JPS5967245A - Method for concentrating and separating highly unsaturated fatty acid ester - Google Patents

Method for concentrating and separating highly unsaturated fatty acid ester

Info

Publication number
JPS5967245A
JPS5967245A JP17680682A JP17680682A JPS5967245A JP S5967245 A JPS5967245 A JP S5967245A JP 17680682 A JP17680682 A JP 17680682A JP 17680682 A JP17680682 A JP 17680682A JP S5967245 A JPS5967245 A JP S5967245A
Authority
JP
Japan
Prior art keywords
fatty acid
acid ester
epa
synthetic zeolite
polar solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17680682A
Other languages
Japanese (ja)
Inventor
Yoshiro Abe
阿部 芳郎
Shoji Kame
亀 昌治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, Nippon Oil and Fats Co Ltd filed Critical NOF Corp
Priority to JP17680682A priority Critical patent/JPS5967245A/en
Publication of JPS5967245A publication Critical patent/JPS5967245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To concentrate and separate the titled compound, by adsorbing an ester of a fatty acid having a high unsaturation selectively from a fatty acid ester mixture on a synthetic zeolite, and desorbing the fatty acid ester selectively with a polar solvent. CONSTITUTION:A fatty acid ester mixture containing a highly unsaturated fatty acid ester (hereinafter abbreviated to EPA) is dissolved in a nonpolar solvent, e.g. n-hexane, and brought into contact with a synthetic zeolite 5-13Angstrom average inside pore diameter to adsorb the EPA thereon. The synthetic zeolite layer and the nonpolar solvent layers are fractionated to remove the fatty acid ester having a low unsaturation degree. A polar solvent, e.g. acetone, is then brought into contact with the synthetic zeolite layer to desorb the EPA, and the polar solvent is removed from the resultant polar solvent layer to concentrate and separate the EPA. The above-mentioned synthetic zeolite is capable of adsorbing the EPA selectively in the interior of pores, and the resultant EPA has a high purity without causing coloring due to no polymerizing nor isomerizing.

Description

【発明の詳細な説明】 本発明は合成ゼオライトの種々の脂肪酸エステルとの親
和力の違いを利用し、選択的に高度不飽和脂肪酸エステ
ル(以下の記載においてはEPAと略記する。)を含む
不飽和性の大きい脂肪酸エステルを合成ゼオライトに吸
着させ、ついで極性溶剤により選択的に脱着させること
によj)EPAを濃縮分離する方法に関するものである
Detailed Description of the Invention The present invention utilizes the difference in affinity of synthetic zeolite with various fatty acid esters to selectively synthesize unsaturated zeolites containing highly unsaturated fatty acid esters (abbreviated as EPA in the following description). The present invention relates to a method for concentrating and separating j) EPA by adsorbing fatty acid esters with high properties onto synthetic zeolite and then selectively desorbing them using a polar solvent.

本発明においてEPAとは、エイコサベンタエン酸エス
テル(C20:5)およびドコサヘキサエン酸エステル
(C22:6)を総称するものである。
In the present invention, EPA is a general term for eicosabentaenoic acid ester (C20:5) and docosahexaenoic acid ester (C22:6).

従来、動植物油、とシわけ魚油に含まれる11 pAは
主として魚〆に対する必須脂質として配合飼料などの形
で添加、用いられてきたが、EPAの人間に対する生理
活性とそれに基づく薬理効果が解明されて、その有用性
が確認されておシ、純度の高いEPAを工業的に製造す
る方法を開発することが必要になってきている。
Conventionally, 11 pA contained in animal and vegetable oils, especially fish oil, has been added and used in the form of compound feeds mainly as an essential lipid for fish fillets, but the physiological activity of EPA and its pharmacological effects on humans have been elucidated. Now that its usefulness has been confirmed, it has become necessary to develop a method for industrially producing EPA with high purity.

脂肪酸エステル混合物からEPA’i濃縮分離する方法
としては1)分子蒸留、2)尿素付加、3)薄層クロマ
トグラフィ、4)ガスクロマトグラフィ、5)高速液体
クロマトグラフィ、などがみられる。しかし、1)の方
法は異性化や重合が起きやすく、品質が低下する上に、
EPAの純度も約40%が限界である。2)の方法は多
量の尿素、およびメタノールなどの溶剤を必要とする上
に、純度も50%が限界である。3)%  4)、5)
の方法は高純度のEPAが得られるが、元来、分析方法
であるため、工業的規模でEPAを得るためには不利で
ある。
Methods for concentrating and separating EPA'i from a fatty acid ester mixture include 1) molecular distillation, 2) urea addition, 3) thin layer chromatography, 4) gas chromatography, and 5) high performance liquid chromatography. However, method 1) is prone to isomerization and polymerization, resulting in a decrease in quality.
The purity limit of EPA is also about 40%. Method 2) requires a large amount of urea and a solvent such as methanol, and has a purity limit of 50%. 3)% 4), 5)
Although the method described above yields highly pure EPA, it is originally an analytical method and is therefore disadvantageous for obtaining EPA on an industrial scale.

本発明者らは、高純度のEP A f工業的に供給する
方法を鋭意研究した結果、合成ゼオライトの特性に注目
して、この方法全発明した。
As a result of intensive research into a method for industrially supplying high-purity EP A f, the present inventors focused on the characteristics of synthetic zeolite and invented this method.

すなわち、本発明は下記a)〜d)の工程を実施するこ
とを特徴とするEPAの濃縮分離方法を提供するもので
ある。
That is, the present invention provides a method for concentrating and separating EPA, which is characterized by carrying out the following steps a) to d).

a)gpAを含む脂肪酸エステル混合物を無極性溶剤に
溶解し、これを平均内孔径5〜13Aの合成ゼオライト
に接触させて不飽和性の大きい脂肪酸エステルを吸着さ
せる工程、 b)合成ゼオライト層と無極性溶剤層とを分別して、無
極性溶剤とともに不飽和性の小さい脂肪酸エステルを除
去する工程、 C)合成ゼオライト層に(ツ性溶剤を接触させて、不飽
和性の大きい脂肪酸エステルを合成ゼオライト層から脱
着させる工程、 d)得られた極性溶剤層から極性溶剤を除去する工程。
a) A step of dissolving a fatty acid ester mixture containing gpA in a non-polar solvent and contacting it with a synthetic zeolite having an average pore diameter of 5 to 13 A to adsorb the highly unsaturated fatty acid ester, b) A step of dissolving the fatty acid ester mixture containing gpA in a non-polar solvent, and b) combining the synthetic zeolite layer with the non-polar one. C) A step of separating the fatty acid esters from the synthetic zeolite layer and removing the less unsaturated fatty acid esters together with the nonpolar solvent; d) removing the polar solvent from the obtained polar solvent layer.

本発明の方法で使用される脂肪酸エステルはEPAを含
む油脂抽鈷蜘蝕鎗禦とメタノール、エタノール、プロパ
ツール、ブタノールなどの低級アルコールとから得られ
るエステルであり、好捷しくけメタノール、エタノール
とのエステルである。
The fatty acid ester used in the method of the present invention is an ester obtained from a fat extract containing EPA and a lower alcohol such as methanol, ethanol, propatool, butanol, etc. It is an ester of

他にグリコール、グリセリンなどの多価アルコールの脂
肪酸エステルも用いることができる。
In addition, fatty acid esters of polyhydric alcohols such as glycol and glycerin can also be used.

具体例を示せば魚油、肝油などの海産動物油をはじめと
する各補動植物油類とメタノールまたはエタノールとを
触媒の存在下でエステル交換して得られる脂肪酸のメチ
ル筐たはエチルエステルなどである。また魚油、肝油を
その1−1使用することもできる。
Specific examples include methyl or ethyl esters of fatty acids obtained by transesterifying marine animal oils such as fish oil and cod liver oil, as well as various complementary animal and vegetable oils, with methanol or ethanol in the presence of a catalyst. Furthermore, fish oil and liver oil can also be used.

本発明において、無極性溶剤としては、n−へキサン、
シクロヘキサン、n−ペンタン、シクロペンタン、n−
オクタン、ベンゼン、キシレン、エーテルなど直鎖、オ
たは環状の無極性溶剤が広く使用できる。オだこれらの
2種以上の混合溶剤も使用できる。
In the present invention, the nonpolar solvent includes n-hexane,
Cyclohexane, n-pentane, cyclopentane, n-
A wide range of linear, cyclic, or cyclic nonpolar solvents such as octane, benzene, xylene, and ether can be used. A mixed solvent of two or more of these can also be used.

本発明で吸着剤として用いられる合成ゼオライトは平均
内孔径5〜13Aの範囲のものが奸才しく、特に8〜I
OAのものが好擾しい。
The synthetic zeolite used as an adsorbent in the present invention preferably has an average internal pore diameter in the range of 5 to 13 A, particularly 8 to I
I like the OA one.

平均内孔径5〜13Aの合成ゼオライトは、不飽和性の
大きい脂肪酸エステルを選択的に内孔部に吸着し、飽和
およびモノエンなどの脂肪酸エステルはほとんど吸着し
ない。この範囲よシも平均内孔径が小さいものは吸着性
が劣り、オたこの範囲よシも大きいものは選択性が悪く
なるので好捷しくない。
Synthetic zeolite with an average internal pore diameter of 5 to 13A selectively adsorbs highly unsaturated fatty acid esters into its internal pores, and hardly adsorbs saturated and monoene fatty acid esters. If the average pore diameter is smaller than this range, the adsorptivity will be poor, and if it is larger than this range, the selectivity will be poor, so it is not preferable.

本発明で用いられる極性溶剤としてはアセトン、メチル
エチルケトン、メタノール、エタノール、プロパツール
、クロロホルムなど広く極性溶剤が 5− 使用できる。またこれらの2種以上の混合溶剤も使用す
ることができる。不飽和性の大きい脂肪酸エステルを吸
着した合成ゼオライトに、この極性溶剤を接触させると
、溶剤の使用量に応じて選択的に順次脂肪酸エステルが
脱着されて溶剤に溶解してくる。
A wide range of polar solvents can be used in the present invention, such as acetone, methyl ethyl ketone, methanol, ethanol, propatool, and chloroform. A mixed solvent of two or more of these can also be used. When a synthetic zeolite that has adsorbed highly unsaturated fatty acid esters is brought into contact with this polar solvent, the fatty acid esters are selectively desorbed and dissolved in the solvent depending on the amount of solvent used.

処理温度は脂肪酸エステルを無極性溶剤に溶解し、合成
ゼオライトに接触させる工程、そのゼオライトに極性溶
剤を接触させて不飽和性の大きい脂肪酸エステルを脱着
させる工程、いずれも通常ゼオライトによる吸着、脱着
の際用いられる温度範囲(20〜70℃)で可能である
。温度が低いほど吸着も脱着も遅くなるので、ある程度
加熱したほうがよいが、しかし処理温度が使用する溶剤
の沸点よりも高くなると加圧装置が必要となシ、コスト
が高くなるので35〜55℃の範囲が特に好ましい。
The treatment temperature is the process of dissolving the fatty acid ester in a non-polar solvent and bringing it into contact with synthetic zeolite, and the process of bringing the zeolite into contact with a polar solvent to desorb the highly unsaturated fatty acid ester. This is possible within the temperature range commonly used (20 to 70°C). The lower the temperature, the slower the adsorption and desorption, so it is better to heat it to some extent, but if the processing temperature is higher than the boiling point of the solvent used, a pressurizing device will be required and the cost will increase, so the temperature should be 35 to 55℃. A range of is particularly preferred.

本発明を実施する方法としては、はじめにEPAを含む
油脂と低級アルコールとを触媒を用いて通常の方法でエ
ステル化した後、このエステルを 6 − その10〜100重侶倍の無極性溶剤に溶解する。
The method of carrying out the present invention is to first esterify a fat or oil containing EPA with a lower alcohol using a catalyst in a conventional manner, and then dissolve this ester in a non-polar solvent of 10 to 100 times the weight of 6-6. do.

次にこの溶液に上記合成ゼオライトをこのエステルの1
〜10重量倍〆加えて、03〜3時間攪拌した後、戸別
するか、甘たけあらかじめ設けたゼオライト層にこの溶
液を通過させる。ゼオライト層に通液する除、圧損失が
大きい場合はゼオライトに濾過助剤を混ぜることもでき
る。
Next, add 1 of the above synthetic zeolite to this solution.
After adding ~10 times the weight and stirring for ~3 hours, the solution is passed from door to door or through a zeolite layer that has been prepared in advance. If the pressure loss is large when the liquid is passed through the zeolite layer, a filter aid may be mixed with the zeolite.

以上の工程により胞和およびモノエンなどの不飽和性の
小さな脂肪酸エステルは無極性溶剤に溶解した状態でほ
とんど除かれる。
Through the above steps, most of the unsaturated small fatty acid esters such as spores and monoenes are removed while being dissolved in the nonpolar solvent.

次いで不飽和性の大きい脂肪酸エステルを吸着した合成
ゼオライトに、そのゼオライトの2〜100N量倍の極
性溶剤を加えて03〜2時間攪拌した後、戸別する工程
を1〜5回繰り返すか、捷たはゼオライト層にその10
〜100重■倍の極性溶剤を通過させ、流出する溶液を
2〜50のフラクションに分けることによって、ゼオラ
イトと親和力の弱い脂肪酸エステルから順次脱着させる
ことができ、同時にそれらを分離することができる。
Next, a polar solvent with an amount of 2 to 100 N times that of the zeolite was added to the synthetic zeolite that had adsorbed the highly unsaturated fatty acid ester, and the mixture was stirred for 3 to 2 hours, and the process of separating the mixture was repeated 1 to 5 times, or the mixture was shredded. 10 in the zeolite layer
By passing ~100 times the polar solvent and dividing the outflowing solution into 2 to 50 fractions, fatty acid esters with weak affinity for zeolite can be sequentially desorbed, and at the same time they can be separated.

合成ゼオライトに極性溶剤を1回に加える量を少なくシ
、攪拌、戸別する工程を繰り返すほどEPAの純度は向
上する。またゼオライト層に極性溶剤を通過させる場合
は、流出する溶液を細かく分けるほどl!l P Aの
純度の向上したものが得られる。EPAの使用目的に応
じて、上記範囲の中から条件を選定すればよい。
The purity of EPA improves as the amount of polar solvent added to the synthetic zeolite is reduced and the steps of pouring, stirring, and door-to-door repeating are repeated. Also, when passing a polar solvent through the zeolite layer, it is better to divide the flowing solution into smaller pieces! 1P A with improved purity is obtained. Conditions may be selected from the above range depending on the intended use of the EPA.

合成ゼオライトと脂肪酸エステルの親和力は不飽和性の
影響が一番強いが、脱着する順から脂肪酸エステルの炭
素数やその構造も因子となっていると考えられる。
The affinity between synthetic zeolite and fatty acid ester is most influenced by unsaturation, but the number of carbon atoms in the fatty acid ester and its structure are also considered to be factors, depending on the order of desorption.

次いで上記工程を用いて分割した溶液の中のEPAal
iの高いフラクションを単蒸留にかけることにより浴剤
と分離された純度の高いEPAが得られる。単蒸留で留
出した極性溶剤は再使用することができ、1だ他のフラ
クションも同様単蒸留することにより脂肪酸エステルと
溶剤に分けられ、脂肪酸エステルは他の用途に使用する
ことができ、溶剤は再使用できる。
Then the EPAal in the solution divided using the above process
By subjecting the high i fraction to simple distillation, highly pure EPA separated from the bath agent can be obtained. The polar solvent distilled by simple distillation can be reused, and the other fractions can also be separated into fatty acid ester and solvent by simple distillation, and the fatty acid ester can be used for other purposes, and the solvent can be reused.

なお合成ゼオライトは分別終了後、無極性溶剤でよ〈洗
浄することによって繰シ返し使用することが可能である
The synthetic zeolite can be used repeatedly by washing it with a nonpolar solvent after the separation.

以上のようICl、て得られたEPAは純度が高く、1
だ重合や異性化も生じないため、着色もほとんどないも
のである。
As described above, the EPA obtained by ICl has high purity and 1
Since neither polymerization nor isomerization occurs, there is almost no coloration.

次に実施例によって本発明を説明する。脂肪酸組成はす
べてガスクロマトグラフィlにより測定した。し人t6
)−/、11奎117.−1.贋ず。
Next, the present invention will be explained by examples. All fatty acid compositions were determined by gas chromatography. Shito t6
)-/, 11 奎117. -1. Fake.

実施例−1 イワシ、サバなどの雑魚油をソジュームメチラートヲ触
媒としてメタノールと反応させ、脂肪酸メチルエステル
を得た。この原料脂肪酸組成は表1(C2o:5−14
1%、C’=7.9%)のとお22 : 6 りであった。
Example 1 Fatty acid methyl ester was obtained by reacting small fish oil such as sardine and mackerel with methanol using sodium methylate as a catalyst. The fatty acid composition of this raw material is shown in Table 1 (C2o: 5-14
1%, C'=7.9%).

この脂肪酸メチm gにn−ヘキサン5000I!を加
えて浴解し、この溶液に平均内孔径9Aの合成ゼオライ
ト200tを加え、室温で2時間ゆっくり攪拌した後、
戸別した。次いでこのゼオライトにクロロホルム400
0#を加え、室温T1時間ゆっくり攪拌した後、戸別し
た。この戸 9− 液について溶剤を留去し、脂肪酸メチルエステル15.
31!f得た。その脂肪酸組成は表1(C2o。
5000 I of n-hexane to mg of this fatty acid methyl! 200 t of synthetic zeolite with an average internal pore diameter of 9 A was added to this solution, and after stirring slowly at room temperature for 2 hours,
We went door to door. Next, 400% of chloroform was added to this zeolite.
After adding 0# and slowly stirring at room temperature for T1 hour, the mixture was delivered to each door. 9- Distill the solvent off the liquid and extract the fatty acid methyl ester15.
31! I got f. Its fatty acid composition is shown in Table 1 (C2o.

5=65.3%、C2゜、6=17.5%)のとおりで
あった。表1の結果からEPAの純度向上が著しいこと
がわかる。
5=65.3%, C2°, 6=17.5%). It can be seen from the results in Table 1 that the purity of EPA was significantly improved.

比較例−1 実施例−1の平均内孔径9Aの合成ゼオライトのかわり
に平均内孔径4Aの合成ゼオライトを用いて、実施例−
1と全く同じ方法で行った。その結果、脂肪酸メチルエ
ステルは1.7 g Lか得うれず、1だ脂肪酸組成は
表1(C2o、5−234%。
Comparative Example-1 Using synthetic zeolite with an average internal pore diameter of 4A instead of the synthetic zeolite with an average internal pore diameter of 9A in Example-1, Example-
It was done in exactly the same way as 1. As a result, only 1.7 g L of fatty acid methyl ester was obtained, and the fatty acid composition was as shown in Table 1 (C2o, 5-234%).

C2□、6〜112%)に示したとおりであった。C2□, 6-112%).

E P Aの純度、収量ともに実施例−1より著しく劣
ることがわかる。
It can be seen that both the purity and yield of EPA are significantly inferior to Example-1.

実施例−2 実施例−1と同じ雑魚油にエタノールを反応させて得た
脂肪酸エチルエステル100fにベンゼン5oooy’
l加えて溶解し、この溶液に平均内孔径12Aの合成ゼ
オライト1009を加え、室温で1時間ゆっくり攪拌し
た後戸別した。後は実−I 〇− 5−678%、C=16.8%)のとおりであつ22 
: 6 た。
Example-2 5oooy' of benzene was added to 100f of fatty acid ethyl ester obtained by reacting the same small fish oil as in Example-1 with ethanol.
Synthetic zeolite 1009 having an average internal pore diameter of 12A was added to this solution, stirred slowly at room temperature for 1 hour, and then separated. The rest is as follows (Real-I 〇- 5-678%, C=16.8%)22
: 6.

実施例−3 実施例−2の脂肪酸エチルエステル」00tにn−ヘキ
サン4000JFk加えて溶解し、この溶液に平均内孔
径9Aの合成ゼオライト20Off加え、50℃で30
分ゆっくり撹拌した後戸別した。次いで、このゼオライ
トにクロロホルム500f’に加えて、40℃で30分
ゆっくり攪拌した後戸別した。さらにこのゼオライトに
クロロホルム3000fを加え、40℃で1時間ゆっく
り攪拌した後戸別した。このP液について溶剤を留去し
、脂肪酸エチルエステル146tを得た。その脂肪酸組
成は表1(C=79,3%、C2□、6=20 : 5 20.5%)゛のとおりであった。
Example 3 4000JFk of n-hexane was added to 00t of the fatty acid ethyl ester of Example 2 to dissolve it, 20Off of synthetic zeolite with an average internal pore diameter of 9A was added to this solution, and the mixture was heated at 50℃ for 30
After stirring slowly for several minutes, the mixture was separated. Next, 500 f' of chloroform was added to this zeolite, and the mixture was slowly stirred at 40° C. for 30 minutes and then separated. Further, 3000 f of chloroform was added to this zeolite, and the mixture was slowly stirred at 40° C. for 1 hour and then separated. The solvent was distilled off from this P solution to obtain 146 tons of fatty acid ethyl ester. The fatty acid composition was as shown in Table 1 (C=79.3%, C2□, 6=20:520.5%).

実施例−4 実施例−1の脂肪酸メチルエステル100tをヘキサン
/エーテル5o15o(li景比)の混合溶剤4000
pに溶解し、この溶液を実施例1と、5−638%、C
2□、6=14.6%)のとおシであった。
Example-4 100 tons of fatty acid methyl ester of Example-1 was mixed with 4000 tons of hexane/ether 5o15o (li ratio) mixed solvent.
This solution was combined with Example 1, 5-638%, C
2□, 6=14.6%).

実施例−5 実施例−2の脂肪酸エチルエステル100?をヘキサン
5000#[i解し、この溶液に平均内孔径6スの合成
ゼオライト200fを加え、40℃で1時間ゆっくり攪
拌した後戸別した。次いでこのゼオライトにエタノール
6000f′f、加え、40℃で1時間ゆっくり攪拌し
た後戸別した。このPiについて溶剤を留去し、脂肪酸
エチルエステル12.6#を得た。その脂肪酸組成は表
t(C20、s−712%、C=17.4%)のとおシ
22 : 6 であった。
Example-5 Fatty acid ethyl ester of Example-2 100? was dissolved in 5,000 # of hexane, 200 f of synthetic zeolite with an average internal pore diameter of 6 mm was added to this solution, and after stirring slowly at 40° C. for 1 hour, it was separated. Next, 6000 f'f of ethanol was added to this zeolite, and the mixture was slowly stirred at 40° C. for 1 hour and then separated. The solvent of this Pi was distilled off to obtain fatty acid ethyl ester 12.6#. The fatty acid composition was 22:6 as shown in Table t (C20, s-712%, C=17.4%).

サン50001?−を加えて溶解した溶液に平均内孔径
9Aの合成ゼオライト200tを加え、40℃で2時間
ゆつくり攪拌した後、P別した。次いでこのゼオライト
にクロロホルム4000pを加え、としてメタノールと
反応させ、脂肪酸メチルエステルとしてガスクロマド分
析を行った結果、脂肪酸組成は表1 (C2o、 5=
26.5%、C22:6=るトリグリセリドであるが、
EPAが脂肪酸として2分子結合したトリグリセリドは
ほとんど存在せず、 EPA’i含むトリグリセリドだ
け1loO%選択的に分離できたとしても、理論的に脂
肪酸組成としてEPAは35%前後にすぎない。従って
実施例−6の方法はgPAの濃縮分離が著しいことがわ
かる。
Sun 50001? 200 tons of synthetic zeolite having an average internal pore diameter of 9A was added to the solution prepared by adding and dissolving -, and after stirring slowly at 40°C for 2 hours, P was separated. Next, 4000p of chloroform was added to this zeolite and reacted with methanol. As a result of gas chromad analysis of fatty acid methyl ester, the fatty acid composition was found in Table 1 (C2o, 5=
26.5%, C22:6= triglyceride,
There are almost no triglycerides in which two molecules of EPA are bound as fatty acids, and even if only triglycerides containing EPA'i can be selectively separated by 100%, theoretically, EPA accounts for only about 35% of the fatty acid composition. Therefore, it can be seen that the method of Example 6 achieves remarkable concentration and separation of gPA.

比較例−2 実施例−6の平均内孔径9Aの合成ゼオライトのかわル
に平均内孔径4Aの合成ゼオライトを用13− いて、実施例−6と全く同じ方法で行った。そのと同じ
方法でメチルエステル化し、脂肪酸組成を分析した結果
、表1 (C2o、 5=16.2%、C22:6=s
、6%)に示したようにEPAの純度向上はほとんどみ
られなかった。
Comparative Example 2 A synthetic zeolite having an average internal pore diameter of 4A was used in place of the synthetic zeolite having an average internal pore diameter of 9A in Example 6, and the same method as in Example 6 was carried out. Methyl esterification was performed using the same method, and the fatty acid composition was analyzed, as shown in Table 1 (C2o, 5=16.2%, C22:6=s
, 6%), almost no improvement in the purity of EPA was observed.

実施例−7 実施例−2の脂肪酸エチルエステル1011を20of
のn−へキサンに溶解した後、平均内孔径10cAの合
成ゼオライト30gとケイソウ土3Ofをよく混合した
ものを充填した内径3.5 elI、深さ30αのグラ
スフィルター付円筒に通液した。
Example-7 20 of fatty acid ethyl ester 1011 of Example-2
After dissolving in n-hexane, the solution was passed through a cylinder with an inner diameter of 3.5 elI and a depth of 30α equipped with a glass filter filled with a well-mixed mixture of 30 g of synthetic zeolite with an average inner pore diameter of 10 cA and 3 Of diatomaceous earth.

この際カラムは50℃に保温し、通液速度は1d/分と
した。続いてクロロホルム500117を1M1Z分の
速度で通液し、流出液50m1ずつのフラクションに分
けた。それぞれのフラクションについて溶剤を留去した
結果、表2に示す脂肪酸エチルエステルを得た。フラク
ション4G、7,8のトータル収量は1.43 #であ
勺、C20:5の成分についてみると純度は811%、
その歩留シは14− 823%であった。
At this time, the column was kept warm at 50° C., and the liquid flow rate was 1 d/min. Subsequently, chloroform 500117 was passed through at a rate of 1 M 1 Z, and the effluent was divided into fractions of 50 ml each. As a result of distilling off the solvent from each fraction, fatty acid ethyl esters shown in Table 2 were obtained. The total yield of fractions 4G, 7, and 8 is 1.43 #, and the purity of the C20:5 component is 811%.
The yield was 14-823%.

このようにフラクションに分けることによシ、C2o、
5のみを選択的に濃縮分離することが可能である。
By dividing into fractions in this way, C2o,
It is possible to selectively concentrate and separate only 5.

以上実施例−】〜−7から明らかなように本発明の方法
はEPAの濃縮分離方法として非常に優れていることが
わかる。
As is clear from the above Examples 1 to 7, the method of the present invention is extremely excellent as a method for concentrating and separating EPA.

Claims (1)

【特許請求の範囲】 下記a)〜d)の工程を実施することを特徴とする高度
不飽和脂肪酸エステルの濃縮分離方法。 a)高度不飽和脂肪酸エステルを含む脂肪酸エステル混
合物を無極性溶剤に溶解し、これを平均内孔径5〜13
Aの合成ゼオライトに筬触させて不飽和性の大きい脂肪
酸エステルを吸着させる工程、 b)合成ゼオライト層と無極性溶剤層とを分別して、無
極性溶剤とともに不飽和性の小さい脂肪酸エステルを除
去する工程、 C)合成ゼオライト層に極性溶剤を接触させて、不飽和
性の大きい脂肪酸エステルを合成ゼオライト層から脱着
させる工程、 d)得られた極性溶剤層から極性溶剤を除去する工程。
[Scope of Claims] A method for concentrating and separating highly unsaturated fatty acid esters, which comprises carrying out the following steps a) to d). a) A fatty acid ester mixture containing a highly unsaturated fatty acid ester is dissolved in a non-polar solvent, and the average internal pore diameter is 5 to 13.
A step of adsorbing the highly unsaturated fatty acid ester by contacting the synthetic zeolite with a reed; b) separating the synthetic zeolite layer and the non-polar solvent layer to remove the less unsaturated fatty acid ester along with the non-polar solvent; Step C) A step of bringing a polar solvent into contact with the synthetic zeolite layer to desorb the highly unsaturated fatty acid ester from the synthetic zeolite layer; d) A step of removing the polar solvent from the obtained polar solvent layer.
JP17680682A 1982-10-07 1982-10-07 Method for concentrating and separating highly unsaturated fatty acid ester Pending JPS5967245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17680682A JPS5967245A (en) 1982-10-07 1982-10-07 Method for concentrating and separating highly unsaturated fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17680682A JPS5967245A (en) 1982-10-07 1982-10-07 Method for concentrating and separating highly unsaturated fatty acid ester

Publications (1)

Publication Number Publication Date
JPS5967245A true JPS5967245A (en) 1984-04-16

Family

ID=16020159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17680682A Pending JPS5967245A (en) 1982-10-07 1982-10-07 Method for concentrating and separating highly unsaturated fatty acid ester

Country Status (1)

Country Link
JP (1) JPS5967245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345235A (en) * 1985-11-21 1988-02-26 Kanegafuchi Chem Ind Co Ltd Concentration and separation of unsaturated fatty acid ester
JPS63290845A (en) * 1987-05-22 1988-11-28 Kanegafuchi Chem Ind Co Ltd Method for concentrating and separating highly unsaturated fatty acid ester
JPH03167294A (en) * 1989-11-27 1991-07-19 Shiseido Co Ltd Method for separating and purifying eicosapentaenoic acid compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345235A (en) * 1985-11-21 1988-02-26 Kanegafuchi Chem Ind Co Ltd Concentration and separation of unsaturated fatty acid ester
JPS63290845A (en) * 1987-05-22 1988-11-28 Kanegafuchi Chem Ind Co Ltd Method for concentrating and separating highly unsaturated fatty acid ester
JPH0456021B2 (en) * 1987-05-22 1992-09-07 Kanegafuchi Chemical Ind
US5149852A (en) * 1987-05-22 1992-09-22 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for concentration and separation of highly unsaturated fatty acid ester
JPH03167294A (en) * 1989-11-27 1991-07-19 Shiseido Co Ltd Method for separating and purifying eicosapentaenoic acid compound

Similar Documents

Publication Publication Date Title
US6433201B2 (en) Process for separating and purifying eicosapentaenoic acid or its ester
EP0092613A1 (en) Process for separating esters of fatty and rosin acids
WO2009063500A2 (en) Novel methods of isolation of poly unsaturated fatty acids
KR970002037B1 (en) PROCESS FOR PREPARING Ñß-LINOLEIC ACID FROM PERILLA
Li et al. Selective extraction and enrichment of polyunsaturated fatty acid methyl esters from fish oil by novel π-complexing sorbents
JPH08218091A (en) Production of high-purity highly unsaturated fatty acid and its derivative
JPS5888339A (en) Separating and purifying method of eicosapentaenoic acid or ester thereof and docosahexaenoic acid or ester thereof
JPS5967245A (en) Method for concentrating and separating highly unsaturated fatty acid ester
US5102582A (en) Process for separating fatty acids and triglycerides
Butterfield et al. Preparation of 9, 15‐octadecadienoate isomers
JP5272073B2 (en) Method for producing tocotrienol composition
JPS63112536A (en) Concentrating and purifying method for gamma-linolenic acid
Holman et al. Displacement Analysis of Lipids. VI. Separation of Unsaturated Acids1a
WO2011039776A1 (en) High purity concentrates of polyunsaturated fatty acid and ester by copper complexation.
JP2742569B2 (en) Method for separating polyunsaturated fatty acid ester having double bond at ω3 position and ω6 position
US5171870A (en) Process for separating triglycerides having different degrees of unsaturation
US5149852A (en) Process for concentration and separation of highly unsaturated fatty acid ester
US5175324A (en) Process for separating triglycerides having different degrees of unsaturation
JPS6137752A (en) Separation and purification of highly unsaturated long-chain fatty acid or its ester
JPH0768169B2 (en) Method for separating eicosapentaenoic acid ester and / or docosahexaenoic acid ester
WO2002100991A2 (en) Mono-, di- and triglycerides or their mixtures containing trans-fatty acid residues and method of their formation
JPS63295551A (en) Purification of carotene
JP2757372B2 (en) Beads for separation and concentration of tocopherols and method for separation and concentration
JPS59212486A (en) Purification and concentration of tocopherol
Johnson Separation of cis and trans-isomers of 1, 2-benzylidene glyceryl esters