memory alloys
WO2011024743A1 (en) Bow structure
WO2004092004A1 (en) Marine vessel having lateral bending buffering bow
Takashima et al. Role of interface between ferrite and martensite in hydrogen embrittlement behavior of ultra-high strength dual-phase steel sheets
JP5091733B2 (en) Stainless steel for low Ni body parts with excellent workability and shock absorption performance
KR101687687B1 (en) Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet
KR101594913B1 (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
JP5167918B2 (en) Barbusbau with excellent collision energy absorption capability
JP5167917B2 (en) Barbusbau with excellent collision energy absorption capability
JP2009248929A (en) Bulbous bow excellent in collision energy absorption capacity
JP2017125229A (en) Manufacturing method of molding member
JPH11193441A (en) Ship steel plate excellent in impact absorption
JP5004783B2 (en) Automotive food panels with excellent pedestrian protection
JP7173416B1 (en) WELDED JOINT, WELDED JOINT DESIGN METHOD, WELDED JOINT MANUFACTURING METHOD, AND HULL STRUCTURE
Shen et al. Experimental and Numerical Studies on Ultimate Load of Cracked Cylindrical Pipes
TWI381977B (en) Side bend can be broken buffer type bow
Shinmiya et al. Investigation of crack prediction method using limiting surface strain in high-strength steel sheets
CN117551939A (en) Anti-collision pressure vessel steel for storing and transporting boron trifluoride and production method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5015349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350