JPWO2010047411A1 - Thermosetting resin composition - Google Patents

Thermosetting resin composition Download PDF

Info

Publication number
JPWO2010047411A1
JPWO2010047411A1 JP2010534856A JP2010534856A JPWO2010047411A1 JP WO2010047411 A1 JPWO2010047411 A1 JP WO2010047411A1 JP 2010534856 A JP2010534856 A JP 2010534856A JP 2010534856 A JP2010534856 A JP 2010534856A JP WO2010047411 A1 JPWO2010047411 A1 JP WO2010047411A1
Authority
JP
Japan
Prior art keywords
weight
resin composition
manufactured
thermosetting resin
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010534856A
Other languages
Japanese (ja)
Other versions
JP5771988B2 (en
Inventor
栄一 林
栄一 林
雅典 大越
雅典 大越
裕子 秀衡
裕子 秀衡
玄迅 真子
玄迅 真子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2010534856A priority Critical patent/JP5771988B2/en
Publication of JPWO2010047411A1 publication Critical patent/JPWO2010047411A1/en
Application granted granted Critical
Publication of JP5771988B2 publication Critical patent/JP5771988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[課題] 接着層の粘着性(タック性)により電子部品を接着層に固定し、該接着層を熱硬化させた場合に、部品の固定位置精度及び絶縁信頼性の高い部品内蔵基板を製造し得る、熱硬化性樹脂組成物を提供すること[解決手段] 液状エポキシ樹脂、フェノール系硬化剤、無機フィラー及びアクリル樹脂を含有する特定の熱硬化性樹脂組成物を使用する。[Problem] When an electronic component is fixed to the adhesive layer by the adhesiveness (tackiness) of the adhesive layer, and the adhesive layer is thermally cured, a component-embedded substrate with high component fixing position accuracy and insulation reliability is manufactured. Providing a thermosetting resin composition to be obtained [Solution] A specific thermosetting resin composition containing a liquid epoxy resin, a phenolic curing agent, an inorganic filler, and an acrylic resin is used.

Description

本発明は、部品内蔵基板の製造に有用な熱硬化性樹脂組成物、及び該熱硬化性樹脂組成物を用いた接着層を有する接着フィルム、並びに該接着フィルムを用いた部品内蔵基板の製造方法に関する。   The present invention relates to a thermosetting resin composition useful for producing a component-embedded substrate, an adhesive film having an adhesive layer using the thermosetting resin composition, and a method for producing a component-embedded substrate using the adhesive film. About.

プリント配線板においては軽薄短小化による高密度化が要求されている。部品内蔵基板においても埋め込む部品が小さくなり、埋め込む際には高い位置精度が必要になる。また基板全体の大きさを小さくする必要があることから、埋め込んだ部品と部品周辺の回路の間には、高い絶縁性を持つ材料が必要になる。   A printed wiring board is required to have a high density by being light and thin. Even in the component-embedded substrate, a component to be embedded becomes small, and high positional accuracy is required when embedding. Further, since it is necessary to reduce the size of the entire board, a material having high insulation is required between the embedded component and the circuit around the component.

部品内蔵基板の製造方法としては、シート剤と粘着剤付きシート剤により部品を仮固定し、部品を樹脂で封止した後、シートを除去する方法(特許文献1)が開示されているが、具体的な組成は開示されていない。また、部品封止後に粘着剤を除去する必要があるため工程数が増大する。   As a method for manufacturing a component-embedded substrate, a method is disclosed in which a component is temporarily fixed with a sheet agent and a sheet agent with an adhesive, and after the component is sealed with a resin, the sheet is removed (Patent Document 1). The specific composition is not disclosed. Moreover, since it is necessary to remove an adhesive after components sealing, the number of processes increases.

また、コア基板の電子部品実装面に粘着材により部品を仮固定し、部品を樹脂で封止する方法(特許文献2)が開示されている。粘着材としては、電気的に絶縁性を有し、さらに高熱を加えた際に、蒸発あるいは気体となる材料が望ましいとされ、使用する高分子の具体例として、アクリル樹脂、ポリエステル樹脂、マレイン化油樹脂、ポリブタエン樹脂、エポキシ樹脂等を単独、あるいは任意の組合せによる混合物として使用できるとされている。また、これら高分子樹脂に粘着性を付与するためにロジン系、テルペン系、石油樹脂系等の粘着付与樹脂を必要に応じて添加できるとされている。しかしながら、粘着材の具体的な組成は開示されていない。   Also disclosed is a method (Patent Document 2) in which a component is temporarily fixed to an electronic component mounting surface of a core substrate with an adhesive and the component is sealed with a resin. As the adhesive material, it is desirable to use a material that is electrically insulative and becomes vaporized or gas when high heat is applied. Specific examples of polymers to be used include acrylic resin, polyester resin, and maleation. It is said that oil resin, polybutene resin, epoxy resin, etc. can be used alone or as a mixture of any combination. In addition, in order to impart tackiness to these polymer resins, it is said that rosin-based, terpene-based and petroleum resin-based tackifying resins can be added as necessary. However, the specific composition of the adhesive material is not disclosed.

また、接着層を電子部品の接着箇所だけでなく、全面に備えた絶縁性基材上に部品を仮固定し、部品を樹脂で封止する方法(特許文献3)が開示されている。接着層としては、エポキシ樹脂系、ポリウレタン系、反応性アクリル系、紫外線硬化型やシリコーン系が例示され、例として、エポキシ樹脂系やシリコーン系などに、フェノール樹脂、有機酸無水物、アミンや硬化促進剤などの硬化剤を混合して用いられると開示されている。そして、部品固定のために、硬化温度での加熱あるいは紫外線の照射などにより硬化させる手法が開示されている。しかし、接着層の具体的な組成は開示されていない。また接着層の熱硬化により電子部品を固定する場合、接着層の溶融により部品の固定位置精度が低下するという問題がある。また紫外線による硬化は工程が複雑となる問題がある。   Further, a method (Patent Document 3) is disclosed in which a component is temporarily fixed on an insulating substrate provided not only on a bonding portion of an electronic component but also on an entire surface, and the component is sealed with resin. Examples of the adhesive layer include epoxy resin-based, polyurethane-based, reactive acrylic-based, ultraviolet curable, and silicone-based materials. Examples include epoxy resin-based and silicone-based materials such as phenol resins, organic acid anhydrides, amines, and cured materials. It is disclosed that a curing agent such as an accelerator is used in combination. And the method of making it harden | cure by the heating at a curing temperature or irradiation of an ultraviolet-ray for fixing components is disclosed. However, the specific composition of the adhesive layer is not disclosed. Further, when an electronic component is fixed by thermosetting the adhesive layer, there is a problem that the fixing position accuracy of the component decreases due to melting of the adhesive layer. Further, curing with ultraviolet rays has a problem that the process becomes complicated.

特開2002−204045号公報JP 2002-204045 A 特開2004−296562号公報JP 2004-296562 A 特開2007−42829号公報JP 2007-42829 A

本願発明の課題は、接着層の粘着性(タック性)により電子部品を接着層に固定し、該接着層を熱硬化させた場合に、部品の固定位置精度及び絶縁信頼性の高い部品内蔵基板を製造し得る、熱硬化性樹脂組成物を提供することにある。   The problem of the present invention is that the electronic component is fixed to the adhesive layer by the adhesiveness (tackiness) of the adhesive layer, and when the adhesive layer is thermally cured, the component-embedded substrate with high component fixing position accuracy and insulation reliability It is providing the thermosetting resin composition which can manufacture.

本発明者らは、上記課題を解決すべく鋭意検討した結果、液状エポキシ樹脂、フェノール系硬化剤、無機フィラー及びアクリル樹脂を含有する特定の熱硬化性樹脂組成物を使用することにより、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have used the present invention by using a specific thermosetting resin composition containing a liquid epoxy resin, a phenolic curing agent, an inorganic filler, and an acrylic resin. Was completed.

すなわち、本発明は以下の内容を含むものである。
[1] 部品内蔵基板の部品固定及び絶縁層形成に用いられる熱硬化性樹脂組成物であって、熱硬化性樹脂組成物の不揮発分を100重量%した場合に、25℃で液状のエポキシ樹脂を25〜40重量%、アクリル樹脂を0.1〜5重量%、前記フェノール系硬化剤を5〜30重量%及び無機フィラーを20〜70重量%含有する熱硬化性樹脂組成物。
[2] アクリル樹脂がアクリル酸エステル共重合体である上記[1]記載の熱硬化性樹脂組成物。
[3] アクリル樹脂がアクリル酸メチル、アクリル酸ブチル、アクリロニトリルを含有するアクリル酸エステル共重合体である上記[1]又は[2]に記載の熱硬化性樹脂組成物。
[4]アクリル樹脂がエポキシ基、ヒドロキシル基、カルボキシル基から選択される1種以上の基を含有する上記[1]〜[3]に記載の熱硬化性樹脂組成物。
[5]
アクリル樹脂がヒドロキシル基及びカルボキシル基を含有する上記[1]〜[4]に記載の熱硬化性樹脂組成物。
[6] 支持体上に、上記[1]〜[5]記載の熱硬化性樹脂組成物により形成された接着層を有する、部品内蔵基板の部品固定及び絶縁層形成に用いられる接着フィルム。
[7] 接着層の厚みが5〜100μmである上記[6]記載の接着フィルム
[8] 支持体がプラスチックフィルムである、上記[6]又は[7]記載の接着フィルム。
[9] 支持体の接着層側の面が離型処理されている上記[6]〜[8]のいずれかに記載の接着フィルム。
[10] 上記[1]〜[9]のいずれかに記載の接着フィルムの接着層上に電子部品を固定する工程及び該接着層を熱硬化して絶縁層を形成する工程を含む部品内蔵基板の製造方法。
That is, the present invention includes the following contents.
[1] A thermosetting resin composition used for fixing components and forming an insulating layer on a component-embedded substrate, wherein the epoxy resin is liquid at 25 ° C. when the nonvolatile content of the thermosetting resin composition is 100% by weight. 25 to 40% by weight, acrylic resin 0.1 to 5% by weight, phenolic curing agent 5 to 30% by weight and inorganic filler 20 to 70% by weight.
[2] The thermosetting resin composition according to the above [1], wherein the acrylic resin is an acrylic ester copolymer.
[3] The thermosetting resin composition according to the above [1] or [2], wherein the acrylic resin is an acrylic ester copolymer containing methyl acrylate, butyl acrylate, and acrylonitrile.
[4] The thermosetting resin composition according to the above [1] to [3], wherein the acrylic resin contains one or more groups selected from an epoxy group, a hydroxyl group, and a carboxyl group.
[5]
The thermosetting resin composition according to the above [1] to [4], wherein the acrylic resin contains a hydroxyl group and a carboxyl group.
[6] An adhesive film for fixing a component-embedded substrate and forming an insulating layer, having an adhesive layer formed of the thermosetting resin composition according to the above [1] to [5] on a support.
[7] The adhesive film according to [6], wherein the adhesive layer has a thickness of 5 to 100 μm. [8] The adhesive film according to [6] or [7], wherein the support is a plastic film.
[9] The adhesive film according to any one of [6] to [8], wherein a surface of the support on the adhesive layer side is subjected to a release treatment.
[10] A component-embedded substrate including a step of fixing an electronic component on the adhesive layer of the adhesive film according to any one of [1] to [9] and a step of thermally curing the adhesive layer to form an insulating layer Manufacturing method.

本発明によれば、液状エポキシ樹脂、フェノール系硬化剤、無機フィラー及びアクリル樹脂を含有する特定の熱硬化性樹脂組成物を使用することにより、接着層の粘着性(タック性)により電子部品を接着層に固定し、該接着層を熱硬化させた場合に、部品の固定位置精度及び絶縁信頼性の高い部品内蔵基板を製造し得る熱硬化性樹脂組成物を提供できるようになった。   According to the present invention, by using a specific thermosetting resin composition containing a liquid epoxy resin, a phenolic curing agent, an inorganic filler, and an acrylic resin, the electronic component can be controlled by the adhesiveness (tackiness) of the adhesive layer. When the adhesive layer is fixed to the adhesive layer and the adhesive layer is thermally cured, it is possible to provide a thermosetting resin composition capable of producing a component-embedded substrate having high component fixing position accuracy and insulation reliability.

部品固定性評価試験における評価方法の概念図である。It is a conceptual diagram of the evaluation method in a component fixability evaluation test. 部品位置ずれ評価試験における評価方法の概念図である。It is a conceptual diagram of the evaluation method in a component position shift evaluation test.

[25℃で液状のエポキシ樹脂]
本発明において「25℃で液状のエポキシ樹脂」は、主として、硬化物の耐熱性及び絶縁性を高めるとともに、熱硬化性樹脂組成物の粘着性に寄与する。25℃で液状のエポキシ樹脂としては、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ターシャリーブチルカテコール型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂肪族系グリシジルエーテル、アルコール類のグリシジルエーテル化物、並びにこれらのエポキシ樹脂のハロゲン化物及び水素添加物などがある。これらは1種又は2種以上組み合わせて用いることができる。
[Epoxy resin in liquid form at 25 ° C]
In the present invention, the “epoxy resin that is liquid at 25 ° C.” mainly improves the heat resistance and insulation of the cured product and contributes to the tackiness of the thermosetting resin composition. Specific examples of epoxy resins that are liquid at 25 ° C. include bisphenol A type epoxy resins, bisphenol F type epoxy resins, novolac phenol type epoxy resins, naphthalene type epoxy resins, tertiary butyl catechol type epoxy resins, and butadiene structures. There are epoxy resins, aliphatic glycidyl ethers, glycidyl ethers of alcohols, and halides and hydrogenated products of these epoxy resins. These can be used alone or in combination of two or more.

これらの中でも、耐熱性、絶縁信頼性の観点からビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂肪族系グリシジルエーテル、ブタジエン構造を有するエポキシ樹脂が好ましい。かかるエポキシ樹脂の具体例としては、液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製「エピコート828EL」)、液状ビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン(株)製「エピコート807」)、ナフタレン型2官能エポキシ樹脂(大日本インキ化学工業(株)製「HP4032」、「HP4032D」)、脂肪族系グリシジルエーテル(東都化成(株)製「ZX−1658」)、ブタジエン構造を有するエポキシ樹脂(ダイセル化学工業(株)製「PB−3600」)などが挙げられる。「25℃で液状のエポキシ樹脂」は2種以上を組み合わせて用いてもよい。   Among these, bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, aliphatic glycidyl ether, and epoxy resin having a butadiene structure are preferable from the viewpoint of heat resistance and insulation reliability. Specific examples of such epoxy resins include liquid bisphenol A type epoxy resin (“Epicoat 828EL” manufactured by Japan Epoxy Resin Co., Ltd.), liquid bisphenol F type epoxy resin (“Epicoat 807” manufactured by Japan Epoxy Resin Co., Ltd.), naphthalene. Type bifunctional epoxy resin (“HP4032”, “HP4032D” manufactured by Dainippon Ink & Chemicals, Inc.), aliphatic glycidyl ether (“ZX-1658” manufactured by Tohto Kasei Co., Ltd.), epoxy resin having a butadiene structure ( Daicel Chemical Industries, Ltd. "PB-3600") etc. are mentioned. Two or more “epoxy resins that are liquid at 25 ° C.” may be used in combination.

熱硬化性樹脂組成物の不揮発成分を100重量%とした場合、25℃で液状のエポキシ樹脂の含有量の上限値は、粘着力が大きくなりカバーフィルムの剥離性が悪くなるのを防止し、またフィルム硬化時に部品の位置ズレが生じやすくなるのを防止するという観点から、40重量%が好ましく、35重量%がより好ましい。一方、熱硬化性樹脂組成物の不揮発成分を100重量%とした場合、25℃で液状のエポキシ樹脂の含有量の下限値は、接着フィルムへ部品固定がされ難くなるのを防止するという観点から、25重量%が好ましく、30重量%がより好ましい。   When the nonvolatile component of the thermosetting resin composition is 100% by weight, the upper limit of the content of the epoxy resin that is liquid at 25 ° C. prevents the adhesive force from increasing and the peelability of the cover film from deteriorating, Further, from the viewpoint of preventing the positional deviation of the components from being easily generated during film curing, 40% by weight is preferable, and 35% by weight is more preferable. On the other hand, when the nonvolatile component of the thermosetting resin composition is 100% by weight, the lower limit of the content of the epoxy resin that is liquid at 25 ° C. is from the viewpoint of preventing the component from becoming difficult to be fixed to the adhesive film. 25% by weight is preferable, and 30% by weight is more preferable.

[アクリル樹脂]
本発明において「アクリル樹脂」は、主として、熱硬化性樹脂組成物の粘着性に寄与する。アクリル樹脂としては、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリアクリル酸エステル共重合体、ポリメタクリル酸エステル共重合体等が挙げられる。またアクリル樹脂は特に粘着性に優れるアクリル酸エステル共重合体が好ましく、さらにアクリル酸メチルエステル共重合体、アクリル酸エチルエステル共重合体が好ましい。共重合化合物としては、アクリル酸メチル、アクリル酸ブチル、酢酸ビニル、アクリロニトリル、アクリルアミド等が挙げられ、なかでもアクリル酸メチル、アクリル酸ブチル、アクリロニトリルが好ましい。またアクリル酸メチルエステル共重合体又はアクリル酸エチルエステル共重合体は、さらにエポキシ基、ヒドロキシ基、カルボキシル基から選択される1種以上の基を含有するのが好ましく、特にヒドロキシル基及び/又はカルボキシル基を含有することが好ましい。これらは1種又は2種以上組み合わせて用いることができる。
[acrylic resin]
In the present invention, the “acrylic resin” mainly contributes to the tackiness of the thermosetting resin composition. Examples of the acrylic resin include polyacrylic acid, polymethacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, polyacrylic acid ester copolymer, polymethacrylic acid ester copolymer, and the like. The acrylic resin is particularly preferably an acrylic ester copolymer having excellent adhesiveness, and more preferably an acrylic acid methyl ester copolymer and an acrylic acid ethyl ester copolymer. Examples of the copolymer compound include methyl acrylate, butyl acrylate, vinyl acetate, acrylonitrile, acrylamide, and the like, and methyl acrylate, butyl acrylate, and acrylonitrile are particularly preferable. The acrylic acid methyl ester copolymer or acrylic acid ethyl ester copolymer preferably further contains one or more groups selected from an epoxy group, a hydroxy group, and a carboxyl group, and in particular, a hydroxyl group and / or a carboxyl group. It is preferable to contain a group. These can be used alone or in combination of two or more.

熱硬化性樹脂組成物の不揮発成分を100重量%とした場合、アクリル樹脂の含有量の上限値は、粘着力が大きくなりカバーフィルムの剥離性が悪く、取り扱い性に劣るのを防止するという観点から、5重量%が好ましく、3重量%がより好ましい。一方、熱硬化性樹脂組成物の不揮発成分を100重量%とした場合、アクリル樹脂の含有量の下限値は、粘着性の低下により部品固定が困難になるのを防止するという観点から、0.1重量%が好ましく、0.5重量%がより好ましい。   When the non-volatile component of the thermosetting resin composition is 100% by weight, the upper limit of the acrylic resin content is to prevent the adhesive force from increasing, the peelability of the cover film from being poor, and inferior handling properties. Therefore, 5% by weight is preferable, and 3% by weight is more preferable. On the other hand, when the non-volatile component of the thermosetting resin composition is 100% by weight, the lower limit value of the acrylic resin content is 0. 0 from the viewpoint of preventing difficulty in fixing components due to a decrease in adhesiveness. 1 weight% is preferable and 0.5 weight% is more preferable.

アクリル樹脂の重量平均分子量の上限値は、溶剤及びエポキシ樹脂への溶解性が低下して、均一な熱硬化性樹脂組成物を作成することが困難になるのを防止するという観点から、1,200,000が好ましく、900,000がより好ましい。一方、アクリル樹脂の重量平均分子量の下限値は、組成物の粘着性が低下し、部品固定が困難になるのを防止するという観点から、400,000が好ましく、500,000がより好ましい。なお本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC−9A/RID−6Aを、カラムとして昭和電工(株)社製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 The upper limit of the weight average molecular weight of the acrylic resin is 1, from the viewpoint of preventing the solubility in the solvent and the epoxy resin from being lowered and making it difficult to create a uniform thermosetting resin composition. 200,000 is preferable, and 900,000 is more preferable. On the other hand, the lower limit value of the weight average molecular weight of the acrylic resin is preferably 400,000 and more preferably 500,000 from the viewpoint of preventing the adhesiveness of the composition from being lowered and fixing components. In addition, the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured at a column temperature of 40 ° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.

市販されているアクリル樹脂としては、具体的には、アロンタックS−1511L、S−1511X、S−1515、S−1517(東亞合成(株)社製)トアアクロンAR−601、AR−602、AR−603((株)トウペ社製)ニポールAR−31、AR−51、AR−54(日本ゼオン(株)社製)、ノックスタイトPA−301、PA−501、PA−502(NOK(株)社製)、テイサンレジンWS−022、WS−023、SG−51、SG−70L、SG−80(ナガセケムテックス(株)社製)、KH−LT、KH−CT(日立化成工業(株)社製)等があげられる。「アクリル樹脂」は2種以上組み合わせて用いてもよい。   Specifically, commercially available acrylic resins include ARONTAC S-1511L, S-1511X, S-1515, S-1517 (manufactured by Toagosei Co., Ltd.) Toacron AR-601, AR-602, AR- 603 (manufactured by Toupe Co., Ltd.) Nipol AR-31, AR-51, AR-54 (manufactured by Nippon Zeon Co., Ltd.), Noxtite PA-301, PA-501, PA-502 (NOK Corporation) Manufactured), Teisan Resin WS-022, WS-023, SG-51, SG-70L, SG-80 (manufactured by Nagase ChemteX Corp.), KH-LT, KH-CT (Hitachi Chemical Industry Co., Ltd.) Manufactured). Two or more “acrylic resins” may be used in combination.

[フェノール系硬化剤]
本発明において「フェノール系硬化剤」は、主としてエポキシ樹脂の硬化剤として機能する。フェノール系硬化剤としてはフェノール性水酸基を有しエポキシ樹脂の硬化剤として機能すれば特に限定されない。一般には、分子内に2個以上のフェノール性水酸基を有するフェノール化合物が使用され、具体的には、フェノールノボラック樹脂、クレーゾールノボラック樹脂等が挙げられる。市販されているフェノール系硬化剤としては、例えばMEH−7700、MEH−7810、MEH−7851(明和化成(株)製)、NHN、CBN、GPH(日本化薬(株)製)、SN170、SN180、SN190、SN475、SN485、SN495、SN375、SN395(東都化成(株)製)、TD2090、TD2093、KA1160、KA1163、LA7052、LA7054、LA3018、LA1356(大日本インキ化学工業(株)製)等があげられる。「フェノール系硬化剤」は2種以上組み合わせて用いてもよい。
[Phenolic curing agent]
In the present invention, the “phenolic curing agent” mainly functions as an epoxy resin curing agent. The phenolic curing agent is not particularly limited as long as it has a phenolic hydroxyl group and functions as a curing agent for an epoxy resin. Generally, a phenol compound having two or more phenolic hydroxyl groups in the molecule is used, and specific examples include phenol novolak resins and cresol novolak resins. Examples of commercially available phenolic curing agents include MEH-7700, MEH-7810, MEH-7785 (Maywa Kasei Co., Ltd.), NHN, CBN, GPH (Nippon Kayaku Co., Ltd.), SN170, SN180. SN190, SN475, SN485, SN495, SN375, SN395 (manufactured by Toto Kasei Co., Ltd.), TD2090, TD2093, KA1160, KA1163, LA7052, LA7054, LA3018, LA1356 (manufactured by Dainippon Ink and Chemicals, Inc.) It is done. Two or more “phenolic curing agents” may be used in combination.

熱硬化性樹脂組成物の不揮発成分を100重量%とした場合、フェノール系硬化剤の含有量の上限値は、粘着力の低下の防止や硬化剤成分が過剰となり、耐熱性、絶縁性等の絶縁材料として重要な特性の低下を引き起こすことを防止するという観点から、30重量%が好ましく、25重量%がより好ましく、20重量%が更に好ましく、15重量%が特に好ましい。一方、熱硬化性樹脂組成物の不揮発成分を100重量%とした場合、フェノール系硬化剤の含有量の下限値は、硬化剤成分が過少となり、樹脂の硬化が非常に遅くなるほか、耐熱性、絶縁性等の絶縁材料として重要な特性の低下を引き起こすことを防止するという観点から、5重量%が好ましく、10重量%がより好ましい。 When the non-volatile component of the thermosetting resin composition is 100% by weight, the upper limit of the content of the phenol-based curing agent is to prevent a decrease in adhesive force and the curing agent component is excessive, such as heat resistance and insulation. From the viewpoint of preventing the deterioration of characteristics important as an insulating material, it is preferably 30% by weight, more preferably 25% by weight, still more preferably 20% by weight, and particularly preferably 15% by weight. On the other hand, when the non-volatile component of the thermosetting resin composition is 100% by weight, the lower limit of the content of the phenolic curing agent is that the curing agent component becomes too small and the curing of the resin becomes very slow, and the heat resistance From the viewpoint of preventing the deterioration of characteristics important as insulating materials such as insulating properties, 5% by weight is preferable, and 10% by weight is more preferable.

[無機フィラー]
本発明において「無機フィラー」は、主として形成される絶縁層の熱膨張率を低下させる目的で使用される。無機充填材としては、具体的には、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、これらの中でも無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ等のシリカが特に好適である。シリカとしては球状のものが好ましい。これらは1種又は2種以上組み合わせて用いることができる。
[Inorganic filler]
In the present invention, the “inorganic filler” is mainly used for the purpose of reducing the thermal expansion coefficient of the insulating layer to be formed. Specific examples of the inorganic filler include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, and titanium. Examples include barium oxide, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, among these, amorphous silica, fused silica, crystalline silica, synthetic silica, etc. The silica is particularly preferred. The silica is preferably spherical. These can be used alone or in combination of two or more.

無機フィラーの平均粒径の上限値は、絶縁信頼性の観点から、3μm以下が好ましく、1.5μm以下がより好ましい。一方、無機フィラーの平均粒径の下限値は、熱硬化性樹脂組成物を樹脂ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下するのを防止するという観点から、0.05μm以上が好ましい。無機フィラーの最大粒子径は、絶縁性の観点から、5μm以下が好ましい。 The upper limit of the average particle size of the inorganic filler is preferably 3 μm or less, and more preferably 1.5 μm or less, from the viewpoint of insulation reliability. On the other hand, the lower limit value of the average particle size of the inorganic filler is 0.05 μm from the viewpoint of preventing the viscosity of the varnish from increasing and handling properties from decreasing when the thermosetting resin composition is a resin varnish. The above is preferable. The maximum particle size of the inorganic filler is preferably 5 μm or less from the viewpoint of insulation.

無機フィラーの平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製 LA−500等を使用することができる。   The average particle size of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring apparatus, LA-500 manufactured by Horiba Ltd. can be used.

熱硬化性樹脂組成物の不揮発成分を100重量%とした場合、無機フィラーの含有量の上限値は、接着フィルムの流動性が低下し、真空ラミネーター等での積層が困難となるのを防止し、接着フィルム硬化物の柔軟性が大きく損なわれ、本来の硬化物特性の低下を引き起こすことを防止するという観点から、70重量%が好ましく、60重量%がより好ましい。一方、熱硬化性樹脂組成物の不揮発成分を100重量%とした場合、無機フィラーの含有量の下限値は、樹脂ワニスの流動性が高くなりすぎて、ハンドリング性が悪化するとともに、フィルム化が困難になるのを防止するという観点から、30重量%が好ましく、20重量%がより好ましい。   When the non-volatile component of the thermosetting resin composition is 100% by weight, the upper limit of the content of the inorganic filler prevents the fluidity of the adhesive film from decreasing and makes it difficult to laminate with a vacuum laminator or the like. From the viewpoint of preventing the flexibility of the cured adhesive film from being greatly impaired and causing deterioration of the original cured product properties, 70% by weight is preferable, and 60% by weight is more preferable. On the other hand, when the non-volatile component of the thermosetting resin composition is 100% by weight, the lower limit of the content of the inorganic filler is that the fluidity of the resin varnish becomes too high, the handling property is deteriorated, and the film formation is reduced. From the viewpoint of preventing difficulty, 30% by weight is preferable, and 20% by weight is more preferable.

なお、無機充填材は耐湿性を向上させるため、エポキシシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤等の表面処理剤で表面処理してあるものが好ましい。これらは1種又は2種以上組み合わせて用いてもよい。 The inorganic filler is preferably surface-treated with a surface treatment agent such as an epoxy silane coupling agent, an aminosilane coupling agent, or a titanate coupling agent in order to improve moisture resistance. These may be used alone or in combination of two or more.

[25℃で固形状のエポキシ樹脂]
本発明の熱硬化性樹脂組成物には、樹脂硬化物の架橋密度の向上に伴う硬化物のTg、破断強度の向上等の目的で、25℃で固形状のエポキシ樹脂を配合してもよい。25℃で固形状のエポキシ樹脂としては、例えば、4官能ナフタレン型エポキシ樹脂、2官能ジシクロペンタジエン型エポキシ樹脂、トリスフェノールエポキシ樹脂など等が挙げられる。市販されているものとしては、大日本インキ化学工業(株)製EXA4700、EXA7200、日本化薬(株)EPPN−502H等が挙げられる。「25℃で固形状のエポキシ樹脂」は2種以上組み合わせて用いてもよい。25℃で固形状のエポキシ樹脂を配合する場合の含有量は、熱硬化性樹脂組成物の不揮発成分を100重量%とした場合、好ましくは30重量%以下であり、好ましくは20重量%以下である。含有量が大きすぎると接着フィルムが常温において脆くなり、ハンドリング性が悪化する。
[Epoxy resin solid at 25 ° C]
The thermosetting resin composition of the present invention may be blended with a solid epoxy resin at 25 ° C. for the purpose of improving the Tg of the cured product accompanying the improvement in the crosslink density of the cured resin and the breaking strength. . Examples of the epoxy resin solid at 25 ° C. include a tetrafunctional naphthalene type epoxy resin, a bifunctional dicyclopentadiene type epoxy resin, and a trisphenol epoxy resin. Examples of commercially available products include EXA4700, EXA7200, Nippon Kayaku Co., Ltd. EPPN-502H manufactured by Dainippon Ink & Chemicals, Inc. Two or more “epoxy resins that are solid at 25 ° C.” may be used in combination. The content when blending a solid epoxy resin at 25 ° C. is preferably 30% by weight or less, preferably 20% by weight or less when the nonvolatile component of the thermosetting resin composition is 100% by weight. is there. If the content is too large, the adhesive film becomes brittle at room temperature, and handling properties deteriorate.

[熱可塑性樹脂]
本発明の熱硬化性樹脂組成物には、硬化後の熱硬化性樹脂組成物に適度な可とう性を付与すること等を目的として、熱可塑性樹脂を配合することができる。かかる熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂等が挙げられる。「熱可塑性樹脂」は2種以上組み合わせて用いてもよい。熱硬化性樹脂組成物中の熱可塑性樹脂の含有量は、0.5〜60重量%の割合で配合するのが好ましく、3〜50重量%の割合で配合するのがより好ましい。
[Thermoplastic resin]
In the thermosetting resin composition of the present invention, a thermoplastic resin can be blended for the purpose of imparting appropriate flexibility to the cured thermosetting resin composition. Examples of such thermoplastic resins include phenoxy resins, polyvinyl acetal resins, polyimide resins, polyamideimide resins, polyethersulfone resins, polysulfone resins, and the like. Two or more “thermoplastic resins” may be used in combination. It is preferable to mix | blend the content of the thermoplastic resin in a thermosetting resin composition in the ratio of 0.5 to 60 weight%, and it is more preferable to mix | blend in the ratio of 3 to 50 weight%.

フェノキシ樹脂の市販品としては、例えば、東都化成(株)製FX280、FX293、ジャパンエポキシレジン(株)製YX8100、YL6954、YL6974等が挙げられる。   Examples of commercially available phenoxy resins include FX280 and FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YL6954, and YL6974 manufactured by Japan Epoxy Resin Co., Ltd.

ポリビニルアセタール樹脂としては、ポリビニルブチラール樹脂が好ましく、かかるポリビニルアセタール樹脂の市販品としては、例えば、電気化学工業(株)製、電化ブチラール4000−2、5000−A、6000−C、6000−EP、積水化学工業(株)製エスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられる。   As the polyvinyl acetal resin, a polyvinyl butyral resin is preferable. Examples of commercially available polyvinyl acetal resin include, for example, Denka Butyral 4000-2, 5000-A, 6000-C, 6000-EP, manufactured by Denki Kagaku Kogyo Co., Ltd. Sekisui Chemical Co., Ltd. S REC BH series, BX series, KS series, BL series, BM series, etc. are mentioned.

ポリイミドの市販品としては、例えば、新日本理化(株)製のポリイミド「リカコートSN20」及び「リカコートPN20」が挙げられる。また、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(特開2006−37083号公報に記載のもの)、ポリシロキサン骨格含有ポリイミド(特開2002−12667号公報、特開2000−319386号公報等に記載のもの)等の変性ポリイミドが挙げられる。   As a commercial item of polyimide, for example, polyimide “Rika Coat SN20” and “Rika Coat PN20” manufactured by Shin Nippon Rika Co., Ltd. may be mentioned. Also, linear polyimides (described in JP-A-2006-37083) obtained by reacting a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride, and polysiloxane skeleton-containing polyimides (JP-A-2002). Modified polyimides such as those described in JP-A No. 12667 and JP-A No. 2000-319386.

ポリアミドイミドの市販品としては、例えば、東洋紡績(株)製のポリアミドイミド「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。また日立化成工業(株)製のポリシロキサン骨格含有ポリアミドイミド「KS9100」、「KS9300」等の変性ポリアミドイミドが挙げられる。   Examples of commercially available polyamideimides include polyamideimides “Vilomax HR11NN” and “Vilomax HR16NN” manufactured by Toyobo Co., Ltd. Further, modified polyamideimides such as polysiloxane skeleton-containing polyamideimides “KS9100” and “KS9300” manufactured by Hitachi Chemical Co., Ltd. may be mentioned.

ポリエーテルスルホンの市販品としては、例えば、住友化学(株)社製のポリエーテルスルホン「PES5003P」等が挙げられる。   Examples of commercially available products of polyethersulfone include polyethersulfone “PES5003P” manufactured by Sumitomo Chemical Co., Ltd.

ポリスルホンの市販品としては、例えば、ソルベンアドバンストポリマーズ(株)社製のポリスルホン「P1700」、「P3500」等が挙げられる。   Examples of commercially available products of polysulfone include polysulfone “P1700” and “P3500” manufactured by Solven Advanced Polymers Co., Ltd.

[硬化促進剤]
本発明の熱硬化性樹脂組成物には、硬化剤に加え、硬化時間の短縮等の目的で、硬化促進剤をさらに含有させることができる。かかる硬化促進剤としては、例えば、イミダゾール系化合物、有機ホスフィン系化合物等が挙げられ、具体例としては、2−メチルイミダゾール、トリフェニルホスフィン等が挙げられる。これらは1種又は2種以上組み合わせて用いてもよい。硬化促進剤を用いる場合、硬化促進剤はエポキシ樹脂に対して0.1〜3.0質量%の範囲で用いるのが好ましい。
[Curing accelerator]
In addition to the curing agent, the thermosetting resin composition of the present invention may further contain a curing accelerator for the purpose of shortening the curing time. Examples of the curing accelerator include imidazole compounds and organic phosphine compounds, and specific examples include 2-methylimidazole and triphenylphosphine. These may be used alone or in combination of two or more. When using a hardening accelerator, it is preferable to use a hardening accelerator in 0.1-3.0 mass% with respect to an epoxy resin.

[添加剤]
本発明の熱硬化性樹脂組成物には、必要に応じてさらに他の成分を含有させることができる。他の成分としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等の難燃剤;シリコーンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤;オルベン、ベントン等の増粘剤;シリコーン系、フッ素系等の高分子系消泡剤又はレベリング剤;イミダゾール系、チアゾール系、トリアゾール系、シラン系カップリング剤等の密着性付与剤;フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等が挙げられる。これらは1種又は2種以上組み合わせて用いてもよい。
[Additive]
The thermosetting resin composition of the present invention can further contain other components as necessary. Other components include, for example, organic phosphorus flame retardants, organic nitrogen-containing phosphorus compounds, nitrogen compounds, silicone flame retardants, flame retardants such as metal hydroxides; organic fillings such as silicone powder, nylon powder, and fluorine powder Agents: Thickeners such as Orben and Benton; Silicone-based, fluorine-based and other polymer antifoaming agents or leveling agents; Adhesion imparting agents such as imidazole-based, thiazole-based, triazole-based, and silane-based coupling agents; phthalocyanines -Coloring agents such as blue, phthalocyanine green, iodin green, disazo yellow, carbon black and the like. These may be used alone or in combination of two or more.

[有機溶媒]
ワニスを調製する場合の有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を挙げることができる。これらは1種又は2種以上組み合わせて用いてもよい。
[Organic solvent]
Examples of organic solvents for preparing the varnish include ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, acetate esters such as carbitol acetate, cellosolve, butyl Examples thereof include carbitols such as carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. These may be used alone or in combination of two or more.

[接着フィルム]
本発明の接着フィルムは、支持体層、該支持体層上に熱硬化性樹脂組成物により形成された粘着性を有する接着層から構成される。接着層は支持体層の両面に形成されてもよい。
[Adhesive film]
The adhesive film of the present invention is composed of a support layer and an adhesive layer having tackiness formed on the support layer by a thermosetting resin composition. The adhesive layer may be formed on both sides of the support layer.

支持体層としては、プラスチックフィルムが好適に用いられる。プラスチックフィルムの他には、離型紙や銅箔、アルミニウム箔等の金属箔なども支持体層として用いることができる。プラスチックフィルムとしては、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、アクリル、環状ポリオレフィン、トリアセチルセルロース、ポリエーテルサルファイド、ポリエーテルケトン、ポリイミドなどが挙げられる。中でも、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムが好ましく、特に安価なポリエチレンテレフタレートフィルムが好ましい。支持体において、特にプラスチックフィルムを使用する場合、熱硬化性樹脂組成物の硬化物層から剥離可能とするために、その熱硬化性樹脂組成物層の被形成面が離型処理された、離型層を有する支持体を使用するのが好ましい。金属箔はエッチング溶液により除去することもできるが、プラスチックフィルムを支持体として熱硬化性樹脂組成物を熱硬化した場合、離型層がないと、硬化物からプラスチックフィルムを剥離することが困難となる。離型処理に使用する離型剤としては、硬化物が支持体から剥離可能であれば特に限定されず、例えば、シリコーン系離型剤、アルキッド樹脂系離型剤等が挙げられる。なお、市販されている離型層付きプラスチックフィルムを用いてもよく、好ましいものとしては、例えば、アルキッド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック(株)製のSK−1、AL−5、AL−7などが挙げられる。また、プラスチックフィルムはマット処理、コロナ処理を施してあってもよく、当該処理面上に離型層を形成してもよい。また銅箔を支持体として使用した場合は、剥離せずに該銅箔を導体層として利用してもよい。支持体の厚さは特に限定されないが、10〜150μmが好ましく、25〜50μmが好ましく用いられる。   A plastic film is preferably used as the support layer. In addition to the plastic film, release paper, copper foil, metal foil such as aluminum foil, and the like can also be used as the support layer. Examples of the plastic film include polyethylene terephthalate (hereinafter may be abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, acrylic, cyclic polyolefin, triacetyl cellulose, polyether sulfide, polyether ketone, and polyimide. Can be mentioned. Among these, a polyethylene terephthalate film and a polyethylene naphthalate film are preferable, and an inexpensive polyethylene terephthalate film is particularly preferable. In the case of using a plastic film in the support, in particular, in order to make it peelable from the cured product layer of the thermosetting resin composition, the formation surface of the thermosetting resin composition layer is subjected to a release treatment. It is preferred to use a support having a mold layer. The metal foil can be removed with an etching solution, but when the thermosetting resin composition is thermoset using the plastic film as a support, it is difficult to peel the plastic film from the cured product without a release layer. Become. The release agent used for the release treatment is not particularly limited as long as the cured product can be removed from the support, and examples thereof include silicone release agents and alkyd resin release agents. A commercially available plastic film with a release layer may be used, and a preferable one is, for example, a PET film having a release layer mainly composed of an alkyd resin release agent, Lintec Corporation. Examples include SK-1, AL-5, and AL-7. Further, the plastic film may be subjected to mat treatment or corona treatment, and a release layer may be formed on the treated surface. Moreover, when using copper foil as a support body, you may utilize this copper foil as a conductor layer, without peeling. Although the thickness of a support body is not specifically limited, 10-150 micrometers is preferable and 25-50 micrometers is used preferably.

熱硬化性樹脂組成物の接着層の厚みは1〜200μmが好ましく、薄型化に適した絶縁樹脂シートとするには、5〜100μmの範囲がより好ましく、5〜40μの範囲が更に好ましく、5〜30μmの範囲が特に好ましい。接着層の厚みが薄すぎると電子部品の外部端子と回路の絶縁が不十分となる傾向があり、また製造も困難になる傾向がある。また接着層の厚みが厚すぎると、多層プリント配線板の薄型化が困難になる傾向がある。   The thickness of the adhesive layer of the thermosetting resin composition is preferably 1 to 200 μm. In order to obtain an insulating resin sheet suitable for thinning, the range of 5 to 100 μm is more preferable, and the range of 5 to 40 μm is still more preferable. A range of ˜30 μm is particularly preferred. If the thickness of the adhesive layer is too thin, the insulation between the external terminals of the electronic component and the circuit tends to be insufficient, and the manufacturing tends to be difficult. On the other hand, if the thickness of the adhesive layer is too thick, it is difficult to reduce the thickness of the multilayer printed wiring board.

本発明の接着フィルムは、まず熱硬化性樹脂組成物を有機溶剤に溶解して樹脂ワニスとした後、これを支持体層上に塗布し、熱風吹き付け等により溶剤を乾燥させて、既述の所定の厚みで形成する事が出来る。   The adhesive film of the present invention is prepared by first dissolving a thermosetting resin composition in an organic solvent to form a resin varnish, and then applying this onto a support layer and drying the solvent by hot air spraying or the like. It can be formed with a predetermined thickness.

接着層の保護フィルムは接着層表面へのゴミ等の付着や傷を防止する事ができ、かかる絶縁樹脂シート用いて製造されるプリント配線板の信頼性向上にも有効である。ここで、保護フィルムとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙、アルミニウム箔等を挙げる事が出来る。なお、保護フィルムはマッド処理、コロナ処理、シリコーン系離型フィルム層を設けるなどの離型処理を施してあってもよい。また保護フィルムの厚みは1〜40μmとするのが好ましい。   The protective film for the adhesive layer can prevent dust from adhering to the surface of the adhesive layer and scratches, and is effective for improving the reliability of a printed wiring board manufactured using such an insulating resin sheet. Here, examples of the protective film include polyolefins such as polyethylene, polypropylene, and polyvinyl chloride, polyesters such as polyethylene terephthalate, polycarbonate, polyimide, release paper, and aluminum foil. The protective film may be subjected to a release treatment such as a mud treatment, a corona treatment, or a silicone release film layer. Moreover, it is preferable that the thickness of a protective film shall be 1-40 micrometers.

[部品内蔵基板の製造方法]
本発明の接着フィルムにより部品内蔵基板を製造する方法は、少なくとも、(A)接着フィルムの接着層上に電子部品を固定する工程、(B)該接着層を熱硬化して絶縁層を形成する工程を含む。本発明の接着フィルムは、部品の固定を強固に行える粘着力を有することを特徴とする。
[Manufacturing method of component built-in board]
The method for producing a component-embedded substrate using the adhesive film of the present invention includes at least (A) a step of fixing an electronic component on the adhesive layer of the adhesive film, and (B) thermosetting the adhesive layer to form an insulating layer. Process. The adhesive film of the present invention is characterized by having an adhesive force capable of firmly fixing components.

具体的には、(A)接着フィルムの接着層上に電子部品もしくは電子部品と回路基板を固定する工程、(B)該接着層を熱硬化して絶縁層を形成する工程、(C)封止用樹脂組成物、接着フィルムまたはプリプレグにより電子部品もしくは電子部品と回路基板を封止する工程を経て、部品内蔵基板が製造される。   Specifically, (A) a step of fixing an electronic component or an electronic component and a circuit board on the adhesive layer of the adhesive film, (B) a step of thermosetting the adhesive layer to form an insulating layer, (C) sealing The component-embedded substrate is manufactured through a process of sealing the electronic component or the electronic component and the circuit board with a stopping resin composition, an adhesive film, or a prepreg.

まず、(A)接着フィルムの接着層上に電子部品、もしくは電子部品と回路基板を固定する工程において、電子部品及び必要によりさらに回路基板が、粘着性を有する接着層表面の所定の位置に固定される。固定時の温度の上限値は、効率よく作業を行うという点から、70℃が好ましく、60℃がより好ましく、55℃が更に好ましく、50℃が更に一層好ましく、45℃が殊更好ましく、40℃が特に好ましい。一方、固定時の温度の下限値は、粘着性を低下させないという点から、−20℃が好ましく、−10℃がより好ましく、−5℃が更に好ましく、0℃が更に一層好ましく、5℃が殊更好ましく、10℃が特に好ましい。   First, (A) in the step of fixing the electronic component or the electronic component and the circuit board on the adhesive layer of the adhesive film, the electronic component and, if necessary, the circuit board are fixed at a predetermined position on the adhesive layer surface having adhesiveness. Is done. The upper limit of the fixing temperature is preferably 70 ° C., more preferably 60 ° C., still more preferably 55 ° C., still more preferably 50 ° C., even more preferably 45 ° C., and 40 ° C. from the viewpoint of efficient work. Is particularly preferred. On the other hand, the lower limit of the temperature at the time of fixing is preferably −20 ° C., more preferably −10 ° C., further preferably −5 ° C., still more preferably 0 ° C., and 5 ° C. from the viewpoint of not reducing the adhesiveness. Particularly preferred is 10 ° C.

次に、(B)該接着層を熱硬化して絶縁層を形成する工程により、電子部品や回路基板が、形成される絶縁層上にさらに強固に固定される。熱硬化は硬化温度が140〜200℃が好ましく、150〜180℃がより好ましい。また、硬化時間が15分〜2時間が好ましく、30〜90分の範囲がより好ましい。 Next, (B) the electronic component and the circuit board are more firmly fixed on the insulating layer to be formed by the step of thermosetting the adhesive layer to form the insulating layer. The thermosetting is preferably performed at a curing temperature of 140 to 200 ° C, more preferably 150 to 180 ° C. The curing time is preferably 15 minutes to 2 hours, and more preferably 30 to 90 minutes.

その後、(C)封止用樹脂組成物、接着フィルムまたはプリプレグにより電子部品もしくは電子部品と回路基板が封止される。封止は当業者に公知の方法を採用することができる。例えば、支持体上に熱硬化性樹脂組成物層が形成された接着フィルムを真空ラミネーター等のラミネーターにより積層し熱硬化する方法、プリプレグを積層プレスにより積層し熱硬化する方法などが挙げられる。 Thereafter, (C) the electronic component or the electronic component and the circuit board are sealed with a sealing resin composition, an adhesive film, or a prepreg. For sealing, a method known to those skilled in the art can be employed. For example, a method of laminating an adhesive film having a thermosetting resin composition layer formed on a support with a laminator such as a vacuum laminator and thermosetting, a method of laminating a prepreg with a laminating press and thermosetting, etc.

本発明の接着フィルムを用いることにより(A)工程、(B)工程、(C)工程において、振動を伴い得るベルトコンベアを使用することが好ましい。また、本発明の接着フィルムを用いることにより、接着層をそのまま熱硬化層として用いる事が可能となる。また、本発明の接着フィルムを用いることにより、高い位置精度で電子部品を封止することが可能となる。また、工程数も削減されるため、より安価に部品内蔵基板を製造することが可能となる。   By using the adhesive film of the present invention, it is preferable to use a belt conveyor that can be accompanied by vibrations in the steps (A), (B), and (C). Further, by using the adhesive film of the present invention, the adhesive layer can be used as it is as a thermosetting layer. Further, by using the adhesive film of the present invention, it is possible to seal the electronic component with high positional accuracy. In addition, since the number of processes is reduced, it is possible to manufacture a component-embedded substrate at a lower cost.

以下、実施例を示して本発明をより詳細に説明するが、これらは本発明をいかなる意味においても制限するものではない。なお、以下の記載において、「部」は「重量部」を意味する。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in detail, these do not restrict | limit this invention in any meaning. In the following description, “parts” means “parts by weight”.

(実施例1)
ビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)20重量部、エポキシ化ポリブタジエン(ダイセル化学(株)製「PB3600M」、不揮発分80重量%のMEK溶液)8重量部、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)14重量部、ノボラック型フェノール樹脂(大日本インキ(株)製「LA7054」、水酸基当量約125、不揮発分60重量%のメチルエチルケトン(以下MEKと略す)溶液)25重量部、球形シリカ((株)アドマテックス製「SO−C4」)40重量部、難燃フィラー(三光(株)製「HCA−HQ」)6重量部、有機フィラー(ガンツ化成(株)製「AC3816N」)3重量部、ブチラール樹脂(積水化学(株)製「BL−1」をトルエンとメタノールを1:1で希釈して不揮発分15%の溶液にしたもの)10重量部、およびアクリル樹脂としてアクリル酸エステル共重合樹脂((株)ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)0.85重量部を、石油ナフサ(純正化学(株)製「イプゾール150」)5重量部、およびMEK21重量部とともに混合し、高速回転ミキサーで均一に分散し、熱硬化性樹脂組成物ワニス(樹脂組成物(不揮発分)中の液状エポキシ樹脂25重量%、フェノール系硬化剤14.2重量%、アクリル樹脂0.10重量%)を作製した。次に、かかる樹脂組成物ワニスを、離型処理されたポリエチレンテレフタレートフィルム(厚さ38μm)(リンテック(株)製AL−5)(以下、38μm離型PETと略す)上に、乾燥後の樹脂組成物層(接着層)の厚みが40μmとなるようにバーコーターにて均一に塗布し、65〜120℃(平均100℃)で10分間乾燥した(樹脂組成物層中の残留溶媒量:約1重量%)。乾燥後の樹脂組成物層表面に離型処理されたポリエチエレンテレフタレートフィルム(厚さ25μm)(リンテック(株)製AL−5)(以下、25μm離型PETと略す)を貼り合わせて、シート状の3層構造を有する接着フィルムを作製した。
Example 1
20 parts by weight of bisphenol type epoxy resin (“ZX1059” manufactured by Tohto Kasei Co., Ltd., epoxy equivalent of about 165), 8 parts by weight of epoxidized polybutadiene (“PB3600M” manufactured by Daicel Chemical Industries, Ltd., MEK solution having a nonvolatile content of 80% by weight) , 14 parts by weight of a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.), a novolac type phenol resin (“LA7054” manufactured by Dainippon Ink Co., Ltd.), a hydroxyl group equivalent of about 125, and a nonvolatile content of 60% by weight 25 parts by weight of methyl ethyl ketone (hereinafter abbreviated as MEK), 40 parts by weight of spherical silica ("SO-C4" manufactured by Admatechs), 6 parts of flame retardant filler ("HCA-HQ" manufactured by Sanko Co., Ltd.) Part, 3 parts by weight of an organic filler (“AC3816N” manufactured by Gantz Kasei Co., Ltd.), butyral resin (“BL- manufactured by Sekisui Chemical Co., Ltd.) 10 parts by weight of toluene and methanol diluted to 1: 1 with a non-volatile content of 15%), and an acrylic ester copolymer resin (manufactured by Nagase ChemteX Corp. as “SG” -70L ", 0.85 parts by weight of a 1: 3% by weight MEK and toluene mixed solution of 12.5% by weight), 5 parts by weight of petroleum naphtha (" Ipsol 150 "manufactured by Pure Chemical Co., Ltd.), and Mixed with 21 parts by weight of MEK and uniformly dispersed with a high-speed rotary mixer, 25% by weight of a liquid epoxy resin in a thermosetting resin composition varnish (resin composition (non-volatile content), 14.2% by weight of a phenolic curing agent, Acrylic resin (0.10% by weight) was prepared. Next, the resin composition varnish was dried on a release-treated polyethylene terephthalate film (thickness 38 μm) (AL-5, manufactured by Lintec Corporation) (hereinafter abbreviated as 38 μm release PET). The composition layer (adhesive layer) was uniformly coated with a bar coater so that the thickness was 40 μm, and dried at 65 to 120 ° C. (average 100 ° C.) for 10 minutes (residual solvent amount in the resin composition layer: about 1% by weight). A polyethylene terephthalate film (thickness: 25 μm) (AL-5 manufactured by Lintec Co., Ltd.) (hereinafter abbreviated as 25 μm release PET) is bonded to the surface of the resin composition layer after drying. An adhesive film having a three-layer structure was prepared.

(実施例2)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を21重量部に変更し、アクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を17.2重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂25.0重量%、フェノール系硬化剤13.9重量%、アクリル樹脂2重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Example 2)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Tohto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 21 parts by weight, and an acrylic ester copolymer resin (“SG-70L manufactured by Nagase ChemteX Corporation)” was used. ”12.5 wt% MEK and toluene 1.3: 1 mixed solution) was changed to 17.2 parts by weight (25.0 wt% liquid epoxy resin in the resin composition (nonvolatile content), The adhesive film was obtained by the same method as Example 1 except a phenol type hardening | curing agent 13.9 weight% and acrylic resin 2 weight%.

(実施例3)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を22重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を13重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を44.5重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂25.0重量%、フェノール系硬化剤13.5重量%、アクリル樹脂5重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Example 3)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Tohto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 22 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ) Was changed to 13 parts by weight, and further an acrylic ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Corporation, a 1.3: 1 mixed solution of MEK and toluene having a nonvolatile content of 12.5% by weight) Was changed to 44.5 parts by weight (Example 1) except that the liquid epoxy resin in the resin composition (nonvolatile content) was 25.0% by weight, the phenolic curing agent was 13.5% by weight, and the acrylic resin was 5% by weight. By the same method, an adhesive film was obtained.

(実施例4)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を26重量部に変更し、さらにナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を9重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂30重量%、フェノール系硬化剤14.2重量%、アクリル樹脂0.1重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
Example 4
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Tohto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 26 parts by weight, and a naphthalene type tetrafunctional epoxy (manufactured by Dainippon Ink Co., Ltd. “HP-4700”). )) Was changed to 9 parts by weight (Example 1) except that the liquid epoxy resin in the resin composition (nonvolatile content was 30% by weight, the phenolic curing agent was 14.2% by weight, and the acrylic resin was 0.1% by weight). By the same method, an adhesive film was obtained.

(実施例5)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を26重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を8重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を17.3重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂30重量%、フェノール系硬化剤13.9重量%、アクリル樹脂2重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Example 5)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Tohto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 26 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ) Is changed to 8 parts by weight, and further an acrylic ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Corporation, a 1.3: 1 mixed solution of MEK and toluene having a nonvolatile content of 12.5% by weight) Was changed to 17.3 parts by weight (the liquid epoxy resin in the resin composition (nonvolatile content) was 30% by weight, the phenolic curing agent was 13.9% by weight, and the acrylic resin was 2% by weight). By the method, an adhesive film was obtained.

(実施例6)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を27重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を7重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を44.5重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂30重量%、フェノール系硬化剤13.5重量%、アクリル樹脂5重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Example 6)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Toto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 27 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ) Is changed to 7 parts by weight, and further an acrylic ester copolymer resin ("SG-70L" manufactured by Nagase ChemteX Corporation, a 1.3: 1 mixed solution of MEK and toluene having a nonvolatile content of 12.5% by weight) Was changed to 44.5 parts by weight (the liquid epoxy resin in the resin composition (nonvolatile content) was 30% by weight, the phenolic curing agent was 13.5% by weight, and the acrylic resin was 5% by weight). By the method, an adhesive film was obtained.

(実施例7)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を35重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を除き、球形シリカ((株)アドマテックス製「SO−C4」)を37重量部に変更し、アクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を0.83重量部に変更し、さらにMEKを5量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂39.8重量%、フェノール系硬化剤14.5重量%、アクリル樹脂0.1重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Example 7)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Toto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 35 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ), Spherical silica (“SO-C4” manufactured by Admatechs Co., Ltd.) was changed to 37 parts by weight, and acrylic acid ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Co., Ltd.), nonvolatile content 12 0.5 wt% MEK and toluene 1.3: 1 mixed solution) was changed to 0.83 parts by weight, and MEK was changed to 5 parts by weight (liquid epoxy resin 39 in the resin composition (nonvolatile content)). An adhesive film was obtained in the same manner as in Example 1 except for 0.8 wt%, phenolic curing agent 14.5 wt%, and acrylic resin 0.1 wt%.

(実施例8)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を35重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を除き、球形シリカ((株)アドマテックス製「SO−C4」)を35重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を16.4重量部変更し、さらにMEKを5量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂39.8重量%、フェノール系硬化剤14.6重量%、アクリル樹脂1.99重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Example 8)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Toto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 35 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ), And spherical silica (“SO-C4” manufactured by Admatechs Co., Ltd.) is changed to 35 parts by weight. Further, an acrylic ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Corp.), nonvolatile content 12.5 wt% of MEK and toluene 1.3: 1 mixed solution) was changed to 16.4 parts by weight, and MEK was changed to 5 parts by weight (liquid epoxy resin 39 in the resin composition (nonvolatile content)). An adhesive film was obtained in the same manner as in Example 1 except for .8 wt%, phenolic curing agent 14.6 wt%, and acrylic resin 1.99 wt%.

(実施例9)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を35重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を除き、球形シリカ((株)アドマテックス製「SO−C4」)を32重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を41重量部に変更し、さらにMEKを5量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂40重量%、フェノール系硬化剤14.6重量%、アクリル樹脂4.99重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
Example 9
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Toto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 35 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ), And spherical silica (“SO-C4” manufactured by Admatechs Co., Ltd.) is changed to 32 parts by weight. Further, an acrylic ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Corp.), nonvolatile content 12.5 wt% of MEK and toluene 1.3: 1 mixed solution) was changed to 41 parts by weight, and MEK was changed to 5 parts by weight (liquid epoxy resin in resin composition (non-volatile content) 40 weights) %, Phenolic curing agent 14.6% by weight, acrylic resin 4.99% by weight), an adhesive film was obtained in the same manner as in Example 1.

(比較例1)
実施例1のアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を0.43重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂25重量%、フェノール系硬化剤14.2重量%、アクリル樹脂0.05重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Comparative Example 1)
0.43 parts by weight of the acrylic ester copolymer resin of Example 1 (“SG-70L” manufactured by Nagase ChemteX Corp., 1.3: 1 mixed solution of MEK and toluene having a nonvolatile content of 12.5% by weight) In the same manner as in Example 1, except that the liquid epoxy resin in the resin composition (nonvolatile content) was 25 wt%, the phenolic curing agent was 14.2 wt%, and the acrylic resin was 0.05 wt%. A film was obtained.

(比較例2)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を22重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を13重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を53.9重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂25重量%、フェノール系硬化剤13.4重量%、アクリル樹脂6重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Comparative Example 2)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Tohto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 22 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ) Was changed to 13 parts by weight, and further an acrylic ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Corporation, a 1.3: 1 mixed solution of MEK and toluene having a nonvolatile content of 12.5% by weight) Was changed to 53.9 parts by weight (the liquid epoxy resin in the resin composition (nonvolatile content) was 25% by weight, the phenolic curing agent was 13.4% by weight, and the acrylic resin was 6% by weight). By the method, an adhesive film was obtained.

(比較例3)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を26重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を9重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を0.43重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂30重量%、フェノール系硬化剤14.2重量%、アクリル樹脂0.05重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Comparative Example 3)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Tohto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 26 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ) Was changed to 9 parts by weight, and further an acrylic ester copolymer resin ("SG-70L" manufactured by Nagase ChemteX Corporation, a 1.3: 1 mixed solution of MEK and toluene having a nonvolatile content of 12.5% by weight) Was changed to 0.43 parts by weight (Example 1) except that the liquid epoxy resin in the resin composition (nonvolatile content was 30% by weight, the phenolic curing agent was 14.2% by weight, and the acrylic resin was 0.05% by weight). By the same method, an adhesive film was obtained.

(比較例4)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を28重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を7重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を54重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂30重量%、フェノール系硬化剤13.3重量%、アクリル樹脂6重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Comparative Example 4)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Tohto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 28 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ) Is changed to 7 parts by weight, and further an acrylic ester copolymer resin ("SG-70L" manufactured by Nagase ChemteX Corporation, a 1.3: 1 mixed solution of MEK and toluene having a nonvolatile content of 12.5% by weight) Was changed to 54 parts by weight (by the same method as in Example 1 except that liquid epoxy resin 30% by weight, phenolic curing agent 13.3% by weight, acrylic resin 6% by weight in the resin composition (nonvolatile content)). An adhesive film was obtained.

(比較例5)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を35重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を除き、球形シリカ((株)アドマテックス製「SO−C4」)を37重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を0.4重量部に変更し、さらにMEKを5量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂40重量%、フェノール系硬化剤14.6重量%、アクリル樹脂0.05重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Comparative Example 5)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Toto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 35 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ), And spherical silica (“SO-C4” manufactured by Admatechs Co., Ltd.) was changed to 37 parts by weight. Further, acrylic ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Corporation), non-volatile content 12.5 wt% MEK and toluene 1.3: 1 mixed solution) was changed to 0.4 parts by weight, and MEK was changed to 5 parts by weight (liquid epoxy resin in resin composition (non-volatile content)) The adhesive film was obtained by the same method as Example 1 except 40 weight%, phenolic hardening | curing agent 14.6 weight%, and acrylic resin 0.05 weight%.

(比較例6)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を35重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を除き、球形シリカ((株)アドマテックス製「SO−C4」)を30重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を49.2重量部に変更し、さらにMEKを5量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂40重量%、フェノール系硬化剤14.6重量%、アクリル樹脂6重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Comparative Example 6)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Toto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 35 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ), Spherical silica (“SO-C4” manufactured by Admatechs Co., Ltd.) is changed to 30 parts by weight, and acrylic acid ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Corp.), nonvolatile content 12.5 wt% MEK and toluene 1.3: 1 mixed solution) was changed to 49.2 parts by weight, and MEK was changed to 5 parts by weight (liquid epoxy resin in resin composition (nonvolatile content)) The adhesive film was obtained by the same method as Example 1 except 40 weight%, the phenol type hardening | curing agent 14.6 weight%, and acrylic resin 6 weight%.

(比較例7)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を16重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を19重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を17.2重量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂20重量%、フェノール系硬化剤13.9重量%、アクリル樹脂2重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Comparative Example 7)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Tohto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 16 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ) Was changed to 19 parts by weight, and further an acrylic ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Corporation, a 1.3: 1 mixed solution of MEK and toluene having a nonvolatile content of 12.5% by weight) Was changed to 17.2 parts by weight (the liquid epoxy resin in the resin composition (nonvolatile content) was 20% by weight, the phenolic curing agent was 13.9% by weight, and the acrylic resin was 2% by weight). By the method, an adhesive film was obtained.

(比較例8)
実施例1のビスフェノール型エポキシ樹脂(東都化成(株)製「ZX1059」、エポキシ当量約165)を35重量部に変更し、ナフタレン型4官能エポキシ(大日本インキ(株)製「HP−4700」)を除き、球形シリカ((株)アドマテックス製「SO−C4」)を23重量部に変更し、さらにアクリル酸エステル共重合樹脂(ナガセケムテックス(株)製「SG−70L」、不揮発分12.5重量%のMEKとトルエンの1.3:1混合溶液)を14.5重量部に変更し、さらにMEKを5量部に変更した(樹脂組成物(不揮発分)中の液状エポキシ樹脂45重量%、フェノール系硬化剤16.6重量%、アクリル樹脂2重量%)以外は、実施例1と同じ方法により、接着フィルムを得た。
(Comparative Example 8)
The bisphenol type epoxy resin of Example 1 (“ZX1059” manufactured by Toto Kasei Co., Ltd., epoxy equivalent of about 165) was changed to 35 parts by weight, and a naphthalene type tetrafunctional epoxy (“HP-4700” manufactured by Dainippon Ink Co., Ltd.). ), And the spherical silica (“SO-C4” manufactured by Admatechs Co., Ltd.) is changed to 23 parts by weight. Further, an acrylic ester copolymer resin (“SG-70L” manufactured by Nagase ChemteX Corporation), nonvolatile content 12.5 wt% MEK and toluene 1.3: 1 mixed solution) was changed to 14.5 parts by weight, and MEK was changed to 5 parts by weight (liquid epoxy resin in resin composition (non-volatile content)) The adhesive film was obtained by the same method as Example 1 except 45 weight%, the phenol type hardening | curing agent 16.6 weight%, and acrylic resin 2 weight%.

実施例及び比較例の接着フィルムを用いて、Tg(ガラス転移温度)測定、絶縁抵抗値の測定、タック力の測定、25μm離型PET(カバーフィルム)剥離性の評価、部品固定性の評価、最大部品位置ずれ量の測定を行った。 Using the adhesive films of Examples and Comparative Examples, Tg (glass transition temperature) measurement, insulation resistance value measurement, tack force measurement, 25 μm release PET (cover film) peelability evaluation, component fixability evaluation, The maximum component position deviation was measured.

<Tg(ガラス転移温度)測定>
実施例および比較例で作成した接着フィルムから25μm離型PETを剥がし、バッチ式真空加圧ラミネーター(ニチゴーモートン(株)製、「Morton−724」)により、200mm×200mmのポリイミドフィルム(宇部興産(株)製、「UPILEX50S」)にラミネートした。30秒間真空吸引し、その後耐圧ゴムを用いて、30秒間1kg/cmの圧力でプレスする条件にて行った。上記で作成したサンプルの38μm離型PETをはがし、バッチ式オーブンに入れて180℃、90分間加熱し、樹脂組成物層(接着層)を硬化させた。本硬化物のTgを熱分析装置(セイコーインスツル(株)製、「DMS6100」)により測定した。
<Tg (glass transition temperature) measurement>
The 25 μm release PET was peeled off from the adhesive films prepared in Examples and Comparative Examples, and a 200 mm × 200 mm polyimide film (Ube Industries (Ube Industries, Ltd., manufactured by Nichigo Morton Co., Ltd., “Morton-724”) was peeled off. Co., Ltd., “UPILEX50S”). Vacuum suction was performed for 30 seconds, and thereafter, pressure-resistant rubber was used under the condition of pressing at a pressure of 1 kg / cm 2 for 30 seconds. The 38 μm release PET of the sample prepared above was peeled off, placed in a batch oven, and heated at 180 ° C. for 90 minutes to cure the resin composition layer (adhesive layer). The Tg of the cured product was measured with a thermal analyzer (“DMS6100” manufactured by Seiko Instruments Inc.).

<絶縁抵抗値の測定>
実施例および比較例で作成した接着フィルムの25μm離型PETを剥がし、バッチ式真空加圧ラミネーター(ニチゴーモートン(株)製、「Morton−724」)によりL/S=15μm/15μmのTABテープ(三井金属(株)製、「AJ−C0002−30/40」)にラミネートした。ラミネートは、30秒間真空吸引し、その後耐圧ゴムを用いて、30秒間1kg/cmの圧力でプレスする条件で行った。上記で作成したサンプルの38μm離型PETをはがし、バッチ式オーブンにて180℃、90分間加熱し、樹脂組成物層(接着層)を硬化させた。硬化後のサンプルの抵抗値を測定し、初期抵抗値とした。つづけてHAST試験機(楠本化成(株)製、「ETAC PM422」)に130℃、85重量%Rhの条件下、100時間放置し、その後の抵抗値(HAST抵抗値)を測定した。
<Measurement of insulation resistance value>
The 25 μm release PET of the adhesive film prepared in Examples and Comparative Examples was peeled off, and a TAB tape (L / S = 15 μm / 15 μm) with a batch type vacuum pressure laminator (manufactured by Nichigo Morton Co., Ltd., “Morton-724”) Laminated to Mitsui Kinzoku Co., Ltd., “AJ-C0002-30 / 40”). Lamination was performed under the conditions of vacuum suction for 30 seconds and then pressing with pressure-resistant rubber at a pressure of 1 kg / cm 2 for 30 seconds. The 38 μm release PET of the sample prepared above was peeled off, and heated in a batch oven at 180 ° C. for 90 minutes to cure the resin composition layer (adhesive layer). The resistance value of the cured sample was measured and used as the initial resistance value. Subsequently, the sample was left in a HAST tester (“ETAC PM422” manufactured by Enomoto Kasei Co., Ltd.) at 130 ° C. and 85 wt% Rh for 100 hours, and then the resistance value (HAST resistance value) was measured.

<タック力の測定>
実施例および比較例で作製した接着フィルムの25μm離型PETを剥がし、装置専用の冶具に取り付け、樹脂組成物層(接着層)側のタック力を測定した。装置はプローブタックテスター(テスター産業(株)製、TE6002)、φ5.05mmステンレスのプローブを用い、25℃、荷重1kgf/cm、コンタクトスピード5mm/minでプローブを接着フィルムの接着層面に押し付け、10秒間保持した。その後に剥離スピード1mm/minにて剥離させ、その時の荷重を測定した。この測定を5回行い、最大値と最小値を除いた3測定値の平均値をタック力とした。0.25N以下は測定誤差内としてNDとした。
<Measurement of tack force>
The 25 μm release PET of the adhesive films prepared in Examples and Comparative Examples was peeled off and attached to a jig dedicated to the apparatus, and the tack force on the resin composition layer (adhesive layer) side was measured. The apparatus uses a probe tack tester (TE6002 manufactured by Tester Sangyo Co., Ltd.), a φ5.05 mm stainless probe, and presses the probe against the adhesive layer surface of the adhesive film at 25 ° C., a load of 1 kgf / cm 2 , and a contact speed of 5 mm / min. Hold for 10 seconds. Thereafter, peeling was performed at a peeling speed of 1 mm / min, and the load at that time was measured. This measurement was performed five times, and the average value of the three measured values excluding the maximum value and the minimum value was taken as the tack force. 0.25 N or less was determined as ND within the measurement error.

<25μm離型PET(カバーフィルム)剥離性の評価>
実施例および比較例で作製した接着フィルムを約10cm角に切り出し、38μmの離型PET側を固定ステージ(減圧によりシートを固定することの出来るステージ)に固定した。次に室温(25℃)で四隅の1箇所の25μm離型PETのみを手でつまみ、接着フィルムに90度の角度で垂直に約5cm引っ張りあげた。25μm離型PETと接着層の間で剥離した場合を○、接着層と38μm離型PETの間で剥離するか、又は接着フィルムが層間で剥離せず固定ステージより剥離した場合を×とした。
<Evaluation of 25 μm release PET (cover film) peelability>
The adhesive films produced in the examples and comparative examples were cut into about 10 cm square, and the 38 μm release PET side was fixed to a fixed stage (a stage on which the sheet can be fixed by decompression). Next, at room temperature (25 ° C.), only the 25 μm release PET at one corner of the four corners was picked by hand and pulled up about 5 cm vertically at an angle of 90 ° to the adhesive film. The case where it peeled between 25 micrometer mold release PET and an adhesive layer is (circle), it peeled between an adhesive layer and 38 micrometer mold release PET, or the case where an adhesive film did not peel between layers but peeled from the fixed stage was set as x.

<部品固定性の評価>
実施例および比較例で作製した接着フィルムから25μm離型PETをはがし、バッチ式真空加圧ラミネーター(ニチゴーモートン(株)製、「Morton−724」)により、26mm×76mmのスライドガラス片面にラミネートした。ラミネートは、室温(25℃)で30秒間真空吸引し、その後耐圧ゴムを用いて、30秒間1kg/cmの圧力でプレスする条件で行った。
<Evaluation of component fixability>
25 μm release PET was peeled off from the adhesive films prepared in Examples and Comparative Examples, and laminated on one side of a 26 mm × 76 mm slide glass by a batch type vacuum pressure laminator (manufactured by Nichigo Morton Co., Ltd., “Morton-724”). . Lamination was performed under the conditions of vacuum suction at room temperature (25 ° C.) for 30 seconds and then pressing with a pressure resistant rubber at a pressure of 1 kg / cm 2 for 30 seconds.

上記で作成したサンプルの38μm離型PETをはがし、1608チップコンデンサー3個を接着フィルム上にピンセットで置いた。次に、バッチ式真空加圧ラミネーター(ニチゴーモートン(株)製、「Morton−724」)にて、30秒間真空吸引し、その後耐圧ゴムを用いて、室温(25℃)で30秒間1kg/cmの圧力でプレスする条件にてコンデンサーを接着フィルム上に固定した。The 38 μm release PET of the sample prepared above was peeled off, and three 1608 chip capacitors were placed on the adhesive film with tweezers. Next, vacuum suction is performed for 30 seconds with a batch type vacuum pressure laminator (manufactured by Nichigo Morton Co., Ltd., “Morton-724”), and then 1 kg / cm for 30 seconds at room temperature (25 ° C.) using a pressure-resistant rubber. The capacitor was fixed on the adhesive film under the condition of pressing at a pressure of 2 .

接着フィルム上に固定されたコンデンサーをピンセットで垂直方向にはがし、接着層表面に残されたコンデンサーの痕跡を観察した。図1に示されるようにコンデンサーの形状に合わせて接着層表面に痕跡があれば○、痕跡が一部しかない場合を△、痕跡がない場合を×とした。   The capacitor fixed on the adhesive film was peeled in the vertical direction with tweezers, and the trace of the capacitor left on the surface of the adhesive layer was observed. As shown in FIG. 1, if there was a trace on the surface of the adhesive layer in accordance with the shape of the capacitor, the symbol “◯” was given.

<最大部品位置ずれ量の測定>
部品固定性の評価と同じ方法で部品固定されたスライドグラスを作成し、図2に示される要領でコンデンサーの固定直後および硬化後における位置ずれ量を測定した。
<Measurement of maximum component displacement>
A slide glass in which the component was fixed by the same method as the evaluation of the component fixing property was prepared, and the amount of misalignment immediately after the capacitor was fixed and after curing was measured in the manner shown in FIG.

部品固定後の部品位置の測定は、測長機(商品名、MF−UD2017B(株)ミツトヨ製)により、図2に示されるように原点A、Bを決定し、原点と部品の角(4隅)から距離(W、X、Y、Z)を測定した。 Measurement of the position of the parts after fixing the parts is performed by determining the origins A and B as shown in FIG. 2 with a length measuring machine (trade name, MF-UD2017B, manufactured by Mitutoyo Corporation). The distance (W, X, Y, Z) was measured from the (corner).

サンプルの硬化は、上記サンプルをバッチ式オーブンに樹脂が垂直になるように入れて180℃、30分間加熱し、樹脂組成物層(接着層)を硬化させた。 The sample was cured by placing the sample in a batch oven so that the resin was vertical and heating at 180 ° C. for 30 minutes to cure the resin composition layer (adhesive layer).

硬化後の部品位置は、硬化前に決めた原点A、Bと硬化後の部品の角(4隅)から距離(W’、X’、Y’、Z’)を測定した。(|W’−W|、|X’−X|、|Y’−Y|、|Z’−Z|)を部品位置ずれ量とし、これら4つの数値の最大値を最大部品位置ずれ量とした。硬化中に部品が接着層から剥がれたものについてはNDとした。 The positions of the parts after curing were measured by measuring the distances (W ′, X ′, Y ′, Z ′) from the origins A and B determined before curing and the corners (four corners) of the parts after curing. (| W'-W |, | X'-X |, | Y'-Y |, | Z'-Z |) are component displacement amounts, and the maximum of these four numerical values is the maximum component displacement amount. did. Those in which the part was peeled off from the adhesive layer during curing were determined as ND.

Figure 2010047411
Figure 2010047411

Figure 2010047411
Figure 2010047411

表1から、実施例の接着フィルムは、部品固定性が良好で最大部品位置ずれ量が小さく、かつカバーフィルム(25μm離型PET)の剥離性も良好であることがわかる。一方、比較例の接着フィルムは、タック力が低い場合には部品固定性が劣るために最大部品位置ずれが大きく、タック力が強すぎるとカバーフィルム(25μm離型PET)剥離性が低下している。   From Table 1, it can be seen that the adhesive films of the examples have good component fixing properties, a small maximum component positional deviation amount, and good peelability of the cover film (25 μm release PET). On the other hand, when the tack force is low, the adhesive film of the comparative example is inferior in component fixing property, so the maximum component position shift is large, and when the tack force is too strong, the peelability of the cover film (25 μm release PET) is lowered. Yes.

Claims (10)

部品内蔵基板の部品固定及び絶縁層形成に用いられる熱硬化性樹脂組成物であって、熱硬化性樹脂組成物の不揮発分を100重量%した場合に、25℃で液状のエポキシ樹脂を25〜40重量%、アクリル樹脂を0.1〜5重量%、前記フェノール系硬化剤を5〜30重量%及び無機フィラーを20〜70重量%含有する熱硬化性樹脂組成物。 A thermosetting resin composition used for fixing components and forming an insulating layer on a component-embedded substrate, wherein when the nonvolatile content of the thermosetting resin composition is 100% by weight, a liquid epoxy resin at 25 ° C. is 25 to 25%. A thermosetting resin composition containing 40% by weight, 0.1 to 5% by weight of an acrylic resin, 5 to 30% by weight of the phenolic curing agent, and 20 to 70% by weight of an inorganic filler. アクリル樹脂がアクリル酸エステル共重合体である請求項1記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the acrylic resin is an acrylic ester copolymer. アクリル樹脂がアクリル酸メチル、アクリル酸ブチル、アクリロニトリルを含有するアクリル酸エステル共重合体である請求項1又は2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, wherein the acrylic resin is an acrylic ester copolymer containing methyl acrylate, butyl acrylate, and acrylonitrile. アクリル樹脂がエポキシ基、ヒドロキシル基、カルボキシル基から選択される1種以上の基を含有する請求項1〜3に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the acrylic resin contains one or more groups selected from an epoxy group, a hydroxyl group, and a carboxyl group. アクリル樹脂がヒドロキシル基及びカルボキシル基を含有する請求項1〜4に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the acrylic resin contains a hydroxyl group and a carboxyl group. 支持体上に、請求項1〜5記載の熱硬化性樹脂組成物により形成された接着層を有する、部品内蔵基板の部品固定及び絶縁層形成に用いられる接着フィルム。 The adhesive film used for component fixation and insulation layer formation of a component built-in board which has the contact bonding layer formed with the thermosetting resin composition of Claims 1-5 on a support body. 接着層の厚みが5〜100μmである請求項6記載の接着フィルム。 The adhesive film according to claim 6, wherein the adhesive layer has a thickness of 5 to 100 μm. 支持体がプラスチックフィルムである、請求項6又は7記載の接着フィルム。 The adhesive film according to claim 6 or 7, wherein the support is a plastic film. 支持体の接着層側の面が離型処理されている請求項6〜8のいずれか1項に記載の接着フィルム。 The adhesive film according to any one of claims 6 to 8, wherein a surface of the support on the adhesive layer side is subjected to a release treatment. 請求項1〜9のいずれか1項に記載の接着フィルムの接着層上に電子部品を固定する工程及び該接着層を熱硬化して絶縁層を形成する工程を含む部品内蔵基板の製造方法。 A method for manufacturing a component-embedded substrate, comprising: fixing an electronic component on the adhesive layer of the adhesive film according to claim 1; and thermosetting the adhesive layer to form an insulating layer.
JP2010534856A 2008-10-21 2009-10-20 Thermosetting resin composition Active JP5771988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010534856A JP5771988B2 (en) 2008-10-21 2009-10-20 Thermosetting resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008271166 2008-10-21
JP2008271166 2008-10-21
PCT/JP2009/068310 WO2010047411A1 (en) 2008-10-21 2009-10-20 Thermosetting resin composition
JP2010534856A JP5771988B2 (en) 2008-10-21 2009-10-20 Thermosetting resin composition

Publications (2)

Publication Number Publication Date
JPWO2010047411A1 true JPWO2010047411A1 (en) 2012-03-22
JP5771988B2 JP5771988B2 (en) 2015-09-02

Family

ID=42119442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010534856A Active JP5771988B2 (en) 2008-10-21 2009-10-20 Thermosetting resin composition

Country Status (4)

Country Link
JP (1) JP5771988B2 (en)
KR (1) KR101864110B1 (en)
TW (1) TWI452083B (en)
WO (1) WO2010047411A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772325B2 (en) * 2011-07-15 2015-09-02 大日本印刷株式会社 Thermosetting resin composition
JP2013213114A (en) * 2012-03-30 2013-10-17 Furukawa Electric Co Ltd:The Composition for sealing material, the sealing material, and organic electroluminescent element
JP6281489B2 (en) * 2012-05-23 2018-02-21 味の素株式会社 Manufacturing method of multilayer printed wiring board
TWI694109B (en) * 2013-06-12 2020-05-21 日商味之素股份有限公司 Resin composition
JP6511840B2 (en) * 2015-02-03 2019-05-15 日立化成株式会社 Epoxy resin composition, film-like epoxy resin composition and electronic component device
KR102466931B1 (en) * 2016-11-18 2022-11-11 쇼와덴코머티리얼즈가부시끼가이샤 Encapsulation film and its cured product, and electronic device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792327B2 (en) * 1996-12-24 2006-07-05 日立化成工業株式会社 Thermally conductive adhesive composition and thermally conductive adhesive film using the composition
JP3915940B2 (en) * 1997-06-10 2007-05-16 日立化成工業株式会社 Insulating layer adhesive film
JP2001049221A (en) * 1999-08-05 2001-02-20 Tomoegawa Paper Co Ltd Adhesive composition for electronic component and adhesive sheet
JP4885366B2 (en) 2000-01-31 2012-02-29 日本特殊陶業株式会社 Wiring board manufacturing method
JP4535567B2 (en) * 2000-06-19 2010-09-01 日東電工株式会社 Thermosetting adhesive composition and adhesive sheets
JP2004296562A (en) 2003-03-26 2004-10-21 Sharp Corp Substrate with built-in electronic components, and its manufacturing method
JP4487883B2 (en) 2005-08-03 2010-06-23 パナソニック株式会社 Manufacturing method of electronic component built-in module
WO2007025007A1 (en) * 2005-08-24 2007-03-01 Henkel Kommanditgesellschaft Auf Aktien Epoxy compositions having improved impact resistance
KR20080033687A (en) * 2006-10-13 2008-04-17 바프렉스 주식회사 Epoxy resin, method for preparing the same, composition comprising the resin, and adhesive consisting of the composition
KR101023841B1 (en) * 2006-12-08 2011-03-22 주식회사 엘지화학 Adheisive composition and dicing die bonding film using the same
KR101056688B1 (en) * 2007-01-10 2011-08-12 주식회사 엘지화학 Adhesive composition, adhesive film and dicing die-bonding film using the same

Also Published As

Publication number Publication date
KR20110085969A (en) 2011-07-27
TW201030083A (en) 2010-08-16
JP5771988B2 (en) 2015-09-02
TWI452083B (en) 2014-09-11
WO2010047411A1 (en) 2010-04-29
KR101864110B1 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
JP6267140B2 (en) Resin composition
TWI718258B (en) Resin sheet
TW201904759A (en) Resin composition
JP6728760B2 (en) Resin sheet with support
JP5771988B2 (en) Thermosetting resin composition
JP2017059779A (en) Method for manufacturing printed wiring board
KR20140104909A (en) Method for manufacturing component-embedded wiring board and semiconductor device
JP7156433B2 (en) resin composition
KR20040030588A (en) A Thermosetting Adhesive Film, and an Adhesive Structure Based on the Use Thereof
JP4505769B2 (en) Adhesive film, wiring board for semiconductor mounting provided with adhesive film, semiconductor device, and manufacturing method thereof
JP6176294B2 (en) Resin sheet with support
JP2006169446A (en) Adhesive composition and cover lay film
JP2018101703A (en) Method for manufacturing printed wiring board
TW202028009A (en) Manufacturing method of multilayer circuit board for suppressing occurrence of damages to circuit layer while welding leads
JP2022111097A (en) Method for manufacturing printed wiring board
JP2010087013A (en) Method for manufacturing inter-layer insulating sheet, built-up multilayer substrate, and circuit board
JP6610612B2 (en) Resin sheet with support
KR20110054302A (en) Epoxy resin composition, an adhesive film and a multi-layered printed circuit board prepared by using the same
KR20190129010A (en) Adhesive sheet with support body
JP2006225502A (en) Adhesive composition, and flexible printed circuit board, copper clad laminate for flexible printed wiring board and coverlay film for flexible printed wiring board using the same
JP6582807B2 (en) Manufacturing method of resin sheet
JP6933188B2 (en) Encapsulating resin composition layer, resin sheet with support, encapsulating resin cured layer, semiconductor package and semiconductor device
JP2008063361A (en) Epoxy-based adhesive, coverlay, prepreg, metal-clad laminate, and printed wiring board
JP2010001387A (en) Epoxy adhesive resin composition, adhesive film, cover-lay, metal-clad laminate, and printed-circuit board
WO2024014432A1 (en) Curable resin composition, curable film, and laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5771988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250