JPWO2010038785A1 - Optical sensor and manufacturing method thereof - Google Patents

Optical sensor and manufacturing method thereof Download PDF

Info

Publication number
JPWO2010038785A1
JPWO2010038785A1 JP2010531885A JP2010531885A JPWO2010038785A1 JP WO2010038785 A1 JPWO2010038785 A1 JP WO2010038785A1 JP 2010531885 A JP2010531885 A JP 2010531885A JP 2010531885 A JP2010531885 A JP 2010531885A JP WO2010038785 A1 JPWO2010038785 A1 JP WO2010038785A1
Authority
JP
Japan
Prior art keywords
electrode
electrical conductivity
compound
optical sensor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010531885A
Other languages
Japanese (ja)
Other versions
JP5360837B2 (en
Inventor
直 池田
直 池田
芳博 久保園
芳博 久保園
高志 神戸
高志 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2010531885A priority Critical patent/JP5360837B2/en
Publication of JPWO2010038785A1 publication Critical patent/JPWO2010038785A1/en
Application granted granted Critical
Publication of JP5360837B2 publication Critical patent/JP5360837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/26Complex oxides with formula BMe2O4, wherein B is Mg, Ni, Co, Al, Zn, or Cd and Me is Fe, Ga, Sc, Cr, Co, or Al
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

長波長の光に対する応答性の優れた光センサ及びその製造方法を提供する。受光することにより電気伝導度が変化する電気伝導度変化体と、電気伝導度変化体の受光面に設けた第1電極及び第2電極と、第1電極と第2電極との間に生じた電流を検出する電流検出手段とを有する光センサであって、電気伝導度変化体を希土類元素を含有した層状三角格子構造を有する化合物で構成する。前記化合物は、Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nを1以上の整数、mを0以上の整数、δを0以上0.2以下の実数として、(RMbO3-δ)n(MaO)mとして表される層状三角格子構造を有する化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物とする。Provided are an optical sensor excellent in responsiveness to long-wavelength light and a method for manufacturing the same. An electrical conductivity change body whose electrical conductivity changes by receiving light, the first electrode and the second electrode provided on the light receiving surface of the electrical conductivity change body, and the first electrode and the second electrode An optical sensor having a current detecting means for detecting a current, wherein the electrical conductivity changing body is composed of a compound having a layered triangular lattice structure containing a rare earth element. In the compound, R is at least one element selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf, Ma and Mb, At least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd, allowing overlap, n is an integer of 1 or more, m is an integer of 0 or more, and δ is 0 or more A compound having a layered triangular lattice structure represented by (RMbO3-δ) n (MaO) m as a real number of 0.2 or less, or a compound obtained by substituting a part of R of the compound with an element not more than positive divalent.

Description

本発明は、光センサ及びその製造方法に関する。   The present invention relates to an optical sensor and a method for manufacturing the same.

従来、光センサでは、p型半導体層とn型半導体層とを積層させることにより形成したpn接合界面を用いて光の検出を行っている。   Conventionally, in an optical sensor, light is detected using a pn junction interface formed by stacking a p-type semiconductor layer and an n-type semiconductor layer.

すなわち、光センサでは、pn接合界面に光が照射されると、pn接合界面部分の電子が励起されて自由電子と正孔が生成されている。   That is, in the optical sensor, when light is applied to the pn junction interface, electrons at the pn junction interface are excited to generate free electrons and holes.

そして、生成された自由電子がn型半導体層に移動し、生成された正孔がp型半導体層に移動することによりn型半導体層とp型半導体層との間には所定の電位差が生じ、この電位差を検出することにより光の検出を行っている。   Then, the generated free electrons move to the n-type semiconductor layer, and the generated holes move to the p-type semiconductor layer, so that a predetermined potential difference is generated between the n-type semiconductor layer and the p-type semiconductor layer. The light is detected by detecting this potential difference.

p型半導体層及びn型半導体層には、一般的にシリコンを用いているが、シリコンを用いて形成したpn接合界面ではエネルギーバンドギャップが大きく、エネルギーバンドギャップよりも小さいエネルギの光を受光しても自由電子及び正孔が生成されず、光センサが感応しないこととなっていた。すなわち、シリコンを用いた光センサでは、長波長側の光に対する感度が十分ではなった。   Silicon is generally used for the p-type semiconductor layer and the n-type semiconductor layer. However, the pn junction interface formed using silicon has a large energy band gap and receives light with energy smaller than the energy band gap. However, free electrons and holes are not generated, and the optical sensor is not sensitive. That is, in the photosensor using silicon, the sensitivity to light on the long wavelength side is not sufficient.

そこで、半導体層に光吸収部を設けて長波長側の光に対する吸収効率を向上させた光センサが提案されている。   In view of this, an optical sensor has been proposed in which a light absorption part is provided in a semiconductor layer to improve absorption efficiency for light on the long wavelength side.

具体的には、シリコンで形成したp型半導体層の場合では、Cu,Zn,Au,Fe,Mnなどの添加物を添加することにより光吸収部を形成することが提案されている(例えば、特許文献1参照。)。
特開平09−321327号公報
Specifically, in the case of a p-type semiconductor layer formed of silicon, it has been proposed to form a light absorption part by adding an additive such as Cu, Zn, Au, Fe, Mn (for example, (See Patent Document 1).
JP 09-321327 A

しかしながら、未だに光センサにおける長波長側の感度は十分ではなく、さらなる感度の向上が求められていた。   However, the sensitivity on the long wavelength side in the optical sensor is still not sufficient, and further improvement in sensitivity has been demanded.

そこで、本発明の光センサでは、受光することにより電気伝導度が変化する電気伝導度変化体と、電気伝導度変化体の受光面に設けた第1電極及び第2電極と、第1電極と第2電極との間に生じた電流を検出する電流検出手段とを有する光センサであって、電気伝導度変化体を希土類元素を含有した層状三角格子構造を有する化合物で構成することとした。   Therefore, in the optical sensor of the present invention, the electrical conductivity change body whose electrical conductivity changes by receiving light, the first electrode and the second electrode provided on the light receiving surface of the electrical conductivity change body, the first electrode, An optical sensor having a current detecting means for detecting a current generated between the second electrode and the second electrode, wherein the electrical conductivity changing body is composed of a compound having a layered triangular lattice structure containing a rare earth element.

さらに、本発明の光センサでは、以下の点にも特徴を有するものである。すなわち、
(1)前記化合物が、Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nを1以上の整数、mを0以上の整数、δを0以上0.2以下の実数として、(RMbO3-δ)n(MaO)mとして表される層状三角格子構造を有する化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物であること。
(2)第1電極と第2電極をそれぞれ櫛歯状に設けること。
Furthermore, the optical sensor of the present invention is also characterized by the following points. That is,
(1) In the compound, R is at least one element selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf, Ma, and Mb is at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd, n is an integer of 1 or more, m is an integer of 0 or more, δ A compound having a layered triangular lattice structure represented by (RMbO 3 -δ ) n (MaO) m , wherein R is a real number of 0 or more and 0.2 or less, or a compound in which a part of R of the compound is substituted with an element less than or equal to positive Be.
(2) The first electrode and the second electrode are provided in a comb shape.

また、本発明の光センサの製造方法では、受光することにより電気伝導度が変化する電気伝導度変化体の受光面に設けた第1電極と第2電極との間に生じた電流を電流検出手段で検出する光センサの製造方法であって、電気伝導度変化体を希土類元素を含有した層状三角格子構造を有する化合物で形成する工程を有することとした。   Further, in the method for manufacturing an optical sensor according to the present invention, the current generated between the first electrode and the second electrode provided on the light receiving surface of the electrical conductivity changing body whose electrical conductivity changes by receiving light is detected. A method of manufacturing an optical sensor for detecting by means, comprising the step of forming an electrical conductivity change body with a compound having a layered triangular lattice structure containing a rare earth element.

本発明によれば、受光することにより電気伝導度が変化する電気伝導度変化体と、電気伝導度変化体の受光面に設けた第1電極及び第2電極と、第1電極と前記第2電極との間に生じた電流を検出する電流検出手段とを有する光センサにおいて、電気伝導度変化体を希土類元素を含有した層状三角格子構造を有する化合物で構成することにより、半導体のpn接合を利用する光センサよりも長波長の光に対する応答性を向上させた光センサを提供できる。   According to the present invention, the electrical conductivity change body whose electrical conductivity changes by receiving light, the first electrode and the second electrode provided on the light receiving surface of the electrical conductivity change body, the first electrode, and the second electrode In an optical sensor having a current detecting means for detecting a current generated between the electrode and the electrode, the electrical conductivity change body is made of a compound having a layered triangular lattice structure containing a rare earth element, thereby forming a semiconductor pn junction. It is possible to provide an optical sensor with improved response to light having a longer wavelength than the optical sensor used.

図1は層状三角格子構造を有する化合物の平面視における各元素の配置の概略説明図である。FIG. 1 is a schematic explanatory diagram of the arrangement of each element in a plan view of a compound having a layered triangular lattice structure. 図2は層状三角格子構造を有する化合物の側面視における各元素の配置の概略説明図である。FIG. 2 is a schematic explanatory diagram of the arrangement of each element in a side view of a compound having a layered triangular lattice structure. 図3はLuFe2O4の光照射に対する電気伝導度の変化状態を示したグラフである。FIG. 3 is a graph showing a change state of electric conductivity with light irradiation of LuFe 2 O 4 . 本発明の実施形態にかかる光センサの概略説明図である。It is a schematic explanatory drawing of the optical sensor concerning embodiment of this invention.

10 絶縁基板
20 電気伝導度変化体
31 第1電極
31a 第1基部
31b 第1歯部
32 第2電極
32a 第2基部
32b 第2歯部
40 電流検出手段
41 バイアス電源
42 電流検出回路
10 Insulating substrate
20 Electric conductivity change body
31 First electrode
31a First base
31b First tooth
32 Second electrode
32a Second base
32b Second tooth
40 Current detection means
41 Bias power supply
42 Current detection circuit

本発明の光センサでは、受光することにより電気伝導度が変化する電気伝導度変化体を用いることに特徴を有しており、特に、電気伝導度変化体を希土類元素を含有した層状三角格子構造を有する化合物で構成しているものである。   The optical sensor of the present invention is characterized in that an electrical conductivity change body whose electrical conductivity changes by receiving light is used. In particular, the electrical conductivity change body is a layered triangular lattice structure containing a rare earth element. It is comprised with the compound which has this.

電気伝導度変化体は、具体的には、Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nを1以上の整数、mを0以上の整数、δを0以上0.2以下の実数として、(RMbO3-δ)n(MaO)mとして表される化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物である。Specifically, the electrical conductivity change body is at least one selected from R, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf. Elements, Ma and Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd, allowing overlap, n is an integer greater than or equal to 1, and m is 0 A compound represented by (RMbO 3 -δ ) n (MaO) m , or a compound in which a part of R of the compound is substituted with an element less than or equal to a positive divalent, is there.

以下において、RをLuとし、Ma及びMbをFeとしたLuFe2O4を代表例として、層状三角格子構造を有する化合物を説明する。Hereinafter, a compound having a layered triangular lattice structure will be described with LuFe 2 O 4 in which R is Lu and Ma and Mb are Fe as representative examples.

LuFe2O4は、以下の手順により生成できる。
(1)酸化ルテチウム(Lu2O3)と酸化鉄(III)(Fe2O3)とを1:2の割合で混合するとともに、ボールミルで約1時間混合し、混合物を生成する。
(2)前記混合物を所定形状に成形して、酸素雰囲気下で、24時間、800℃に加熱して仮焼成体を生成する。
(3)FZ(Floating Zone)法によって前記仮焼成体を本焼成することにより、単結晶のLuFe2O4とする。このとき、一酸化炭素と二酸化炭素の混合ガスであるCO−CO2混合ガスの雰囲気下で結晶成長させている。
LuFe 2 O 4 can be produced by the following procedure.
(1) Lutetium oxide (Lu 2 O 3 ) and iron (III) oxide (Fe 2 O 3 ) are mixed at a ratio of 1: 2 and mixed with a ball mill for about 1 hour to form a mixture.
(2) The mixture is formed into a predetermined shape and heated to 800 ° C. for 24 hours in an oxygen atmosphere to form a pre-fired body.
(3) The temporary fired body is fired by the FZ (Floating Zone) method to obtain single crystal LuFe 2 O 4 . At this time, crystals are grown in an atmosphere of a CO—CO 2 mixed gas that is a mixed gas of carbon monoxide and carbon dioxide.

なお、単結晶を生成する本焼成では、CO−CO2混合ガスの代わりにCO2−H2混合ガスを用いてもよく、還元雰囲気で酸素分圧を制御しながら焼成することにより酸素の量を調整している。In the main firing for producing a single crystal, a CO 2 —H 2 mixed gas may be used instead of the CO—CO 2 mixed gas, and the amount of oxygen is obtained by firing while controlling the oxygen partial pressure in a reducing atmosphere. Is adjusted.

単結晶のLuFe2O4の結晶構造について、図1及び図2を用いて説明する。なお、説明の便宜上、LuFe2O4の結晶構造は、結晶中のFeイオンにおいてFe3+とFe2+の規則構造が出現していない、いわゆる電荷秩序化前の状態としている。The crystal structure of single crystal LuFe 2 O 4 will be described with reference to FIGS. For convenience of explanation, the crystal structure of LuFe 2 O 4 is in a state before so-called charge ordering, in which the ordered structure of Fe 3+ and Fe 2+ does not appear in Fe ions in the crystal.

図1は、平面視における各元素の配置の概略説明図であり、元素Aの三角格子と、元素Bの三角格子と、元素Cの三角格子の位置関係を示している。以下において、元素Aの三角格子における格子点の位置を「A位置」、元素Bの三角格子における格子点の位置を「B位置」、元素Cの三角格子における格子点の位置を「C位置」と呼ぶこととする。   FIG. 1 is a schematic explanatory diagram of the arrangement of each element in plan view, and shows the positional relationship between the triangular lattice of element A, the triangular lattice of element B, and the triangular lattice of element C. In the following, the position of the lattice point in the triangular lattice of element A is “A position”, the position of the lattice point in the triangular lattice of element B is “B position”, and the position of the lattice point in the triangular lattice of element C is “C position”. I will call it.

図2は、側面視における各元素の配置の概略説明図であり、最上層から下方に向けて以下の順番で所定の位置に各元素が位置している。
Lu−B位置
O −C位置
Fe−C位置
O −B位置
O −C位置
Fe−B位置
O −B位置
Lu−C位置
O −A位置
Fe−A位置○
O −C位置○
O −A位置○
Fe−C位置○
O −C位置
Lu−A位置
O −B位置
Fe−B位置
O −A位置
O −B位置
Fe−A位置
O −A位置
Lu−B位置
FIG. 2 is a schematic explanatory diagram of the arrangement of each element in a side view, and each element is located at a predetermined position in the following order from the uppermost layer downward.
Lu-B position
OC position
Fe-C position
O-B position
OC position
Fe-B position
O-B position
Lu-C position
O-A position
Fe-A position
O-C position ○
O-A position ○
Fe-C position ○
OC position
Lu-A position
O-B position
Fe-B position
O-A position
O-B position
Fe-A position
O-A position
Lu-B position

このうち、○印を付した4層で構成される部分をW層(W-Layer)と呼んでおり、このW層を有していることがLuFe2O4の特徴点となっている。Among these, a portion composed of four layers marked with a circle is called a W layer (W-Layer), and having this W layer is a characteristic point of LuFe 2 O 4 .

また、LuFe2O4以外の層状三角格子構造を有する化合物でも同様にW層が形成されていることが知られている。Further, it is known that a W layer is also formed in a compound having a layered triangular lattice structure other than LuFe 2 O 4 .

W層は三角格子の積層構造となっており、LuFe2O4において同数のFe2+とFe3+とを存在させることにより、電荷のフラストレーションを生じさせている。The W layer has a triangular lattice laminated structure, and the presence of the same number of Fe 2+ and Fe 3+ in LuFe 2 O 4 causes frustration of charges.

これにより、LuFe2O4では、W層中においてFe3+の多い領域が正電荷の役割を持ち、一方、Fe2+の多い領域が負電荷の役割を持つ電荷秩序が形成されることとなっている。As a result, in LuFe 2 O 4 , the Fe 3+ region in the W layer has a positive charge role, while the Fe 2+ region has a negative charge role. It has become.

この電荷秩序は入射光による外場によって乱れやすく、この電荷秩序の乱れが電気伝導度の変化として現れることとなっている。   This charge order is easily disturbed by an external field due to incident light, and this disorder of charge order appears as a change in electrical conductivity.

図3は、LuFe2O4に、白色光と、赤外光をカットするフィルタを介した白色光と、可視光のみを透過するフィルタを介した白色光をそれぞれ照射した際の電気伝導度の変化を示したグラフである。FIG. 3 shows the electrical conductivity when LuFe 2 O 4 is irradiated with white light, white light through a filter that cuts infrared light, and white light through a filter that transmits only visible light. It is the graph which showed the change.

図3のグラフより、LuFe2O4では、赤外領域の波長を有する入射光に対しても電気伝導度が大きく変化しており、広い波長領域にわたって電気伝導度が変化していることがわかる。From the graph of FIG. 3, it can be seen that in LuFe 2 O 4 , the electrical conductivity changes greatly even for incident light having a wavelength in the infrared region, and the electrical conductivity changes over a wide wavelength region. .

このように、希土類元素を含有した層状三角格子構造を有する化合物で構成した電気伝導度変化体を用いた光センサとすることにより、シリコンのバンドギャップよりも小さいエネルギの入射光に対して応答を得ることができ、長波長の光に対する応答性を向上させた光センサを提供できる。   In this way, by using an optical conductivity change body composed of a compound having a layered triangular lattice structure containing a rare earth element, a response to incident light with energy smaller than the band gap of silicon can be obtained. It is possible to provide an optical sensor that can be obtained and has improved response to long-wavelength light.

すなわち、本発明の光センサは、図4に示すように、支持基体となる絶縁基板10と、この絶縁基板10上に形成した層状または膜状の電気伝導度変化体20と、この電気伝導度変化体20の受光面に設けた第1電極31及び第2電極32と、第1電極31と第2電極32との間に生じた電流を検出する電流検出手段40とで構成している。   That is, as shown in FIG. 4, the optical sensor of the present invention includes an insulating substrate 10 serving as a support base, a layered or film-like electric conductivity changing body 20 formed on the insulating substrate 10, and the electric conductivity. The first electrode 31 and the second electrode 32 provided on the light receiving surface of the change body 20 and current detection means 40 for detecting a current generated between the first electrode 31 and the second electrode 32 are configured.

絶縁基板10は、電気伝導度変化体20を支持する基板であって、絶縁基板10上に形成する電気伝導度変化体20の結晶方位が類似する素材を用いることが望ましい。本実施形態では、後述するように電気伝導度変化体20をLuFe2O4としているので、絶縁基板10にはScAlMgO4などを用いるのが望ましい。The insulating substrate 10 is a substrate that supports the electrical conductivity changing body 20, and it is desirable to use a material having a similar crystal orientation of the electrical conductivity changing body 20 formed on the insulating substrate 10. In the present embodiment, as will be described later, since the electrical conductivity change body 20 is made of LuFe 2 O 4 , it is desirable to use ScAlMgO 4 or the like for the insulating substrate 10.

電気伝導度変化体20は、本実施形態ではLuFe2O4としている。なお、電気伝導度変化体20はLuFe2O4に限定するものではなく、Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nを1以上の整数、mを0以上の整数、δを0以上0.2以下の実数として、(RMbO3-δ)n(MaO)mとして表される層状三角格子構造を有する化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物を用いることができる。以下においては、電気伝導度変化体20はLuFe2O4として説明する。The electrical conductivity changing body 20 is LuFe 2 O 4 in this embodiment. The electrical conductivity changing body 20 is not limited to LuFe 2 O 4 , and R is changed to In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn. , Hf, at least one element selected from Hf, Ma, Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, Cd allowing duplication, n A compound having a layered triangular lattice structure represented by (RMbO3 ) n (MaO) m , wherein R is an integer of 1 or more, m is an integer of 0 or more, δ is a real number of 0 to 0.2, or R of the compound A compound in which a part of is substituted with an element having a positive divalent value or less can be used. Hereinafter, the electrical conductivity changing body 20 will be described as LuFe 2 O 4 .

電気伝導度変化体20は、微粒子状としたLuFe2O4を用いて、CVD(Chemical Vapor Deposition)法、スパッタ法、MBE(Molecular Beam Epitaxy)法、あるいはエアロゾルデポジション法などによって絶縁基板10上に膜状あるいは層状に形成している。電気伝導度変化体20は、LuFe2O4の単結晶である方が望ましいが、多結晶であってもよい。The electrical conductivity changing body 20 is formed on the insulating substrate 10 by using fine particles of LuFe 2 O 4 by CVD (Chemical Vapor Deposition), sputtering, MBE (Molecular Beam Epitaxy), or aerosol deposition. It is formed into a film or layer. The electrical conductivity changing body 20 is preferably a single crystal of LuFe 2 O 4 , but may be polycrystalline.

第1電極31及び第2電極32は、AuあるいはCuなどの導電性の高い金属で形成している。具体的には、電気伝導度変化体20の上面にスパッタ法などによって所定の金属膜を形成し、この金属膜の上面にエッチング用のマスクを形成して、エッチングにより第1電極31部分及び第2電極32部分以外の金属膜を除去して形成している。   The first electrode 31 and the second electrode 32 are made of a highly conductive metal such as Au or Cu. Specifically, a predetermined metal film is formed on the upper surface of the electrical conductivity changing body 20 by sputtering or the like, an etching mask is formed on the upper surface of the metal film, and the first electrode 31 portion and the first metal film are etched. The metal film other than the two-electrode 32 portion is removed and formed.

特に、第1電極31及び第2電極32は、図4に示すように、それぞれ櫛歯状としている。   In particular, the first electrode 31 and the second electrode 32 are comb-shaped as shown in FIG.

すなわち、本実施形態の第1電極31は、直線状の第1基部31aと、この第1基部31aから第2電極32に向けて突出させた複数の第1歯部31bとで構成し、本実施形態の第2電極32は、直線状の第2基部32aと、この第2基部32aから第1電極31に向けて突出させた複数の第2歯部32bとで構成しており、第1歯部31b及び第2歯部32bの突出方向と直交する方向に沿って第1歯部31bと第2歯部32bを交互に配置している。   That is, the first electrode 31 of the present embodiment includes a linear first base portion 31a and a plurality of first tooth portions 31b protruding from the first base portion 31a toward the second electrode 32. The second electrode 32 of the embodiment includes a linear second base portion 32a and a plurality of second tooth portions 32b protruding from the second base portion 32a toward the first electrode 31. The first tooth portions 31b and the second tooth portions 32b are alternately arranged along the direction orthogonal to the protruding direction of the tooth portions 31b and the second tooth portions 32b.

第1電極31と第2電極32をそれぞれ櫛歯状とすることにより、第1電極31と第2電極32の間の電気伝導度の変化を検出しやすくすることができ、光センサの感度を向上させることができる。   By making each of the first electrode 31 and the second electrode 32 comb-like, it is possible to easily detect a change in electrical conductivity between the first electrode 31 and the second electrode 32, and to improve the sensitivity of the optical sensor. Can be improved.

電流検出手段40は、第1電極31と第2電極32に所定のバイアス電圧を印加するバイアス電源41と、第1電極31と第2電極32の間に流れる電流を検出する電流検出回路42を備えている。   The current detection means 40 includes a bias power source 41 that applies a predetermined bias voltage to the first electrode 31 and the second electrode 32, and a current detection circuit 42 that detects a current flowing between the first electrode 31 and the second electrode 32. I have.

本実施形態の光センサでは、受光にともなって電気伝導度変化体20の電気伝導度が大きくなり、第1電極31と第2電極32の間に流れる電流が大きくなったことを電流検出回路42で検出することにより光を検出可能としている。   In the optical sensor of the present embodiment, the current detection circuit 42 indicates that the electrical conductivity of the electrical conductivity change body 20 increases with light reception, and the current flowing between the first electrode 31 and the second electrode 32 increases. It is possible to detect light by detecting with.

特に、本発明の光センサでは、電気伝導度変化体20を、希土類元素を含有した層状三角格子構造を有する化合物で形成していることにより、半導体のpn接合を利用するよりも長波長の光に対する応答性を向上させることができるので、光センサを高感度化できる。   In particular, in the optical sensor of the present invention, the electrical conductivity changing body 20 is formed of a compound having a layered triangular lattice structure containing a rare earth element, so that light having a wavelength longer than that using a semiconductor pn junction is used. The sensitivity of the optical sensor can be increased.

本実施形態の光センサでは、図4に示すように電気伝導度変化体20を平面視矩形形状としているが、電気伝導度変化体20の形状は平面視矩形形状に限定するものではなく、適宜の形状としてよい。   In the optical sensor of the present embodiment, the electrical conductivity change body 20 has a rectangular shape in plan view as shown in FIG. 4, but the shape of the electrical conductivity change body 20 is not limited to a rectangular shape in plan view, The shape may be

本発明によれば、長波長の光に対する応答性の優れた光センサを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the optical sensor excellent in the responsiveness with respect to the light of a long wavelength can be provided.

Claims (4)

受光することにより電気伝導度が変化する電気伝導度変化体と、
前記電気伝導度変化体の受光面に設けた第1電極及び第2電極と、
前記第1電極と前記第2電極との間に生じた電流を検出する電流検出手段と
を有する光センサであって、
前記電気伝導度変化体を希土類元素を含有した層状三角格子構造を有する化合物で構成した光センサ。
An electrical conductivity change body whose electrical conductivity changes by receiving light; and
A first electrode and a second electrode provided on a light receiving surface of the electric conductivity change body;
An optical sensor having current detection means for detecting a current generated between the first electrode and the second electrode,
An optical sensor in which the electrical conductivity changing body is composed of a compound having a layered triangular lattice structure containing a rare earth element.
前記化合物は、
Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、
Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、
nを1以上の整数、
mを0以上の整数、
δを0以上0.2以下の実数
として、(RMbO3-δ)n(MaO)mとして表される層状三角格子構造を有する化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物である請求項1に記載の光センサ。
The compound is
R is at least one element selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf,
Ma and Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd, allowing duplication,
n is an integer of 1 or more,
m is an integer greater than or equal to 0,
A compound having a layered triangular lattice structure represented by (RMbO 3 -δ ) n (MaO) m or a part of R of the compound was substituted with an element less than positive divalent, where δ is a real number between 0 and 0.2. The optical sensor according to claim 1, which is a compound.
前記第1電極と前記第2電極をそれぞれ櫛歯状に設けた請求項1または請求項2に記載の光センサ。   The optical sensor according to claim 1, wherein the first electrode and the second electrode are each provided in a comb shape. 受光することにより電気伝導度が変化する電気伝導度変化体の受光面に設けた第1電極と第2電極との間に生じた電流を電流検出手段で検出する光センサの製造方法であって、
前記電気伝導度変化体を希土類元素を含有した層状三角格子構造を有する化合物で形成する工程を有する光センサの製造方法。
A method of manufacturing an optical sensor, wherein a current detection means detects a current generated between a first electrode and a second electrode provided on a light receiving surface of an electrical conductivity change body whose electrical conductivity changes by receiving light. ,
A method of manufacturing an optical sensor, comprising: forming the electric conductivity change body with a compound having a layered triangular lattice structure containing a rare earth element.
JP2010531885A 2008-09-30 2009-09-30 Optical sensor and manufacturing method thereof Active JP5360837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010531885A JP5360837B2 (en) 2008-09-30 2009-09-30 Optical sensor and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008255374 2008-09-30
JP2008255374 2008-09-30
PCT/JP2009/067046 WO2010038785A1 (en) 2008-09-30 2009-09-30 Photosensor and method for manufacturing the photosensor
JP2010531885A JP5360837B2 (en) 2008-09-30 2009-09-30 Optical sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2010038785A1 true JPWO2010038785A1 (en) 2012-03-01
JP5360837B2 JP5360837B2 (en) 2013-12-04

Family

ID=42073544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010531885A Active JP5360837B2 (en) 2008-09-30 2009-09-30 Optical sensor and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5360837B2 (en)
WO (1) WO2010038785A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197721A (en) * 1997-09-25 1999-04-09 Kubota Corp Photoconductive light receiving element
JP2004172164A (en) * 2002-11-15 2004-06-17 Zenji Hiroi Photoconduction device composed of transition metal oxide
WO2004077098A1 (en) * 2003-02-27 2004-09-10 Kabushiki Kaisha Toshiba X-ray detector and x-ray examination device using it
JP2007113886A (en) * 2005-10-24 2007-05-10 Nidec-Shimpo Corp Heat radiation structure of control device in ceramic art kiln
JP4953121B2 (en) * 2005-11-22 2012-06-13 国立大学法人 岡山大学 Method and material for realizing dielectric properties by distributing electron density in substance in dipole form
WO2009028424A1 (en) * 2007-08-24 2009-03-05 National University Corporation Okayama University Electronic element and electrical conductivity control method

Also Published As

Publication number Publication date
JP5360837B2 (en) 2013-12-04
WO2010038785A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
KR102191283B1 (en) Schottky barrier diode
JP6184586B2 (en) Light emitting assembly comprising a semiconductor stack having an active zone on a cylindrical structure
KR20150114488A (en) Nitride semiconductor light-emitting element
JP2009088505A (en) Group-iii nitride semiconductor light emitting element
JP2001007381A5 (en)
US7247885B2 (en) Carrier confinement in light-emitting group IV semiconductor devices
JP2007311475A (en) Semiconductor photodetector
JP2018060919A (en) Infrared sensor
JP5360837B2 (en) Optical sensor and manufacturing method thereof
JP5717150B2 (en) Diamond semiconductor device and manufacturing method thereof
JPWO2013133264A1 (en) Multiple quantum well solar cell and method of manufacturing multiple quantum well solar cell
JP5363055B2 (en) Light receiving element and method for manufacturing light receiving element
Przezdziecka et al. The p-ZnO: N/i-Al2O3/n-GaN heterostructure—electron beam induced profiling, electrical properties and UV detectivity
JP5779005B2 (en) Ultraviolet light receiving element and manufacturing method thereof
WO2010038788A1 (en) Current control element and method for manufacturing the current control element
WO2010038787A1 (en) Photoelectric conversion element and method for manufacturing the photoelectric conversion element
JP6673984B2 (en) Schottky barrier diode
JP2008147521A (en) Infrared detector, and manufacturing method thereof
CN109166942B (en) Self-adjustable GeSn infrared detector with magnetic strain source and preparation method thereof
JP2010199447A (en) Semiconductor device and method of manufacturing the same
JPH11154763A (en) Phtoreceiver, flame sensor, and manufacture of light receiving element
CN115101603B (en) Photodetector
JP2000294828A (en) MANUFACTURE OF GaN SEMICONDUCTOR DEVICE
JP2009272543A (en) Photodiode
JP2016029735A (en) Schottky barrier diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5360837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250