JP5047865B2 - Bow structure with excellent collision safety - Google Patents

Bow structure with excellent collision safety Download PDF

Info

Publication number
JP5047865B2
JP5047865B2 JP2008098522A JP2008098522A JP5047865B2 JP 5047865 B2 JP5047865 B2 JP 5047865B2 JP 2008098522 A JP2008098522 A JP 2008098522A JP 2008098522 A JP2008098522 A JP 2008098522A JP 5047865 B2 JP5047865 B2 JP 5047865B2
Authority
JP
Japan
Prior art keywords
bow
yield strength
hull
ship
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008098522A
Other languages
Japanese (ja)
Other versions
JP2009248731A (en
Inventor
忠 石川
清孝 中島
裕二 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008098522A priority Critical patent/JP5047865B2/en
Publication of JP2009248731A publication Critical patent/JP2009248731A/en
Application granted granted Critical
Publication of JP5047865B2 publication Critical patent/JP5047865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Vibration Dampers (AREA)

Description

本発明は、衝突時に変形して衝突された相手方の船の損傷を防止できる緩衝効果を有し、衝突安全性を向上させた船の船首構造に関する。   The present invention relates to a bow structure of a ship having a buffering effect capable of preventing damage to a partner ship that has been deformed and collided at the time of a collision, and has improved collision safety.

現在の大型船では、波の抵抗によるエネルギーのロスを少しでも軽減させるために船首水線下にバルバスバウ(球状船首)が備えられている。このバルバスバウに用いる曲率の大きな曲板を製造するために、その成形過程で、線状加熱による曲げ加工、すなわち線状加熱加工が多用されている。   Today's large ships are equipped with a Barbassau (spherical bow) under the bowline to reduce energy loss due to wave resistance. In order to produce a curved plate having a large curvature used for this Barbasse bow, bending by linear heating, that is, linear heating, is frequently used in the molding process.

この線状加熱加工は、ガスバーナー等を用いて鋼板表面を線状に局所加熱し、加熱部分が熱膨張してその周囲からの拘束により塑性変形する現象を利用するもので、通常は作業効率を高めるために加熱直後に水冷が行われており、線状加熱加工後の鋼板は加熱された部分に焼きが入り、局所的に降伏強度が上昇している。   This linear heating process uses a phenomenon in which a steel plate surface is locally heated in a linear manner using a gas burner, etc., and the heated portion is thermally expanded and plastically deformed by restraint from its surroundings. In order to increase the temperature, water cooling is performed immediately after heating, and the steel sheet after the linear heating process is baked into the heated portion, and the yield strength is locally increased.

そのため、そのような曲板を用いたバルバスバウは強度が均一でなく、変形しにくくなっており、このバルバスバウを備えた船が他船に衝突した場合、図2(a)に示すように、衝突した船の船首が衝突された船の船腹に食い込み、船腹を破壊し、さらには破壊部位が拡大して船体が破口する危険性も大きい。   Therefore, the barbassau using such a curved plate is not uniform in strength and is not easily deformed. When a ship equipped with this barbassau collides with another ship, as shown in FIG. There is also a high risk that the bow of the damaged ship will bite into the hull of the collided ship, destroy the hull, and further expand the destruction area to break the hull.

従来、船の衝突安全性を向上させる手段としては、船殻の二重構造化等の船体構造面からの検討が主体であったが、近年では、衝突時のエネルギー吸収性能に優れた鋼材の適用についても検討がなされている。   Conventionally, as a means to improve the collision safety of ships, the main focus has been on the hull structure such as the double structure of the hull, but in recent years steel materials with excellent energy absorption performance at the time of collision have been used. Application is also being considered.

その例として、特許文献1には、船側外板などに、従来の国際船級協会連合(IACS)の統一規格材に比べて降伏応力σyと一様伸びεuの積(σy×εu)を20%以上増加させた鋼材、または引張試験において一様伸びεuまでのエネルギー吸収量を20%以上増加させた鋼材、または降伏応力σyは同等以上で、かつ一様伸びεuを20%以上増加させた鋼材を適用することにより、従来と変わらない船体構造のままで、船体に破口が生じるまでに吸収できるエネルギー量を増加させることのできる船体構造について示されている。   As an example, Patent Document 1 discloses that the product (σy × εu) of yield stress σy and uniform elongation εu (σy × εu) is 20% compared to a conventional standard material of the International Association of Classification Societies (IACS), such as a ship side skin. Steel materials that have been increased above, or steel materials that have increased the amount of energy absorption up to the uniform elongation εu by 20% or more in the tensile test, or steel materials that have the same or higher yield stress σy and have the uniform elongation εu increased by 20% or more. It is shown about a hull structure that can increase the amount of energy that can be absorbed before a breakage occurs in the hull while applying the above.

しかし、船の船首が他船の船腹に衝突した場合には、エネルギー吸収量を50%以上アップした鋼板を使用していても、船首が変形しない場合は船腹を貫通する恐れがあり、その場合には効果が期待できないという問題がある。   However, if the bow of a ship collides with the hull of another ship, even if a steel plate with an energy absorption of 50% or more is used, if the bow does not deform, there is a risk of penetrating the hull. There is a problem that the effect cannot be expected.

このような問題に対して、船首を他の船と衝突した場合の緩衝効果を有する構造とすることも検討されている。
例えば、特許文献2には、船首部を、船体建造に用いられる鉄鋼材料と比較して柔らかい材質の材料を用いて建造して、船首部を柔構造とすることが示されている。
しかし、特許文献2では、柔らかい材質の材料として大型船舶に適用が困難なアルミ材が示されているのみで、鋼材を用いて柔構造とすることについては特に示されていない。また、柔らかい材質の材料を船首部の外板や内部構造にどのように組み込むのかについても特に示されていない。
In order to solve such a problem, it is also considered to make the bow a structure having a buffering effect when colliding with another ship.
For example, Patent Document 2 shows that the bow portion is constructed using a soft material compared to the steel material used for hull construction, and the bow portion has a flexible structure.
However, Patent Document 2 only shows an aluminum material that is difficult to apply to a large ship as a soft material, and does not particularly indicate a flexible structure using a steel material. In addition, there is no particular indication as to how a soft material is incorporated into the outer skin or internal structure of the bow.

また、特許文献3には、バルバスバウの球状突起(バルブ)部の内部構造をリング状の横肋骨部材を用いた構造とするとともに、バルブ根本部の横肋骨部材間における側部外板に、降伏応力が235MPa以下の低降伏点鋼からなる低強度部を設け、根本部の横方向の曲げ強度を低下させて、船首部が衝突の反力で折れ曲がることにより、相手方の船腹に衝突船の船首部がメリ込むことを防止する船首構造が示されている。   Further, Patent Document 3 describes that the internal structure of the spherical protrusion (valve) portion of the Barbasse bow is a structure using a ring-shaped lateral rib member, and yields on the side outer plate between the lateral rib members of the valve root portion. Providing a low-strength portion made of low-yield point steel with a stress of 235 MPa or less, lowering the bending strength in the lateral direction of the root portion, and bending the bow portion by the reaction force of the collision. The bow structure is shown to prevent the part from getting stuck.

この特許文献3は、バルバスバウの上下方向の強度は十分確保しつつ、バルバスバウの水平方向の構造強度を低下させることにより、図2(b)に示すように、衝突時にバルバスバウの根元部が船体幅方向に容易に変形して、衝突部の接触面積を増大させることで、衝突船及び被衝突船双方の破口を防止しようとする構造であるが、バルブ部の折れ曲がりは、低降伏点鋼を使用した部位の局所的な変形によるものであり、折れ曲がる際のエネルギー吸収は大きなものではない。   In Patent Document 3, as shown in FIG. 2 (b), the base portion of the barbasse bow is reduced in the width of the hull as shown in FIG. It is a structure that easily deforms in the direction and increases the contact area of the collision part to prevent breakage of both the collision ship and the collision ship, but the bending of the valve part uses low yield point steel. This is due to local deformation of the used part, and the energy absorption at the time of bending is not large.

さらに、バルバスバウが折れ曲がることにより、衝突船と被衝突船がより接近し、両者の距離が大きなエネルギー吸収を伴わずに小さくなる。その結果、図2(b)に示すように、衝突船の舳先部分が被衝突船に接触して貫入する場合があるので、衝突事故による損傷が増大する可能性もある。   Furthermore, when the Barbasu bow is bent, the collision ship and the ship to be collided come closer, and the distance between the two becomes smaller without significant energy absorption. As a result, as shown in FIG. 2 (b), the tip portion of the collision ship may come into contact with the ship to be collided, so that damage due to the collision accident may increase.

したがって、衝突の際、バルバスバウが変形し船体の舳先部分と被衝突船が接触するまでの間に衝突エネルギーを大きく吸収する必要があり、そのような緩衝効果を備えた船首構造が望まれる。   Therefore, in the event of a collision, it is necessary to greatly absorb the collision energy between the time when the barbus bow is deformed and the tip of the hull comes into contact with the ship to be collided, and a bow structure having such a buffering effect is desired.

特開2002−87373号公報JP 2002-87373 A 特開平7−329881号公報Japanese Patent Laid-Open No. 7-329881 特開2004−314825号公報JP 2004-314825 A

そこで、本発明は、船舶の衝突の際、船首のパルバスバウのバルブ部ができるだけ均一に変形し、変形時に大きなエネルギー吸収を実現できるような緩衝効果を備えた船首構造を、鋼材を用いて実現できるようにすることを課題とする。   Therefore, the present invention can realize a bow structure having a buffering effect that can realize a large energy absorption when the valve portion of the bow's Palbus bow is deformed as uniformly as possible at the time of a collision of a ship, using a steel material. The challenge is to do so.

上記の課題を解決するために、本発明では、次のような船首構造とした。
(1)バルバスバウを有する船首構造であって、該バルバスバウを構成する外殻部材及び内殻部材について、
L部材:船体長手水平方向に対し45度以下の角度を有する部材、
W部材:船体長手水平方向に対し45度より大きい角度を有する部材
としたとき、L部材として、W部材の降伏強度よりも低い降伏強度の鋼材を使用することを特徴とする船首構造。
(2)前記L部材に使用されている鋼材の内、少なくともその60%以上の鋼材の降伏強度が、W部材に使用される鋼材の降伏強度よりも低いことを特徴とする(1)に記載の船首構造。
(3)前記W部材の降伏強度より低いL部材の降伏強度が120〜240MPaであることを特徴とする(1)または(2)に記載の船首構造。
(4)前記W部材の降伏強度より低いL部材の降伏強度が240〜400MPaであることを特徴とする(1)または(2)に記載の船首構造。
(5)バルバスバウを有する船首構造であって、該バルバスバウを構成する外殻部材及び内殻部材について、
L部材:船体長手水平方向に対し45度以下の角度を有する部材、
W部材:船体長手水平方向に対し45度より大きい角度を有する部材
としたとき、外殻部材および内殻部材のL部材が、内殻部材のW部材の降伏強度よりも低い降伏強度の鋼材を使用することを特徴とする船首構造。
In order to solve the above problems, the present invention has the following bow structure.
(1) A bow structure having a barbus bow, wherein the outer shell member and the inner shell member constituting the barbus bow are:
L member: a member having an angle of 45 degrees or less with respect to the longitudinal direction of the hull,
W member: A bow structure characterized by using a steel material having a yield strength lower than the yield strength of the W member as the L member when the member has an angle greater than 45 degrees with respect to the horizontal direction of the hull longitudinal direction.
(2) The yield strength of at least 60% or more of the steel materials used for the L member is lower than the yield strength of the steel materials used for the W member. Bow structure.
(3) The bow structure according to (1) or (2), wherein the yield strength of the L member lower than the yield strength of the W member is 120 to 240 MPa.
(4) The bow structure according to (1) or (2), wherein the yield strength of the L member lower than the yield strength of the W member is 240 to 400 MPa.
(5) A bow structure having a barbus bow, wherein the outer shell member and the inner shell member constituting the barbus bow are:
L member: a member having an angle of 45 degrees or less with respect to the longitudinal direction of the hull,
W member: When the member has an angle greater than 45 degrees with respect to the horizontal direction of the hull, the L member of the outer shell member and the inner shell member is a steel material whose yield strength is lower than the yield strength of the W member of the inner shell member. A bow structure characterized by its use.

本発明によれば、バルバスバウを有する船舶の船首が他船の船腹に衝突するような事故を起こした場合に、衝突船におけるバルバスバウのバルブ部側面がより均一に座屈変形することにより、衝突エネルギーを大きく吸収することができるとともに、衝突エネルギーを吸収しながら衝突面がつぶれることで、被衝突船の損傷を極力低減できるようになり、これによって被衝突船の沈没や油流出による海洋汚染の予防に貢献することができる。   According to the present invention, when an accident occurs such that the bow of a ship having a Barbus bow collides with the hull of another ship, the side face of the valve part of the Barbus bow in the colliding ship is more uniformly buckled and deformed. As well as absorbing the collision energy, the collision surface is crushed so that damage to the impacted ship can be reduced as much as possible, thereby preventing marine pollution caused by sinking of the impacted ship and oil spills. Can contribute.

バルバスバウを有する船舶が他船の船腹に衝突するような事故を起こした場合に、もっとも大きな損傷、被害が想定されるケースは、図2(a)のように衝突船の船首が被衝突船の船側に垂直にぶつかる場合である。
そのような場合でも、図2(c)に示すように、バルバスバウのバルブ部分が衝突時のエネルギーを吸収しながらつぶれるように変形し、さらに、その変形によって衝突部分の接触面積が増大することにより、衝突船の船首が被衝突船の船側に貫入しないようにすることが望ましい。
特に、バルブ部分がより均一に座屈変形をすることができれば、より多くの衝突エネルギーを吸収することができるので、衝突による衝撃力は緩和され、被衝突船の局所的な破断や破損を回避できる。
When a ship with a Barbasse bow collides with the hull of another ship, the case where the greatest damage or damage is assumed is as shown in Fig. 2 (a). This is a case where it hits the ship side vertically.
Even in such a case, as shown in FIG. 2 (c), the valve portion of the Barbus Bau is deformed so as to collapse while absorbing energy at the time of collision, and further, the contact area of the collision portion is increased by the deformation. It is desirable that the bow of the collision ship does not penetrate into the ship side of the collision ship.
In particular, if the valve part can buckle and deform more uniformly, more collision energy can be absorbed, so the impact force caused by the collision is mitigated, and local breakage and breakage of the impacted ship are avoided. it can.

そのためには、バルバスバウのバルブ部が均一に変形しながら、図2(b)のようにバルバスバウが曲げ変形により折れ曲がったりしないことが必要である。
そこで、より変形しやすい鋼材を用いて、船首部が図2(c)のように蛇腹状に均一に座屈する構造について検討した。
For this purpose, it is necessary that the valve portion of the valve bath does not bend due to bending deformation as shown in FIG.
Therefore, a structure in which the bow portion is buckled uniformly in a bellows shape as shown in FIG.

衝突時にバルバスバウが変形するためには、衝突方向である船体長手方向に沿って配置されている部材は、変形しやすい鋼材で構成されていることが必要である。そして、バルバスバウが均一に座屈するためには、船体長手方向に沿って配置されている部材の変形を、船体長手方向に対し交わる方向に配置されている部材より拘束して、バルバスバウが折れ曲がらないようにすることが有効であると考えられる。   In order for the Barbus bow to be deformed at the time of a collision, the members arranged along the longitudinal direction of the hull, which is the collision direction, must be made of a steel material that is easily deformed. In order for the Barbus bow to buckle uniformly, the deformation of the members arranged along the longitudinal direction of the hull is restrained from the members arranged in the direction intersecting with the longitudinal direction of the hull so that the Barbus bow does not bend. It is considered effective to do so.

バルバスバウの形状や内部構造は様々であるが、曲率を有する外殻部材と内部構造部材とにより構成され、内部構造部材は、一般的には、縦肋骨や横肋骨の組み合わせよりなっている。
図1(a)、(b)のその一例について概略を示すが、バルバスバウを構成する外殻部材と内部構造部材は、船体衝突方向である船体長手水平方向を基準に考えると、船体長手水平方向に平行あるいは直角に配置されている多くの部材と船体長手水平方向に対して角度を持って配置されている一部の部材より構成されている。
Although the shape and internal structure of the Barbus bow are various, it is comprised by the outer shell member and internal structure member which have a curvature, and the internal structure member generally consists of the combination of a longitudinal rib or a lateral rib.
1 (a) and 1 (b) schematically show an example, but the outer shell member and the internal structural member constituting the Barbasse bow are considered to be based on the hull longitudinal horizontal direction which is the hull collision direction. It is composed of many members arranged parallel to or perpendicular to each other and some members arranged at an angle with respect to the horizontal direction of the hull.

そこで、船体長手水平方向に対して角度を持って配置されている部材は、前記の平行か垂直の部材のいずれかに分類して、バルバスバウを構成する外殻部材と内部構造部材(内殻部材)を、次のように定義されるL部材とW部材に分け、L部材に衝突時の変形を受け持たせ、W部材にその変形を拘束する機能を受け持たせるようにする。
L部材:船体長手水平方向に対し45度以下の角度を有する部材
W部材:船体長手水平方向に対し45度より大きい角度を有する部材
Therefore, the members arranged at an angle with respect to the horizontal direction of the hull longitudinally are classified as either the parallel or vertical members described above, and the outer shell member and the inner structural member (inner shell member) constituting the Barbus bow. Is divided into an L member and a W member defined as follows, and the L member is given deformation at the time of collision, and the W member is given a function of restraining the deformation.
L member: a member having an angle of 45 degrees or less with respect to the hull longitudinal horizontal direction W member: a member having an angle greater than 45 degrees with respect to the hull longitudinal horizontal direction

そして、L部材に変形を受け持たせるために、L部材としてW部材の降伏強度よりも低い降伏強度の鋼材を使用し、W部材をL部材に対して変形しにくいものとする。
これによって、L部材が腰折れを生じて倒れこむように変形することを防止し、バルバスバウが軸方向に対し大きく外れることなく変形し、衝突のエネルギーを吸収できるようにする。
なお、外殻部材のW部材は、バルバスバウの先端部など、低い降伏応力の鋼材を使用する場合があるので、そのような場合には、外殻部材のW部材を除いて、外殻部材および内殻部材のL部材として、内殻部材のW部材よりも低い降伏応力の鋼材を使用する。
And in order to give deformation to L member, the steel material of yield strength lower than the yield strength of W member is used as L member, and W member shall be hard to change to L member.
As a result, the L member is prevented from being deformed so as to collapse due to hip breakage, and the barbath bow is deformed without being largely disengaged in the axial direction, so that the energy of collision can be absorbed.
Since the W member of the outer shell member may use a steel material having a low yield stress, such as the tip of a Barbus bow, in such a case, the outer shell member and the W member of the outer shell member are excluded except for the W member. As the L member of the inner shell member, a steel material having a lower yield stress than the W member of the inner shell member is used.

外殻を構成する外板の配置方向は、水平面と外板の交線が船体長手水平方向となす角度で決定する。外板は、板内で曲率が異なっている場合もあるが、そのような場合は、板内において、船体長手水平方向に対し45度以下の角度を有する部分と45度より大きい角度を有する部分の面積率を求め、その比率でどちらかに決定する。   The arrangement direction of the outer plate constituting the outer shell is determined by the angle formed by the intersection of the horizontal plane and the outer plate with the horizontal direction of the hull. The outer plate may have a different curvature in the plate. In such a case, a portion having an angle of 45 degrees or less with respect to the horizontal direction of the hull and a portion having an angle larger than 45 degrees in the plate. The area ratio is determined and determined by either ratio.

本発明者の検討によれば、L部材に使用される鋼材のうち、少なくともその60%以上の鋼材の降伏強度が、W部材に使用される鋼材の降伏強度よりも低いようにするとより有効であることが分かった。   According to the inventor's study, it is more effective if the yield strength of at least 60% of the steel used for the L member is lower than the yield strength of the steel used for the W member. I found out.

本発明者は、まず、L部材に使用される鋼材として、W部材よりも降伏強度が低い鋼材をすべて使用した結果、バルバスバウの軸方向の変形が容易となり、所定の効果を発揮できることを知見した。しかし、変形は降伏しやすい部位で生じるため、すべての領域で、必ずしもL部材よりもW部材の方が降伏強度を低くする必要はないので、部分的にL部材とW部材の鋼材の降伏強度を同一として実験を実施した。
その結果、L部材の50%をW部材よりも降伏強度の低い鋼材で構成した場合でも、L部材とW部材の鋼材の降伏強度をすべて同一レベルとした場合よりは軸方向の変形が容易となったが、その効果が顕著になるにはL部材の比率が60%以上の場合であった。
The present inventor first discovered that as a steel material used for the L member, all steel materials having a lower yield strength than the W member were used, so that deformation in the axial direction of the Barbasse bow was facilitated and a predetermined effect could be exhibited. . However, since deformation occurs at the site where yielding is likely to occur, the yield strength of the W member is not necessarily lower than that of the L member in all regions. The experiment was conducted with the same.
As a result, even when 50% of the L member is made of a steel material whose yield strength is lower than that of the W member, the deformation in the axial direction is easier than when the yield strength of the steel material of the L member and the W member is all set to the same level. However, in order for the effect to be remarkable, the ratio of the L member was 60% or more.

以上の検討は、W部材とL部材の板厚がほぼ同一レベルである場合を想定したものであるが、板厚が極端に異なる場合には、降伏強度と板厚の関係から、設計要件として、それぞれの部材での降伏強度を変化させる場合があるが、そのような場合でも本発明の範疇である。そのような設計要件としての具体例は、後述する実施例に示す。   The above examination assumes that the plate thickness of the W member and the L member is almost the same level, but if the plate thickness is extremely different, the design requirement is based on the relationship between the yield strength and the plate thickness. In some cases, the yield strength of each member is changed, but such a case is within the scope of the present invention. A specific example as such a design requirement will be shown in an embodiment described later.

次に、船首部に使用する鋼材の降伏強度などの好ましい条件について説明する。   Next, preferable conditions, such as the yield strength of the steel materials used for a bow part, are demonstrated.

衝突船側の船首が座屈変形するためには、L部材に使用する鋼板などの鋼材の降伏強度を、被衝突船の船側に用いられている鋼板の降伏強度よりも小さくする必要がある。
しかし、船に使用する鋼板の降伏強度は、国際船級協会連合(IACS)の統一規格を満たす必要があり、また、船首には全体として波動衝撃に耐えられる強度が必要である。さらに、あまり強度を低下させると変形にともなう大きなエネルギー吸収効果を期待できなくなる。
In order for the bow on the collision ship side to buckle and deform, it is necessary to make the yield strength of the steel material such as the steel sheet used for the L member smaller than the yield strength of the steel sheet used on the ship side of the impacted ship.
However, the yield strength of the steel sheet used in the ship needs to meet the unified standard of the International Classification Association (IACS), and the bow as a whole needs to be strong enough to withstand wave shocks. Furthermore, if the strength is lowered too much, a large energy absorption effect accompanying deformation cannot be expected.

そのような点から、L部材の降伏強度は120MPa以上が望ましい。また、降伏強度の上限は、通常、船の船側に使用されている鋼板の降伏強度から見て、400MPa以下とすることが望ましい。衝突時により確実に座屈変形するためには、240MPa以下が望ましく、さらには200MPa未満が望ましい。
したがって、L部材は室温での降伏強度が120MPa以上240MPa以下の鋼材を使用するのが好ましいが、W部材の強度との関係から240MPa以上400MPa以下の鋼材を使用してもよい。
From such a point, the yield strength of the L member is desirably 120 MPa or more. In addition, the upper limit of the yield strength is preferably 400 MPa or less in view of the yield strength of the steel plate usually used on the ship side of the ship. In order to be surely buckled and deformed at the time of collision, it is preferably 240 MPa or less, and more preferably less than 200 MPa.
Therefore, the L member is preferably a steel material having a yield strength at room temperature of 120 MPa or more and 240 MPa or less, but a steel material of 240 MPa or more and 400 MPa or less may be used in relation to the strength of the W member.

そのような鋼材としては、降伏強度の条件を満たせば既存の溶接構造部材用の鋼材でよい。もちろん、特許文献3で上げられているような低降伏点鋼を用いてもよい。   As such a steel material, a steel material for an existing welded structure member may be used as long as the yield strength condition is satisfied. Of course, a low yield point steel as disclosed in Patent Document 3 may be used.

また、W部材に使用する鋼材も既存の鋼材でよく、特に制限されるものではないが、全体としてバルバスバウが変形しやすいものとするため、L部材と同様に船側に用いられている鋼板の降伏強度よりも小さく鋼材が望ましい。   Moreover, the steel material used for the W member may be an existing steel material and is not particularly limited. However, in order to make the Barbus bow easy to deform as a whole, the yield of the steel plate used on the ship side is the same as that of the L member. Steel material is desirable smaller than strength.

ところで、バルバスバウのバルブ部には、前述のように鋼板に線状加熱などの局所的な熱を与えることにより熱変形を生じさせ、それによって曲率をもたせるよう加工(線状加熱加工)された鋼板を用いて製造されている。その際、鋼板の熱を受けた部分では降伏強度が高くなるので、局所的な熱の付与を受けた部分と受けていない部分で鋼板の降伏強度に差異が生じている。   By the way, as described above, the valve portion of the barbasse bow is subjected to thermal deformation by applying local heat, such as linear heating, to the steel plate, and thereby processed to have a curvature (linear heating processing). It is manufactured using. At that time, since the yield strength is high in the portion that has received heat from the steel plate, there is a difference in the yield strength of the steel plate between the portion that has received local heat and the portion that has not received heat.

そのような鋼板を用いた場合、衝突によってバルバスバウが変形を受ける際に、不均一な変形となり、構造部材としてのエネルギー吸収能は、板内の降伏強度に差異がない鋼板に比べて低下している場合もあるので、バルバスバウの外板となるL部材は、鋼板内での降伏応力の差異が少ない鋼板を使用することが望ましい。   When such a steel plate is used, when the Barbasse bow is deformed by a collision, it becomes a non-uniform deformation, and the energy absorption capacity as a structural member is lower than that of a steel plate with no difference in yield strength in the plate. Therefore, it is desirable to use a steel plate having a small difference in yield stress within the steel plate as the L member that is the outer plate of the Barbasse bow.

鋼板内での降伏応力の差異が少ない鋼板としては、少ない熱の付与で所定の曲率に加工された鋼板、すなわち1回の線状加熱加工による曲げ変形量が大きい鋼板が適している。   As a steel plate having a small difference in yield stress in the steel plate, a steel plate processed to have a predetermined curvature with a small amount of heat applied, that is, a steel plate having a large amount of bending deformation by one linear heating process is suitable.

線状加熱加工は600℃以上の高温で実施する方法と600℃未満の比較的低温で実施する方法があるが、600℃以上の高温で実施する場合の鋼板としては、例えば、特開2007−56348号公報に記載されているような、質量%で、C :0.02〜0.2%、Si:0.03〜1%、Mn:0.3〜2%、Al:0.002〜0.1%を含有し、不純物としてのP、Sを、P:0.03%以下、S:0.01%以下に制限した基本組成を有し、室温におけるミクロ組織の20〜95%が、加工あるいは変態歪により転位が導入されたフェライト組織であり、かつ、ベイナイトとマルテンサイトとの合計割合が70%未満である鋼板がある。   There are a method of performing linear heat processing at a high temperature of 600 ° C. or higher and a method of executing at a relatively low temperature of lower than 600 ° C. As described in Japanese Patent No. 56348, in mass%, C: 0.02 to 0.2%, Si: 0.03 to 1%, Mn: 0.3 to 2%, Al: 0.002 It has a basic composition containing 0.1%, P and S as impurities limited to P: 0.03% or less, S: 0.01% or less, and 20 to 95% of the microstructure at room temperature Further, there is a steel sheet that has a ferrite structure in which dislocations are introduced by processing or transformation strain, and the total ratio of bainite and martensite is less than 70%.

また、600℃未満の比較的低温で実施する場合の鋼板としては、例えば、特開2006−205181号公報に記載されているような、質量%で、C:0.01〜0.20%、Si:0.02〜1.0%以下、Mn:0.2〜2.5%以下、P:0.025%以下、S:0.020%以下、Al:0.002〜0.10%以下、及びN:0.0010〜0.0080%以下の基本組成を有し、フェライト分率が20%以上の鋼板を、250℃以下の時効が生じない温度で圧下矯正して降伏点を低下させた鋼板がある。   Moreover, as a steel plate in the case of implementing at comparatively low temperature of less than 600 degreeC, as described in Unexamined-Japanese-Patent No. 2006-205181, for example, it is the mass%, C: 0.01-0.20%, Si: 0.02-1.0% or less, Mn: 0.2-2.5% or less, P: 0.025% or less, S: 0.020% or less, Al: 0.002-0.10% Below, and N: 0.0010 to 0.0080% or less of the basic composition, a steel plate having a ferrite fraction of 20% or more, and the yield point is lowered by straightening at a temperature of 250 ° C. or less at which no aging occurs. There are steel plates.

バルバスバウの外殻部材に用いられる曲板として、以上に例示したような鋼板を用いれば、座屈する際、均一に変形してより大きな吸収エネルギーを期待できるので、衝突時の被衝突船の損傷防止により大きな効果を得ることができる。   If the steel plate as exemplified above is used as the curved plate used for the outer shell member of Barbus Bau, it can be uniformly deformed when buckling, and more absorbed energy can be expected. A greater effect can be obtained.

以上、本発明の実施の形態について説明したが、さらに、実施例により、本発明の実施可能性及び効果について説明する。   Although the embodiment of the present invention has been described above, the feasibility and effect of the present invention will be further described with reference to examples.

バルバスバウ部材に相当する実物モデル試験体を作製し、バルバスバウの軸方向から剛体を押し付けてバルバスバウ部材を変形させて、その変形モードと、荷重―変位線図の面積部から得られる吸収エネルギー値EAを比較例1の場合の吸収エネルギー値EA(ref)との相対値で、表1に示す。
変形モードは図2(b)(c)に対応させ、蛇腹状に変形したケースを(c)、途中で座屈変形し、十分な蛇腹変形できなかったケースを(b)と表記した。
A real model test body corresponding to the Barbus Bau member is prepared, and the Barbus Bau member is deformed by pressing a rigid body in the axial direction of the Barbus Bau. The deformation mode and the absorbed energy value EA obtained from the area of the load-displacement diagram are obtained. Table 1 shows the relative values to the absorbed energy value EA (ref) in the case of Comparative Example 1.
The deformation modes corresponded to FIGS. 2B and 2C, and the case deformed in a bellows shape is represented as (c), and the case that buckled and deformed in the middle and could not be deformed sufficiently is represented as (b).

内殻部材は板厚が異なる鋼板、降伏強度の異なる鋼板を用いることがあるので、その場合には、用いたW部材の平均板厚、平均降伏点(強度)も表記した。なお、この場合の平均は、部材の使用量へ加重平均した。   As the inner shell member, steel plates having different plate thicknesses and steel plates having different yield strengths may be used. In that case, the average plate thickness and average yield point (strength) of the W member used are also indicated. In addition, the average in this case carried out the weighted average to the usage-amount of the member.

次に、L部材の板厚・降伏点を表1に示したが、この際、W部材の平均板厚に換算した相対降伏点を下記のように定義した。
相対降伏点=(L部材の降伏点)×(L部材の板厚)/(W部材の平均板厚)
この相対降伏点とW部材の平均降伏点を比較して、W部材の平均降伏点以下であるL部材がL部材全体に占める割合を、YP(W)av以下の部材比率(%)として表1に示した。
Next, the plate thickness and yield point of the L member are shown in Table 1. At this time, the relative yield point converted to the average plate thickness of the W member was defined as follows.
Relative yield point = (yield point of L member) x (thickness of L member) / (average thickness of W member)
By comparing this relative yield point with the average yield point of the W member, the ratio of the L member that is below the average yield point of the W member to the entire L member is expressed as a member ratio (%) below the YP (W) av. It was shown in 1.

発明例1〜6は、YP(W)av以下の部材比率(%)が60%以上である場合であり、比較例1よりも、吸収エネルギー値は大きい。
発明例7〜8は、外殻部材については、W部材、L部材が同一のため、L部材ではYP(W)av以下の部材比率(%)は0%であるが、内殻部材のW部材よりも降伏強度は低く、内殻部材のL部材においてYP(W)av以下の部材比率(%)は、60%以上、確保されているので、比較例1よりも吸収エネルギー値は大きく、変形モードも(c)となっている。
比較例2〜3は、L部材におけるYP(W)av以下の部材比率(%)が十分な値で無いため、比較例1よりは吸収エネルギーは大きいが、発明例と比較して満足のいく値ではない。
Inventive Examples 1 to 6 are cases where the ratio (%) of YP (W) av or less is 60% or more, and the absorbed energy value is larger than that of Comparative Example 1.
In invention examples 7-8, since the W member and the L member are the same for the outer shell member, the member ratio (%) below YP (W) av is 0% in the L member, but the inner member W The yield strength is lower than that of the member, and the member ratio (%) of YP (W) av or less in the L member of the inner shell member is secured to 60% or more, so the absorbed energy value is larger than that of Comparative Example 1, The deformation mode is also (c).
In Comparative Examples 2 to 3, since the member ratio (%) of YP (W) av or less in the L member is not a sufficient value, the absorbed energy is larger than that of Comparative Example 1, but it is satisfactory compared with the invention example. Not a value.

Figure 0005047865
Figure 0005047865

バルバスバウを有する船首の内部構造の概略を示す図である。It is a figure which shows the outline of the internal structure of the bow which has a Barbus bow. 船の衝突時の変形を示す模式図であり、(a)は、緩衝効果を有しない船首構造の場合、(b)と(c)は緩衝効果を有する船首構造の場合である。It is a schematic diagram which shows the deformation | transformation at the time of the collision of a ship, (a) is the case of the bow structure which does not have a buffer effect, (b) and (c) is the case of the bow structure which has a buffer effect. バルバスバウの変形モデル試験の概要を示す図である。It is a figure which shows the outline | summary of the deformation | transformation model test of Barbusbau.

Claims (5)

バルバスバウを有する船首構造であって、該バルバスバウを構成する外殻部材及び内殻部材について、
L部材:船体長手水平方向に対し45度以下の角度を有する部材、
W部材:船体長手水平方向に対し45度より大きい角度を有する部材
としたとき、L部材として、W部材の降伏強度よりも低い降伏強度の鋼材を使用することを特徴とする船首構造。
A bow structure having a barbus bow, wherein the outer shell member and the inner shell member constituting the barbus bow are:
L member: a member having an angle of 45 degrees or less with respect to the longitudinal direction of the hull,
W member: A bow structure characterized by using a steel material having a yield strength lower than the yield strength of the W member as the L member when the member has an angle greater than 45 degrees with respect to the horizontal direction of the hull longitudinal direction.
前記L部材に使用される鋼材のうち、少なくともその60%以上の鋼材の降伏強度が、W部材に使用される鋼材の降伏強度よりも低いことを特徴とする請求項1に記載の船首構造。   2. The bow structure according to claim 1, wherein the yield strength of at least 60% of the steel material used for the L member is lower than the yield strength of the steel material used for the W member. 前記W部材の降伏強度より低いL部材の降伏強度が120〜240MPaであることを特徴とする請求項1または2に記載の船首構造。   The bow structure according to claim 1 or 2, wherein the yield strength of the L member lower than the yield strength of the W member is 120 to 240 MPa. 前記W部材の降伏強度より低いL部材の降伏強度が240〜400MPaであることを特徴とする請求項1または2に記載の船首構造。   The bow structure according to claim 1 or 2, wherein the yield strength of the L member lower than the yield strength of the W member is 240 to 400 MPa. バルバスバウを有する船首構造であって、該バルバスバウを構成する外殻部材及び内殻部材について、
L部材:船体長手水平方向に対し45度以下の角度を有する部材、
W部材:船体長手水平方向に対し45度より大きい角度を有する部材
としたとき、外殻部材および内殻部材のL部材が、内殻部材のW部材の降伏強度よりも低い降伏強度の鋼材を使用することを特徴とする船首構造。
A bow structure having a barbus bow, wherein the outer shell member and the inner shell member constituting the barbus bow are:
L member: a member having an angle of 45 degrees or less with respect to the longitudinal direction of the hull,
W member: When the member has an angle greater than 45 degrees with respect to the horizontal direction of the hull, the L member of the outer shell member and the inner shell member is a steel material whose yield strength is lower than the yield strength of the W member of the inner shell member. A bow structure characterized by its use.
JP2008098522A 2008-04-04 2008-04-04 Bow structure with excellent collision safety Active JP5047865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098522A JP5047865B2 (en) 2008-04-04 2008-04-04 Bow structure with excellent collision safety

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098522A JP5047865B2 (en) 2008-04-04 2008-04-04 Bow structure with excellent collision safety

Publications (2)

Publication Number Publication Date
JP2009248731A JP2009248731A (en) 2009-10-29
JP5047865B2 true JP5047865B2 (en) 2012-10-10

Family

ID=41309833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098522A Active JP5047865B2 (en) 2008-04-04 2008-04-04 Bow structure with excellent collision safety

Country Status (1)

Country Link
JP (1) JP5047865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843139A (en) * 2015-05-28 2015-08-19 上海船舶研究设计院 Collision-resistant prow structure of public service vessel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381437A (en) * 2010-08-30 2012-03-21 联合船舶设计发展中心 Side-bend energy absorbing buffer stem
CN102336248B (en) * 2011-08-11 2015-10-21 舟山欣臻船舶设计有限公司 Large-scale bulbous bow bow module
CN109263791A (en) * 2018-09-30 2019-01-25 广船国际有限公司 A kind of shipping anti-collision structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843139A (en) * 2015-05-28 2015-08-19 上海船舶研究设计院 Collision-resistant prow structure of public service vessel

Also Published As

Publication number Publication date
JP2009248731A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
WO2011062000A1 (en) Thick steel plate for ship hull and process for production thereof
EP2708610B1 (en) Vehicle collision energy absorbing member having high collision energy absorbing power, and method for manufacturing same
ES2396114T3 (en) Seamless steel tube for air bag accumulators and procedure for its production
JP5047865B2 (en) Bow structure with excellent collision safety
CN103144739B (en) The initiatively manufacture method of divergence type bulbous bow
JP2010236560A (en) Method of manufacturing structural member having improved impact absorbing characteristics
US20040025985A1 (en) Energy absorbing shape memory alloys
JP3936440B2 (en) High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method
JP2009161165A (en) Strength member for vehicle
JP5015349B2 (en) Bow structure
KR101676710B1 (en) High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
JP5091733B2 (en) Stainless steel for low Ni body parts with excellent workability and shock absorption performance
WO2011024743A1 (en) Bow structure
KR101964247B1 (en) High-strength thick steel sheet and method for manufacturing same
JP5421615B2 (en) Ni-saving stainless steel automotive parts
JPH10273752A (en) Automotive high strength steel sheet excellent in collision resisting safety and formability and its production
JP5167917B2 (en) Barbusbau with excellent collision energy absorption capability
JP5167918B2 (en) Barbusbau with excellent collision energy absorption capability
JP2009248929A (en) Bulbous bow excellent in collision energy absorption capacity
JP2009220635A (en) Reinforcing member for automobile
JPH10158735A (en) Hot-rolled high strength steel sheet for automobile excellent in collision resistant safety and formability and its production
JP2009138222A (en) High-strength steel sheet and vehicle strength member using the same
JPH0648177A (en) Lightweight door reinforcing pipe with excellent shock absorbing characteristic
CN116635552A (en) Steel sheet for anti-vibration damper having excellent toughness characteristics, and method for producing same
Hojo et al. Evaluation for hydrogen embrittlement properties of ultra high-strength steel sheets by 4-Point Bending Technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5047865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350