JPWO2010087125A1 - 時間区間代表特徴ベクトル生成装置 - Google Patents

時間区間代表特徴ベクトル生成装置 Download PDF

Info

Publication number
JPWO2010087125A1
JPWO2010087125A1 JP2010548398A JP2010548398A JPWO2010087125A1 JP WO2010087125 A1 JPWO2010087125 A1 JP WO2010087125A1 JP 2010548398 A JP2010548398 A JP 2010548398A JP 2010548398 A JP2010548398 A JP 2010548398A JP WO2010087125 A1 JPWO2010087125 A1 JP WO2010087125A1
Authority
JP
Japan
Prior art keywords
feature vector
time interval
feature
time
representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010548398A
Other languages
English (en)
Other versions
JP4894956B2 (ja
Inventor
岩元 浩太
浩太 岩元
亮磨 大網
亮磨 大網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010548398A priority Critical patent/JP4894956B2/ja
Application granted granted Critical
Publication of JP4894956B2 publication Critical patent/JP4894956B2/ja
Publication of JPWO2010087125A1 publication Critical patent/JPWO2010087125A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/70Information retrieval; Database structures therefor; File system structures therefor of video data
    • G06F16/78Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/783Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • G06V20/46Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2151Time stamp

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Signal Processing (AREA)
  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

この時間区間代表特徴ベクトル生成装置は、フレームごとの特徴ベクトルの系列から、時間区間ごとに、時間区間に含まれる複数のフレームの特徴ベクトルを選定する時間区間内特徴ベクトル群選定手段と、時間区間ごとに、上記選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択し、時間区間を代表する特徴ベクトルである時間区間代表特徴ベクトルとして生成する次元選択手段とを備えている。

Description

本発明は、動画像データや音響データなどの時系列データを表す、フレームごとの特徴ベクトルの系列から、時間区間ごとに、その時間区間を代表する特徴ベクトルを生成する装置と方法に関し、特に時間区間内での時系列変化を記述できる時間区間代表特徴ベクトルを生成する時間区間代表特徴ベクトル生成装置、方法、およびプログラムに関する。
動画像データや音響データなどの時系列データを表す、フレームごとの特徴ベクトルの系列から、特徴の類似する時間区間を検索する(識別する)類似区間検索技術として、比較する2つの特徴ベクトル系列を、フレーム単位で逐次に照合し(類似度あるいは距離を計算する)、類似する時間区間を特定する方法がある。例えば非特許文献1では、動画像の検索において、国際標準規格ISO/IEC 15938−3に規定されているColor Layout Descriptor(カラーレイアウト記述子)をフレームごとの特徴ベクトルとして、フレーム単位で距離計算を行い、類似区間を識別している。
比較する特徴ベクトル系列を、フレーム単位で照合する方法は、検索に長時間を必要とする。このため、検索の高速化のため、フレーム単位で特徴ベクトルを照合するのではなく、複数のフレームを含む時間区間ごとに、時間区間を代表する特徴ベクトル(時間区間代表特徴ベクトルと呼ぶ)を生成し、生成した時間区間代表特徴ベクトルを用いて照合を行う方法が提案されている。
例えば、非特許文献2では、時間区間代表特徴ベクトルとして、時間区間に含まれる特徴ベクトルからヒストグラム特徴を生成している。具体的には、動画像のフレームごとの特徴ベクトルとして、フレーム画像を複数のサブ画像に分割し、それぞれのサブ画像の色成分値(R成分、G成分、B成分)を特徴量とした特徴ベクトルを用いている。時間区間代表特徴ベクトルは、時間区間に含まれるフレームの特徴ベクトルをベクトル量子化し、各量子化インデックスの出現頻度を表すヒストグラムとして生成している。
また非特許文献3や非特許文献4では、時間区間代表特徴ベクトルとして、時間区間内のキーフレームを選択し、選択されたキーフレームの特徴ベクトルをそのまま時間区間代表特徴ベクトルとして用いている。ここでは、動画像のショットを時間区間とし、ショットからキーフレームを選択して、その特徴ベクトルを時間区間代表特徴ベクトルとしている。
また非特許文献5では、時間区間代表特徴ベクトルとして、時間区間に含まれる複数のフレームの特徴ベクトルから、特徴ベクトルの次元ごとに特徴量の平均値、またはメディアン値を算出し、算出された平均値、またはメディアン値で構成される特徴ベクトルを時間区間代表特徴ベクトルとしている。
Eiji Kasutani, Ryoma Oami, Akio Yamada,Takami Sato, and Kyoji Hirata, "Video Material ArchiveSystem for Efficient Video Editing based on Media Identification", Proc. on ICME (International Conference on Multimedia and Expo)2004, Vol. 1, pp.727-730, June 2004. Kunio Kashino, Takayuki Kurozumi, Hiroshi Murase, "A Quick Search Method for Audio and Video Signals Based on HistogramPruning", IEEE Transactions on Multimedia, Vol. 5, No.3, September 2003. Anil Jain, Aditya Vailaya, and Wei Xiong, "Queryby Video Clip", Proc. on ICPR (International Conferenceon Pattern Recognition), Vol. 1, pp.16-20, Aug. 1998. 内田祐介、菅野勝、米山暁夫、"カラーレイアウトに基づく違法コピー検出手法"、2008年映像メディア処理シンポジウム(IMPS2008)予稿集、pp.69-70、2008年10月. 粕谷英司、山田昭雄、"代表特徴量を用いたビデオ識別処理の高速化"、2003年情報科学技術フォーラム(FIT2003)予稿集、pp.85-86、2003年.
しかしながら、非特許文献2から非特許文献5に記載の、時間区間代表特徴ベクトルは、時間区間における特徴ベクトル系列の時系列変化(時間変化)を記述できない。このため、上記の時間区間代表特徴ベクトルを用いた照合は、時間区間内の時系列変化を識別できない(異なる時系列変化を持つ特徴ベクトル系列を類似と判定する可能性が高くなる)ため、特徴ベクトル系列の検索の精度が低下する、という問題点がある。
具体的には、非特許文献2に記載の、時間区間代表特徴ベクトルとして、時間区間に含まれる特徴ベクトルのヒストグラム特徴を用いる方法では、ヒストグラムは時系列順序を記述できないため、時間区間における特徴ベクトル系列の時系列変化を記述できない(例えば、時系列変化が逆順であっても、同じヒストグラムとなる)。
また非特許文献3や非特許文献4に記載の、時間区間代表特徴ベクトルとして、時間区間内のキーフレームを選択し、選択されたキーフレームの特徴ベクトルをそのまま時間区間代表特徴ベクトルとして用いる方法では、選択された単一のフレームの特徴ベクトルを用いるため、時系列上のある一点の情報しか記述していないため、時間区間における特徴ベクトル系列の時系列変化を記述できない。
また非特許文献5に記載の、時間区間代表特徴ベクトルとして、時間区間に含まれる複数のフレームの特徴ベクトルから、特徴ベクトルの次元ごとに特徴量の平均値、またはメディアン値を算出し、算出された平均値、またはメディアン値で構成される特徴ベクトルを時間区間代表特徴ベクトルとする方法では、算出された時間区間代表特徴ベクトルの次元ごとの値は、時間区間内の時系列上の位置(時刻)との対応関係を無くしているため、時間区間における特徴ベクトル系列の時系列変化を記述できない(例えば、時系列変化が逆順であっても、同じ区間代表特徴ベクトルとなる)。
[発明の目的]
本発明の目的は、非特許文献2から非特許文献5に記載の時間区間代表特徴ベクトルでは時間区間における特徴ベクトル系列の時系列変化(時間変化)を記述できない、という課題を解決する時間区間代表特徴ベクトル生成装置を提供することにある。
本発明の一形態にかかる時間区間代表特徴ベクトル生成装置は、フレームごとの特徴ベクトルの系列から、時間区間ごとに、時間区間に含まれる複数のフレームの特徴ベクトルを選定する時間区間内特徴ベクトル群選定手段と、時間区間ごとに、上記選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択し、時間区間を代表する特徴ベクトルである時間区間代表特徴ベクトルとして生成する次元選択手段とを備えている。
本発明によれば、時系列データの、フレームごとの特徴ベクトル系列から、時間区間における特徴ベクトル系列の時系列変化を記述できる時間区間代表特徴ベクトルを生成する時間区間代表特徴ベクトル生成装置を提供することができる。このように時間区間内の時系列変化を記述できる時間区間代表特徴ベクトルを用いることで、時間区間代表特徴ベクトルによる特徴ベクトル系列の検索の精度を向上させることができる。
本発明の第1の実施の形態の構成を示すブロック図である。 多形状領域比較特徴を説明する図である。 時間区間の定め方の一例を示す図である。 時間区間の定め方の別の一例を示す図である。 時間区間の定め方のさらに別の一例を示す図である。 本発明の第1の実施の形態における時間区間内特徴ベクトル群選定手段が選定する方法の例を示す図である。 本発明の第1の実施の形態における次元選択手段が、特徴量を選択する方法の一例を示す図である。 本発明の第1の実施の形態における次元選択手段が、特徴量を選択する方法の別の一例を示す図である。 本発明の第1の実施の形態における次元選択手段が、特徴量を選択する方法のさらに別の一例を示す図である。 第1の特徴ベクトル系列検索システムの構成を示すブロック図である。 第2の特徴ベクトル系列検索システムの構成を示すブロック図である。 本発明の第1の実施の形態の動作を示すフローチャートである。 本発明の第2の実施の形態の構成を示すブロック図である。 本発明の第2の実施の形態における時間区間内特徴ベクトル群選定手段が選定する方法の一例を示す図である。 本発明の第3の実施の形態の構成を示すブロック図である。 本発明の第3の実施の形態における次元選択手段が、特徴量を選択する方法の一例を示す図である。
次に、本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施の形態]
図1を参照すると、本発明の第1の実施の形態に係る時間区間代表特徴ベクトル生成装置100は、フレームごとの特徴ベクトルを時系列順に並べた系列(特徴ベクトル系列)が入力され、時間区間を代表する特徴ベクトルである時間区間代表特徴ベクトルを出力する。時間区間代表特徴ベクトル生成装置100は、時間区間内特徴ベクトル群選定手段101と、次元選択手段102とを備えている。
時間区間内特徴ベクトル群選定手段101は、特徴ベクトルの系列が入力されると、時間区間ごとに、時間区間に含まれる複数のフレームの特徴ベクトルを選定し、時間区間ごとに選定された複数のフレームの特徴ベクトルの情報を、次元選択手段102へ供給する。
入力される特徴ベクトル系列は、動画像データや音響データなどの時系列データのフレームごとの特徴ベクトルを時系列順に並べた系列である。時系列データであれば、動画像データや音響データに限定されない。ここでフレームとは、時系列データの個々の要素であり、動画像データや音響データでない時系列データの場合も、便宜上、時系列データの個々の要素をフレームと呼ぶことにする。
フレームごとの特徴ベクトルは、複数の次元の特徴量から構成されるものである。例えば動画像データの場合は、例えば、動画像のフレームごとに抽出した、国際標準規格ISO/IEC 15938−3に規定されている各種視覚的特徴量(通称MPEG-7 Visual)、すなわち、Dominant Color、Color Layout、Scalable Color、Color Structure、Edge Histogram、Homogeneous Texture、Texture Browsing、Region Shape、Contour Shape、Shape 3D、Parametric Motion、Motion Activityなどであってもよい。
またフレームごとの特徴ベクトルを構成する複数次元の特徴量は、動画像データの場合、より多くの種類の動画像に対して有効性があるように改良された特徴量であることが望ましい。その一例を図2を参照して説明する。
図2は、より多くの種類の動画像に対して有効性があるように改良された特徴量の一例(以下、多形状領域比較特徴量と呼ぶ)の抽出方法を示す図である。多形状領域比較特徴量は、あらかじめ、特徴ベクトルの次元ごとに、その特徴量を抽出するための、画像内の2つの抽出領域(第1の抽出領域と第2の抽出領域)が定められている。抽出領域の形状に多様性がある点が特徴である。多形状領域比較特徴量を抽出するには、次元ごとに、次元ごとに定められた第1の抽出領域と第2の抽出領域の平均輝度値を算出し、第1の抽出領域の平均輝度値と第2の抽出領域の平均輝度値とを比較して(すなわち差分値に基づいて)、3値に量子化して(+1、0、−1)量子化インデックスを得る。第1の抽出領域の平均輝度値と第2の抽出領域の平均輝度値との差分値の絶対値がある規定の閾値以下の場合は、第1の抽出領域と第2の抽出領域の平均輝度値の差がないものとみなし、差がないことを示す量子化インデックス0とし、それ以外の場合は、第1の抽出領域の平均輝度値と第2の抽出領域の平均輝度値との大小を比較して、第1の抽出領域の平均輝度値のほうが大きい場合は量子化インデックスを+1、それ以外の場合は量子化インデックスを−1とする。ここで、次元nの第1の抽出領域の平均輝度値をVn1、第2の抽出領域の平均輝度値をVn2とし、規定の閾値をthとすると、次元nの量子化インデックスQnは、次式で算出することができる。
Qn=+1 (|Vn1−Vn2|>th かつ Vn1>Vn2 の場合)
0 (|Vn1−Vn2|≦th の場合)
−1 (|Vn1−Vn2|>th かつ Vn1≦Vn2 の場合)
…[式1]
音響データの場合は、例えば、音響フレーム(複数のサンプリング信号を含む分析窓)に対して周波数解析を行って算出した特徴ベクトルであってもよい。例えば、分析窓に対してフーリエ変換を行って、周波数領域のパワースペクトルを算出し、パワースペクトルを複数のサブバンドに分割して、各サブバンドの平均パワーの値を特徴量とした特徴ベクトルであってもよい。
ここで時間区間とは、時間軸上の連続区間のことである。時間区間内特徴ベクトル群選定手段101において、時間区間の定め方は、それが入力されるどの特徴ベクトル系列に対しても一定である限りは、任意である。
時間区間は例えば、時間軸上を一定の時間長(時間幅)で分割した個々の区間であってもよい。例えば図3−Aの例を参照すると、特徴ベクトル系列(フレーム系列)上で、一定の時間幅である10フレーム単位で分割した個々の区間を、時間区間と定めている。また例えば、一定の時間長である1秒単位で分割した個々の区間を、時間区間と定めてもよい。
また例えば、一定の時間長(時間幅)の区間を、一定間隔でずらしながら、区間の重複を許容するように、時間区間を定めてもよい。例えば図3−Bの例を参照すると、特徴ベクトル系列(フレーム系列)上で、一定の時間幅である10フレーム単位の区間を、4フレーム間隔でずらしながら、区間の重複を許容するように、時間区間を定めてもよい。また例えば、一定の時間長である1秒単位の区間を、1フレーム間隔でずらしながら、区間の重複を許容するように、時間区間を定めてもよい。
また時間区間は、常に一定の時間長(時間幅)である必要もない。例えば、図3−Cの例のように、例えば特徴ベクトル系列(フレーム系列)に対して変化点(例えば動画像データのショット分割点)を検出し、変化点間の個々の区間を、時間区間と定めてもよい。変化点は、例えば特徴ベクトル系列自体から検出してもよいし(例えば隣接するフレームの特徴ベクトルの距離計算を行い、距離が規定の閾値を超えた場合に変化点とする、など)、元の時系列データから検出してもよい。
時間区間内特徴ベクトル群選定手段101において、定めた時間区間ごとに、その時間区間に含まれる複数のフレームの特徴ベクトルを選定する方法は、それが入力されるどの特徴ベクトル系列に対しても一定である限りは、任意である。例えば、時間区間内特徴ベクトル群選定手段101は、例えば図4に示すように、時間区間に含まれる全てのフレームの特徴ベクトルを選定してもよい。また例えば、図4に示すように、一定の間隔でサンプリングしたフレームの特徴ベクトルを選定してもよい。その他の選定方法については図11、図12を参照して後述する。
次元選択手段102は、時間区間内特徴ベクトル群選定手段101から供給される、時間区間ごとの選定された複数のフレームの特徴ベクトルの情報から、時間区間ごとに、選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択し、時間区間代表特徴ベクトルとして出力する。
ここで、「異なるフレームの特徴ベクトルから異なる次元の特徴量を選択」とは、必ずしも選択される特徴量のフレームと次元の双方が全て重複なく選択されることに限らず、少なくとも2つ以上の異なるフレームの特徴ベクトルから、少なくとも2つ以上の異なる次元の特徴量を選択する、ということである。
ここで、次元選択手段102が選択する特徴量の次元数(すなわち、時間区間代表特徴ベクトルの次元数)は、任意でよい。例えば、入力として与えられた特徴ベクトル系列の特徴ベクトルの次元数がNである場合に、ここで選択する特徴量の次元数(時間区間代表特徴ベクトルの次元数)は、Nと同じであってもよい。またNよりも少なくても、Nよりも多くてもよい。
次元選択手段102が、選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択する方法は、それが入力されるどの特徴ベクトル系列に対しても一定である限りは、任意である。
具体例を図5に示す。図5は、時間区間で選定された11のフレームの特徴ベクトルを時系列順に配置したものを表している。各々のフレームの特徴ベクトルは、25次元の特徴量から構成されている。従って、この時間区間に対しては、11フレーム×25次元=275の特徴量がある。ここで、図5では、異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を、11個選択し、選択された11個の特徴量から構成される11次元の特徴ベクトルを、時間区間代表特徴ベクトルとして生成している。
次元選択手段102が、選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択する、別の方法の例を、図6と図7に示す。図6では、フレーム1からフレーム11まで順番に次元1から次元11まで1次元ずつ11個の異なる次元の特徴量を選択し、再びフレーム1からフレーム11まで順番に次元12から次元22まで1次元ずつ11個の異なる次元の特徴量を選択し、合計22個の特徴量から構成される22次元の特徴ベクトルを、時間区間代表特徴ベクトルとして生成している。また、図7では、フレーム1からフレーム11まで順番に次元1から次元22まで2次元ずつ合計22個の異なる次元の特徴量を選択し、合計22個の特徴量から構成される22次元の特徴ベクトルを、時間区間代表特徴ベクトルとして生成している。
次元選択手段102は、図5〜図7に例示したように、選択された時間区間内の複数のフレームから満遍なく、特徴ベクトルの異なる次元の特徴量を選択することが望ましい。例えば、選択された時間区間内の全てのフレームから、少なくとも1つの次元の特徴量を選択するようにしてもよい。時間区間内の複数のフレームから満遍なく特徴量を選択することにより、より多くの異なる時刻の特徴量を含む区間代表特徴ベクトルを構成できるため、より特徴ベクトル系列の時系列変化に対する識別能力を高めることができ、特徴ベクトル系列の検索精度を向上させることができる、という効果がある。
時間区間代表特徴ベクトル生成装置100が出力する、時間区間ごとの時間区間代表特徴ベクトルは、時間区間における特徴ベクトル系列の時系列変化を記述している。その理由は、時間区間内の時系列上の複数の位置(時刻)の特徴を集約しているからである。また、異なる次元の特徴量を選択しているので、生成される時間区間代表特徴ベクトルは、異なる意味を持つ特徴量(異なる次元の特徴量は、異なる手順にて抽出された特徴量であるため、それが持つ意味が異なる)を集約したものでもある。このように、時間区間代表特徴ベクトル生成装置100が出力する時間区間代表特徴ベクトルは、時間区間内の異なる位置の異なる意味を持つ特徴量を集約したものであるといえる。このために、冗長性が少なく、区間特徴代表特徴ベクトルの記述能力(識別能力)が高い。そのため、高精度な検索を可能にする。
時間区間代表特徴ベクトル生成装置100が出力する、時間区間ごとの時間区間代表特徴ベクトルを用いれば、時間区間内の時系列変化を識別できるため、時間区間ごとの高速かつ高精度な、特徴ベクトル系列の検索を行うことができる。時間区間代表特徴ベクトル生成装置100を用いて構成される特徴ベクトル系列検索システムについては、後述する。
[第1の実施の形態の動作の説明]
次に、図10のフローチャートを参照して、第1の実施の形態に係る時間区間代表特徴ベクトル生成装置100の動作を説明する。
まず、時間区間内特徴ベクトル群選定手段101は、特徴ベクトルの系列が入力されると、時間区間ごとに、時間区間に含まれる複数のフレームの特徴ベクトルを選定する(ステップA1)。そして、時間区間ごとに選定された複数のフレームの特徴ベクトルの情報を、次元選択手段102へ供給する。
次に、次元選択手段102は、時間区間内特徴ベクトル群選定手段101から供給される、時間区間ごとの選定された複数のフレームの特徴ベクトルの情報から、時間区間ごとに、選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択する(ステップA2)。そして時間区間代表特徴ベクトルとして出力する。
[第1の実施の形態の効果]
第1の実施の形態の時間区間代表特徴ベクトル生成装置100によれば、時間区間における特徴ベクトル系列の時系列変化を記述できる(識別できる)時間区間代表特徴ベクトルを生成することができる。その理由は、時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択して時間区間代表特徴ベクトルとすることで、時間区間内の時系列上の複数の位置(時刻)の特徴を集約しているからである。このように、生成された時間区間代表特徴ベクトルは、時間区間における特徴ベクトル系列の時系列変化を識別できる(異なる時系列変化を持つ特徴ベクトル系列を識別できる)ため、特徴ベクトル系列の検索の精度を向上させることができる。
また、生成された時間区間代表特徴ベクトルは、元の特徴ベクトル系列からサンプリングされたものであるため、その照合を行う際は、元のフレームごとの特徴ベクトルの照合方法と同一でよい。したがって、図9を参照して後述する第2の特徴ベクトル系列検索システムのように、区間代表特徴ベクトルの照合とフレーム単位の照合とを階層的に行うシステムにおいて、照合を行う回路を単一のものにできる、という効果もある。
[第2の実施の形態]
図11を参照すると、本発明の第2の実施の形態に係る時間区間代表特徴ベクトル生成装置110は、第1の実施の形態に係る時間区間代表特徴ベクトル生成装置100の時間区間内特徴ベクトル群選定手段101が、時間区間内特徴ベクトル群選定手段111に置き換わる点において異なる。
時間区間内特徴ベクトル群選定手段111には、特徴ベクトル系列のフレームレートを示す情報と、時間区間代表特徴ベクトルを生成する基準のフレームレートを示す情報とが入力される。時間区間内特徴ベクトル群選定手段111は、特徴ベクトル系列特徴ベクトルの系列が入力されると、特徴ベクトル系列のフレームレートを用いて、前記特徴ベクトル系列から、前記基準のフレームレートにおけるサンプル位置を特定し、特定されたサンプル位置の複数のフレームの特徴ベクトルを選定し、時間区間ごとに選定された複数のフレームの特徴ベクトルの情報を、次元選択手段102へ供給する。
図12に、具体例を示す。図12では、特徴ベクトル系列のフレームレートは30フレーム/秒であり、時間区間として1秒区間(すなわち30フレーム)が定められているとする。ここで時間区間代表特徴ベクトルを生成する基準のフレームレートが5フレーム/秒であるとする。時間区間内特徴ベクトル群選定手段111は、特徴ベクトル系列のフレームレートである30フレーム/秒を示す情報と、基準フレームレートである5フレーム/秒の情報が入力されると、時間区間内の30フレーム/秒の特徴ベクトル系列における、基準フレームレートの5フレーム/秒に該当するサンプル位置を特定する。
サンプル位置を特定する方法としては、
サンプリング間隔(フレーム)
=特徴ベクトル系列のフレームレート÷基準フレームレート
としてサンプリング間隔を算出し、それに従ってサンプル位置を特定してもよい。ここの例では、サンプリング間隔=30÷5=6となるので、6フレームごとに1つのフレームをサンプリングすればよい。なお、サンプリング間隔が整数値ではなく、小数値となる場合は、例えば、小数で算出されるサンプル位置を四捨五入して得られる整数値のサンプル位置のフレームを、サンプリングすればよい。
こうして特定されたサンプル位置の複数のフレームを選定し、その情報を次元選択手段102へ供給する。
[第2の実施の形態の効果]
第2の実施の形態による時間区間代表特徴ベクトル生成装置110によれば、異なるフレームレートを持つ特徴ベクトル系列であっても、相互に比較可能な時間区間代表特徴ベクトルを生成することができる。その理由は、時間区間代表特徴ベクトルを生成する基準のフレームレートを用いて、時間区間代表特徴ベクトルを生成するために選定される特徴ベクトルのフレーム列を、基準のフレームレートに統一するためである。
例えば、フレームレートが30フレーム/秒である第1の特徴ベクトル系列と、フレームレートが15フレーム/秒である第2の特徴ベクトル系列とが、同じ動画像から生成されているとする。これは例えば、動画像Xから生成した特徴ベクトル系列と、この動画像Xのフレームレートを半分にした動画像X’から生成した特徴ベクトル系列とに相当する。今、時間区間として1秒区間が定められ、また、時間区間代表特徴ベクトルを生成する基準のフレームレートを5フレーム/秒とする。このとき、第1の特徴ベクトル系列からは、30フレームから6フレーム置きに5フレーム選択される。他方、第2の特徴ベクトル系列からは、15フレームから3フレーム置きに5フレーム選択される。このとき第2の特徴ベクトル系列から選択される5フレームは、第1の特徴ベクトル系列から選択された5フレームと同じフレームになる。
これにより、フレームレートの異なる特徴ベクトル系列に対しても、時間区間代表特徴ベクトルによる高精度な検索が可能となる。
[第3の実施の形態]
図13を参照すると、本発明の第3の実施の形態に係る時間区間代表特徴ベクトル生成装置120は、第1の実施の形態に係る時間区間代表特徴ベクトル生成装置100の次元選択手段102が、次元選択手段122に置き換わる点において異なる。
次元選択手段122には、特徴ベクトルの次元ごとの重要度を示す情報(次元別重要度情報)が入力される。次元選択手段122は、時間区間内特徴ベクトル群選定手段101から供給される、時間区間ごとの選定された複数のフレームの特徴ベクトルの情報から、時間区間ごとに、選定された時間区間内の異なるフレームの特徴ベクトルから、次元ごとの重要度に従って、重要度の高い次元から順に、特徴ベクトルの異なる次元の特徴量を選択し、時間区間代表特徴ベクトルとして出力する。
次元ごとの重要度を示す情報は、例えば、次元ごとの重要度を数値化した情報であってもよいし、次元ごとの重要度の順列を表す情報であってもよい。あるいは、重要度を1か0の2値で表現した情報であってもよい。重要度の意味づけは任意であるが、例えば、特徴ベクトルの次元の特徴量の検索精度に対する寄与の度合いや、特徴ベクトルの次元の特徴量が有する識別能力の度合い(異なるデータを識別できる度合い)や、特徴ベクトルの次元の特徴量が有する頑健性の度合い(データに対する各種雑音や加工処理に対する耐性)、などであってもよい。
図14に具体例を示す。図14では、特徴ベクトル系列の特徴ベクトルが25次元の特徴量で構成されており、それぞれ次元1から次元25とする。ここで、次元ごとの重要度は、次元の番号が大きくなるにつれて、小さくなっていくものとする。すなわち、次元は重要度の高い順に整列されており、次元1が重要度が最も高く、次元25が重要度が最も低い。次元選択手段122には、次元別重要度情報として、次元が重要度の高い順に整列されていることを示す情報が入力され、次元選択手段122はそれに従って、次元の番号が小さい次元の特徴量を、順に選択していく。図14では、25次元の特徴ベクトルのうち、次元の重要度が高い順に、次元1から次元11の合計11次元の特徴量を選択している。
[第3の実施の形態の効果]
第3の実施の形態による時間区間代表特徴ベクトル生成装置120によれば、特徴ベクトルの次元の重要度の高い次元から、時間区間代表特徴ベクトルを生成することができる。これは、元の特徴ベクトルの次元の数よりも、生成する時間区間代表特徴ベクトルの次元の数を小さくする場合に、より重要度の高い次元を選択するため、効果的である。
次に、本発明の時間区間代表特徴ベクトル生成装置を用いて構成される特徴ベクトル系列検索システムについて説明する。なお、以降では、特徴ベクトル系列検索システムは、時間区間代表特徴ベクトル生成装置100を用いて構成されるものとして説明するが、もちろん、第2の実施の形態に記載の時間区間代表特徴ベクトル生成装置110や、第3の実施の形態に記載の時間区間代表特徴ベクトル生成装置120を用いて、構成されていてもよい。
[第1の特徴ベクトル系列検索システム]
図8を参照すると、本発明による第1の特徴ベクトル系列検索システムは、時間区間代表特徴ベクトル生成装置100と、照合装置200とを備える。
時間区間代表特徴ベクトル生成装置100には、第1の特徴ベクトル系列と、第2の特徴ベクトル系列とが入力され、第1の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルと、第2の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルと、を出力する。出力された第1の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルと、第2の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルとは、照合装置200へ供給される。
照合装置200は、時間区間代表特徴ベクトル照合手段201を備える。時間区間代表特徴ベクトル照合手段201は、時間区間代表特徴ベクトル生成装置100から供給される第1の第1の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルと、第2の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルとを照合して、時間区間代表特徴ベクトルどうしが類似するか否かを判定し、類似すると判定した場合に、それぞれの該当時間区間の情報を類似時間区間情報として出力する。
第1の特徴ベクトル系列のある時間区間に対応した時間区間代表特徴ベクトルと、第2の特徴ベクトル系列のある時間区間に対応した時間区間代表特徴ベクトルとを照合する方法には、例えば以下の方法がある。まず比較する時間区間代表特徴ベクトルどうしが、類似する度合いを算出する。例えば、ベクトル間の距離(ユークリッド距離、ハミング距離など)、またはベクトル間の類似度(コサイン類似度など)を算出して、類似する度合いを算出する。ベクトル間の距離を用いた場合は、値が小さいほど類似していて、ベクトル間の類似度を用いた場合は、値が大きいほど類似していると判定できる。こうして算出した類似する度合いの数値を、ある所定の閾値(この閾値は、例えばあらかじめ与えられているものとする)で閾値処理をして、類似しているか否かを判定する。例えば、ベクトル間の距離を用いた場合は、所定の閾値よりも値が小さい場合に類似していると判定し、またベクトル間の類似度を用いた場合は、所定の閾値よりも値が大きい場合に類似していると判定する。そして、類似していると判定された場合は、それぞれの時間区間代表特徴ベクトルが対応する時間区間の情報を類似時間区間情報として出力する。例えば、第1の特徴ベクトル系列の80フレームから100フレームの時間区間に対応する時間区間代表特徴ベクトルと、第2の特徴ベクトル系列の250フレームから270フレームの時間区間に対応する時間区間代表特徴ベクトルとが、類似していると判定された場合には、例えば、第1の特徴ベクトル系列の80フレームから100フレーム、第2の特徴ベクトル系列の250フレームから270フレームが、類似時間区間であるとして、出力してもよい。これは、時間区間代表特徴ベクトル照合手段201が、照合を行う方法の一例であり、この方法に限られない。
第1の特徴ベクトル系列検索システムによれば、時間区間代表特徴ベクトルを用いた高速かつ、時間区間内の時系列変化を識別できる高精度な、特徴ベクトル系列の検索を実現できる。
[第2の特徴ベクトル系列検索システム]
図9を参照すると、本発明による第2の特徴ベクトル系列検索システムは、第1の特徴ベクトル系列検索システムの照合装置200が、照合装置210に置き換わる点が異なる。
照合装置210は、時間区間代表特徴ベクトル照合手段201とフレーム単位特徴ベクトル照合手段212とを備える。
時間区間代表特徴ベクトル照合手段201は、第1の特徴ベクトル系列検索システムにおけるものと同じなので、ここでは説明を省略する。
フレーム単位特徴ベクトル照合手段212は、入力される第1の特徴ベクトル系列と、第2の特徴ベクトル系列との、時間区間代表特徴ベクトル照合手段201が出力する類似時間区間情報が示す各々の時間区間に含まれるフレームの特徴ベクトルを、フレーム単位で再度照合し、類似する時間区間であると判定した場合に、類似時間区間情報を出力する。
第1の特徴ベクトル系列の類似時間区間に含まれるフレームの特徴ベクトルと、第2の特徴ベクトル系列の類似時間区間に含まれるフレームの特徴ベクトルとを、フレーム単位で照合する場合には、例えば、時間区間内の対応するフレーム(時間区間内の相対的な位置が同じフレーム)の特徴ベクトルどうしで、類似する度合いを算出し(例えば、ベクトル間の距離や類似度)、閾値処理を行って、連続的に類似すると判定される場合に、類似する時間区間と判定することができる。これは、フレーム単位特徴ベクトル照合手段212が照合を行う方法の一例であり、この方法に限られない。
第2の特徴ベクトル系列検索システムによれば、時間区間代表特徴ベクトルを用いた高速かつ、時間区間内の時系列変化を識別できる高精度な、特徴ベクトル系列の検索を第1段目の検索として行い、そこで類似時間区間と判定された時間区間に対してのみ、元の特徴ベクトル系列によるフレーム単位の、より高精度な照合を行うことができる(階層的な照合・検索)。
以上本発明の実施の形態について説明したが、本発明は以上の実施の形態にのみ限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解しうる様々な変更をすることができる。また、本発明の時間区間代表特徴ベクトル生成装置および照合装置は、その有する機能をハードウェア的に実現することは勿論、コンピュータとプログラムとで実現することができる。プログラムは、磁気ディスクや半導体メモリ等のコンピュータ可読記録媒体に記録されて提供され、コンピュータの立ち上げ時などにコンピュータに読み取られ、そのコンピュータの動作を制御することにより、そのコンピュータを前述した各実施の形態における時間区間代表特徴ベクトル生成装置、照合装置として機能させる。
なお、本発明は、日本国にて2009年1月29日に特許出願された特願2009−17807の特許出願に基づく優先権主張の利益を享受するものであり、当該特許出願に記載された内容は、全て本明細書に含まれるものとする。
本発明の活用例として、動画像データや音響データなどの検索に利用することができる。例えば、映画コンテンツや音楽コンテンツが蓄積されたデータベースから、所望のコンテンツを高速に検索することができる。また、インターネットなどに違法にアップロードされた動画像データや音響データの、違法コピーの検知に用いることもできる。
100…時間区間代表特徴ベクトル生成装置
101…時間区間内特徴ベクトル群選定手段
102…次元選択手段
200…照合装置
201…時間区間代表特徴ベクトル照合手段
210…照合装置
201…時間区間代表特徴ベクトル照合手段
212…フレーム単位特徴ベクトル照合手段
110…時間区間代表特徴ベクトル生成装置
111…時間区間内特徴ベクトル群選定手段
120…時間区間代表特徴ベクトル生成装置
122…次元選択手段

Claims (19)

  1. フレームごとの特徴ベクトルの系列から、時間区間ごとに、時間区間に含まれる複数のフレームの特徴ベクトルを選定する時間区間内特徴ベクトル群選定手段と、
    時間区間ごとに、前記選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択し、時間区間を代表する特徴ベクトルである時間区間代表特徴ベクトルとして生成する次元選択手段と、
    を備えることを特徴とする時間区間代表特徴ベクトル生成装置。
  2. 前記特徴ベクトル系列は、動画像データのフレームごとの特徴ベクトルの系列である
    ことを特徴とする請求項1に記載の時間区間代表特徴ベクトル生成装置。
  3. 前記特徴ベクトルは、動画像のフレームにおける、複数の部分領域対の、対をなす2つの部分領域の特徴量の差分値に基づいて算出される
    ことを特徴とする請求項2に記載の時間区間代表特徴ベクトル生成装置。
  4. 前記次元選択手段は、前記選定された時間区間内の全てのフレームの特徴ベクトルから、少なくとも1つの次元の特徴量を選択する
    ことを特徴とする請求項1乃至3の何れか1項に記載の時間区間代表特徴ベクトル生成装置。
  5. 前記時間区間内特徴ベクトル群選定手段は、
    前記特徴ベクトル系列のフレームレートを示す情報と、時間区間代表特徴ベクトルを生成する基準のフレームレートを示す情報とに基づいて、前記特徴ベクトル系列から、前記基準フレームレートにおけるサンプル位置を特定し、特定されたサンプル位置の複数のフレームの特徴ベクトルを選定する、
    ことを特徴とする請求項1乃至4の何れか1項に記載の時間区間代表特徴ベクトル生成装置。
  6. 前記時間区間内特徴ベクトル群選定手段は、
    前記特徴ベクトル系列のフレームレートと前記基準フレームレートとの比によって定まるサンプリング間隔に基づいてサンプル位置を特定する
    ことを特徴とする請求項5に記載の時間区間代表特徴ベクトル生成装置。
  7. 前記次元選択手段は、
    あらかじめ定められた特徴ベクトルの次元ごとの重要度に従って、重要度の高い次元から順に、前記選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択する、
    ことを特徴とする請求項1乃至6の何れか1項に記載の時間区間代表特徴ベクトル生成装置。
  8. 請求項1乃至7の何れか1項に記載の時間区間代表特徴ベクトル生成装置によって生成された、第1の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルと、第2の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルとを照合して、時間区間代表特徴ベクトルどうしが類似するか否かを判定する第1の照合手段、
    を備える照合装置。
  9. 前記第1の照合手段によって類似すると判定した時間区間代表特徴ベクトルの対に対して、それぞれに対応する時間区間に含まれるフレームの特徴ベクトルを、フレーム単位で照合する第2の照合手段、
    を備えることを特徴とする請求項8に記載の照合装置。
  10. フレームごとの特徴ベクトルの系列から、時間区間ごとに、時間区間に含まれる複数のフレームの特徴ベクトルを選定し、
    時間区間ごとに、前記選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択し、時間区間を代表する特徴ベクトルである時間区間代表特徴ベクトルとして生成する
    ことを特徴とする時間区間代表特徴ベクトル生成方法。
  11. 前記特徴ベクトル系列は、動画像データのフレームごとの特徴ベクトルの系列である
    ことを特徴とする請求項10に記載の時間区間代表特徴ベクトル生成方法。
  12. 前記特徴ベクトルは、動画像のフレームにおける、複数の部分領域対の、対をなす2つの部分領域の特徴量の差分値に基づいて算出される
    ことを特徴とする請求項11に記載の時間区間代表特徴ベクトル生成方法。
  13. 前記時間区間代表特徴ベクトルの生成では、前記選定された時間区間内の全てのフレームの特徴ベクトルから、少なくとも1つの次元の特徴量を選択する
    ことを特徴とする請求項10乃至12の何れか1項に記載の時間区間代表特徴ベクトル生成方法。
  14. 前記複数のフレームの特徴ベクトルの選定では、
    前記特徴ベクトル系列のフレームレートを示す情報と、時間区間代表特徴ベクトルを生成する基準のフレームレートを示す情報とに基づいて、前記特徴ベクトル系列から、前記基準フレームレートにおけるサンプル位置を特定し、特定されたサンプル位置の複数のフレームの特徴ベクトルを選定する
    ことを特徴とする請求項10乃至13の何れか1項に記載の時間区間代表特徴ベクトル生成方法。
  15. 前記複数のフレームの特徴ベクトルの選定では、
    前記特徴ベクトル系列のフレームレートと前記基準フレームレートとの比によって定まるサンプリング間隔に基づいてサンプル位置を特定する
    ことを特徴とする請求項14に記載の時間区間代表特徴ベクトル生成方法。
  16. 前記時間区間代表特徴ベクトルの生成では、
    あらかじめ定められた特徴ベクトルの次元ごとの重要度に従って、重要度の高い次元から順に、前記選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択する、
    ことを特徴とする請求項10乃至15の何れか1項に記載の時間区間代表特徴ベクトル生成方法。
  17. 請求項10乃至16の何れか1項に記載の時間区間代表特徴ベクトル生成方法によって生成された、第1の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルと、第2の特徴ベクトル系列の時間区間ごとの時間区間代表特徴ベクトルとを照合して、時間区間代表特徴ベクトルどうしが類似するか否かを判定する
    ことを特徴とする照合方法。
  18. 前記類似すると判定した時間区間代表特徴ベクトルの対に対して、それぞれに対応する時間区間に含まれるフレームの特徴ベクトルを、フレーム単位で照合する
    ことを特徴とする請求項17に記載の照合方法。
  19. コンピュータを、
    フレームごとの特徴ベクトルの系列から、時間区間ごとに、時間区間に含まれる複数のフレームの特徴ベクトルを選定する時間区間内特徴ベクトル群選定手段と、
    時間区間ごとに、前記選定された時間区間内の異なるフレームの特徴ベクトルから、特徴ベクトルの異なる次元の特徴量を選択し、時間区間を代表する特徴ベクトルである時間区間代表特徴ベクトルとして生成する次元選択手段と
    して機能させるためのプログラム。
JP2010548398A 2009-01-29 2010-01-19 時間区間代表特徴ベクトル生成装置 Active JP4894956B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010548398A JP4894956B2 (ja) 2009-01-29 2010-01-19 時間区間代表特徴ベクトル生成装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009017807 2009-01-29
JP2009017807 2009-01-29
JP2010548398A JP4894956B2 (ja) 2009-01-29 2010-01-19 時間区間代表特徴ベクトル生成装置
PCT/JP2010/000247 WO2010087125A1 (ja) 2009-01-29 2010-01-19 時間区間代表特徴ベクトル生成装置

Publications (2)

Publication Number Publication Date
JP4894956B2 JP4894956B2 (ja) 2012-03-14
JPWO2010087125A1 true JPWO2010087125A1 (ja) 2012-08-02

Family

ID=42395391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010548398A Active JP4894956B2 (ja) 2009-01-29 2010-01-19 時間区間代表特徴ベクトル生成装置

Country Status (6)

Country Link
US (1) US8175392B2 (ja)
EP (1) EP2383990B1 (ja)
JP (1) JP4894956B2 (ja)
KR (1) KR101352448B1 (ja)
CN (1) CN102301698B (ja)
WO (1) WO2010087125A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0917417D0 (en) * 2009-10-05 2009-11-18 Mitsubishi Elec R&D Ct Europe Multimedia signature coding and decoding
KR101612212B1 (ko) * 2011-11-18 2016-04-15 닛본 덴끼 가부시끼가이샤 국소 특징 기술자 추출 장치, 국소 특징 기술자 추출 방법, 및 프로그램을 기록한 컴퓨터 판독가능 기록 매체
CN102857778B (zh) * 2012-09-10 2015-01-21 海信集团有限公司 3d视频转换系统和方法及其选择关键帧的方法和装置
KR101957944B1 (ko) * 2014-11-13 2019-03-13 삼성전자주식회사 영상의 주파수 특성 정보를 포함하는 메타 데이터를 생성하는 방법 및 장치
CN105245950B (zh) * 2015-09-25 2018-09-14 精硕科技(北京)股份有限公司 视频广告监播方法及装置
CN106095764A (zh) * 2016-03-31 2016-11-09 乐视控股(北京)有限公司 一种动态图片处理方法及系统
CN107871190B (zh) * 2016-09-23 2021-12-14 阿里巴巴集团控股有限公司 一种业务指标监控方法及装置
CN108874813B (zh) * 2017-05-10 2022-07-29 腾讯科技(北京)有限公司 一种信息处理方法、装置及存储介质
KR102261928B1 (ko) * 2019-12-20 2021-06-04 조문옥 기계학습이 완료된 사물 인식 모델을 통해 동영상에 대한 상황 정보 판단이 가능한 동영상 정보 판단장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0171118B1 (ko) * 1995-03-20 1999-03-20 배순훈 비디오신호 부호화 장치
KR0171154B1 (ko) * 1995-04-29 1999-03-20 배순훈 특징점 기반 움직임 추정을 이용하여 비디오 신호를 부호화하는 방법 및 장치
US6404925B1 (en) * 1999-03-11 2002-06-11 Fuji Xerox Co., Ltd. Methods and apparatuses for segmenting an audio-visual recording using image similarity searching and audio speaker recognition
JP3408800B2 (ja) * 2000-04-27 2003-05-19 日本電信電話株式会社 信号検出方法、装置及びそのプログラム、記録媒体
EP1161098B1 (en) * 2000-04-27 2011-06-22 Nippon Telegraph And Telephone Corporation Signal detection method and apparatus
US6859554B2 (en) * 2001-04-04 2005-02-22 Mitsubishi Electric Research Laboratories, Inc. Method for segmenting multi-resolution video objects
JP2004234613A (ja) * 2002-12-02 2004-08-19 Nec Corp 映像記述システムおよび方法、映像識別システムおよび方法
KR100679124B1 (ko) * 2005-01-27 2007-02-05 한양대학교 산학협력단 이미지 시퀀스 데이터 검색을 위한 정보 요소 추출 방법및 그 방법을 기록한 기록매체
JP2006351001A (ja) * 2005-05-19 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> コンテンツ特徴量抽出方法及び装置及びコンテンツ同一性判定方法及び装置
JP2007336106A (ja) * 2006-06-13 2007-12-27 Osaka Univ 映像編集支援装置
JP5186618B2 (ja) 2007-07-11 2013-04-17 株式会社マルサンテクノス 鳥害防止用装置

Also Published As

Publication number Publication date
EP2383990A1 (en) 2011-11-02
KR101352448B1 (ko) 2014-01-17
EP2383990B1 (en) 2017-09-20
KR20110105793A (ko) 2011-09-27
US20110274359A1 (en) 2011-11-10
US8175392B2 (en) 2012-05-08
EP2383990A4 (en) 2012-08-29
CN102301698A (zh) 2011-12-28
JP4894956B2 (ja) 2012-03-14
CN102301698B (zh) 2014-08-27
WO2010087125A1 (ja) 2010-08-05

Similar Documents

Publication Publication Date Title
JP4894956B2 (ja) 時間区間代表特徴ベクトル生成装置
US8467611B2 (en) Video key-frame extraction using bi-level sparsity
WO2009129328A1 (en) Universal lookup of video-related data
CA2696890A1 (en) Detection and classification of matches between time-based media
EP1067786A1 (en) Data describing method and data processor
JP5634075B2 (ja) 画像のシーケンスを処理する方法および装置、画像データを処理する装置、ならびにコンピュータプログラム製品
JP5366212B2 (ja) 多数の参照用映像の中から検索キー用映像を用いて検索する映像検索装置、プログラム及び方法
US7778469B2 (en) Methods and systems for discriminative keyframe selection
JP2010186307A (ja) 動画コンテンツ識別装置および動画コンテンツ識別方法
Varghese et al. A novel video genre classification algorithm by keyframe relevance
Jun et al. Duplicate video detection for large-scale multimedia
Tan et al. Accelerating near-duplicate video matching by combining visual similarity and alignment distortion
JP2011248671A (ja) 多数の参照用映像の中から検索キー用映像を用いて検索する映像検索装置、プログラム及び方法
Ghanem et al. Context-aware learning for automatic sports highlight recognition
Bailer et al. A distance measure for repeated takes of one scene
Qiang et al. Key frame extraction based on motion vector
JP2013070158A (ja) 映像検索装置およびプログラム
Sandeep et al. Application of Perceptual Video Hashing for Near-duplicate Video Retrieval
Bhaumik et al. Real-time storyboard generation in videos using a probability distribution based threshold
Gupta et al. Evaluation of object based video retrieval using SIFT
Lin et al. Video retrieval for shot cluster and classification based on key feature set
Anju et al. Video copy detection using F-sift and graph based video sequence matching
Khin et al. Key frame extraction techniques
San Pedro et al. Video retrieval using an edl-based timeline
Wang et al. Sequence-kernel based sparse representation for amateur video summarization

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3