JPWO2010125988A1 - Method for producing tocotrienol composition - Google Patents

Method for producing tocotrienol composition Download PDF

Info

Publication number
JPWO2010125988A1
JPWO2010125988A1 JP2011511383A JP2011511383A JPWO2010125988A1 JP WO2010125988 A1 JPWO2010125988 A1 JP WO2010125988A1 JP 2011511383 A JP2011511383 A JP 2011511383A JP 2011511383 A JP2011511383 A JP 2011511383A JP WO2010125988 A1 JPWO2010125988 A1 JP WO2010125988A1
Authority
JP
Japan
Prior art keywords
tocotrienol
exchange resin
anion exchange
coconut oil
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011511383A
Other languages
Japanese (ja)
Other versions
JP5272073B2 (en
Inventor
里佳 本間
里佳 本間
安倍 裕
裕 安倍
康寛 石倉
康寛 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2011511383A priority Critical patent/JP5272073B2/en
Publication of JPWO2010125988A1 publication Critical patent/JPWO2010125988A1/en
Application granted granted Critical
Publication of JP5272073B2 publication Critical patent/JP5272073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B11/00Recovery or refining of other fatty substances, e.g. lanolin or waxes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Abstract

本発明は、トコトリエノールと、該トコトリエノールに対して1重量%以下のトコフェロールとを含有するトコトリエノールの濃縮されたトコトリエノール組成物の製造方法であって、(1)ココヤシ油、(2)ココヤシ油と低級アルコールとをエステル交換反応させた反応生成物、及び(3)ココヤシ油と低級アルコールとをエステル交換反応させた反応生成物の蒸留残渣から選ばれる原料を、2−ヒドロキシエチルジメチルアンモニウム基を有する陰イオン交換樹脂で吸着処理する工程を有する、トコトリエノールの濃縮されたトコトリエノール組成物の製造方法である。The present invention relates to a method for producing a tocotrienol-enriched tocotrienol composition comprising tocotrienol and 1% by weight or less of tocopherol based on said tocotrienol, comprising (1) coconut oil, (2) coconut oil and lower A raw material selected from a reaction product obtained by transesterification with alcohol, and (3) a distillation residue of a reaction product obtained by transesterification of coconut oil and a lower alcohol, is converted into an anion having a 2-hydroxyethyldimethylammonium group. A method for producing a tocotrienol-enriched tocotrienol composition comprising a step of adsorption treatment with an ion exchange resin.

Description

本発明は、トコトリエノールの濃縮されたトコトリエノール組成物の製造方法に関する。
背景技術
The present invention relates to a method for producing a tocotrienol composition enriched in tocotrienol.
Background art

近年、成人病や老化現象に、活性酸素や過酸化脂質が深く関与していることが明らかにされつつあり、抗酸化能を有する素材に関心が集まっている。中でもトコフェロールとトコトリエノールは、優れた抗酸化能やラジカル消去能を持つ化合物として知られている。   In recent years, it has been clarified that active oxygen and lipid peroxide are deeply involved in adult diseases and aging phenomena, and there is an interest in materials having antioxidant ability. Among them, tocopherol and tocotrienol are known as compounds having excellent antioxidant ability and radical scavenging ability.

トコフェロールとトコトリエノールは構造上よく似ているが、トコトリエノールは側鎖に3つの二重結合を有するため、細胞膜など脂肪組織への親和性が特に高く、トコフェロールに比べより強い作用を示すことがあることが知られている。また、トコトリエノールは血清中のコレステロール低下作用による心臓疾患の予防効果(非特許文献1)や、発ガン抑制作用(非特許文献2)、免疫賦活作用(特許文献1)のほかに、利尿剤、ナトリウムイオン排泄剤、高血圧予防治療剤、虚血性心疾患予防剤としての利用(特許文献2)が期待されている。従って、トコトリエノールに特有の効果をより効率的に得るには、トコトリエノールが単独で取得できることが望ましく、そのための簡易的、経済的な技術の開発が望まれてきた。   Tocopherol and tocotrienol are structurally similar, but because tocotrienol has three double bonds in the side chain, it has a particularly high affinity for adipose tissues such as cell membranes, and may have a stronger effect than tocopherol. It has been known. Moreover, tocotrienol has a diuretic, in addition to a preventive effect on heart disease due to cholesterol lowering action in serum (Non-Patent Document 1), a carcinogenesis-inhibiting action (Non-Patent Document 2), and an immunostimulatory action (Patent Document 1). Use as a sodium ion excretion agent, an antihypertensive therapeutic agent, and an ischemic heart disease preventive agent is expected (Patent Document 2). Therefore, in order to obtain the effect specific to tocotrienol more efficiently, it is desirable that tocotrienol can be obtained alone, and development of a simple and economical technique for that purpose has been desired.

トコフェロールとトコトリエノールの混合物を得る方法として、原油精製工程で得られる脱臭留出物を原料に用いる方法が報告されている。例えば、脱臭留出物に含まれる脂肪酸を、低級アルコールと酸触媒存在下で反応させ、脂肪酸アルキルエステルへと変換し、脂肪酸アルキルエステルを蒸留により除去した後、蒸留残渣を分子蒸留により精製する方法が検討されている(特許文献3)。しかし、脂肪酸留出物を得るためには、250〜270℃の高温条件が必要とされ、トコフェロール及びトコトリエノールと脂肪酸のエステル化反応がおこり、回収率が低下する。また、分子蒸留は、高温、高真空かつ精密な蒸留を必要とするため、長時間の加熱が必要となり、トコトリエノールの分解や、好ましくない酸化反応物の生成や、残存する脂肪酸とのエステル化反応が進行し、回収率が低下する。   As a method for obtaining a mixture of tocopherol and tocotrienol, a method using a deodorized distillate obtained in a crude oil refining process as a raw material has been reported. For example, a method in which a fatty acid contained in a deodorized distillate is reacted with a lower alcohol in the presence of an acid catalyst, converted to a fatty acid alkyl ester, the fatty acid alkyl ester is removed by distillation, and the distillation residue is purified by molecular distillation. (Patent Document 3). However, in order to obtain a fatty acid distillate, a high temperature condition of 250 to 270 ° C. is required, and esterification reaction of tocopherol, tocotrienol and fatty acid occurs, and the recovery rate is lowered. In addition, since molecular distillation requires high temperature, high vacuum and precise distillation, heating for a long time is required, decomposition of tocotrienol, generation of undesired oxidation reaction products, and esterification reaction with remaining fatty acids. Progresses and the recovery rate decreases.

一方、脂肪酸アルキルエステルを蒸留により除去した後、陰イオン交換樹脂による吸着処理を行う方法が報告されている(特許文献4)。しかし、この方法ではトコフェロール族の全ての異性体が吸着されるため、トコトリエノールのみを選択的に分離することは困難である。   On the other hand, after removing fatty acid alkyl ester by distillation, a method of performing an adsorption treatment with an anion exchange resin has been reported (Patent Document 4). However, since all isomers of the tocopherol family are adsorbed by this method, it is difficult to selectively separate only tocotrienol.

トコトリエノールは、パーム油、米ぬか油、大麦油など、天然の植物油に、ごく微量含有されている。しかし、パーム油、米ぬか油など多くの植物油には、トコトリエノールとトコフェロールの両方が含有されているため、トコトリエノールのみを得るためには、トコフェロールとの分離操作が必要である。粗パーム油では、トコトリエノールとトコフェロールとを600〜1000ppm程度含んでおり、その構成比率はトコフェロールが20〜30%、トコトリエノールが80〜70%を占める(非特許文献3)。粗米ぬか油では、トコトリエノールとトコフェロールとを約800ppmを含んでいて、トコトリエノールはそのうちの約50%である。ココヤシ油には、これら成分の含有量が著しく低く、これまで詳細な研究が困難であっただけでなく、工業化検討もされてこなかった。   Tocotrienols are contained in trace amounts in natural vegetable oils such as palm oil, rice bran oil, and barley oil. However, since many vegetable oils such as palm oil and rice bran oil contain both tocotrienol and tocopherol, a separation operation from tocopherol is necessary to obtain only tocotrienol. Crude palm oil contains about 600 to 1000 ppm of tocotrienol and tocopherol, and the constituent ratio is 20 to 30% for tocopherol and 80 to 70% for tocotrienol (Non-patent Document 3). Crude rice bran oil contains about 800 ppm of tocotrienol and tocopherol, of which about 50%. Coconut oil has a remarkably low content of these components, so that detailed research has been difficult so far, and industrialization has not been studied.

パーム油等から得られるトコフェロールとトコトリエノールの混合物から、トコトリエノールを分離するためには、さらに煩雑な精製工程が必要とされる。例えば、多成分分離方式擬似移動層クロマトグラフィー(特許文献5)、液体クロマトグラフィー(特許文献6)などの高度なクロマト分離技術を用いなければ、トコフェロールとの分離濃縮は困難である。また、特許文献7には、トコトリエノール富化調整物を製造する方法が記載されているが、対象となる油脂は、ヤシ科植物由来ではパームヤシ油が示されているに過ぎない。また、特許文献8には、ココナッツ油などの植物油からトコトリエノール等の少量成分を回収する方法が記載されているが、トコトリエノールはトコフェロール等との混合物として回収されるため、トコトリエノールを高濃度で含有する組成物を得るには、更なる処理工程が必要となる。 特許文献9は、パーム油、大豆油、ヤシ油、小麦胚芽油等の油脂類を非極性溶媒に溶解し、陰イオン性交換樹脂によるイオン交換処理を行って油類中のトコトリエノール類を分別濃縮する方法を開示している。   In order to separate tocotrienol from a mixture of tocopherol and tocotrienol obtained from palm oil or the like, a more complicated purification process is required. For example, separation and concentration with tocopherol is difficult without using advanced chromatographic separation techniques such as multi-component separation type pseudo moving bed chromatography (Patent Document 5) and liquid chromatography (Patent Document 6). Patent Document 7 describes a method for producing a tocotrienol-enriched preparation, but the palm oil is only shown as the target oil and fat from a palm family plant. Patent Document 8 describes a method for recovering a small amount of a component such as tocotrienol from a vegetable oil such as coconut oil. Tocotrienol is recovered as a mixture with tocopherol or the like, and therefore contains a high concentration of tocotrienol. To obtain the composition, further processing steps are required. In Patent Document 9, fats and oils such as palm oil, soybean oil, coconut oil and wheat germ oil are dissolved in a nonpolar solvent, and ion exchange treatment with an anionic exchange resin is performed to separate and concentrate tocotrienols in the oil. The method of doing is disclosed.

J.Biol.Chemm.,261,p10554,1986年J. et al. Biol. Chemm. , 261, p10554, 1986 Chem.Pharm.Bull.,37、p1369,1989年Chem. Pharm. Bull. 37, p1369, 1989 化学工業資料vol.17,No.6p225Chemical industry data vol. 17, no. 6p225

特開平11−049767号公報JP 11-049767 A 特開2001−342133号公報JP 2001-342133 A 米国特許第5,157,132号明細書US Pat. No. 5,157,132 特公昭55−025189号公報Japanese Patent Publication No.55-025189 特開2002−153702号公報JP 2002-153702 A 特開2003−292489号公報Japanese Patent Laid-Open No. 2003-292489 国際公開第2003/092709号パンフレットInternational Publication No. 2003/092709 Pamphlet 特開2002−194381号公報JP 2002-194381 A 特開57−099583号公報発明の要約Summary of the invention of Japanese Patent Laid-Open No. 57-099583

本発明は、トコトリエノールと、該トコトリエノールに対して1重量%以下のトコフェロールとを含有するトコトリエノールの濃縮されたトコトリエノール組成物の製造方法であって、
(1)ココヤシ油、(2)ココヤシ油と低級アルコールとをエステル交換反応させた反応生成物、及び(3)ココヤシ油と低級アルコールとをエステル交換反応させた反応生成物の蒸留残渣から選ばれる原料を、2−ヒドロキシエチルジメチルアンモニウム基を有する陰イオン交換樹脂〔以下、陰イオン交換樹脂(II)という〕で吸着処理する工程を有する、トコトリエノールの濃縮されたトコトリエノール組成物の製造方法に関する。
発明の詳細な説明
The present invention relates to a method for producing a tocotrienol-enriched tocotrienol composition comprising tocotrienol and 1% by weight or less of tocopherol based on the tocotrienol,
It is selected from (1) coconut oil, (2) a reaction product obtained by transesterification of coconut oil and lower alcohol, and (3) a distillation residue of a reaction product obtained by transesterification of coconut oil and lower alcohol. The present invention relates to a method for producing a tocotrienol composition enriched in tocotrienol, which comprises a step of adsorbing a raw material with an anion exchange resin having a 2-hydroxyethyldimethylammonium group (hereinafter referred to as anion exchange resin (II)).
Detailed Description of the Invention

本発明は、簡易な操作でトコトリエノールの含有量が多いトコトリエノールの濃縮されたトコトリエノール組成物を効率よく製造できる方法を提供する。   The present invention provides a method capable of efficiently producing a tocotrienol-enriched tocotrienol composition having a high tocotrienol content by a simple operation.

本発明の製造方法は、複雑な精製処理や特殊な設備を必要とせずに、トコトリエノール含有量の多いトコトリエノールの濃縮されたトコトリエノール組成物を製造することができる。しかも、エネルギー的にもコスト的にも、穏和な条件下で簡便に実施することができ、工業的な製造方法として有利である。 トコトリエノール含有量の多いことにより、トコフェノールがトコトリエノールの吸収を阻害することを防ぐ。   The production method of the present invention can produce a tocotrienol composition enriched in tocotrienol having a high tocotrienol content without requiring a complicated purification process or special equipment. Moreover, it can be carried out easily under mild conditions in terms of energy and cost, and is advantageous as an industrial production method. The high tocotrienol content prevents tocophenol from inhibiting the absorption of tocotrienol.

本発明で用いられるココヤシ油としては、バージンココヤシ油、コプラから搾油されたココヤシ油が挙げられる。バージンココヤシ油は、ココヤシの胚乳部を乾燥、燻煙することなしに搾油して得られ、着色の少ない原料油となる。 ヤシ油はトコトリエノールを、含有量は少ないが、高純度に含む。   Examples of the coconut oil used in the present invention include virgin coconut oil and coconut oil extracted from copula. Virgin coconut oil is obtained by squeezing the endosperm portion of coconut without drying and smoking, and is a raw material oil with less coloring. Coconut oil contains tocotrienol in low purity but high purity.

本発明で用いられる陰イオン交換樹脂(II)は、架橋した高分子母体に、交換基として2−ヒドロキシエチルジメチルアンモニウム基を導入した化学構造を持つ合成樹脂である。高分子母体はスチレンとジビニルベンゼンの共重合体が好ましい。陰イオン交換樹脂(II)は、通常、200〜1200μm、更に200〜800μm程度の平均粒径を有する球状粒子の形態で用いられる。   The anion exchange resin (II) used in the present invention is a synthetic resin having a chemical structure in which a 2-hydroxyethyldimethylammonium group is introduced as an exchange group into a crosslinked polymer matrix. The polymer matrix is preferably a copolymer of styrene and divinylbenzene. The anion exchange resin (II) is usually used in the form of spherical particles having an average particle size of about 200 to 1200 μm, and further about 200 to 800 μm.

陰イオン交換樹脂(II)は、ゲル型、多孔性の何れでもよいが、多孔性であることが好ましい。多孔性の陰イオン交換樹脂(II)は、化学構造はゲル型と同一であるが、高分子母体に多数のマクロポアーが存在し、活性表面がゲル型よりも大きくなる。なお、マクロポアーは、高分子母体に存在する細孔であり、ゲル型及び多孔性の陰イオン交換樹脂(II)の網目構造に起因して含水状態で存在するミクロポアーとは区別される。多孔性の陰イオン交換樹脂(II)としては、ポーラス型、ハイポーラス型(ポーラス型よりも更に多孔性が高い)のものが使用できる。ポーラス型の陰イオン交換樹脂(II)は市販品として容易に入手でき、且つトコトリエノールの吸着能が高いことから、本発明で好適に使用できる。   The anion exchange resin (II) may be either gel type or porous, but is preferably porous. The porous anion exchange resin (II) has the same chemical structure as that of the gel type, but a large number of macropores are present in the polymer matrix, and the active surface becomes larger than that of the gel type. Macropores are pores present in the polymer matrix and are distinguished from micropores present in a water-containing state due to the network structure of the gel-type and porous anion exchange resin (II). As the porous anion exchange resin (II), a porous type or a high porous type (which is more porous than the porous type) can be used. Porous anion exchange resin (II) can be easily obtained as a commercial product and has a high adsorption capacity for tocotrienol, and therefore can be suitably used in the present invention.

陰イオン交換樹脂(II)は市販品を使用することができ、例えば、ゲル型ではダイヤイオンSA20A〔三菱化学(株)製〕、多孔性のポーラス型ではダイヤイオンPA408〔三菱化学(株)製〕が挙げられる。   Commercially available products can be used as the anion exchange resin (II). For example, Diaion SA20A (Mitsubishi Chemical Co., Ltd.) is used for gel type, and Diaion PA408 (Mitsubishi Chemical Co., Ltd.) is used for porous porous type. ].

ココヤシ油を原料とする場合、一般的な油脂の精製方法に準じて行うことができる。具体的には、ココヤシ油を陰イオン交換樹脂(II)で吸着処理する工程、及びトコトリエノールが吸着した陰イオン交換樹脂(II)からトコトリエノールを回収する工程が行われる。ココヤシ油は、n−ヘキサン、エタノール等の溶剤と混合して陰イオン交換樹脂(II)の吸着処理に用いることが好ましい。その場合、ココヤシ油/溶剤=10/1〜1/10、更に5/1〜1/5の重量比であることが好ましい。   When coconut oil is used as a raw material, it can be carried out in accordance with a general oil refining method. Specifically, a process of adsorbing coconut oil with an anion exchange resin (II) and a process of recovering tocotrienol from the anion exchange resin (II) adsorbed with tocotrienol are performed. Coconut oil is preferably mixed with a solvent such as n-hexane or ethanol and used for the adsorption treatment of the anion exchange resin (II). In that case, it is preferable that the weight ratio is coconut oil / solvent = 10/1 to 1/10, more preferably 5/1 to 1/5.

ココヤシ油を陰イオン交換樹脂(II)と接触させて吸着処理すると、該陰イオン交換樹脂(II)にトコトリエノールが吸着される。例えば、陰イオン交換樹脂(II)を充填したカラムにココヤシ油を通ずると、陰イオン交換樹脂(II)にはトコトリエノールが吸着し、グリセライド類、炭化水素類、ワックス類等の非極性成分は吸着されずにココヤシ油と共に流出する。さらに、非極性溶媒を通液することで、それら非極性成分のみを洗い流すことができる。非極性溶媒としては炭素数5〜18のn−炭化水素が好ましく、n−ペンタン、n-へキサン、n−オクタンがより好ましく、n-へキサンがさらにより好ましい。この工程はトコトリエノール組成物中のトコトリエノール比率を高める上で重要である。これらの非極性溶媒へのトコトリエノールの溶解度は、陰イオン交換樹脂に吸着したトコトリエノールを脱離する程高くはなく非極性成分のみを洗い流すことができものである。そして、陰イオン交換樹脂(II)に吸着されたトコトリエノールを回収することで、トコトリエノールの含有量の多いトコトリエノール組成物を得ることができる。陰イオン交換樹脂(II)に吸着されたトコトリエノールの回収は、極性溶媒と酸の混合溶液、例えば、酢酸−メタノール溶液、酢酸−エタノール溶液、ギ酸−メタノール溶液、ギ酸−エタノール溶液等の溶離液を陰イオン交換樹脂(II)に通ずることで実施できる。中でも、酢酸−メタノール溶液または酢酸−エタノール溶液を用いることが好ましい。溶出物はトコトリエノールと溶離液とを含有するため、蒸留等によって溶離液を除去することができる。   When the coconut oil is brought into contact with the anion exchange resin (II) and adsorbed, tocotrienol is adsorbed on the anion exchange resin (II). For example, when coconut oil is passed through a column packed with an anion exchange resin (II), tocotrienol is adsorbed to the anion exchange resin (II), and nonpolar components such as glycerides, hydrocarbons and waxes are adsorbed. It flows out with coconut oil without being. Furthermore, only the nonpolar components can be washed away by passing a nonpolar solvent. The nonpolar solvent is preferably an n-hydrocarbon having 5 to 18 carbon atoms, more preferably n-pentane, n-hexane and n-octane, and even more preferably n-hexane. This step is important in increasing the tocotrienol ratio in the tocotrienol composition. The solubility of tocotrienol in these nonpolar solvents is not so high as to desorb tocotrienol adsorbed on the anion exchange resin, and only nonpolar components can be washed away. And the tocotrienol composition with much content of tocotrienol can be obtained by collect | recovering the tocotrienol adsorb | sucked by the anion exchange resin (II). The recovery of tocotrienol adsorbed on the anion exchange resin (II) is carried out by using an eluent such as a mixed solution of polar solvent and acid, for example, acetic acid-methanol solution, acetic acid-ethanol solution, formic acid-methanol solution, formic acid-ethanol solution. This can be done by passing through an anion exchange resin (II). Among these, it is preferable to use an acetic acid-methanol solution or an acetic acid-ethanol solution. Since the eluate contains tocotrienol and an eluent, the eluent can be removed by distillation or the like.

ココヤシ油中のトコトリエノール含有量は極めて少量であり、通常、100ppm程度以下である。これは、パームヤシ油が400〜800ppm程度のトコトリエノールを含有するのと比べて非常に少ない。一般的にはこのようなココヤシ油はトコトリエノールを含有する組成物の製造原料としては適していないと考えられるが、本発明は、陰イオン交換樹脂(II)という特定の陰イオン交換樹脂による吸着処理を行うことで、トコトリエノールを選択的に回収でき、含有量の多いトコトリエノール組成物を得ることができることを見出したものである。後述する実施例と比較例との対比から明らかなように、陰イオン交換樹脂として、2−ヒドロキシエチルジメチルアンモニウム基以外の極性基を有する陰イオン交換樹脂を用いた場合は、トコトリエノールの回収率は低く、十分な効果を得ることができない。   The content of tocotrienol in coconut oil is extremely small, and is usually about 100 ppm or less. This is very little compared to palm palm oil containing about 400-800 ppm tocotrienol. In general, it is considered that such coconut oil is not suitable as a raw material for producing a composition containing tocotrienol, but the present invention is an adsorption treatment with a specific anion exchange resin called anion exchange resin (II). It has been found that tocotrienol can be selectively recovered and a tocotrienol composition having a high content can be obtained by performing the above. As is clear from the comparison between Examples and Comparative Examples described later, when an anion exchange resin having a polar group other than 2-hydroxyethyldimethylammonium group is used as the anion exchange resin, the recovery rate of tocotrienol is It is low and sufficient effect cannot be obtained.

ココヤシ油と陰イオン交換樹脂(II)との吸着処理は、ガラス製カラムまたは金属製カラムを用いて行うことが出来る。陰イオン交換樹脂(II)をカラムに充填し、公知の方法に従って再生、コンディショニングを行った後、前述の手法で溶剤と混合したココヤシ油を、好ましくは15〜50℃、更に好ましくは20℃〜40℃で通液することができる。通液速度は、SV=0.1〜5、さらにSV=1〜3であることが好ましい。陰イオン交換樹脂(II)とココヤシ油溶液の体積比は、陰イオン交換樹脂(II)/ココヤシ油溶液=100/1〜1/1000、さらに10/1〜1/100であることが好ましい。ココヤシ油溶液を通液した後、溶剤100〜1000gを、好ましくは15〜50℃、更に好ましくは20℃〜40℃で通液することにより、樹脂に残存していたグリセライド類、炭化水素類、ワックス類等の非極性成分を洗い流すことができる。   The adsorption treatment of coconut oil and anion exchange resin (II) can be performed using a glass column or a metal column. The anion exchange resin (II) is packed into a column, regenerated and conditioned according to a known method, and then coconut oil mixed with a solvent by the above-described method is preferably 15 to 50 ° C, more preferably 20 ° C to It can be passed at 40 ° C. The liquid passing speed is preferably SV = 0.1-5, and more preferably SV = 1-3. The volume ratio of the anion exchange resin (II) to the coconut oil solution is preferably anion exchange resin (II) / coconut oil solution = 100/1 to 1/1000, more preferably 10/1 to 1/100. After passing the coconut oil solution, 100 to 1000 g of the solvent is preferably passed at 15 to 50 ° C., more preferably at 20 to 40 ° C., whereby glycerides, hydrocarbons remaining in the resin, Nonpolar components such as waxes can be washed away.

また、陰イオン交換樹脂(II)に吸着されたトコトリエノールの回収処理は、吸着処理に続き、連続的に行うことができる。具体的には、酢酸−メタノール溶液などの酸−極性溶剤混合溶液を、好ましくは15〜50℃、更に好ましくは20℃〜40℃で通液することにより、トコトリエノールを溶出することができる。通液速度は、SV=0.1〜5、さらにSV=1〜3であることが好ましい。溶出物(回収物)は、蒸留等によって溶離液を除去して、トコトリエノール組成物とすることができる。   Moreover, the recovery process of the tocotrienol adsorbed on the anion exchange resin (II) can be performed continuously following the adsorption process. Specifically, tocotrienol can be eluted by passing an acid-polar solvent mixed solution such as an acetic acid-methanol solution preferably at 15 to 50 ° C., more preferably at 20 to 40 ° C. The liquid passing speed is preferably SV = 0.1-5, and more preferably SV = 1-3. The eluate (recovered product) can be made into a tocotrienol composition by removing the eluent by distillation or the like.

また、トコトリエノール回収処理後の陰イオン交換樹脂(II)を、公知の方法で再生、コンディショニングすることにより、陰イオン交換樹脂(II)を繰り返し使用することができる。   Moreover, anion exchange resin (II) can be repeatedly used by reproducing | regenerating and conditioning the anion exchange resin (II) after a tocotrienol collection process by a well-known method.

また、本発明では、原料として、ココヤシ油と低級アルコールとをエステル交換反応させた反応生成物(以下、エステル交換反応生成物という)を用いることができる。この場合も、ココヤシ油を原料とする場合と同様に、エステル交換反応生成物を陰イオン交換樹脂(II)で吸着処理する工程、及びトコトリエノールが吸着した陰イオン交換樹脂(II)からトコトリエノールを回収する工程、を行うことできる。   Moreover, in this invention, the reaction product (henceforth transesterification reaction product) which transesterified coconut palm oil and a lower alcohol can be used as a raw material. In this case, as in the case of using coconut oil as the raw material, the step of adsorbing the transesterification reaction product with the anion exchange resin (II) and the recovery of the tocotrienol from the anion exchange resin (II) on which the tocotrienol is adsorbed The process to perform can be performed.

エステル交換反応生成物は、ココヤシ油と低級アルコール(好ましくは炭素数1〜5の1価アルコール)をエステル交換反応して得られるものであり、脂肪酸アルキルエステル、グリセリン、低級アルコール、トリグリセリド、ジグリセリド、モノグリセリド等を含む。また、炭素数1〜5の低級アルコールとしては具体的には、メタノール、エタノール、プロパノールなどが挙げられ、工業的には低コストと回収の容易さからメタノールが好ましい。このエステル交換反応生成物中にもトコトリエノールが含まれている。   The transesterification product is obtained by transesterification of coconut oil and a lower alcohol (preferably a monohydric alcohol having 1 to 5 carbon atoms), and includes fatty acid alkyl ester, glycerin, lower alcohol, triglyceride, diglyceride, Contains monoglycerides and the like. Specific examples of the lower alcohol having 1 to 5 carbon atoms include methanol, ethanol, propanol, and the like. From the industrial viewpoint, methanol is preferable because of low cost and easy recovery. This transesterification product also contains tocotrienol.

ココヤシ油と低級アルコールのエステル交換反応は公知の方法で実施することが可能である。反応は連続方式あるいはバッチ方式のいずれの反応形態も利用できるが、大量にエステルを製造する場合、連続反応が有利である。触媒としては、水酸化ナトリウムや水酸化カリウム、ナトリウムアルコラート等の均一系アルカリ触媒が一般に使用されるが、イオン交換樹脂や含水酸化ジルコニウム、リン酸アルミニウム、硫酸担持ジルコニア、チタノシリケート等の固体触媒も使用することが可能である。均一系アルカリ触媒を用いる場合、一般に以下の条件で反応が行われる。反応温度は30〜90℃、好ましくは40〜80℃、反応圧力は、常圧から0.5MPaの範囲、好ましくは常圧で行われる。   The transesterification reaction between coconut oil and lower alcohol can be carried out by a known method. The reaction can be performed in either a continuous or batch mode, but a continuous reaction is advantageous when a large amount of ester is produced. As the catalyst, a homogeneous alkaline catalyst such as sodium hydroxide, potassium hydroxide or sodium alcoholate is generally used, but solid catalysts such as ion exchange resin, hydrous zirconium oxide, aluminum phosphate, sulfuric acid-supported zirconia, titanosilicate, etc. Can also be used. When using a homogeneous alkali catalyst, the reaction is generally carried out under the following conditions. The reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction pressure is in the range of normal pressure to 0.5 MPa, preferably normal pressure.

エステル交換反応生成物と陰イオン交換樹脂(II)との吸着処理は、ガラス製カラムまたは金属製カラムを用いて行うことが出来る。陰イオン交換樹脂(II)をカラムに充填し、公知の方法に従って再生、コンディショニングを行った後、溶剤と混合したエステル交換反応生成物100〜1000gを、好ましくは15〜50℃、更に好ましくは20℃〜40℃で通液することができる。エステル交換反応生成物は、n−ヘキサン、エタノール等の溶剤と混合して陰イオン交換樹脂(II)の吸着処理に用いることが好ましい。その場合、エステル交換反応生成物/溶剤=10/1〜1/10、更に5/1〜1/5の重量比であることが好ましい。通液速度は、SV=0.1〜5、さらにSV=1〜3であることが好ましい。陰イオン交換樹脂(II)とエステル交換反応生成物溶液の体積比は、陰イオン交換樹脂(II)/エステル交換反応生成物溶液=100/1〜1/1000、さらに10/1〜1/100であることが好ましい。溶液を通液した後、溶剤100〜1000gを、好ましくは15〜50℃、更に好ましくは20℃〜40℃で通液することにより、樹脂に残存していたエステル交換反応生成物、グリセリド類、炭化水素、ワックス等の非極性成分を洗い流すことができる。   The adsorption treatment of the transesterification product and the anion exchange resin (II) can be performed using a glass column or a metal column. The anion exchange resin (II) is packed in a column, regenerated and conditioned according to a known method, and then 100 to 1000 g of an ester exchange reaction product mixed with a solvent, preferably 15 to 50 ° C., more preferably 20 The liquid can be passed at a temperature of from 40 ° C to 40 ° C. The transesterification reaction product is preferably mixed with a solvent such as n-hexane or ethanol and used for the adsorption treatment of the anion exchange resin (II). In that case, the weight ratio of transesterification product / solvent = 10/1 to 1/10, more preferably 5/1 to 1/5 is preferable. The liquid passing speed is preferably SV = 0.1-5, and more preferably SV = 1-3. The volume ratio of the anion exchange resin (II) to the transesterification reaction product solution is as follows: anion exchange resin (II) / transesterification reaction product solution = 100/1 to 1/1000, and further 10/1 to 1/100. It is preferable that After passing the solution, 100 to 1000 g of the solvent is preferably passed at 15 to 50 ° C., more preferably at 20 to 40 ° C., thereby transesterification reaction products, glycerides remaining in the resin, Nonpolar components such as hydrocarbons and waxes can be washed away.

陰イオン交換樹脂(II)に吸着されたトコトリエノールの回収処理は、前記したココヤシ油の場合と同様に行うことができる。   The recovery process of tocotrienol adsorbed on the anion exchange resin (II) can be performed in the same manner as in the case of the coconut oil described above.

また、本発明では、原料として、エステル交換反応生成物の蒸留残渣を用いることができる。この場合も、ココヤシ油を原料とする場合と同様に、エステル交換反応生成物の蒸留残渣を陰イオン交換樹脂(II)で吸着処理する工程、及びトコトリエノールが吸着した陰イオン交換樹脂(II)からトコトリエノールを回収する工程、を行うことできる。   In the present invention, the distillation residue of the transesterification product can be used as a raw material. In this case, as in the case of using coconut oil as the raw material, the step of adsorbing the distillation residue of the transesterification reaction product with the anion exchange resin (II) and the anion exchange resin (II) adsorbed with the tocotrienol are performed. A step of recovering tocotrienol can be performed.

エステル交換反応生成物の蒸留残渣は、ココヤシ油と低級アルコール(好ましくは炭素数1〜5の1価アルコール)とのエステル交換反応生成物を蒸留して得られるものであり、脂肪酸アルキルエステル、グリセリン、低級アルコール、トリグリセリド、ジグリセリド、モノグリセリド等を含む。このエステル交換反応生成物の蒸留残渣中にもトコトリエノールが含まれている。   The distillation residue of the transesterification reaction product is obtained by distilling the transesterification reaction product of coconut oil and a lower alcohol (preferably a monohydric alcohol having 1 to 5 carbon atoms). Fatty acid alkyl ester, glycerin , Lower alcohols, triglycerides, diglycerides, monoglycerides and the like. Tocotrienol is also contained in the distillation residue of the transesterification product.

エステル交換反応生成物の蒸留は減圧下に行うことが望ましく、圧力は0.1〜10kPaが好ましい。0.1kPa以下では、高真空度を維持するために、設備への負担が大きくなる。また10kPa以上では、蒸留ボトムの温度が高くなり過ぎ脂肪酸エステルの分解等が懸念される。蒸留工程に用いる蒸留塔は、塔内に気液接触のための金属板型、金網型の規則充填物や、ラシヒリング、ポールリング等の不規則充填物を充填した塔、あるいは多孔板トレイ、泡鐘式トレイ等の棚段を設置した精留塔、塔内に気液接触部を設けないフラッシュ塔のいずれでも良い。また本発明の蒸留操作は、連続、回分、半回分のいずれでも実施可能である。   The transesterification reaction product is desirably distilled under reduced pressure, and the pressure is preferably 0.1 to 10 kPa. When the pressure is 0.1 kPa or less, the burden on the equipment increases in order to maintain a high degree of vacuum. If it is 10 kPa or more, the temperature of the distillation bottom becomes too high, and there is a concern that the fatty acid ester is decomposed. The distillation column used in the distillation process is a column packed with a regular packed plate of metal plate or wire mesh for contact with gas and liquid, or an irregular packing such as Raschig ring or pole ring, or perforated plate tray, foam Either a rectifying column provided with a shelf such as a bell-type tray or a flash column not provided with a gas-liquid contact portion in the column may be used. The distillation operation of the present invention can be carried out continuously, batchwise, or semi-batch.

エステル交換反応生成物の蒸留残渣と陰イオン交換樹脂(II)との吸着処理は、ガラス製カラムまたは金属製カラムを用いて行うことが出来る。陰イオン交換樹脂(II)をカラムに充填し、公知の方法に従って再生、コンディショニングを行った後、溶剤と混合したエステル交換反応生成物の蒸留残渣100〜1000gを、好ましくは15〜50℃、更に好ましくは20℃〜40℃で通液することができる。エステル交換反応生成物は、n−ヘキサン、エタノール等の溶剤と混合して陰イオン交換樹脂(II)の吸着処理に用いることが好ましい。その場合、エステル交換反応生成物の蒸留残渣/溶剤=10/1〜1/10、更に5/1〜1/5の重量比であることが好ましい。通液速度は、SV=0.1〜5、さらにSV=1〜3であることが好ましい。陰イオン交換樹脂(II)とエステル交換反応生成物の蒸留残渣溶液の体積比は、陰イオン交換樹脂(II)/エステル交換反応生成物の蒸留残渣溶液=100/1〜1/1000、さらに10/1〜1/100であることが好ましい。溶液を通液した後、溶剤100〜1000gを、好ましくは15〜50℃、更に好ましくは20℃〜40℃で通液することにより、樹脂に残存していたグリセリド類、炭化水素、ワックス等の非極性成分を洗い流すことができる。   The adsorption treatment of the distillation residue of the transesterification reaction product and the anion exchange resin (II) can be performed using a glass column or a metal column. After anion-exchange resin (II) is packed in a column and regenerated and conditioned according to a known method, 100 to 1000 g of distillation residue of the transesterification product mixed with a solvent is preferably 15 to 50 ° C. Preferably, the liquid can be passed at 20 to 40 ° C. The transesterification reaction product is preferably mixed with a solvent such as n-hexane or ethanol and used for the adsorption treatment of the anion exchange resin (II). In this case, it is preferable that the distillation residue / solvent of the transesterification reaction product = 10/1 to 1/10, and more preferably 5/1 to 1/5. The liquid passing speed is preferably SV = 0.1-5, and more preferably SV = 1-3. The volume ratio of the distillation residue solution of the anion exchange resin (II) and the transesterification reaction product was an anion exchange resin (II) / distillation residue solution of the transesterification reaction product = 100/1 to 1/1000, and further 10 / 1 to 1/100 is preferable. After passing the solution, 100 to 1000 g of solvent is preferably passed at 15 to 50 ° C., more preferably at 20 to 40 ° C., so that glycerides, hydrocarbons, wax, etc. remaining in the resin Non-polar components can be washed away.

陰イオン交換樹脂(II)に吸着されたトコトリエノールの回収処理は、前記したココヤシ油の場合と同様に行うことができる。   The recovery process of tocotrienol adsorbed on the anion exchange resin (II) can be performed in the same manner as in the case of the coconut oil described above.

エステル交換反応生成物や、エステル交換反応生成物の蒸留残渣を用いる場合、下記工程1及び2を有するトコトリエノール組成物の製造方法として実施できる。
工程1:ココヤシ油と低級アルコールのエステル交換反応により、脂肪酸アルキルエステルを含む反応生成物を得る工程
工程2:工程1で得られた脂肪酸アルキルエステルを含む反応生成物、又は該反応生成物を蒸留して得られた蒸留残渣を、2−ヒドロキシエチルジメチルアンモニウム基を有する陰イオン交換樹脂で吸着処理する工程
When the transesterification reaction product or the distillation residue of the transesterification reaction product is used, it can be implemented as a method for producing a tocotrienol composition having the following steps 1 and 2.
Step 1: Obtain a reaction product containing a fatty acid alkyl ester by transesterification of coconut oil and a lower alcohol Step 2: Distill the reaction product containing the fatty acid alkyl ester obtained in Step 1 or the reaction product The distillation residue obtained by adsorption with an anion exchange resin having a 2-hydroxyethyldimethylammonium group

工程1は公知の方法で実施することが可能である。反応は連続方式あるいはバッチ方式のいずれの反応形態も利用できるが、大量にエステルを製造する場合、連続反応が有利である。触媒としては、水酸化ナトリウムや水酸化カリウム、ナトリウムアルコラート等の均一系アルカリ触媒が一般に使用されるが、イオン交換樹脂や含水酸化ジルコニウム、リン酸アルミニウム、硫酸担持ジルコニア、チタノシリケート等の固体触媒も使用することが可能である。均一系アルカリ触媒を用いる場合、一般に以下の条件で反応が行われる。反応温度は30〜90℃、好ましくは40〜80℃、反応圧力は、常圧から0.5MPaの範囲、好ましくは常圧で行われる。   Step 1 can be performed by a known method. The reaction can be performed in either a continuous or batch mode, but a continuous reaction is advantageous when a large amount of ester is produced. As the catalyst, a homogeneous alkaline catalyst such as sodium hydroxide, potassium hydroxide or sodium alcoholate is generally used, but solid catalysts such as ion exchange resin, hydrous zirconium oxide, aluminum phosphate, sulfuric acid-supported zirconia, titanosilicate, etc. Can also be used. When using a homogeneous alkali catalyst, the reaction is generally carried out under the following conditions. The reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction pressure is in the range of normal pressure to 0.5 MPa, preferably normal pressure.

工程2の蒸留は減圧下に行うことが望ましく、圧力は0.1〜10kPaが好ましい。0.1kPa以下では、高真空度を維持するために、設備への負担が大きくなる。また10kPa以上では、蒸留ボトムの温度が高くなり過ぎ脂肪酸エステルの分解等が懸念される。蒸留工程に用いる蒸留塔は、塔内に気液接触のための金属板型、金網型の規則充填物や、ラシヒリング、ポールリング等の不規則充填物を充填した塔、あるいは多孔板トレイ、泡鐘式トレイ等の棚段を設置した精留塔、塔内に気液接触部を設けないフラッシュ塔のいずれでも良い。また本発明の蒸留操作は、連続、回分、半回分のいずれでも実施可能である。   The distillation in step 2 is desirably performed under reduced pressure, and the pressure is preferably 0.1 to 10 kPa. When the pressure is 0.1 kPa or less, the burden on the equipment increases in order to maintain a high degree of vacuum. If it is 10 kPa or more, the temperature of the distillation bottom becomes too high, and there is a concern that the fatty acid ester is decomposed. The distillation column used in the distillation process is a column packed with a regular packed plate of metal plate or wire mesh for contact with gas and liquid, or an irregular packing such as Raschig ring or pole ring, or perforated plate tray, foam Either a rectifying column provided with a shelf such as a bell-type tray or a flash column not provided with a gas-liquid contact portion in the column may be used. The distillation operation of the present invention can be carried out continuously, batchwise, or semi-batch.

工程1で得られた脂肪酸アルキルエステルを含む反応生成物、又は該反応生成物を上記のように蒸留して得られた蒸留残渣を、前記と同様に吸着処理することにより、トコトリエノール組成物を得ることができる。   The tocotrienol composition is obtained by subjecting the reaction product containing the fatty acid alkyl ester obtained in step 1 or the distillation residue obtained by distillation of the reaction product as described above to adsorption treatment in the same manner as described above. be able to.

ココヤシ油はトコフェノールを殆ど含有しないことが本発明者らの検討により見出された。そのため、本発明では、トコトリエノール含有量が多く、且つトコフェノール含有量が極めて少ない組成物が得られる。本発明により製造されたトコトリエノール組成物は、トコトリエノールに対して、トコフェノール含量が1重量%以下であり、好ましくは0.5重量%以下、より好ましくは0.1重量%以下、さらにより好ましくは検出限界以下(この水準は実質的に含量が0重量%と認識されることもある)である。   The inventors have found that coconut oil contains little tocophenol. Therefore, in the present invention, a composition having a high tocotrienol content and a very low tocophenol content can be obtained. The tocotrienol composition prepared according to the present invention has a tocophenol content of 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.1% by weight or less, and still more preferably to tocotrienol. Below the detection limit (this level may be perceived as substantially 0% by weight).

本発明の製造方法では、トコトリエノールの回収率は、50〜100%、更に75〜100%であることが好ましい。本発明において、トコトリエノールの回収率(%)は、以下のようにして求めたものである。また、トコトリエノールの含量は、後述の実施例の方法で測定したものである。   In the production method of the present invention, the recovery rate of tocotrienol is preferably 50 to 100%, more preferably 75 to 100%. In the present invention, the recovery rate (%) of tocotrienol is determined as follows. Moreover, the content of tocotrienol was measured by the method of Examples described later.

トコトリエノールの回収率(%)=[回収物中のトコトリエノール含量/処理対象物中のトコトリエノール含量]×100
*回収物中のトコトリエノール含量:陰イオン交換樹脂(II)で吸着処理した後、回収された回収物中のトコトリエノール含有総質量
*処理対象物中のトコトリエノール含量:陰イオン交換樹脂(II)で吸着処理する前のココヤシ油又はエステル交換反応生成物又はエステル交換反応生成物の蒸留残渣中のトコトリエノール含有総質量
Tocotrienol recovery rate (%) = [tocotrienol content in recovered material / tocotrienol content in treated object] × 100
* Tocotrienol content in the collected product: after adsorption treatment with anion exchange resin (II), and total mass containing tocotrienol in the collected collected material * Tocotrienol content in treated material: adsorbed with anion exchange resin (II) Tocotrienol-containing total mass in the distillation residue of coconut palm oil or transesterification product or transesterification product before treatment

本発明の製造方法により製造されたトコトリエノール組成物は、原料ココヤシ油等に比べてトコトリエノール含有濃度が格段に高いため、各種用途の中間原料として有用である。なお、本発明の製造方法により製造されたトコトリエノール組成物の組成は、陰イオン交換樹脂(II)からのトコトリエノールの回収方法及びその後の処理により異なる。例えば、回収の際、酢酸−メタノール溶液を溶離液として用いた場合は、トコトリエノール、酢酸、メタノールを含有する組成物、更に該組成物から酢酸及びメタノールを留去した組成物として得られる。溶離液(例えば酢酸及びメタノール)を留去した組成物は、トコトリエノールについて濃縮されたココヤシ油として入手できる。エステル交換反応生成物又はエステル交換反応生成物の蒸留残渣を原料とした場合についても同様である。   The tocotrienol composition produced by the production method of the present invention has a remarkably high tocotrienol-containing concentration as compared with raw material coconut oil and the like, and thus is useful as an intermediate material for various uses. The composition of the tocotrienol composition produced by the production method of the present invention varies depending on the method for recovering tocotrienol from the anion exchange resin (II) and the subsequent treatment. For example, when an acetic acid-methanol solution is used as an eluent during recovery, a composition containing tocotrienol, acetic acid and methanol, and a composition obtained by distilling off acetic acid and methanol from the composition are obtained. The composition from which the eluent (eg acetic acid and methanol) has been distilled off is available as coconut oil concentrated for tocotrienol. The same applies to the case where the transesterification product or the distillation residue of the transesterification product is used as a raw material.

本発明の製造方法においては、更に下記工程3及び工程4を有することによって、より高純度のトコトリエノール組成物を製造することができる。
工程3:非極性溶媒を通液することにより、樹脂に残存するグリセライド類、炭化水素類、ワックス類などを洗い流す工程。
工程4:工程1の後、極性溶媒と酸の混合溶液を通液することにより、樹脂に吸着したトコトリエノールを回収する工程。
In the production method of the present invention, a tocotrienol composition with higher purity can be produced by further comprising the following step 3 and step 4.
Step 3: A step of washing away glycerides, hydrocarbons, waxes, etc. remaining in the resin by passing a nonpolar solvent.
Step 4: A step of recovering tocotrienol adsorbed on the resin by passing a mixed solution of a polar solvent and an acid after Step 1.

本発明の製造方法においては、使用する原料によって以下の工程で行うのが好ましい。(1)ココヤシ油を原料とする場合、原料を2−ヒドロキシエチルジメチルアンモニウム基を有する陰イオン交換樹脂で吸着処理する工程の後、工程3、工程4の順に行う。(2)ココヤシ油と低級アルコールとをエステル交換反応させた反応生成物を原料とする場合、及び(3)ココヤシ油と低級アルコールとをエステル交換反応させた反応生成物の蒸留残渣を原料とする場合、工程1、工程2、工程3、工程4の順に行う。
実施例
次の実施例は本発明の実施について述べる。実施例は本発明の例示について述べるものであり、本発明を限定するためではない。
In the manufacturing method of this invention, it is preferable to carry out at the following processes according to the raw material to be used. (1) When coconut oil is used as a raw material, after the step of adsorbing the raw material with an anion exchange resin having a 2-hydroxyethyldimethylammonium group, the steps 3 and 4 are performed in this order. (2) When a reaction product obtained by transesterification of coconut oil and lower alcohol is used as a raw material, and (3) A distillation residue of a reaction product obtained by transesterification reaction between coconut oil and lower alcohol is used as a raw material. In this case, the process is performed in the order of process 1, process 2, process 3, and process 4.
Examples The following examples describe the practice of the present invention. The examples are illustrative of the invention and are not intended to limit the invention.

(1)トコトリエノールの含量
トコトリエノールの含量は、J.Agric.Food Chem.,第54号,p3351,2006年に記載されている手法で測定した。
(1) Tocotrienol content Agric. Food Chem. 54, p3351, 2006.

(2)イオン交換樹脂
イオン交換樹脂は、三菱化学(株)製のダイヤイオンの各種を用いた(表1)。
(2) Ion exchange resin As ion exchange resins, various types of diamond ions manufactured by Mitsubishi Chemical Corporation were used (Table 1).


Figure 2010125988
Figure 2010125988

(3)原料油脂
原料油脂として表2のものを用いた。
(3) Raw material fats and oils The raw material fats and oils of Table 2 were used.

Figure 2010125988
Figure 2010125988

実施例1
バージンココヤシ油100gをn−ヘキサン100mLに溶解し、n−ヘキサン溶液とした。あらかじめ前処理して活性型のOH型とし、n−ヘキサンに置換したダイヤイオンPA408 100mLを充填した3cmφ×50cmのガラスカラムに、該n−ヘキサン溶液をSV=2の速度で通液し、さらに200mLのn−ヘキサンをSV=2で通液して洗浄を行い、非吸着画分としてグリセライド類炭化水素類、ワックス類などの不純物を除去した。ついで250mLの酢酸メタノール溶液(酢酸5%含有)をSV=2の速度で通液し、さらに150mLのメタノールをSV=2の速度で通液して洗浄を行い、トコトリエノール画分を溶出した。酢酸メタノール溶液を留去し、トコトリエノール組成物を得た。組成物のトコトリエノール含量を測定し、吸着処理前のバージンココヤシ油のそれと比較して回収率を求めた。結果を表3に示す。なお、本実施例で用いたバージンココヤシ油には、37ppmのトコトリエノールが含まれていた。
Example 1
100 g of virgin coconut oil was dissolved in 100 mL of n-hexane to prepare an n-hexane solution. The n-hexane solution was passed through a 3 cmφ × 50 cm glass column filled with 100 mL of Diaion PA408 substituted with n-hexane, pretreated in advance, and passed at a rate of SV = 2. Washing was performed by passing 200 mL of n-hexane at SV = 2 to remove impurities such as glycerides hydrocarbons and waxes as non-adsorbed fractions. Subsequently, 250 mL of acetic acid methanol solution (containing 5% acetic acid) was passed at a rate of SV = 2, and further 150 mL of methanol was passed at a rate of SV = 2 to perform washing, and the tocotrienol fraction was eluted. The acetic acid methanol solution was distilled off to obtain a tocotrienol composition. The tocotrienol content of the composition was measured and the recovery was determined by comparison with that of virgin coconut oil before the adsorption treatment. The results are shown in Table 3. The virgin coconut oil used in this example contained 37 ppm of tocotrienol.

実施例2及び比較例1〜4
実施例1において、ダイヤイオンPA408の代わりに、SA20A(実施例2)、PA306S(比較例1)、SA11A(比較例2)、HPA25(比較例3)、WA10(比較例4)を用いた以外は、実施例1と同様にして、トコトリエノール組成物を得た。実施例1と同様にして、トコトリエノール含有量と回収率を求めた。結果を表3に示す。
Example 2 and Comparative Examples 1 to 4
In Example 1, instead of Diaion PA408, SA20A (Example 2), PA306S (Comparative Example 1), SA11A (Comparative Example 2), HPA25 (Comparative Example 3), and WA10 (Comparative Example 4) were used. Obtained a tocotrienol composition in the same manner as in Example 1. In the same manner as in Example 1, the tocotrienol content and the recovery rate were determined. The results are shown in Table 3.

Figure 2010125988
Figure 2010125988

実施例3
実施例1において、バージンココヤシ油の代わりに、コプラから搾油したココヤシ原油を用いた以外は、実施例1と同様にして、トコトリエノール組成物を得た。組成物のトコトリエノール含量を測定し、吸着処理前のココヤシ原油のそれと比較して回収率を求めた。結果を表4に示す。なお、本実施例で用いたココヤシ油には、48ppmのトコトリエノールが含まれていた。
Example 3
In Example 1, the tocotrienol composition was obtained like Example 1 except having used the coconut crude oil squeezed from the copra instead of the virgin coconut oil. The tocotrienol content of the composition was measured, and the recovery rate was determined by comparison with that of coconut crude oil before the adsorption treatment. The results are shown in Table 4. The coconut oil used in this example contained 48 ppm of tocotrienol.

Figure 2010125988
Figure 2010125988

実施例4
粗ココヤシ油を出発原料に7当量のメタノールを加え、0.1重量%(対粗ココヤシ油)の酸触媒(硫酸)を添加して加熱還流した。続いて、0.5重量%(対粗ヤシ油)のアルカリ触媒(水酸化ナトリウム)を添加して加熱還流し、粗ココヤシ脂肪酸メチルエステルとグリセリンの混合物を得た。静置・分層してグリセリンを分離した後、水洗を行い、触媒とグリセリンを除去した。本工程によって得られた粗ココヤシ脂肪酸メチルエステルを含む反応生成物には、16ppmのトコトリエノールが含まれていた。また、粗ココヤシ脂肪酸メチルエステルの純度は、95%であった。
Example 4
Seven equivalents of methanol was added to the crude coconut oil as a starting material, and 0.1 wt% (vs. crude coconut oil) of an acid catalyst (sulfuric acid) was added and heated to reflux. Subsequently, 0.5% by weight (vs. crude palm oil) of an alkali catalyst (sodium hydroxide) was added and heated to reflux to obtain a mixture of crude coconut fatty acid methyl ester and glycerin. The mixture was allowed to stand and separated to separate glycerin, and then washed with water to remove the catalyst and glycerin. The reaction product containing the crude coconut fatty acid methyl ester obtained by this step contained 16 ppm of tocotrienol. The purity of the crude coconut fatty acid methyl ester was 95%.

実施例1において、バージンココヤシ油の代わりに、上記粗ココヤシ脂肪酸メチルエステルを含む反応生成物を用いた以外は、実施例1と同様にして、トコトリエノール組成物を得た。組成物のトコトリエノール含量を測定し、吸着処理前の粗ココヤシ脂肪酸メチルエステルを含む反応生成物のそれと比較して回収率を求めた。結果を表5に示す。  In Example 1, a tocotrienol composition was obtained in the same manner as in Example 1 except that the reaction product containing the crude coconut fatty acid methyl ester was used instead of virgin coconut oil. The tocotrienol content of the composition was measured, and the recovery rate was determined by comparison with that of the reaction product containing the crude coconut fatty acid methyl ester before the adsorption treatment. The results are shown in Table 5.

Figure 2010125988
Figure 2010125988

実施例5
実施例4と同様にして合成した粗ココヤシ脂肪酸メチルエステルを、150℃、400Paで減圧蒸留し、ココヤシ脂肪酸メチルエステルを留去した。得られた蒸留残渣には、1300ppmのトコトリエノールが含まれていた。実施例1において、バージンココヤシ油の代わりに、この蒸留残渣を用いた以外は、実施例1と同様にして、トコトリエノール組成物を得た。組成物のトコトリエノール含量を測定し、吸着処理前の蒸留残渣のそれと比較して回収率を求めた。結果を表6に示す。
Example 5
The crude coconut fatty acid methyl ester synthesized in the same manner as in Example 4 was distilled under reduced pressure at 150 ° C. and 400 Pa to distill off the coconut fatty acid methyl ester. The obtained distillation residue contained 1300 ppm of tocotrienol. In Example 1, a tocotrienol composition was obtained in the same manner as in Example 1 except that this distillation residue was used instead of virgin coconut oil. The tocotrienol content of the composition was measured, and the recovery rate was determined by comparison with that of the distillation residue before the adsorption treatment. The results are shown in Table 6.

Figure 2010125988
Figure 2010125988

Claims (5)

トコトリエノールと、該トコトリエノールに対して1重量%以下のトコフェロールとを含有するトコトリエノールの濃縮されたトコトリエノール組成物の製造方法であって、
(1)ココヤシ油、(2)ココヤシ油と低級アルコールとをエステル交換反応させた反応生成物、及び(3)ココヤシ油と低級アルコールとをエステル交換反応させた反応生成物の蒸留残渣から選ばれる原料を、2−ヒドロキシエチルジメチルアンモニウム基を有する陰イオン交換樹脂で吸着処理する工程を有する、トコトリエノールの濃縮されたトコトリエノール組成物の製造方法。
A method for producing a tocotrienol-enriched tocotrienol composition comprising tocotrienol and 1% by weight or less of tocopherol based on said tocotrienol, comprising:
It is selected from (1) coconut oil, (2) a reaction product obtained by transesterification of coconut oil and lower alcohol, and (3) a distillation residue of a reaction product obtained by transesterification of coconut oil and lower alcohol. A method for producing a tocotrienol-enriched tocotrienol composition, comprising a step of subjecting a raw material to an anion exchange resin having a 2-hydroxyethyldimethylammonium group.
下記工程1及び2を有する、請求項1記載のトコトリエノールの濃縮されたトコトリエノール組成物の製造方法。
工程1:ココヤシ油と低級アルコールのエステル交換反応により、脂肪酸アルキルエステルを含む反応生成物を得る工程
工程2:工程1で得られた脂肪酸アルキルエステルを含む反応生成物、又は該反応生成物を蒸留して得られた蒸留残渣を、2−ヒドロキシエチルジメチルアンモニウム基を有する陰イオン交換樹脂で吸着処理する工程
The method for producing a tocotrienol-enriched tocotrienol composition according to claim 1, comprising the following steps 1 and 2.
Step 1: Obtain a reaction product containing a fatty acid alkyl ester by transesterification of coconut oil and a lower alcohol Step 2: Distill the reaction product containing the fatty acid alkyl ester obtained in Step 1 or the reaction product The distillation residue obtained by adsorption with an anion exchange resin having a 2-hydroxyethyldimethylammonium group
前記陰イオン交換樹脂がポーラス型である、請求項1又は2記載のトコトリエノールの濃縮されたトコトリエノール組成物の製造方法。  The method for producing a tocotrienol-enriched tocotrienol composition according to claim 1 or 2, wherein the anion exchange resin is a porous type. 前記陰イオン交換樹脂に吸着されたトコトリエノールを回収する工程を有する、請求項1〜3の何れか1項記載のトコトリエノールの濃縮されたトコトリエノール組成物の製造方法。  The method for producing a tocotrienol-enriched tocotrienol composition according to any one of claims 1 to 3, further comprising a step of recovering tocotrienol adsorbed on the anion exchange resin. 更に、前記陰イオン交換樹脂に吸着されたトコトリエノールを回収する工程として下記工程3及び工程4を有する、請求項1〜4の何れか1項に記載のトコトリエノールの濃縮されたトコトリエノール組成物の製造方法。
工程3:非極性溶媒を通液することにより、樹脂に残存するグリセライド類、炭化水素類、ワックス類などを洗い流す工程。
工程4:極性溶媒と酸の混合溶液を通液することにより、樹脂に吸着したトコトリエノールを回収する工程。
The method for producing a tocotrienol-enriched tocotrienol composition according to any one of claims 1 to 4, further comprising the following step 3 and step 4 as a step of recovering the tocotrienol adsorbed on the anion exchange resin. .
Step 3: A step of washing away glycerides, hydrocarbons, waxes, etc. remaining in the resin by passing a nonpolar solvent.
Step 4: A step of recovering tocotrienol adsorbed on the resin by passing a mixed solution of a polar solvent and an acid.
JP2011511383A 2009-04-28 2010-04-26 Method for producing tocotrienol composition Active JP5272073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011511383A JP5272073B2 (en) 2009-04-28 2010-04-26 Method for producing tocotrienol composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009109098 2009-04-28
JP2009109098 2009-04-28
JP2011511383A JP5272073B2 (en) 2009-04-28 2010-04-26 Method for producing tocotrienol composition
PCT/JP2010/057324 WO2010125988A1 (en) 2009-04-28 2010-04-26 Method for producing tocotrienol composition

Publications (2)

Publication Number Publication Date
JPWO2010125988A1 true JPWO2010125988A1 (en) 2012-10-25
JP5272073B2 JP5272073B2 (en) 2013-08-28

Family

ID=43032137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011511383A Active JP5272073B2 (en) 2009-04-28 2010-04-26 Method for producing tocotrienol composition

Country Status (2)

Country Link
JP (1) JP5272073B2 (en)
WO (1) WO2010125988A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256981B2 (en) * 2014-02-07 2018-01-10 国立大学法人東北大学 Selective continuous recovery method of vitamin E from oil
US10017712B2 (en) 2014-02-11 2018-07-10 Evonik Degussa Gmbh Method for producing vitamin E-enriched, especially tocotrienol-enriched, compositions from natural oils
JP6548087B2 (en) * 2015-05-18 2019-07-24 国立大学法人東北大学 Selective separation of vitamin E

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799583A (en) * 1980-12-15 1982-06-21 Agency Of Ind Science & Technol Fractional concentration of tocotrienols
JP5700188B2 (en) * 2008-02-13 2015-04-15 国立大学法人東北大学 Method for simultaneous production of tocotrienol and biodiesel fuel from fats and oils

Also Published As

Publication number Publication date
JP5272073B2 (en) 2013-08-28
WO2010125988A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP6698704B2 (en) Process for refining glyceride oil, including basic quaternary ammonium salt treatment
JP4278910B2 (en) Esters manufacturing method
EP0633306A1 (en) Recovery of polyunsaturated triglycerides from an interesterification reaction zone
CN109569516B (en) Mixed adsorbent and application thereof, and polyunsaturated fatty acid treatment method and device
JP5700188B2 (en) Method for simultaneous production of tocotrienol and biodiesel fuel from fats and oils
JP2018517037A (en) Method for removing metal contaminants from glyceride oil and method for purifying glyceride oil incorporating the same
JP5272073B2 (en) Method for producing tocotrienol composition
CN104387271B (en) Purifying technique is adsorbed in the cyclic regeneration of tricarboxymethyl propane oleate
WO2010074291A1 (en) Method for manufacturing glycerin
JPS5888339A (en) Separating and purifying method of eicosapentaenoic acid or ester thereof and docosahexaenoic acid or ester thereof
CA2628304C (en) Method of refining episesamin
EP2154232B1 (en) Process for production of fatty acid esters
JP6256981B2 (en) Selective continuous recovery method of vitamin E from oil
US9963438B2 (en) Method for the production of vitamin E with a high purity, vitamin E produced by said method, and a composition comprising said vitamin E
JP4943001B2 (en) Method for producing tocotrienol-containing composition
WO2011039776A1 (en) High purity concentrates of polyunsaturated fatty acid and ester by copper complexation.
JP2757372B2 (en) Beads for separation and concentration of tocopherols and method for separation and concentration
KR102566735B1 (en) A method for separating unsaturated fatty acid alkyl ester
JPS5967245A (en) Method for concentrating and separating highly unsaturated fatty acid ester
KR950008979B1 (en) Abstrating method of high purity non-soap
US7368603B2 (en) Method for purifying compounds containing functional groups
JPS635073A (en) Production of carotene-containing concentrated material
EP3265576B1 (en) A method of separating rhamnolipids from a fermentation broth
JPS6037110B2 (en) Tocopherol purification and concentration method
JP2004305155A (en) Method for producing tocopherol and tocotrienol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130327

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R151 Written notification of patent or utility model registration

Ref document number: 5272073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250