WO2010038787A1 - Photoelectric conversion element and method for manufacturing the photoelectric conversion element - Google Patents

Photoelectric conversion element and method for manufacturing the photoelectric conversion element Download PDF

Info

Publication number
WO2010038787A1
WO2010038787A1 PCT/JP2009/067048 JP2009067048W WO2010038787A1 WO 2010038787 A1 WO2010038787 A1 WO 2010038787A1 JP 2009067048 W JP2009067048 W JP 2009067048W WO 2010038787 A1 WO2010038787 A1 WO 2010038787A1
Authority
WO
WIPO (PCT)
Prior art keywords
type conductor
photoelectric conversion
junction
conversion element
electrical conductivity
Prior art date
Application number
PCT/JP2009/067048
Other languages
French (fr)
Japanese (ja)
Inventor
直 池田
芳博 久保園
高志 神戸
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Priority to JP2010531887A priority Critical patent/JP5360838B2/en
Publication of WO2010038787A1 publication Critical patent/WO2010038787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0054Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element used as a solar cell element or a light receiving element, and a manufacturing method thereof.
  • photoelectric conversion elements such as a solar cell element and a light receiving element using a pn junction formed by laminating a p-type semiconductor layer and an n-type semiconductor layer are known.
  • excitation of electrons is generated in the pn junction portion by the energy of light irradiated to the pn junction portion, and the n-type semiconductor layer side becomes negative potential due to the excited electrons.
  • An electromotive force is generated by the positive potential generated on the p-type semiconductor layer side by the holes generated by the excitation.
  • the generated electromotive force is accumulated in a storage battery or the like.
  • light can be detected by detecting the generated electromotive force.
  • an element having a pn junction that uses electrons excited by light energy is simply referred to as a “photoelectric conversion element” in the present invention.
  • a p-type semiconductor layer and an n-type semiconductor layer are generally formed using silicon, and stacked to form a pn junction.
  • electrons cannot be excited unless the light has an energy of about 1 eV or more because of the energy band gap of silicon.
  • the present inventors have conducted research and development to generate electric power from light energy more effectively in a solar cell using a pn junction, and have achieved the present invention.
  • an electrical conductivity change body whose electrical conductivity changes by receiving light is provided in the pn junction part.
  • the photoelectric conversion element of the present invention is also characterized by the following points. That is, (1) At least one element selected from R, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf. , Ma and Mb are at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd, n is an integer of 1 or more, and m is 0 or more.
  • a compound having a layered triangular lattice structure represented by (RMbO 3 - ⁇ ) n (MaO) m , or a part of R of the compound represented by an element having a positive divalent value or less, with an integer, ⁇ being a real number from 0 to 0.2 make it a substituted compound.
  • a pn junction is formed using the electrical conductivity change body as an n-type conductor.
  • the p-type conductor forming the pn junction is composed of an organic semiconductor.
  • the manufacturing method of the photoelectric conversion element of this invention in the manufacturing method of the photoelectric conversion element which has a pn junction, it has the process of providing the electrical conductivity change body from which electrical conductivity changes by receiving light in a pn junction part. It was.
  • the movement of electrons or holes generated by light reception is provided by providing, in the pn junction portion, an electrical conductivity change body whose electrical conductivity changes by receiving light.
  • an electrical conductivity change body whose electrical conductivity changes by receiving light.
  • FIG. 1 is a schematic explanatory diagram of the arrangement of each element in a plan view of a compound having a layered triangular lattice structure.
  • FIG. 2 is a schematic explanatory diagram of the arrangement of each element in a side view of a compound having a layered triangular lattice structure.
  • FIG. 3 is a graph showing a change state of electric conductivity with light irradiation of LuFe 2 O 4 .
  • FIG. 4 is an explanatory diagram of the solar cell element of the first embodiment.
  • FIG. 5 is an explanatory diagram of a modification example of the solar cell element of the first embodiment.
  • FIG. 6 is an explanatory diagram of the solar cell element of the second embodiment.
  • FIG. 1 is a schematic explanatory diagram of the arrangement of each element in a plan view of a compound having a layered triangular lattice structure.
  • FIG. 2 is a schematic explanatory diagram of the arrangement of each element in a side view of a compound
  • FIG. 7 is an explanatory view of a modification example of the solar cell element of the second embodiment.
  • FIG. 8 is an explanatory diagram of the solar cell element of the third embodiment.
  • FIG. 9 is a graph of the current-voltage measurement result of the pn junction formed by the electric conductivity change body and the p-type conductor.
  • Insulation base 11 First electrode 12 P-type conductor 13 N-type conductor 14 Second electrode 15
  • Non-reflective coating film 16 Electric conductivity change body
  • an electrical conductivity change body whose electrical conductivity changes by receiving light is provided in the pn junction part.
  • the electrical conductivity change body is at least one selected from R, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf.
  • a compound represented by (RMbO 3 - ⁇ ) n (MaO) m or a compound in which a part of R of the compound is substituted with an element less than or equal to a positive valence, with the above integers and ⁇ being a real number of 0 or more and 0.2 or less is there.
  • LuFe 2 O 4 in which R is Lu and Ma and Mb are Fe as representative examples.
  • LuFe 2 O 4 can be produced by the following procedure. (1) Lutetium oxide (Lu 2 O 3 ) and iron (III) oxide (Fe 2 O 3 ) are mixed at a ratio of 1: 2 and mixed with a ball mill for about 1 hour to form a mixture. (2) The mixture is formed into a predetermined shape and heated to 800 ° C. for 24 hours in an oxygen atmosphere to form a pre-fired body. (3) The temporary fired body is fired by the FZ (Floating Zone) method to obtain single crystal LuFe 2 O 4 . At this time, the crystal is grown in an atmosphere of a CO—CO 2 mixed gas that is a mixed gas of carbon monoxide and carbon dioxide.
  • a CO—CO 2 mixed gas that is a mixed gas of carbon monoxide and carbon dioxide.
  • a CO 2 —H 2 mixed gas may be used instead of the CO—CO 2 mixed gas, and the amount of oxygen is obtained by firing while controlling the oxygen partial pressure in a reducing atmosphere. Is adjusted.
  • the crystal structure of single crystal LuFe 2 O 4 will be described with reference to FIGS.
  • the crystal structure of LuFe 2 O 4 is in a state before so-called charge ordering, in which the ordered structure of Fe 3+ and Fe 2+ does not appear in Fe ions in the crystal.
  • FIG. 1 is a schematic explanatory diagram of the arrangement of each element in a plan view, and shows the positional relationship of a triangular lattice of element A, a triangular lattice of element B, and a triangular lattice of element C.
  • the position of the lattice point in the triangular lattice of element A is “A position”
  • the position of the lattice point in the triangular lattice of element B is “B position”
  • the position of the lattice point in the triangular lattice of element C is “C position”. I will call it.
  • FIG. 2 is a schematic explanatory diagram of the arrangement of each element in a side view, and each element is located at a predetermined position in the following order from the uppermost layer downward.
  • W-Layer a portion composed of four layers marked with a circle is called a W layer (W-Layer), and having this W layer is a characteristic point of LuFe 2 O 4 .
  • a W layer is also formed in a compound having a layered triangular lattice structure other than LuFe 2 O 4 .
  • the W layer has a triangular lattice laminated structure, and the presence of the same number of Fe 2+ and Fe 3+ in LuFe 2 O 4 causes frustration of charges.
  • the Fe 3+ region in the W layer has a positive charge role, while the Fe 2+ region has a negative charge role. It has become.
  • This charge order is likely to be disturbed by the external field due to incident light, and this disorder of charge order appears as a change in electrical conductivity.
  • FIG. 3 shows the electrical conductivity when LuFe 2 O 4 is irradiated with white light, white light through a filter that cuts infrared light, and white light through a filter that transmits only visible light. It is the graph which showed the change.
  • an electric conductivity change body composed of a compound having a layered triangular lattice structure containing a rare earth element
  • the electric conductivity at the electric conductivity change body portion is improved with the incidence of light.
  • the mobility of electrons or holes generated in the pn junction portion can be improved, and a photoelectric conversion element that generates electromotive force by light in a wide band can be provided.
  • the photoelectric conversion element is described as a solar cell element, but is not limited to the solar cell element, and may be a light receiving element such as an optical sensor, or conversely, may be used as a light emitting element.
  • the solar cell element of the first embodiment is provided with an insulating base 10 serving as a support base, a first electrode 11 provided on the upper surface of the insulating base 10, and an upper surface of the first electrode 11.
  • an electric conductivity change body 16 is provided between the p-type conductor 12 and the n-type conductor 13.
  • the p-type conductor 12 and the n-type conductor 13 may be a p-type semiconductor and an n-type semiconductor formed of silicon doped with appropriate impurities, respectively. In this embodiment, the p-type conductor 12 and the n-type conductor are used.
  • the conductor 13 is a silicon semiconductor. As the p-type conductor 12 and the n-type conductor 13, it is desirable to use a material having transparency to visible light.
  • the electrical conductivity changing body 16 is LuFe 2 O 4 in this embodiment.
  • the electrical conductivity change body 16 is not limited to LuFe 2 O 4 , and R is changed to In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn.
  • Hf at least one element selected from Hf, Ma, Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, Cd allowing duplication, n
  • the electrical conductivity changing body 16 will be described as LuFe 2 O 4 .
  • the electrical conductivity changing body 16 is disposed between the p-type conductor 12 and the n-type conductor 13 as fine particles. Alternatively, as shown in FIG. 5, the electrical conductivity changing body 16 may be provided in a thin film between the p-type conductor 12 and the n-type conductor 13.
  • the electric conductivity changing body 16 By providing the electric conductivity changing body 16 between the p-type conductor 12 and the n-type electric conductor 13, the electric conductivity changing body 16 can be disposed at the pn junction portion. It is possible to improve the electric conductivity of the change body 16 portion, improve the mobility of electrons or holes generated at the pn junction portion, and effectively generate an electromotive force.
  • the solar cell element of the first embodiment shown in FIG. 3 is formed as follows.
  • a metal layer is formed on the upper surface of the insulating substrate 10 by sputtering or the like to form the first electrode 11.
  • a desired p-type conductor 12 is formed on the upper surface of the first electrode 11 by a CVD (Chemical Vapor Deposition) method or the like.
  • an electric conductivity change body 16 made of LuFe 2 O 4 formed into fine particles by the CVD method, sputtering method, MBE (Molecular Beam Epitaxy) method or aerosol deposition method is disposed on the upper surface of the p-type conductor 12. is doing.
  • a thin film of LuFe 2 O 4 is formed.
  • a desired n-type conductor 13 is formed on the upper surface of the p-type conductor 12 provided with the electric conductivity change body 16 made of fine particle or thin-film LuFe 2 O 4 by a CVD method or the like.
  • a metal layer is formed on the upper surface of the n-type conductor 13 by sputtering or the like, a mask having a predetermined shape is provided on the upper surface of the metal layer, and the metal layer is etched to form the second electrode 14. ing.
  • an anti-reflective coating film 15 is formed on the upper surfaces of the n-type conductor 13 and the second electrode 14 by a CVD method or the like.
  • the solar cell element of the second embodiment is provided with an insulating base 20 as a support base, a first electrode 21 provided on the upper surface of the insulating base 20, and an upper surface of the first electrode 21.
  • the p-type conductor 22 and an n-type conductor 23 provided on the upper surface of the p-type conductor 22 are used.
  • an electrode is connected to the n-type conductor 23 at a predetermined position.
  • the n-type conductor 23 is provided in a convex shape with respect to the flat p-type conductor 22, and an exposed pn junction is formed on the lower surface portion of the n-type conductor 23. is doing.
  • the p-type conductor 22 and the n-type conductor 23 may be arranged in reverse.
  • the electrical conductivity changing body 24 made of fine particles of LuFe 2 O 4 is disposed in the exposed pn junction portion.
  • the electrical conductivity changing body 24 By disposing the electrical conductivity changing body 24 at the pn junction portion, the electrical conductivity of the electrical conductivity changing body 24 portion is improved by the incidence of light, and the movement of electrons or holes generated at the pn junction portion is improved.
  • the electromotive force can be effectively generated and the electromotive force can be generated.
  • the electrical conductivity change body 24 is not limited to LuFe 2 O 4 , and R is changed to In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn. , Hf, at least one element selected from Hf, Ma, Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, Cd allowing duplication, n
  • the solar cell element of the second embodiment shown in FIG. 6 is formed as follows.
  • the first electrode 21 is formed by forming a metal layer on the upper surface of the insulating substrate 20 by sputtering or the like.
  • a desired p-type conductor 22 is formed on the upper surface of the first electrode 21 by a CVD method or the like. Also in this embodiment, the p-type conductor 22 is a silicon semiconductor.
  • n-type conductor 23 is formed on the upper surface of the p-type conductor 22 by a CVD method or the like. Also in this embodiment, the n-type conductor 23 is a silicon semiconductor.
  • n-type conductor 23 After the formation of the n-type conductor 23, a required etching mask is formed on the upper surface of the n-type conductor 23, and the n-type conductor 23 is etched until the p-type conductor 22 is exposed. The n-type conductor 23 is formed.
  • an electric conductivity change body 24 made of LuFe 2 O 4 made into fine particles by the CVD method, sputtering method, MBE method, aerosol deposition method or the like is provided. It is arranged.
  • the electrical conductivity change body 24 is exposed to the high temperature environment when the n-type conductor 23 is formed. It is possible to prevent the electrical conductivity changing body 24 from being deteriorated by a high temperature environment.
  • the n-type conductor 23 is not formed in a convex shape, but the p-type conductor 22 is formed on the upper surface of the p-type conductor 22 as shown in FIG.
  • a recess may be formed by forming a mask for etching and etching a part of the p-type conductor 22, and the n-type conductor 23 may be formed in the recess.
  • the degree changing body 24 can be easily arranged.
  • the solar cell element according to the third embodiment includes an insulating base 30 serving as a support base, a p-type conductor 31 and an n-type conductor 32 provided on the upper surface of the insulating base 30, and a p-type.
  • the electric conductor 31 and the n-type electric conductor 32 are constituted by an electric conductivity changing body 33 disposed in the adjacent pn junction interface portion.
  • electrodes are connected to the p-type conductor 31 and the n-type conductor 32 at predetermined positions, respectively.
  • each of the p-type conductor 31 and the n-type conductor 32 has a thin film shape, and particularly has a comb shape in plan view.
  • the p-type conductor 31 of the present embodiment includes a linear first base portion 31a and a plurality of first tooth portions 31b protruding from the first base portion 31a toward the n-type conductor 32.
  • the n-type conductor 32 of this embodiment includes a linear second base portion 32a and a plurality of second tooth portions 32b projecting from the second base portion 32a toward the p-type conductor 31.
  • the first tooth portions 31b and the second tooth portions 32b are alternately arranged along the direction orthogonal to the protruding direction of the first tooth portions 31b and the second tooth portions 32b.
  • first tooth portion 31b and the second tooth portion 32b are drawn so that there is a gap between them, but the first tooth portion 31b and the second tooth portion 32b are in contact with each other, or The pn junction is formed by overlapping.
  • the pn junction region can be enlarged, and the pn junction portion is formed by the electric conductivity change body 33 disposed in the pn junction region portion. It is possible to improve the mobility of the electrons or holes generated in the step 1, and to effectively generate an electromotive force.
  • the electrical conductivity changing body 33 is not limited to LuFe 2 O 4 , and R is changed to In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn. , Hf, at least one element selected from Hf, Ma, Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, Cd allowing duplication, n
  • the solar cell element of the third embodiment shown in FIG. 8 is formed as follows.
  • a p-type conductor 31 and an n-type conductor 32 are each formed in a predetermined comb shape on the upper surface of the insulating base 30 having a predetermined shape.
  • each of the p-type conductor 31 and the n-type conductor 32 is a silicon semiconductor.
  • the mask in which the p-type conductor 31 or the n-type conductor 32 is formed is first insulated.
  • the p-type conductor 31 or the n-type conductor 32 is formed on the upper surface of the substrate 30 by CVD or sputtering, and the mask is removed to obtain a predetermined comb-shaped p-type conductor 31 or n-type conductor.
  • a conductor 32 can be formed.
  • the p-type conductor 31 when forming the p-type conductor 31 with an organic semiconductor, you may form the p-type conductor 31 by application
  • the electrical conductivity change body 33 made of LuFe 2 O 4 made into fine particles by CVD, sputtering, MBE, or aerosol deposition is insulated. Arranged on the top surface of 30.
  • the electric conductivity changing body 33 is disposed after the formation of the p-type conductor 22 and the n-type conductor 23, so that the high-temperature environment during the formation of the p-type conductor 22 and the n-type conductor 23 The conductivity changing body 33 is not exposed, and the electrical conductivity changing body 33 can be prevented from being deteriorated by a high temperature environment.
  • Electrodes connected to the p-type conductor 31 and the n-type conductor 32 are formed, and the upper surface is covered with a non-reflective coating film (not shown).
  • the electric conductivity changing body is provided separately from the n-type electric conductor, but the n-type electric conductor can also be constituted by LuFe 2 O 4 which is an electric conductivity changing body.
  • the organic semiconductor is not limited to the case of being composed of C60 fullerene, and it is confirmed that a pn junction is formed in the same manner even when picene is used. Translucency can be improved and photoelectric conversion efficiency can be improved.
  • the n-type conductor is composed of an electric conductivity changing body, it is not necessary to separately provide an electric conductivity changing body, and the manufacturing cost can be reduced.
  • a photoelectric conversion element having improved photoelectric conversion efficiency can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a photoelectric conversion element having a pn junction that can realize an improved photoelectric conversion efficiency.  Also disclosed is a method for manufacturing the photoelectric conversion element. An electric conductivity variable material which causes a change in electric conductivity upon the reception of light is provided at the pn junction part.  The electric conductivity variable material is formed of a compound having a layered triangle lattice structure represented by (RMbO3-δ)n(MaO)m wherein R represents at least one element selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf; Ma and Mb, which may be same or different, represent at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd; n is an integer of 1 or more; m is an integer of 0 or more; and δ is a real number of 0 to 0.2.  Alternatively, the electric conductivity variable material may be formed of a compound that is the same compound as described above except that a part of R in the compound has been replaced with a positive divalent or lower element.

Description

光電変換素子及びその製造方法Photoelectric conversion element and manufacturing method thereof
 本発明は、太陽電池素子や受光素子として用いられる光電変換素子及びその製造方法に関する。 The present invention relates to a photoelectric conversion element used as a solar cell element or a light receiving element, and a manufacturing method thereof.
 従来、p型半導体層とn型半導体層とを積層させることにより形成したpn接合を用いた太陽電池素子や受光素子などの光電変換素子が知られている。 Conventionally, photoelectric conversion elements such as a solar cell element and a light receiving element using a pn junction formed by laminating a p-type semiconductor layer and an n-type semiconductor layer are known.
 pn接合を用いた光電変換素子では、pn接合部分に照射された光のエネルギによってpn接合部分に電子の励起を生じさせており、励起された電子によってn型半導体層側が負電位となり、電子の励起にともなって生成された正孔によってp型半導体層側が正電位となることにより起電力を発生させている。 In a photoelectric conversion element using a pn junction, excitation of electrons is generated in the pn junction portion by the energy of light irradiated to the pn junction portion, and the n-type semiconductor layer side becomes negative potential due to the excited electrons. An electromotive force is generated by the positive potential generated on the p-type semiconductor layer side by the holes generated by the excitation.
 太陽電池素子の場合には、発生した起電力を蓄電池などに蓄積させており、受光素子の場合には、発生した起電力を検出することにより光を検出可能としている。このように、光のエネルギによって励起した電子を利用するpn接合を備えた素子を本発明では単に「光電変換素子」と称している。 In the case of a solar cell element, the generated electromotive force is accumulated in a storage battery or the like. In the case of a light receiving element, light can be detected by detecting the generated electromotive force. As described above, an element having a pn junction that uses electrons excited by light energy is simply referred to as a “photoelectric conversion element” in the present invention.
 特に、太陽電池素子として用いる光電変換素子では、一般的にシリコンを用いてp型半導体層とn型半導体層を形成し、互いに積層させてpn接合の形成を行っている。このようにシリコンを用いた太陽電池素子では、シリコンのエネルギバンドギャップのために、約1eV以上のエネルギの光でなければ電子を励起させることができなかった。 In particular, in a photoelectric conversion element used as a solar cell element, a p-type semiconductor layer and an n-type semiconductor layer are generally formed using silicon, and stacked to form a pn junction. Thus, in a solar cell element using silicon, electrons cannot be excited unless the light has an energy of about 1 eV or more because of the energy band gap of silicon.
 したがって、太陽光の一部だけしか発電に利用できず、発電効率の向上の障害となっていた。 Therefore, only a part of the sunlight can be used for power generation, which has been an obstacle to improving power generation efficiency.
 一方、太陽光をより効果的に利用すべく、色素増感型太陽電池も提案されている(例えば、特許文献1参照。)。色素増感型太陽電池では、太陽光によって色素を励起させて電子を放出させているため、pn接合を利用した太陽電池よりも広い帯域の太陽光で電子の励起を生じさせることできる。
特開平01-220380号公報
On the other hand, in order to use sunlight more effectively, a dye-sensitized solar cell has also been proposed (see, for example, Patent Document 1). In a dye-sensitized solar cell, the dye is excited by sunlight to emit electrons, and therefore, electrons can be excited by sunlight in a wider band than a solar cell using a pn junction.
Japanese Patent Laid-Open No. 01-220380
 しかしながら、色素増感型太陽電池では、より広い帯域の光のエネルギを利用して起電力を生じさせることはできるが、光電変換効率自体は高くないという不具合があった。 However, in the dye-sensitized solar cell, an electromotive force can be generated using the energy of light in a wider band, but the photoelectric conversion efficiency itself is not high.
 本発明者らはこのような現状に鑑み、pn接合を利用した太陽電池においてより効果的に光エネルギから電力を発生させるべく研究開発を行って、本発明を成すに至ったものである。 In view of the present situation, the present inventors have conducted research and development to generate electric power from light energy more effectively in a solar cell using a pn junction, and have achieved the present invention.
 本発明の光電変換素子では、pn接合を有する光電変換素子において、受光することにより電気伝導度が変化する電気伝導度変化体をpn接合部分に設けることとした。 In the photoelectric conversion element of the present invention, in the photoelectric conversion element having a pn junction, an electrical conductivity change body whose electrical conductivity changes by receiving light is provided in the pn junction part.
 さらに、本発明の光電変換素子では、以下の点にも特徴を有するものである。すなわち、
(1)電気伝導度変化体を、Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nを1以上の整数、mを0以上の整数、δを0以上0.2以下の実数として、(RMbO3-δ)n(MaO)mとして表される層状三角格子構造を有する化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物とすること。
(2)電気伝導度変化体をn型電導体としてpn接合を形成したこと。
(3)pn接合を形成するp型電導体を有機物半導体で構成したこと。
Furthermore, the photoelectric conversion element of the present invention is also characterized by the following points. That is,
(1) At least one element selected from R, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf. , Ma and Mb are at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd, n is an integer of 1 or more, and m is 0 or more. A compound having a layered triangular lattice structure represented by (RMbO 3 -δ ) n (MaO) m , or a part of R of the compound represented by an element having a positive divalent value or less, with an integer, δ being a real number from 0 to 0.2 Make it a substituted compound.
(2) A pn junction is formed using the electrical conductivity change body as an n-type conductor.
(3) The p-type conductor forming the pn junction is composed of an organic semiconductor.
 また、本発明の光電変換素子の製造方法では、pn接合を有する光電変換素子の製造方法において、pn接合部分に受光することにより電気伝導度が変化する電気伝導度変化体を設ける工程を有することとした。 Moreover, in the manufacturing method of the photoelectric conversion element of this invention, in the manufacturing method of the photoelectric conversion element which has a pn junction, it has the process of providing the electrical conductivity change body from which electrical conductivity changes by receiving light in a pn junction part. It was.
 本発明によれば、pn接合を有する光電変換素子において、受光することにより電気伝導度が変化する電気伝導度変化体をpn接合部分に設けることにより、受光によって生成された電子または正孔の移動性を向上させて、広い帯域の光によって起電力を生じる光電変換素子を提供可能とすることができる。 According to the present invention, in a photoelectric conversion element having a pn junction, the movement of electrons or holes generated by light reception is provided by providing, in the pn junction portion, an electrical conductivity change body whose electrical conductivity changes by receiving light. Thus, it is possible to provide a photoelectric conversion element that generates electromotive force by light in a wide band.
図1は層状三角格子構造を有する化合物の平面視における各元素の配置の概略説明図である。FIG. 1 is a schematic explanatory diagram of the arrangement of each element in a plan view of a compound having a layered triangular lattice structure. 図2は層状三角格子構造を有する化合物の側面視における各元素の配置の概略説明図である。FIG. 2 is a schematic explanatory diagram of the arrangement of each element in a side view of a compound having a layered triangular lattice structure. 図3はLuFe2O4の光照射に対する電気伝導度の変化状態を示したグラフである。FIG. 3 is a graph showing a change state of electric conductivity with light irradiation of LuFe 2 O 4 . 図4は第1実施形態の太陽電池素子の説明図である。FIG. 4 is an explanatory diagram of the solar cell element of the first embodiment. 図5は第1実施形態の太陽電池素子の変容例の説明図である。FIG. 5 is an explanatory diagram of a modification example of the solar cell element of the first embodiment. 図6は第2実施形態の太陽電池素子の説明図である。FIG. 6 is an explanatory diagram of the solar cell element of the second embodiment. 図7は第2実施形態の太陽電池素子の変容例の説明図である。FIG. 7 is an explanatory view of a modification example of the solar cell element of the second embodiment. 図8は第3実施形態の太陽電池素子の説明図である。FIG. 8 is an explanatory diagram of the solar cell element of the third embodiment. 図9は電気伝導度変化体とp型電導体とにより形成したpn接合の電流電圧計測結果のグラフであるFIG. 9 is a graph of the current-voltage measurement result of the pn junction formed by the electric conductivity change body and the p-type conductor.
 10 絶縁基盤
 11 第1電極
 12 p型電導体
 13 n型電導体
 14 第2電極
 15 無反射コーティング膜
 16 電気伝導度変化体
10 Insulation base 11 First electrode 12 P-type conductor 13 N-type conductor 14 Second electrode 15 Non-reflective coating film 16 Electric conductivity change body
 本発明の光電変換素子では、pn接合を有する光電変換素子において、受光することにより電気伝導度が変化する電気伝導度変化体をpn接合部分に設けているものである。 In the photoelectric conversion element of the present invention, in the photoelectric conversion element having a pn junction, an electrical conductivity change body whose electrical conductivity changes by receiving light is provided in the pn junction part.
 電気伝導度変化体は、具体的には、Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nを1以上の整数、mを0以上の整数、δを0以上0.2以下の実数として、(RMbO3-δ)n(MaO)mとして表される化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物である。 Specifically, the electrical conductivity change body is at least one selected from R, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf. Elements, Ma and Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd, allowing overlap, n is an integer greater than or equal to 1, and m is 0 A compound represented by (RMbO 3 -δ ) n (MaO) m , or a compound in which a part of R of the compound is substituted with an element less than or equal to a positive valence, with the above integers and δ being a real number of 0 or more and 0.2 or less is there.
 以下において、RをLuとし、Ma及びMbをFeとしたLuFe2O4を代表例として、層状三角格子構造を有する化合物を説明する。 Hereinafter, a compound having a layered triangular lattice structure will be described with LuFe 2 O 4 in which R is Lu and Ma and Mb are Fe as representative examples.
 LuFe2O4は、以下の手順により生成できる。
(1)酸化ルテチウム(Lu2O3)と酸化鉄(III)(Fe2O3)とを1:2の割合で混合するとともに、ボールミルで約1時間混合し、混合物を生成する。
(2)前記混合物を所定形状に成形して、酸素雰囲気下で、24時間、800℃に加熱して仮焼成体を生成する。
(3)FZ(Floating Zone)法によって前記仮焼成体を本焼成することにより、単結晶のLuFe2O4とする。このとき、一酸化炭素と二酸化炭素の混合ガスであるCO-CO2混合ガスの雰囲気下で結晶成長させている。
LuFe 2 O 4 can be produced by the following procedure.
(1) Lutetium oxide (Lu 2 O 3 ) and iron (III) oxide (Fe 2 O 3 ) are mixed at a ratio of 1: 2 and mixed with a ball mill for about 1 hour to form a mixture.
(2) The mixture is formed into a predetermined shape and heated to 800 ° C. for 24 hours in an oxygen atmosphere to form a pre-fired body.
(3) The temporary fired body is fired by the FZ (Floating Zone) method to obtain single crystal LuFe 2 O 4 . At this time, the crystal is grown in an atmosphere of a CO—CO 2 mixed gas that is a mixed gas of carbon monoxide and carbon dioxide.
 なお、単結晶を生成する本焼成では、CO-CO2混合ガスの代わりにCO2-H2混合ガスを用いてもよく、還元雰囲気で酸素分圧を制御しながら焼成することにより酸素の量を調整している。 In the main firing for producing a single crystal, a CO 2 —H 2 mixed gas may be used instead of the CO—CO 2 mixed gas, and the amount of oxygen is obtained by firing while controlling the oxygen partial pressure in a reducing atmosphere. Is adjusted.
 単結晶のLuFe2O4の結晶構造について、図1及び図2を用いて説明する。なお、説明の便宜上、LuFe2O4の結晶構造は、結晶中のFeイオンにおいてFe3+とFe2+の規則構造が出現していない、いわゆる電荷秩序化前の状態としている。 The crystal structure of single crystal LuFe 2 O 4 will be described with reference to FIGS. For convenience of explanation, the crystal structure of LuFe 2 O 4 is in a state before so-called charge ordering, in which the ordered structure of Fe 3+ and Fe 2+ does not appear in Fe ions in the crystal.
 図1は、平面視における各元素の配置の概略説明図であり、元素Aの三角格子と、元素Bの三角格子と、元素Cの三角格子の位置関係を示している。以下において、元素Aの三角格子における格子点の位置を「A位置」、元素Bの三角格子における格子点の位置を「B位置」、元素Cの三角格子における格子点の位置を「C位置」と呼ぶこととする。 FIG. 1 is a schematic explanatory diagram of the arrangement of each element in a plan view, and shows the positional relationship of a triangular lattice of element A, a triangular lattice of element B, and a triangular lattice of element C. In the following, the position of the lattice point in the triangular lattice of element A is “A position”, the position of the lattice point in the triangular lattice of element B is “B position”, and the position of the lattice point in the triangular lattice of element C is “C position”. I will call it.
 図2は、側面視における各元素の配置の概略説明図であり、最上層から下方に向けて以下の順番で所定の位置に各元素が位置している。
  Lu-B位置
  O -C位置
  Fe-C位置
  O -B位置
  O -C位置
  Fe-B位置
  O -B位置
  Lu-C位置
  O -A位置
  Fe-A位置○
  O -C位置○
  O -A位置○
  Fe-C位置○
  O -C位置
  Lu-A位置
  O -B位置
  Fe-B位置
  O -A位置
  O -B位置
  Fe-A位置
  O -A位置
  Lu-B位置
FIG. 2 is a schematic explanatory diagram of the arrangement of each element in a side view, and each element is located at a predetermined position in the following order from the uppermost layer downward.
Lu-B position O-C position Fe-C position O-B position O-C position Fe-B position O-B position Lu-C position O-A position Fe-A position ○
O-C position ○
O-A position ○
Fe-C position ○
O-C position Lu-A position O-B position Fe-B position O-A position O-B position Fe-A position O-A position Lu-B position
 このうち、○印を付した4層で構成される部分をW層(W-Layer)と呼んでおり、このW層を有していることがLuFe2O4の特徴点となっている。 Among these, a portion composed of four layers marked with a circle is called a W layer (W-Layer), and having this W layer is a characteristic point of LuFe 2 O 4 .
 また、LuFe2O4以外の層状三角格子構造を有する化合物でも同様にW層が形成されていることが知られている。 Further, it is known that a W layer is also formed in a compound having a layered triangular lattice structure other than LuFe 2 O 4 .
 W層は三角格子の積層構造となっており、LuFe2O4において同数のFe2+とFe3+とを存在させることにより、電荷のフラストレーションを生じさせている。 The W layer has a triangular lattice laminated structure, and the presence of the same number of Fe 2+ and Fe 3+ in LuFe 2 O 4 causes frustration of charges.
 これにより、LuFe2O4では、W層中においてFe3+の多い領域が正電荷の役割を持ち、一方、Fe2+の多い領域が負電荷の役割を持つ電荷秩序が形成されることとなっている。 As a result, in LuFe 2 O 4 , the Fe 3+ region in the W layer has a positive charge role, while the Fe 2+ region has a negative charge role. It has become.
 この電荷秩序は入射光による外場によって乱れやすく、この電荷秩序の乱れが電気伝導度の変化として現れることとなっている。 This charge order is likely to be disturbed by the external field due to incident light, and this disorder of charge order appears as a change in electrical conductivity.
 図3は、LuFe2O4に、白色光と、赤外光をカットするフィルタを介した白色光と、可視光のみを透過するフィルタを介した白色光をそれぞれ照射した際の電気伝導度の変化を示したグラフである。 FIG. 3 shows the electrical conductivity when LuFe 2 O 4 is irradiated with white light, white light through a filter that cuts infrared light, and white light through a filter that transmits only visible light. It is the graph which showed the change.
 図3のグラフより、LuFe2O4では、赤外領域の波長を有する入射光に対しても電気伝導度が大きく変化しており、広い波長領域にわたって電気伝導度が変化していることがわかる。 From the graph of FIG. 3, it can be seen that in LuFe 2 O 4 , the electrical conductivity changes greatly even for incident light having a wavelength in the infrared region, and the electrical conductivity changes over a wide wavelength region. .
 このように、希土類元素を含有した層状三角格子構造を有する化合物で構成した電気伝導度変化体を設けることにより、光の入射にともなって電気伝導度変化体部分での電気伝導度を向上させることができ、pn接合部分で生じた電子または正孔の移動性を向上させて、広い帯域の光によって起電力を生じる光電変換素子を提供可能とすることができる。 As described above, by providing an electric conductivity change body composed of a compound having a layered triangular lattice structure containing a rare earth element, the electric conductivity at the electric conductivity change body portion is improved with the incidence of light. Thus, the mobility of electrons or holes generated in the pn junction portion can be improved, and a photoelectric conversion element that generates electromotive force by light in a wide band can be provided.
 以下において、図面に基づいて本発明の実施形態を詳説する。なお、以下においては、光電変換素子は太陽電池素子として説明するが、太陽電池素子に限定するものではなく、光センサなどの受光素子としてもよいし、あるいは逆に発光素子として用いてもよい。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the photoelectric conversion element is described as a solar cell element, but is not limited to the solar cell element, and may be a light receiving element such as an optical sensor, or conversely, may be used as a light emitting element.
〔第1実施形態〕
 第1実施形態の太陽電池素子は、図4に示すように、支持基体となる絶縁基盤10と、この絶縁基盤10の上面に設けた第1電極11と、この第1電極11の上面に設けたp型電導体12と、このp型電導体12の上面に設けたn型電導体13と、このn型電導体13の上面に形成した第2電極14と、n型電導体13の上面を被覆する無反射コーティング膜15で構成しており、特に、p型電導体12とn型電導体13との間に電気伝導度変化体16を設けているものである。
[First Embodiment]
As shown in FIG. 4, the solar cell element of the first embodiment is provided with an insulating base 10 serving as a support base, a first electrode 11 provided on the upper surface of the insulating base 10, and an upper surface of the first electrode 11. A p-type conductor 12, an n-type conductor 13 provided on the upper surface of the p-type conductor 12, a second electrode 14 formed on the upper surface of the n-type conductor 13, and an upper surface of the n-type conductor 13. In particular, an electric conductivity change body 16 is provided between the p-type conductor 12 and the n-type conductor 13.
 p型電導体12及びn型電導体13は、それぞれ適宜の不純物がドーピングされたシリコンで形成されるp型半導体及びn型半導体でもよく、本実施形態では、p型電導体12及びn型電導体13はシリコン半導体としている。p型電導体12及びn型電導体13には、可視光に対して透過性を有するものを用いるのが望ましい。 The p-type conductor 12 and the n-type conductor 13 may be a p-type semiconductor and an n-type semiconductor formed of silicon doped with appropriate impurities, respectively. In this embodiment, the p-type conductor 12 and the n-type conductor are used. The conductor 13 is a silicon semiconductor. As the p-type conductor 12 and the n-type conductor 13, it is desirable to use a material having transparency to visible light.
 電気伝導度変化体16は、本実施形態ではLuFe2O4としている。なお、電気伝導度変化体16はLuFe2O4に限定するものではなく、Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nを1以上の整数、mを0以上の整数、δを0以上0.2以下の実数として、(RMbO3-δ)n(MaO)mとして表される層状三角格子構造を有する化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物を用いることができる。以下においては、電気伝導度変化体16はLuFe2O4として説明する。 The electrical conductivity changing body 16 is LuFe 2 O 4 in this embodiment. The electrical conductivity change body 16 is not limited to LuFe 2 O 4 , and R is changed to In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn. , Hf, at least one element selected from Hf, Ma, Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, Cd allowing duplication, n A compound having a layered triangular lattice structure represented by (RMbO3 ) n (MaO) m , wherein R is an integer of 1 or more, m is an integer of 0 or more, δ is a real number of 0 to 0.2, or R of the compound A compound in which a part of is substituted with an element having a positive divalent value or less can be used. Hereinafter, the electrical conductivity changing body 16 will be described as LuFe 2 O 4 .
 電気伝導度変化体16は、微粒子状としてp型電導体12とn型電導体13の間に配設している。あるいは、図5に示すように、電気伝導度変化体16はp型電導体12とn型電導体13の間に薄膜状に設けてもよい。 The electrical conductivity changing body 16 is disposed between the p-type conductor 12 and the n-type conductor 13 as fine particles. Alternatively, as shown in FIG. 5, the electrical conductivity changing body 16 may be provided in a thin film between the p-type conductor 12 and the n-type conductor 13.
 p型電導体12とn型電導体13の間に電気伝導度変化体16を設けることにより、電気伝導度変化体16をpn接合部分に配設することができ、光の入射によって電気伝導度変化体16部分の電気伝導性を向上させて、pn接合部分で生成された電子または正孔の移動性を向上させ、効果的に起電力を生じさせることができる。 By providing the electric conductivity changing body 16 between the p-type conductor 12 and the n-type electric conductor 13, the electric conductivity changing body 16 can be disposed at the pn junction portion. It is possible to improve the electric conductivity of the change body 16 portion, improve the mobility of electrons or holes generated at the pn junction portion, and effectively generate an electromotive force.
 図3に示す第1実施形態の太陽電池素子は、以下のようにして形成している。 The solar cell element of the first embodiment shown in FIG. 3 is formed as follows.
 まず、絶縁基盤10の上面にスパッタ法などによって金属層を形成して第1電極11としている。 First, a metal layer is formed on the upper surface of the insulating substrate 10 by sputtering or the like to form the first electrode 11.
 次いで、第1電極11の上面にCVD(Chemical Vapor Deposition)法などによって所望のp型電導体12を形成している。 Next, a desired p-type conductor 12 is formed on the upper surface of the first electrode 11 by a CVD (Chemical Vapor Deposition) method or the like.
 次いで、p型電導体12の上面にCVD法、スパッタ法、MBE(Molecular Beam Epitaxy)法、あるいはエアロゾルデポジション法などによって微粒子状としたLuFe2O4からなる電気伝導度変化体16を配設している。なお、図5に示す太陽電池素子の場合には、LuFe2O4の薄膜を形成している。 Next, an electric conductivity change body 16 made of LuFe 2 O 4 formed into fine particles by the CVD method, sputtering method, MBE (Molecular Beam Epitaxy) method or aerosol deposition method is disposed on the upper surface of the p-type conductor 12. is doing. In the case of the solar cell element shown in FIG. 5, a thin film of LuFe 2 O 4 is formed.
 次いで、微粒子状または薄膜状のLuFe2O4からなる電気伝導度変化体16が設けられたp型電導体12の上面にCVD法などによって所望のn型電導体13を形成している。 Next, a desired n-type conductor 13 is formed on the upper surface of the p-type conductor 12 provided with the electric conductivity change body 16 made of fine particle or thin-film LuFe 2 O 4 by a CVD method or the like.
 次いで、n型電導体13の上面にはスパッタ法などによって金属層を形成し、この金属層の上面に所定形状としたマスクを設けて金属層をエッチングすることにより、第2電極14を形成している。 Next, a metal layer is formed on the upper surface of the n-type conductor 13 by sputtering or the like, a mask having a predetermined shape is provided on the upper surface of the metal layer, and the metal layer is etched to form the second electrode 14. ing.
 その後、n型電導体13及び第2電極14の上面に、CVD法などによって無反射コーティング膜15を形成している。 Thereafter, an anti-reflective coating film 15 is formed on the upper surfaces of the n-type conductor 13 and the second electrode 14 by a CVD method or the like.
〔第2実施形態〕
 第2実施形態の太陽電池素子は、図6に示すように、支持基体となる絶縁基盤20と、この絶縁基盤20の上面に設けた第1電極21と、この第1電極21の上面に設けたp型電導体22と、このp型電導体22の上面に設けたn型電導体23で構成している。図示しないが、n型電導体23には所定位置に電極を接続している。
[Second Embodiment]
As shown in FIG. 6, the solar cell element of the second embodiment is provided with an insulating base 20 as a support base, a first electrode 21 provided on the upper surface of the insulating base 20, and an upper surface of the first electrode 21. The p-type conductor 22 and an n-type conductor 23 provided on the upper surface of the p-type conductor 22 are used. Although not shown, an electrode is connected to the n-type conductor 23 at a predetermined position.
 第2実施形態の太陽電池素子では、n型電導体23を平板状のp型電導体22に対して凸状に設けており、n型電導体23の下面部分において露出状態のpn接合を形成している。なお、p型電導体22とn型電導体23とを逆に配置してもよい。 In the solar cell element of the second embodiment, the n-type conductor 23 is provided in a convex shape with respect to the flat p-type conductor 22, and an exposed pn junction is formed on the lower surface portion of the n-type conductor 23. is doing. The p-type conductor 22 and the n-type conductor 23 may be arranged in reverse.
 第2実施形態の太陽電池素子では、露出状態のpn接合部分に、微粒子状としたLuFe2O4からなる電気伝導度変化体24を配設している。 In the solar cell element of the second embodiment, the electrical conductivity changing body 24 made of fine particles of LuFe 2 O 4 is disposed in the exposed pn junction portion.
 pn接合部分に電気伝導度変化体24を配設することにより、光の入射によって電気伝導度変化体24部分の電気伝導性を向上させて、pn接合部分で生成された電子または正孔の移動性を向上させ、効果的に起電力を生じさせることができる。 By disposing the electrical conductivity changing body 24 at the pn junction portion, the electrical conductivity of the electrical conductivity changing body 24 portion is improved by the incidence of light, and the movement of electrons or holes generated at the pn junction portion is improved. The electromotive force can be effectively generated and the electromotive force can be generated.
 なお、電気伝導度変化体24はLuFe2O4に限定するものではなく、Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nを1以上の整数、mを0以上の整数、δを0以上0.2以下の実数として、(RMbO3-δ)n(MaO)mとして表される層状三角格子構造を有する化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物を用いることができる。 The electrical conductivity change body 24 is not limited to LuFe 2 O 4 , and R is changed to In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn. , Hf, at least one element selected from Hf, Ma, Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, Cd allowing duplication, n A compound having a layered triangular lattice structure represented by (RMbO3 ) n (MaO) m , wherein R is an integer of 1 or more, m is an integer of 0 or more, δ is a real number of 0 to 0.2, or R of the compound A compound in which a part of is substituted with an element having a positive divalent value or less can be used.
 図6に示す第2実施形態の太陽電池素子は、以下のようにして形成している。 The solar cell element of the second embodiment shown in FIG. 6 is formed as follows.
 まず、絶縁基盤20の上面にスパッタ法などによって金属層を形成して第1電極21としている。 First, the first electrode 21 is formed by forming a metal layer on the upper surface of the insulating substrate 20 by sputtering or the like.
 次いで、第1電極21の上面にCVD法などによって所望のp型電導体22を形成している。本実施形態でも、p型電導体22はシリコン半導体としている。 Next, a desired p-type conductor 22 is formed on the upper surface of the first electrode 21 by a CVD method or the like. Also in this embodiment, the p-type conductor 22 is a silicon semiconductor.
 次いで、p型電導体22の上面にCVD法などによって所望のn型電導体23を形成している。本実施形態でも、n型電導体23はシリコン半導体としている。 Next, a desired n-type conductor 23 is formed on the upper surface of the p-type conductor 22 by a CVD method or the like. Also in this embodiment, the n-type conductor 23 is a silicon semiconductor.
 n型電導体23の形成後、n型電導体23の上面には所要のエッチング用のマスクを形成し、p型電導体22が露出するまでn型電導体23をエッチングすることにより、凸状のn型電導体23を形成している。 After the formation of the n-type conductor 23, a required etching mask is formed on the upper surface of the n-type conductor 23, and the n-type conductor 23 is etched until the p-type conductor 22 is exposed. The n-type conductor 23 is formed.
 次いで、n型電導体23及びp型電導体22の上面に、CVD法、スパッタ法、MBE法、あるいはエアロゾルデポジション法などによって微粒子状としたLuFe2O4からなる電気伝導度変化体24を配設している。 Next, on the upper surfaces of the n-type conductor 23 and the p-type conductor 22, an electric conductivity change body 24 made of LuFe 2 O 4 made into fine particles by the CVD method, sputtering method, MBE method, aerosol deposition method or the like is provided. It is arranged.
 このようにp型電導体22及びn型電導体23の形成後に電気伝導度変化体24を配設することにより、n型電導体23の形成時の高温環境に電気伝導度変化体24が晒されることがなく、高温環境によって電気伝導度変化体24が劣化することを防止できる。 Thus, by providing the electrical conductivity change body 24 after the formation of the p-type conductor 22 and the n-type conductor 23, the electrical conductivity change body 24 is exposed to the high temperature environment when the n-type conductor 23 is formed. It is possible to prevent the electrical conductivity changing body 24 from being deteriorated by a high temperature environment.
 また、図6に示すように、n型電導体23を凸状に形成するのではなく、図7に示すように、p型電導体22の形成後、p型電導体22の上面に所要のエッチング用のマスクを形成してp型電導体22の一部をエッチングすることにより凹部を形成し、この凹部部分にn型電導体23を形成してもよい。 Further, as shown in FIG. 6, the n-type conductor 23 is not formed in a convex shape, but the p-type conductor 22 is formed on the upper surface of the p-type conductor 22 as shown in FIG. A recess may be formed by forming a mask for etching and etching a part of the p-type conductor 22, and the n-type conductor 23 may be formed in the recess.
 この場合、n型電導体23の形成後に適宜の平坦化処理を行って、上面を平坦化している。 In this case, after the formation of the n-type conductor 23, an appropriate flattening process is performed to flatten the upper surface.
 このようにn型電導体23を埋め込み状に設けることによって、太陽電池素子の上面には余計な突出物が存在することがなく、pn接合部分に微粒子状としたLuFe2O4からなる電気伝導度変化体24を配設しやすくすることができる。 By providing the n-type conductor 23 in an embedded manner in this way, there is no extra protrusion on the upper surface of the solar cell element, and electric conduction made of LuFe 2 O 4 in the form of fine particles at the pn junction. The degree changing body 24 can be easily arranged.
 また、電気伝導度変化体24の配設後に、p型電導体22及びn型電導体23の上面に無反射コーティング膜を形成しやすくすることができる。 Further, after the electrical conductivity changing body 24 is disposed, it is possible to easily form an antireflection coating film on the upper surfaces of the p-type conductor 22 and the n-type conductor 23.
〔第3実施形態〕
 第3実施形態の太陽電池素子は、図8に示すように、支持基体となる絶縁基盤30と、この絶縁基盤30の上面に設けたp型電導体31及びn型電導体32と、p型電導体31とn型電導体32とが近接したpn接合界面部分に配設した電気伝導度変化体33とで構成している。図示しないが、p型電導体31及びn型電導体32にはそれぞれ所定位置に電極を接続している。
[Third Embodiment]
As shown in FIG. 8, the solar cell element according to the third embodiment includes an insulating base 30 serving as a support base, a p-type conductor 31 and an n-type conductor 32 provided on the upper surface of the insulating base 30, and a p-type. The electric conductor 31 and the n-type electric conductor 32 are constituted by an electric conductivity changing body 33 disposed in the adjacent pn junction interface portion. Although not shown, electrodes are connected to the p-type conductor 31 and the n-type conductor 32 at predetermined positions, respectively.
 第3実施形態の太陽電池素子では、p型電導体31及びn型電導体32は、それぞれ薄膜状としており、特に、平面視櫛歯形状としている。 In the solar cell element of the third embodiment, each of the p-type conductor 31 and the n-type conductor 32 has a thin film shape, and particularly has a comb shape in plan view.
 すなわち、本実施形態のp型電導体31は、直線状の第1基部31aと、この第1基部31aからn型電導体32に向けて突出させた複数の第1歯部31bとで構成し、本実施形態のn型電導体32は、直線状の第2基部32aと、この第2基部32aからp型電導体31に向けて突出させた複数の第2歯部32bとで構成しており、第1歯部31b及び第2歯部32bの突出方向と直交する方向に沿って第1歯部31bと第2歯部32bを交互に配置している。 That is, the p-type conductor 31 of the present embodiment includes a linear first base portion 31a and a plurality of first tooth portions 31b protruding from the first base portion 31a toward the n-type conductor 32. The n-type conductor 32 of this embodiment includes a linear second base portion 32a and a plurality of second tooth portions 32b projecting from the second base portion 32a toward the p-type conductor 31. The first tooth portions 31b and the second tooth portions 32b are alternately arranged along the direction orthogonal to the protruding direction of the first tooth portions 31b and the second tooth portions 32b.
 図8では、説明の便宜上、第1歯部31bと第2歯部32bの間に隙間があるように描いているが、第1歯部31bと第2歯部32bは互いに接していたり、あるいは重なり合っていたりして、pn接合が形成されている。 In FIG. 8, for convenience of explanation, the first tooth portion 31b and the second tooth portion 32b are drawn so that there is a gap between them, but the first tooth portion 31b and the second tooth portion 32b are in contact with each other, or The pn junction is formed by overlapping.
 p型電導体31及びn型電導体32をそれぞれ櫛歯状とすることにより、pn接合領域を大きくすることができ、pn接合領域部分に配設した電気伝導度変化体33によって、pn接合部分で生成された電子または正孔の移動性を向上させ、効果的に起電力を生じさせることができる。 By making each of the p-type conductor 31 and the n-type conductor 32 comb-like, the pn junction region can be enlarged, and the pn junction portion is formed by the electric conductivity change body 33 disposed in the pn junction region portion. It is possible to improve the mobility of the electrons or holes generated in the step 1, and to effectively generate an electromotive force.
 なお、電気伝導度変化体33はLuFe2O4に限定するものではなく、Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nを1以上の整数、mを0以上の整数、δを0以上0.2以下の実数として、(RMbO3-δ)n(MaO)mとして表される層状三角格子構造を有する化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物を用いることができる。 The electrical conductivity changing body 33 is not limited to LuFe 2 O 4 , and R is changed to In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn. , Hf, at least one element selected from Hf, Ma, Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, Cd allowing duplication, n A compound having a layered triangular lattice structure represented by (RMbO3 ) n (MaO) m , wherein R is an integer of 1 or more, m is an integer of 0 or more, δ is a real number of 0 to 0.2, or R of the compound A compound in which a part of is substituted with an element having a positive divalent value or less can be used.
 図8に示す第3実施形態の太陽電池素子は、以下のようにして形成している。 The solar cell element of the third embodiment shown in FIG. 8 is formed as follows.
 まず、所定形状とした絶縁基盤30の上面にp型電導体31及びn型電導体32をそれぞれ所定の櫛歯状に形成している。本実施形態では、p型電導体31及びn型電導体32はそれぞれシリコン半導体としている。 First, a p-type conductor 31 and an n-type conductor 32 are each formed in a predetermined comb shape on the upper surface of the insulating base 30 having a predetermined shape. In this embodiment, each of the p-type conductor 31 and the n-type conductor 32 is a silicon semiconductor.
 ここで、p型電導体31及びn型電導体32をCVD法やスパッタ法などで形成する場合には、はじめにp型電導体31またはn型電導体32の形成領域を開口したマスクを絶縁基盤30の上面に設け、p型電導体31またはn型電導体32をCVD法やスパッタ法などで形成し、マスクを除去することにより、所定の櫛歯状のp型電導体31またはn型電導体32を形成できる。 Here, when the p-type conductor 31 and the n-type conductor 32 are formed by the CVD method or the sputtering method, the mask in which the p-type conductor 31 or the n-type conductor 32 is formed is first insulated. The p-type conductor 31 or the n-type conductor 32 is formed on the upper surface of the substrate 30 by CVD or sputtering, and the mask is removed to obtain a predetermined comb-shaped p-type conductor 31 or n-type conductor. A conductor 32 can be formed.
 なお、p型電導体31を有機半導体で形成する場合には、スクリーン印刷による塗布によってp型電導体31を形成してもよい。 In addition, when forming the p-type conductor 31 with an organic semiconductor, you may form the p-type conductor 31 by application | coating by screen printing.
 p型電導体31及びn型電導体32の形成後、CVD法、スパッタ法、MBE法、あるいはエアロゾルデポジション法などによって微粒子状としたLuFe2O4からなる電気伝導度変化体33を絶縁基盤30の上面に配設している。 After the formation of the p-type conductor 31 and the n-type conductor 32, the electrical conductivity change body 33 made of LuFe 2 O 4 made into fine particles by CVD, sputtering, MBE, or aerosol deposition is insulated. Arranged on the top surface of 30.
 このように、p型電導体22及びn型電導体23の形成後に電気伝導度変化体33を配設することにより、p型電導体22やn型電導体23の形成時の高温環境に電気伝導度変化体33が晒されることがなく、高温環境によって電気伝導度変化体33が劣化することを防止できる。 As described above, the electric conductivity changing body 33 is disposed after the formation of the p-type conductor 22 and the n-type conductor 23, so that the high-temperature environment during the formation of the p-type conductor 22 and the n-type conductor 23 The conductivity changing body 33 is not exposed, and the electrical conductivity changing body 33 can be prevented from being deteriorated by a high temperature environment.
 電気伝導度変化体33の配設後、p型電導体31とn型電導体32にそれぞれ接続した電極を形成し、無反射コーティング膜(図示せず)で上面を被覆している。 After the electrical conductivity changing body 33 is disposed, electrodes connected to the p-type conductor 31 and the n-type conductor 32 are formed, and the upper surface is covered with a non-reflective coating film (not shown).
 上述した実施形態では、いずれもn型電導体とは別に電気伝導度変化体を設けているが、電気伝導度変化体であるLuFe2O4でn型電導体を構成することもできる。 In the above-described embodiments, the electric conductivity changing body is provided separately from the n-type electric conductor, but the n-type electric conductor can also be constituted by LuFe 2 O 4 which is an electric conductivity changing body.
 この場合、電気伝導度変化体であるLuFe2O4で構成したn型電導体とは別に、電気伝導度変化体を設ける必要はない。 In this case, it is not necessary to provide an electrical conductivity change body separately from the n-type conductor composed of LuFe 2 O 4 which is an electrical conductivity change body.
 特に、層状に形成したLuFe2O4に有機半導体を積層させて形成した積層構造においては、例えば、有機半導体をC60フラーレンで構成した有機半導体とした場合、図9の電流電圧計測結果のグラフに示すように整流特性を示し、pn接合が形成されていることが確認されている。 In particular, in a laminated structure formed by laminating an organic semiconductor on LuFe 2 O 4 formed in layers, for example, when the organic semiconductor is an organic semiconductor composed of C60 fullerene, the graph of the current-voltage measurement results in FIG. As shown, rectification characteristics are shown, and it is confirmed that a pn junction is formed.
 有機半導体は、C60フラーレンで構成する場合に限定するものではなく、ピセンを用いた場合でも同様にpn接合が形成されていることが確認されており、有機半導体を用いることによりp型電導体の透光性を向上させることができ、光電変換効率を向上させることができる。 The organic semiconductor is not limited to the case of being composed of C60 fullerene, and it is confirmed that a pn junction is formed in the same manner even when picene is used. Translucency can be improved and photoelectric conversion efficiency can be improved.
 また、n型電導体を電気伝導度変化体で構成する場合には、別途、電気伝導度変化体を設ける必要がなく、製造コストを低減させることができる。 Further, when the n-type conductor is composed of an electric conductivity changing body, it is not necessary to separately provide an electric conductivity changing body, and the manufacturing cost can be reduced.
 本発明によれば、光電変換効率を向上させた光電変換素子を提供できる。 According to the present invention, a photoelectric conversion element having improved photoelectric conversion efficiency can be provided.

Claims (5)

  1.  pn接合を有する光電変換素子において、
     受光することにより電気伝導度が変化する電気伝導度変化体をpn接合部分に設けている光電変換素子。
    In a photoelectric conversion element having a pn junction,
    A photoelectric conversion element in which an electrical conductivity change body whose electrical conductivity changes by receiving light is provided in a pn junction portion.
  2.  前記電気伝導度変化体が、
     Rを、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、
     Ma及びMbを、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、
     nを1以上の整数、
     mを0以上の整数、
     δを0以上0.2以下の実数
    として、(RMbO3-δ)n(MaO)mとして表される層状三角格子構造を有する化合物、またはその化合物のRの一部を正二価以下の元素により置換した化合物である請求項1に記載の光電変換素子。
    The electrical conductivity changing body is
    R is at least one element selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf,
    Ma and Mb, at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd with duplication allowed,
    n is an integer of 1 or more,
    m is an integer greater than or equal to 0,
    A compound having a layered triangular lattice structure represented by (RMbO 3 -δ ) n (MaO) m or a part of R of the compound was substituted with an element less than positive divalent, where δ is a real number between 0 and 0.2. The photoelectric conversion element according to claim 1, which is a compound.
  3.  前記電気伝導度変化体をn型電導体として前記pn接合を形成した請求項2に記載の光電変換素子。 The photoelectric conversion element according to claim 2, wherein the pn junction is formed by using the electric conductivity change body as an n-type conductor.
  4.  前記pn接合を形成するp型電導体を有機物半導体で構成した請求項3に記載の光電変換素子。 The photoelectric conversion element according to claim 3, wherein the p-type conductor forming the pn junction is composed of an organic semiconductor.
  5.  pn接合を有する光電変換素子の製造方法において、
     受光することにより電気伝導度が変化する電気伝導度変化体をpn接合部分に設ける工程を有する光電変換素子の製造方法。
    In the method for producing a photoelectric conversion element having a pn junction,
    The manufacturing method of the photoelectric conversion element which has the process of providing the electrical conductivity change body in which electrical conductivity changes by receiving light in a pn junction part.
PCT/JP2009/067048 2008-09-30 2009-09-30 Photoelectric conversion element and method for manufacturing the photoelectric conversion element WO2010038787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010531887A JP5360838B2 (en) 2008-09-30 2009-09-30 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-255373 2008-09-30
JP2008255373 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038787A1 true WO2010038787A1 (en) 2010-04-08

Family

ID=42073546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067048 WO2010038787A1 (en) 2008-09-30 2009-09-30 Photoelectric conversion element and method for manufacturing the photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP5360838B2 (en)
WO (1) WO2010038787A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110872A (en) * 1989-09-25 1991-05-10 Konica Corp Optoelectric transducer
JP2000150935A (en) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd Photovoltaic element
JP2007194559A (en) * 2006-01-23 2007-08-02 National Institute For Materials Science Compound photoelectric conversion element, and method for manufacturing same
JP2007223886A (en) * 2005-11-22 2007-09-06 Japan Synchrotron Radiation Research Inst Method and material for implementing dielectric characteristic by distributing electron density in material to dipole type
WO2009028424A1 (en) * 2007-08-24 2009-03-05 National University Corporation Okayama University Electronic element and electrical conductivity control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110872A (en) * 1989-09-25 1991-05-10 Konica Corp Optoelectric transducer
JP2000150935A (en) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd Photovoltaic element
JP2007223886A (en) * 2005-11-22 2007-09-06 Japan Synchrotron Radiation Research Inst Method and material for implementing dielectric characteristic by distributing electron density in material to dipole type
JP2007194559A (en) * 2006-01-23 2007-08-02 National Institute For Materials Science Compound photoelectric conversion element, and method for manufacturing same
WO2009028424A1 (en) * 2007-08-24 2009-03-05 National University Corporation Okayama University Electronic element and electrical conductivity control method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N.IKEDA ET AL.: "Charge Frustration and Dielectric Dispersion in LuFe204", JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, vol. 69, no. 5, May 2000 (2000-05-01), pages 1526 - 1532 *
N.IKEDA ET AL.: "Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe204", NATURE, vol. 436, no. 7054, 25 August 2005 (2005-08-25), pages 1136 - 1138 *

Also Published As

Publication number Publication date
JP5360838B2 (en) 2013-12-04
JPWO2010038787A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP6139599B2 (en) Solar cell and manufacturing method thereof
JP6522684B2 (en) Solar cell
AU2013363640B2 (en) Solar cell with silicon oxynitride dielectric layer
JP6235536B2 (en) Solar cell
JP2009164544A (en) Passivation layer structure of solar cell, and fabricating method thereof
US11121269B2 (en) Solar cell
KR101189686B1 (en) Photo Active Layer by Silicon Quantum Dot and the Fabrication Method thereof
JP2016046525A (en) Solar battery and method for manufacturing the same
JP2001007381A5 (en)
JP2017135385A (en) Solar cell
KR20120000198A (en) Solar Cell with P-doped Quantum Dot and the Fabrication Method Thereof
WO2011000055A1 (en) Hot carrier energy conversion structure and method of fabricating the same
US20140014169A1 (en) Nanostring mats, multi-junction devices, and methods for making same
KR101625876B1 (en) Solar cell and method for manufacturing the same
JP5360838B2 (en) Photoelectric conversion element and manufacturing method thereof
TWI491055B (en) Solar cell and its manufacturing method
JP5487295B2 (en) Solar cell
TW201322467A (en) Solar cell, solar battery and method for making the same
JP2012216600A (en) Silicon quantum dot device and manufacturing method of the same
JP2011181608A (en) Photoelectric converter and manufacturing method of photoelectric converter
JP5360837B2 (en) Optical sensor and manufacturing method thereof
KR101670286B1 (en) Quantum-dot photoactive-layer and method for manufacture thereof
JP4185246B2 (en) Laminated solar cell and method for manufacturing the same
TW201801339A (en) Photovoltaic element
TW201220514A (en) Thin-film solar cell and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531887

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817819

Country of ref document: EP

Kind code of ref document: A1