JPWO2010035733A1 - 画像処理装置および方法 - Google Patents
画像処理装置および方法 Download PDFInfo
- Publication number
- JPWO2010035733A1 JPWO2010035733A1 JP2010530847A JP2010530847A JPWO2010035733A1 JP WO2010035733 A1 JPWO2010035733 A1 JP WO2010035733A1 JP 2010530847 A JP2010530847 A JP 2010530847A JP 2010530847 A JP2010530847 A JP 2010530847A JP WO2010035733 A1 JPWO2010035733 A1 JP WO2010035733A1
- Authority
- JP
- Japan
- Prior art keywords
- image
- unit
- frame
- prediction
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/573—Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/107—Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/56—Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本発明は、演算量の増大を抑制することができる画像処理装置および方法に関する。MRF探索中心算出部77は、参照ピクチャ番号ref_id=0の参照フレーム上において探索された動きベクトルtmmv0を用いて、対象フレームと、参照ピクチャ番号ref_id=0の次に対象フレームに時間軸上の距離が近い参照ピクチャ番号ref_id=1の参照フレームにおける動き探索中心mvcを算出する。テンプレート動き予測・補償部76は、求められた参照ピクチャ番号ref_id=1の参照フレームの探索中心mvcの周辺の所定の範囲Eでの動き探索を行い、補償処理を行って、予測画像を生成する。本発明は、例えば、H.264/AVC方式で符号化する画像符号化装置に適用することができる。
Description
本発明は画像処理装置および方法に関し、特に、演算量の増大を抑制するようにした画像処理装置および方法に関する。
近年、MPEG(Moving Picture Experts Group)2やH.264およびMPEG−4 Part10 (Advanced Video Coding)(以下H.264/AVCと記す)などの方式で画像を圧縮符号化し、パケット化して伝送し、受信側で復号する技術が普及してきた。これによりユーザは高品質の動画像を視聴することができる。
ところで、MPEG2方式においては、線形内挿処理により1/2画素精度の動き予測・補償処理が行われているが、H.264/AVC方式においては、6タップのFIR (Finite Impulse Response Filter)フィルタを用いた1/4画素精度の予測・補償処理が行われている。
また、MPEG2方式においては、フレーム動き補償モードの場合には、16×16画素を単位として動き予測・補償処理が行われ、フィールド動き補償モードの場合には、第1フィールドと第2フィールドのそれぞれに対し、16×8画素を単位として動き予測・補償処理が行われている。
これに対して、H.264/AVC方式においては、ブロックサイズを可変にして、動き予測・補償を行うことができる。すなわち、H.264/AVC方式においては、16×16画素で構成される1つのマクロブロックを、16×16、16×8、8×16、あるいは8×8のいずれかのパーティションに分割して、それぞれ独立した動きベクトル情報を持つことが可能である。また、8×8パーティションに関しては、8×8、8×4、4×8、あるいは4×4のいずれかのサブパーティションに分割し、それぞれ独立した動きベクトル情報を持つことが可能である。
しかしながら、H.264/AVC方式においては、上述した1/4画素精度、およびブロック可変の動き予測・補償処理が行われることにより、膨大な動きベクトル情報が生成されてしまい、これをこのまま符号化してしまうと、符号化効率の低下を招いていた。
そこで、符号化対象の画像の領域に対して所定の位置関係で隣接すると共に復号画像の一部であるテンプレート領域の復号画像と相関が高い画像の領域を、復号画像から探索して、探索された領域と所定の位置関係とに基づいて予測を行う方法が提案されている(特許文献1参照)。
この方法は、マッチングに復号画像を用いているため、探索範囲を予め定めておくことで、符号化装置と復号装置において同一の処理を行うことが可能である。すなわち、復号装置においても上述したような予測・補償処理を行うことにより、符号化装置からの画像圧縮情報の中に動きベクトル情報を持つ必要がないため、符号化効率の低下を抑えることが可能である。
ところで、H.264/AVC方式においては、複数の参照フレームをメモリに格納しておき、対象ブロック毎に異なる参照フレームを参照することができるというマルチ参照フレームという方式が規定されている。
しかしながら、特許文献1の技術を、このマルチ参照フレームに適用すると、全ての参照フレームに対して、動き探索を行う必要があるため、符号化装置のみならず、復号装置においても、演算量の増大を招いてしまう。
本発明は、このような状況に鑑みてなされたものであり、演算量の増大を抑制するものである。
本発明の一側面の画像処理装置は、フレームの第1の対象ブロックの第1の参照フレームで探索された前記第1の対象ブロックの動きベクトルを用いて、前記フレームに対する時間軸上の距離が前記第1の参照フレームの次に近い第2の参照フレームにおける探索中心を算出する探索中心算出部と、前記探索中心算出部により算出された前記第2の参照フレームにおける前記探索中心の周辺の所定の探索範囲で、前記第1の対象ブロックの動きベクトルを、前記第1の対象ブロックに対して所定の位置関係で隣接するとともに復号画像から生成されるテンプレートを利用して探索する動き予測部とを備える。
前記探索中心算出部は、前記第1の参照フレームで前記動き予測部により探索された前記第1の対象ブロックの動きベクトルを、前記フレームに対する時間軸上の距離でスケーリングすることで、前記第2の参照フレームにおける前記探索中心を算出することができる。
前記フレームと参照ピクチャ番号ref_id=k-1の前記第1の参照フレームとの時間軸上の距離をtk-1とし、前記フレームと参照ピクチャ番号ref_id=kの前記第2の参照フレームとの時間軸上の距離をtkとし、前記第1の参照フレームで前記動き予測部により探索された前記第1の対象ブロックの動きベクトルをtmmvk-1としたとき、前記探索中心算出部は、
として前記探索中心mvcを算出し、前記動き予測部は、前記探索中心算出部により算出された前記第2の参照フレームにおける前記探索中心mvcの周辺の所定の探索範囲で、前記第1の対象ブロックの動きベクトルを、前記テンプレートを利用して探索することができる。
前記探索中心算出部は、tk/tk-1の値を、N/2M(N,Mは整数)の形で近似することにより、前記探索中心mvcの算出を、シフト演算のみで行うことができる。
前記時間軸上の距離tk,tk-1として、POC(Picture Order Count)を用いることができる。
前記画像圧縮情報中に参照ピクチャ番号ref_idに相当するパラメータがない場合、前方向、後方向予測共に、時間軸上で前記フレームに近い順の参照フレームから処理を行うことができる。
前記動き予測部は、前記フレームに時間軸上の距離が最も近い前記第1の参照フレームにおいては、前記第1の対象ブロックの動きベクトルを、前記テンプレートを利用して所定の範囲で探索することができる。
前記動き予測部は、前記第2の参照フレームがLong Term Reference Pictureである場合、前記第2の参照フレームにおいては、前記第1の対象ブロックの動きベクトルを、前記テンプレートを利用して所定の範囲で探索することができる。
符号化された動きベクトルの情報を復号する復号部と、前記復号部により復号された前記フレームの第2の対象ブロックの動きベクトルを用いて予測画像を生成する予測画像生成部とをさらに備えることができる。
前記動き予測部は、前記フレームの第2の対象ブロックの動きベクトルを、前記第2の対象ブロックを利用して探索し、前記動き予測部により探索された前記第1の対象ブロックの動きベクトルに基づく予測画像と、前記動き予測部により探索された前記第2の対象ブロックの動きベクトルに基づく予測画像のうちの一方を選択する画像選択部とをさらに備えることができる。
本発明の一側面の画像処理方法は、画像処理装置が、フレームの対象ブロックの第1の参照フレームで探索された前記対象ブロックの動きベクトルを用いて、前記フレームに対する時間軸上の距離が前記第1の参照フレームの次に近い第2の参照フレームにおける探索中心を算出し、算出された前記第2の参照フレームにおける前記探索中心の周辺の所定の探索範囲で、前記対象ブロックの動きベクトルを、前記対象ブロックに対して所定の位置関係で隣接するとともに復号画像から生成されるテンプレートを利用して探索するステップを含む。
本発明の一側面においては、フレームの対象ブロックの第1の参照フレームで探索された前記対象ブロックの動きベクトルを用いて、前記フレームに対する時間軸上の距離が前記第1の参照フレームの次に近い第2の参照フレームにおける探索中心が算出される。そして、算出された前記第2の参照フレームにおける前記探索中心の周辺の所定の探索範囲で、前記対象ブロックの動きベクトルが、前記対象ブロックに対して所定の位置関係で隣接するとともに復号画像から生成されるテンプレートを利用して探索される。
以上のように、本発明の一側面によれば、画像を符号化または復号することができる。また、本発明の一側面によれば、演算量の増大を抑制することができる。
以下、図を参照して本発明の実施の形態について説明する。
図1は、本発明の画像符号化装置の一実施の形態の構成を表している。この画像符号化装置51は、A/D変換部61、画面並べ替えバッファ62、演算部63、直交変換部64、量子化部65、可逆符号化部66、蓄積バッファ67、逆量子化部68、逆直交変換部69、演算部70、デブロックフィルタ71、フレームメモリ72、スイッチ73、イントラ予測部74、動き予測・補償部75、テンプレート動き予測・補償部76、MRF(Multi-Reference Frame)探索中心算出部77、予測画像選択部78、およびレート制御部79により構成されている。
この画像符号化装置51は、例えば、H.264およびMPEG−4 Part10 (Advanced Video Coding)(以下H.264/AVCと記す)方式で画像を圧縮符号化する。
H.264/AVC方式においては、ブロックサイズを可変にして、動き予測・補償が行われる。すなわち、H.264/AVC方式においては、16×16画素で構成される1つのマクロブロックを、図2に示されるように、16×16画素、16×8画素、8×16画素、あるいは8×8画素のいずれかのパーティションに分割して、それぞれ独立した動きベクトル情報を持つことが可能である。また、8×8画素のパーティションに関しては、図2に示されるように、8×8画素、8×4画素、4×8画素、あるいは4×4画素のいずれかのサブパーティションに分割し、それぞれ独立した動きベクトル情報を持つことが可能である。
また、H.264/AVC方式においては、6タップのFIR (Finite Impulse Response Filter)フィルタを用いた1/4画素精度の予測・補償処理が行われている。図3を参照して、H.264/AVC方式における小数画素精度の予測・補償処理について説明する。
図3の例において、位置Aは、整数精度画素の位置、位置b,c,dは、1/2画素精度の位置、位置e1,e2,e3は、1/4画素精度の位置を示している。まず、以下においては、Clip()を次の式(1)のように定義する。
位置cにおける画素値は、水平方向および垂直方向に6タップのFIRフィルタを適用し、次の式(3)のように生成される。
なお、Clip処理は、水平方向および垂直方向の積和処理の両方を行った後、最後に1度のみ実行される。
さらに、H.264/AVC方式においては、マルチ参照フレーム(Multi-Reference Frame) の動き予測・補償方式が定められている。図4を参照して、H.264/AVC方式におけるマルチ参照フレームの予測・補償処理について説明する。
図4の例においては、いまから符号化される対象フレームFnと、符号化済みのフレームFn-5,…,Fn-1が示されている。フレームFn-1は、時間軸上、対象フレームFnの1つ前のフレームであり、フレームFn-2は、対象フレームFnの2つ前のフレームであり、フレームFn-3は、対象フレームFnの3つ前のフレームである。また、フレームFn-4は、対象フレームFnの4つ前のフレームであり、フレームFn-5は、対象フレームFnの5つ前のフレームである。一般的には、対象フレームFnに対して時間軸上に近いフレームほど、小さい参照ピクチャ番号(ref_id)が付加される。すなわち、フレームFn-1が一番参照ピクチャ番号が小さく、以降、Fn-2,…, Fn-5の順に参照ピクチャ番号が小さい。
対象フレームFnには、ブロックA1とブロックA2が示されており、ブロックA1は、2つ前のフレームFn-2のブロックA1’と相関があるとされて、動きベクトルV1が探索されている。また、ブロックA2は、4つ前のフレームFn-4のブロックA1’と相関があるとされて、動きベクトルV2が探索されている。
以上のように、H.264/AVC方式においては、複数の参照フレームをメモリに格納しておき、1枚のフレーム(ピクチャ)において、異なる参照フレームを参照することが可能である。すなわち、例えば、ブロックA1がフレームFn-2を参照し、ブロックA2がフレームFn-4を参照しているというように、1枚のピクチャにおいて、ブロック毎にそれぞれ独立した参照フレーム情報(参照ピクチャ番号(ref_id))を持つことができる。
図1に戻って、A/D変換部61は、入力された画像をA/D変換し、画面並べ替えバッファ62に出力し、記憶させる。画面並べ替えバッファ62は、記憶した表示の順番のフレームの画像を、GOP(Group of Picture)に応じて、符号化のためのフレームの順番に並べ替える。
演算部63は、画面並べ替えバッファ62から読み出された画像から、予測画像選択部78により選択されたイントラ予測部74からの予測画像または動き予測・補償部75からの予測画像を減算し、その差分情報を直交変換部64に出力する。直交変換部64は、演算部63からの差分情報に対して、離散コサイン変換、カルーネン・レーベ変換等の直交変換を施し、その変換係数を出力する。量子化部65は直交変換部64が出力する変換係数を量子化する。
量子化部65の出力となる、量子化された変換係数は、可逆符号化部66に入力され、ここで可変長符号化、算術符号化等の可逆符号化が施され、圧縮される。
可逆符号化部66は、イントラ予測に関する情報をイントラ予測部74から取得し、インター予測やインターテンプレート予測に関する情報などを動き予測・補償部75から取得する。可逆符号化部66は、量子化された変換係数を符号化するとともに、イントラ予測に関する情報、インター予測やインターテンプレート予測に関する情報などを符号化し、圧縮画像におけるヘッダ情報の一部とする。可逆符号化部66は、符号化したデータを蓄積バッファ67に供給して蓄積させる。
例えば、可逆符号化部66においては、H.264/AVC方式で定められているCAVLC(Context-Adaptive Variable Length Coding)などの可変長符号化、または、CABAC(Context-Adaptive Binary Arithmetic Coding)などの算術符号化等の可逆符号化処理が行われる。
蓄積バッファ67は、可逆符号化部66から供給されたデータを、H.264/AVC方式で符号化された圧縮画像として、例えば、後段の図示せぬ記録装置や伝送路などに出力する。
また、量子化部65より出力された、量子化された変換係数は、逆量子化部68にも入力され、逆量子化された後、さらに逆直交変換部69において逆直交変換される。逆直交変換された出力は演算部70により予測画像選択部78から供給される予測画像と加算されて、局部的に復号された画像となる。デブロックフィルタ71は、復号された画像のブロック歪を除去した後、フレームメモリ72に供給し、蓄積させる。フレームメモリ72には、デブロックフィルタ71によりデブロックフィルタ処理される前の画像も供給され、蓄積される。
スイッチ73はフレームメモリ72に蓄積された参照画像を動き予測・補償部75またはイントラ予測部74に出力する。
この画像符号化装置51においては、例えば、画面並べ替えバッファ62からのIピクチャ、Bピクチャ、およびPピクチャが、イントラ予測(イントラ処理とも称する)する画像として、イントラ予測部74に供給される。また、画面並べ替えバッファ62から読み出されたBピクチャおよびPピクチャが、インター予測(インター処理とも称する)する画像として、動き予測・補償部75に供給される。
イントラ予測部74は、画面並べ替えバッファ62から読み出されたイントラ予測する画像とフレームメモリ72から供給された参照画像に基づいて、候補となる全てのイントラ予測モードのイントラ予測処理を行い、予測画像を生成する。
その際、イントラ予測部74は、候補となる全てのイントラ予測モードに対してコスト関数値を算出し、算出したコスト関数値が最小値を与えるイントラ予測モードを、最適イントラ予測モードとして選択する。
イントラ予測部74は、最適イントラ予測モードで生成された予測画像とそのコスト関数値を、予測画像選択部78に供給する。イントラ予測部74は、予測画像選択部78により最適イントラ予測モードで生成された予測画像が選択された場合、最適イントラ予測モードに関する情報を、可逆符号化部66に供給する。可逆符号化部66は、この情報を符号化し、圧縮画像におけるヘッダ情報の一部とする。
動き予測・補償部75は、候補となる全てのインター予測モードの動き予測・補償処理を行う。すなわち、動き予測・補償部75は、画面並べ替えバッファ62から読み出されたインター処理する画像と、スイッチ73を介してフレームメモリ72から供給される参照画像に基づいて、候補となる全てのインター予測モードの動きベクトルを検出し、動きベクトルに基づいて参照画像に動き予測と補償処理を施し、予測画像を生成する。
また、動き予測・補償部75は、画面並べ替えバッファ62から読み出されたインター処理される画像と、スイッチ73を介してフレームメモリ72から供給される参照画像を、テンプレート動き予測・補償部76に供給する。
さらに、動き予測・補償部75は、候補となる全てのインター予測モードに対してコスト関数値を算出する。動き予測・補償部75は、算出したインター予測モードに対してのコスト関数値と、テンプレート動き予測・補償部76により算出されたインターテンプレート予測モードに対してのコスト関数値のうち、最小値を与える予測モードを、最適インター予測モードとして決定する。
動き予測・補償部75は、最適インター予測モードで生成された予測画像とそのコスト関数値を、予測画像選択部78に供給する。動き予測・補償部75は、予測画像選択部78により最適インター予測モードで生成された予測画像が選択された場合、最適インター予測モードに関する情報、およびその最適インター予測モードに応じた情報(動きベクトル情報、フラグ情報、参照フレーム情報など)を可逆符号化部66に出力する。可逆符号化部66は、動き予測・補償部75からの情報をやはり可変長符号化、算術符号化といった可逆符号化処理し、圧縮画像のヘッダ部に挿入する。
テンプレート動き予測・補償部76は、画面並べ替えバッファ62からのインター処理される画像と、フレームメモリ72から供給の参照画像に基づいて、インターテンプレート予測モードの動き予測と補償処理を行い、予測画像を生成する。
その際、テンプレート動き予測・補償部76は、図4を参照して上述した複数の参照フレームのうち、対象フレームに時間軸上最も近い参照フレームについては、予め設定されている所定の範囲でのインターテンプレート予測モードの動き探索を行い、補償処理を行って、予測画像を生成する。他方、それ以外の参照フレームについては、テンプレート動き予測・補償部76は、MRF探索中心算出部77により算出される探索中心の周辺の所定の範囲でのインターテンプレート予測モードの動き探索を行い、補償処理を行って、予測画像を生成する。
したがって、複数の参照フレームのうち、対象フレームに時間軸上最も近い参照フレーム以外の参照フレームについての動き探索を行う場合、テンプレート動き予測・補償部76は、画面並べ替えバッファ62から読み出されたインター符号化が行われる画像、およびフレームメモリ72から供給される参照画像を、MRF探索中心算出部77に供給する。なお、このとき、探索対象となる参照フレームの時間軸上1つ前の参照フレームについて探索された動きベクトル情報もMRF探索中心算出部77に供給される。
また、テンプレート動き予測・補償部76は、複数の参照フレームについて生成された予測画像のうち、予測誤差が最小のものを、対象ブロックに対する予測画像であると決定する。そして、テンプレート動き予測・補償部76は、決定した予測画像について、インターテンプレート予測モードに対してコスト関数値を算出し、算出したコスト関数値と予測画像を、動き予測・補償部75に供給する。
MRF探索中心算出部77は、複数の参照フレームのうち、探索対象となる参照フレームの時間軸上1つ前の参照フレームについて探索された動きベクトル情報を用いて、探索対象となる参照フレームにおける動きベクトルの探索中心を算出する。具体的には、MRF探索中心算出部77は、探索対象となる参照フレームの時間軸上1つ前の参照フレームについて探索された動きベクトル情報を、いまから符号化する対象フレームに対する時間軸上の距離でスケーリングすることで、探索対象となる参照フレームにおける動きベクトル探索中心を算出する。
予測画像選択部78は、イントラ予測部74または動き予測・補償部75より出力された各コスト関数値に基づいて、最適イントラ予測モードと最適インター予測モードから、最適予測モードを決定し、決定された最適予測モードの予測画像を選択し、演算部63,70に供給する。このとき、予測画像選択部78は、予測画像の選択情報を、イントラ予測部74または動き予測・補償部75に供給する。
レート制御部79は、蓄積バッファ67に蓄積された圧縮画像に基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部65の量子化動作のレートを制御する。
次に、図5のフローチャートを参照して、図1の画像符号化装置51の符号化処理について説明する。
ステップS11において、A/D変換部61は入力された画像をA/D変換する。ステップS12において、画面並べ替えバッファ62は、A/D変換部61より供給された画像を記憶し、各ピクチャの表示する順番から符号化する順番への並べ替えを行う。
ステップS13において、演算部63は、ステップS12で並び替えられた画像と予測画像との差分を演算する。予測画像は、インター予測する場合は動き予測・補償部75から、イントラ予測する場合はイントラ予測部74から、それぞれ予測画像選択部78を介して演算部63に供給される。
差分データは元の画像データに較べてデータ量が小さくなっている。したがって、画像をそのまま符号化する場合に較べて、データ量を圧縮することができる。
ステップS14において、直交変換部64は演算部63から供給された差分情報を直交変換する。具体的には、離散コサイン変換、カルーネン・レーベ変換等の直交変換が行われ、変換係数が出力される。ステップS15において、量子化部65は変換係数を量子化する。この量子化に際しては、後述するステップS25の処理で説明されるように、レートが制御される。
以上のようにして量子化された差分情報は、次のようにして局部的に復号される。すなわち、ステップS16において、逆量子化部68は量子化部65により量子化された変換係数を量子化部65の特性に対応する特性で逆量子化する。ステップS17において、逆直交変換部69は逆量子化部68により逆量子化された変換係数を直交変換部64の特性に対応する特性で逆直交変換する。
ステップS18において、演算部70は、予測画像選択部78を介して入力される予測画像を局部的に復号された差分情報に加算し、局部的に復号された画像(演算部63への入力に対応する画像)を生成する。ステップS19においてデブロックフィルタ71は、演算部70より出力された画像をフィルタリングする。これによりブロック歪みが除去される。ステップS20においてフレームメモリ72は、フィルタリングされた画像を記憶する。なお、フレームメモリ72にはデブロックフィルタ71によりフィルタ処理されていない画像も演算部70から供給され、記憶される。
ステップS21において、イントラ予測部74、動き予測・補償部75、およびテンプレート動き予測・補償部76は、それぞれ画像の予測処理を行う。すなわち、ステップS21において、イントラ予測部74は、イントラ予測モードのイントラ予測処理を行い、動き予測・補償部75は、インター予測モードの動き予測・補償処理を行う。また、テンプレート動き予測・補償部76は、インターテンプレート予測モードの動き予測・補償処理を行う。
ステップS21における予測処理の詳細は、図6を参照して後述するが、この処理により、候補となる全ての予測モードでの予測処理がそれぞれ行われ、候補となる全ての予測モードでのコスト関数値がそれぞれ算出される。そして、算出されたコスト関数値に基づいて、最適イントラ予測モードが選択され、最適イントラ予測モードのイントラ予測により生成された予測画像とそのコスト関数値が予測画像選択部78に供給される。また、算出されたコスト関数値に基づいて、インター予測モードとインターテンプレート予測モードの中から、最適インター予測モードが決定され、最適インター予測モードで生成された予測画像とそのコスト関数値が、予測画像選択部78に供給される。
ステップS22において、予測画像選択部78は、イントラ予測部74および動き予測・補償部75より出力された各コスト関数値に基づいて、最適イントラ予測モードと最適インター予測モードのうちの一方を、最適予測モードに決定する。そして、予測画像選択部78は、決定した最適予測モードの予測画像を選択し、演算部63,70に供給する。
この予測画像が、上述したように、ステップS13,S18の演算に利用される。
この予測画像が、上述したように、ステップS13,S18の演算に利用される。
なお、この予測画像の選択情報は、イントラ予測部74または動き予測・補償部75に供給される。最適イントラ予測モードの予測画像が選択された場合、イントラ予測部74は、最適イントラ予測モードに関する情報(すなわち、イントラ予測モード情報)を、可逆符号化部66に供給する。
最適インター予測モードの予測画像が選択された場合、動き予測・補償部75は、最適インター予測モードに関する情報、およびその最適インター予測モードに応じた情報(動きベクトル情報やフラグ情報、参照フレーム情報など)を可逆符号化部66に出力する。
さらに具体的には、最適インター予測モードとして、インター予測モードによる予測画像が選択されているときには、動き予測・補償部75は、インター予測モード情報、動きベクトル情報、参照フレーム情報を可逆符号化部66に出力する。
さらに具体的には、最適インター予測モードとして、インター予測モードによる予測画像が選択されているときには、動き予測・補償部75は、インター予測モード情報、動きベクトル情報、参照フレーム情報を可逆符号化部66に出力する。
一方、最適インター予測モードとして、インターテンプレート予測モードによる予測画像が選択されているときには、動き予測・補償部75は、インターテンプレート予測モード情報のみを可逆符号化部66に出力する。すなわち、動きベクトル情報などは、復号側に送る必要がないので、可逆符号化部66に出力されない。したがって、圧縮画像中における動きベクトル情報を低減することができる。
ステップS23において、可逆符号化部66は量子化部65より出力された量子化された変換係数を符号化する。すなわち、差分画像が可変長符号化、算術符号化等の可逆符号化され、圧縮される。このとき、上述したステップS22において可逆符号化部66に入力された、イントラ予測部74からのイントラ予測モード情報、または、動き予測・補償部75からの最適インター予測モードに応じた情報(予測モード情報、動きベクトル情報や参照フレーム情報など)なども符号化され、ヘッダ情報に付加される。
ステップS24において蓄積バッファ67は差分画像を圧縮画像として蓄積する。蓄積バッファ67に蓄積された圧縮画像が適宜読み出され、伝送路を介して復号側に伝送される。
ステップS25においてレート制御部79は、蓄積バッファ67に蓄積された圧縮画像に基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部65の量子化動作のレートを制御する。
次に、図6のフローチャートを参照して、図5のステップS21における予測処理を説明する。
画面並べ替えバッファ62から供給される処理対象の画像がイントラ処理されるブロックの画像である場合、参照される復号済みの画像がフレームメモリ72から読み出され、スイッチ73を介してイントラ予測部74に供給される。これらの画像に基づいて、ステップS31において、イントラ予測部74は処理対象のブロックの画素を、候補となる全てのイントラ予測モードでイントラ予測する。なお、参照される復号済みの画素としては、デブロックフィルタ71によりデブロックフィルタリングされていない画素が用いられる。
ステップS31におけるイントラ予測処理の詳細は、図7を参照して後述するが、この処理により、候補となる全てのイントラ予測モードでイントラ予測が行われ、候補となる全てのイントラ予測モードに対してコスト関数値が算出される。そして、算出されたコスト関数値に基づいて、最適イントラ予測モードが選択され、最適イントラ予測モードのイントラ予測により生成された予測画像とそのコスト関数値が予測画像選択部78に供給される。
画面並べ替えバッファ62から供給される処理対象の画像がインター処理される画像である場合、参照される画像がフレームメモリ72から読み出され、スイッチ73を介して動き予測・補償部75に供給される。これらの画像に基づいて、ステップS32において、動き予測・補償部75はインター動き予測処理を行う。すなわち、動き予測・補償部75は、フレームメモリ72から供給される画像を参照して、候補となる全てのインター予測モードの動き予測処理を行う。
ステップS32におけるインター動き予測処理の詳細は、図10を参照して後述するが、この処理により、候補となる全てのインター予測モードで動き予測処理が行われ、候補となる全てのインター予測モードに対してコスト関数値が算出される。
また、画面並べ替えバッファ62から供給される処理対象の画像がインター処理される画像である場合、参照される画像がフレームメモリ72から読み出され、スイッチ73および動き予測・補償部75を介してテンプレート動き予測・補償部76にも供給される。
これらの画像に基づいて、テンプレート動き予測・補償部76は、ステップS33において、インターテンプレート動き予測処理を行う。
これらの画像に基づいて、テンプレート動き予測・補償部76は、ステップS33において、インターテンプレート動き予測処理を行う。
ステップS33におけるインターテンプレート動き予測処理の詳細は、図12を参照して後述するが、この処理により、インターテンプレート予測モードで動き予測処理が行われ、インターテンプレート予測モードに対してコスト関数値が算出される。そして、インターテンプレート予測モードの動き予測処理により生成された予測画像とそのコスト関数値が動き予測・補償部75に供給される。なお、インターテンプレート予測モードに応じた情報(例えば、予測モード情報など)がある場合には、それも動き予測・補償部75に供給される。
ステップS34において、動き予測・補償部75は、ステップS32において算出されたインター予測モードに対してのコスト関数値と、ステップS33において算出されたインターテンプレート予測モードに対してのコスト関数値を比較し、最小値を与える予測モードを、最適インター予測モードとして決定する。そして、動き予測・補償部75は、最適インター予測モードで生成された予測画像とそのコスト関数値を、予測画像選択部78に供給する。
次に、図7のフローチャートを参照して、図6のステップS31におけるイントラ予測処理を説明する。なお、図7の例においては、輝度信号の場合を例として説明する。
イントラ予測部74は、ステップS41において、4×4画素、8×8画素、および16×16画素の各イントラ予測モードに対してイントラ予測を行う。
輝度信号のイントラ予測モードには、9種類の4×4画素および8×8画素のブロック単位、並びに4種類の16×16画素のマクロブロック単位の予測モードがあり、色差信号のイントラ予測モードには、4種類の8×8画素のブロック単位の予測モードがある。
色差信号のイントラ予測モードは、輝度信号のイントラ予測モードと独立に設定が可能である。輝度信号の4×4画素および8×8画素のイントラ予測モードについては、4×4画素および8×8画素の輝度信号のブロック毎に1つのイントラ予測モードが定義される。輝度信号の16×16画素のイントラ予測モードと色差信号のイントラ予測モードについては、1つのマクロブロックに対して1つの予測モードが定義される。
色差信号のイントラ予測モードは、輝度信号のイントラ予測モードと独立に設定が可能である。輝度信号の4×4画素および8×8画素のイントラ予測モードについては、4×4画素および8×8画素の輝度信号のブロック毎に1つのイントラ予測モードが定義される。輝度信号の16×16画素のイントラ予測モードと色差信号のイントラ予測モードについては、1つのマクロブロックに対して1つの予測モードが定義される。
予測モードの種類は、図8の番号0,1,3乃至8で示される方向に対応している。予測モード2は平均値予測である。
例えば、イントラ4×4予測モードの場合について、図9を参照して説明する。画面並べ替えバッファ62から読み出された処理対象の画像(例えば、画素a乃至p)がイントラ処理されるブロックの画像である場合、参照される復号済みの画像(画素A乃至M)がフレームメモリ72から読み出され、スイッチ73を介してイントラ予測部74に供給される。
これらの画像に基づいて、イントラ予測部74は、処理対象のブロックの画素をイントラ予測する。このイントラ予測処理が、各イントラ予測モードで行われることで、各イントラ予測モードでの予測画像が生成される。なお、参照される復号済みの画素(画素A乃至M)としては、デブロックフィルタ71によりデブロックフィルタリングされていない画素が用いられる。
イントラ予測部74は、ステップS42において、4×4画素、8×8画素、および16×16画素の各イントラ予測モードに対するコスト関数値を算出する。ここで、コスト関数値としては、H.264/AVC方式における参照ソフトウエアであるJM(Joint Model)で定められているように、High Complexity モードか、Low Complexity モードのいずれかの手法に基づいて行う。
すなわち、High Complexity モードにおいては、ステップS41の処理として、候補となる全ての予測モードに対して、仮に符号化処理までを行い、次の式(5)で表わされるコスト関数値を各予測モードに対して算出し、その最小値を与える予測モードを最適予測モードであるとして選択する。
Cost(Mode) = D + λ・R ・・・(5)
Dは、原画像と復号画像の差分(歪)、Rは、直交変換係数まで含んだ発生符号量、λは、量子化パラメータQPの関数として与えられるラグランジュ乗数である。
Dは、原画像と復号画像の差分(歪)、Rは、直交変換係数まで含んだ発生符号量、λは、量子化パラメータQPの関数として与えられるラグランジュ乗数である。
一方、Low Complexity モードにおいては、ステップS41の処理として、候補となる全ての予測モードに対して、予測画像の生成、および、動きベクトル情報や予測モード情報、フラグ情報などのヘッダビットまでを算出し、次の式(6)で表わされるコスト関数値を各予測モードに対して算出し、その最小値を与える予測モードを最適予測モードであるとして選択する。
Cost(Mode) = D + QPtoQuant(QP)・Header_Bit ・・・(6)
Dは、原画像と復号画像の差分(歪)、Header_Bitは、予測モードに対するヘッダビット、QPtoQuantは、量子化パラメータQPの関数として与えられる関数である。
Dは、原画像と復号画像の差分(歪)、Header_Bitは、予測モードに対するヘッダビット、QPtoQuantは、量子化パラメータQPの関数として与えられる関数である。
Low Complexity モードにおいては、全ての予測モードに対して、予測画像を生成するのみで、符号化処理および復号処理を行う必要がないため、演算量が少なくて済む。
イントラ予測部74は、ステップS43において、4×4画素、8×8画素、および16×16画素の各イントラ予測モードに対して、それぞれ最適モードを決定する。すなわち、図8を参照して上述したように、イントラ4×4予測モードおよびイントラ8×8予測モードの場合には、予測モードの種類が9種類あり、イントラ16×16予測モードの場合には、予測モードの種類が4種類ある。したがって、イントラ予測部74は、ステップS42において算出されたコスト関数値に基づいて、それらの中から、最適イントラ4×4予測モード、最適イントラ8×8予測モード、最適イントラ16×16予測モードを決定する。
イントラ予測部74は、ステップS44において、4×4画素、8×8画素、および16×16画素の各イントラ予測モードに対して決定された各最適モードの中から、ステップS42において算出されたコスト関数値に基づいて、最適イントラ予測モードを選択する。すなわち、4×4画素、8×8画素、および16×16画素に対して決定された各最適モードの中から、コスト関数値が最小値であるモードを、最適イントラ予測モードとして選択する。そして、イントラ予測部74は、最適イントラ予測モードで生成された予測画像とそのコスト関数値とを、予測画像選択部78に供給する。
次に、図10のフローチャートを参照して、図6のステップS32のインター動き予測処理について説明する。
動き予測・補償部75は、ステップS51において、図2を参照して上述した16×16画素乃至4×4画素からなる8種類の各インター予測モードに対して動きベクトルと参照画像をそれぞれ決定する。すなわち、各インター予測モードの処理対象のブロックについて、動きベクトルと参照画像がそれぞれ決定される。
動き予測・補償部75は、ステップS52において、16×16画素乃至4×4画素からなる8種類の各インター予測モードについて、ステップS51で決定された動きベクトルに基づいて、参照画像に動き予測と補償処理を行う。この動き予測と補償処理により、各インター予測モードでの予測画像が生成される。
動き予測・補償部75は、ステップS53において、16×16画素乃至4×4画素からなる8種類の各インター予測モードに対して決定された動きベクトルについて、圧縮画像に付加するための動きベクトル情報を生成する。
ここで、図11を参照して、H.264/AVC方式による動きベクトル情報の生成方法について説明する。図11の例において、これから符号化される対象ブロックE(例えば、16×16画素)と、既に符号化済みであり、対象ブロックEに隣接するブロックA乃至Dが示されている。
すなわち、ブロックDは、対象ブロックEの左上に隣接しており、ブロックBは、対象ブロックEの上に隣接しており、ブロックCは、対象ブロックEの右上に隣接しており、ブロックAは、対象ブロックEの左に隣接している。なお、ブロックA乃至Dが区切られていないのは、それぞれ、図2で上述した16×16画素乃至4×4画素のうちのいずれかの構成のブロックであることを表している。
例えば、X(=A,B,C,D,E)に対する動きベクトル情報を、mvXで表す。まず、対象ブロックEに対する予測動きベクトル情報pmvEは、ブロックA,B,Cに関する動きベクトル情報を用いて、メディアン予測により次の式(7)のように生成される。
pmvE = med(mvA,mvB,mvC) ・・・(7)
ブロックCに関する動きベクトル情報が、画枠の端であったり、あるいは、まだ符号化されていないなどの理由により、利用可能でない(unavailableである)場合には、ブロックCに関する動きベクトル情報は、ブロックDに関する動きベクトル情報で代用される。
ブロックCに関する動きベクトル情報が、画枠の端であったり、あるいは、まだ符号化されていないなどの理由により、利用可能でない(unavailableである)場合には、ブロックCに関する動きベクトル情報は、ブロックDに関する動きベクトル情報で代用される。
対象ブロックEに対する動きベクトル情報として、圧縮画像のヘッダ部に付加されるデータmvdEは、pmvEを用いて、次の式(8)のように生成される。
mvdE = mvE - pmvE ・・・(8)
mvdE = mvE - pmvE ・・・(8)
なお、実際には、動きベクトル情報の水平方向、垂直方向のそれぞれの成分に対して、独立に処理が行われる。
このように、予測動きベクトル情報を生成し、隣接するブロックとの相関で生成された予測動きベクトル情報と動きベクトル情報との差分を、圧縮画像のヘッダ部に付加することにより、動きベクトル情報を低減することができる。
以上のようにして生成された動きベクトル情報は、次のステップS54におけるコスト関数値算出の際にも用いられ、最終的に予測画像選択部78により対応する予測画像が選択された場合には、予測モード情報および参照フレーム情報とともに、可逆符号化部66へ出力される。
図10に戻って、動き予測・補償部75は、ステップS54において、16×16画素乃至4×4画素からなる8種類の各インター予測モードに対して、上述した式(5)または式(6)で示されるコスト関数値を算出する。ここで算出されたコスト関数値は、上述した図6のステップS34で最適インター予測モードを決定する際に用いられる。
次に、図12のフローチャートを参照して、図6のステップS33のインターテンプレート動き予測処理について説明する。
テンプレート動き予測・補償部76は、ステップS71において、対象フレームに対して時間軸上の距離が最も近い参照フレームについて、インターテンプレート予測モードの動き予測、補償処理を行う。すなわち、テンプレート動き予測・補償部76は、対象フレームに対して、時間軸上の距離が最も近い参照フレームについて、インターテンプレートマッチング方式に基づいて動きベクトルを探索する。そして、テンプレート動き予測・補償部76は、探索した動きベクトルに基づいて参照画像に動き予測と補償処理を施し、予測画像を生成する。
このインターテンプレートマッチング方式について、図13を参照して具体的に説明する。
図13の例においては、符号化対象の対象フレームと、動きベクトルを探索する際に参照される参照フレームが示されている。対象フレームには、これから符号化されようとしている対象ブロックAと、対象ブロックAに対して隣接するとともに、すでに符号化済みの画素で構成されるテンプレート領域Bが示されている。すなわち、テンプレート領域Bは、符号化処理をラスタスキャン順に行う場合には、図13に示されるように、対象ブロックAの左および上側に位置する領域であり、フレームメモリ72に復号画像が蓄積されている領域である。
テンプレート動き予測・補償部76は、参照フレーム上の所定の探索範囲E内において、例えば、SAD(Sum of Absolute Difference) 等をコスト関数としてテンプレートマッチング処理を行い、テンプレート領域Bの画素値と相関が最も高くなる領域B’を探索する。そして、テンプレート動き予測・補償部76は、探索された領域B’に対応するブロックA’を、対象ブロックAに対する予測画像として、対象ブロックAに対する動きベクトルPを探索する。
このように、インターテンプレートマッチング方式による動きベクトル探索処理は、テンプレートマッチング処理に復号画像を用いているので、所定の探索範囲Eを予め定めておくことにより、図1の画像符号化装置51と後述する図18の画像復号装置101において同一の処理を行うことが可能である。すなわち、画像復号装置101においても、テンプレート動き予測・補償部123を構成することにより、対象ブロックAに対する動きベクトルPの情報を画像復号装置101に送る必要がなくなるので、圧縮画像中における動きベクトル情報を低減することができる。
なお、インターテンプレート予測モードにおけるブロックおよびテンプレートのサイズは任意である。すなわち、動き予測・補償部75と同様に、図2で上述した16×16画素乃至4×4画素からなる8種類のブロックサイズから、1つのブロックサイズを固定して行うこともできるし、すべてのブロックサイズを候補として行うこともできる。ブロックサイズに応じて、テンプレートサイズは、可変としてもよいし、固定することもできる。
ここで、H.264/AVC方式においては、図4を参照して上述したように複数の参照フレームをメモリに記憶しておき、1の対象フレームの各ブロックにおいては、異なる参照フレームを参照することが可能である。しかしながら、マルチ参照フレームの候補となる全ての参照フレームに関して、インターテンプレートマッチング方式による動き予測を行うことは、演算量の増大を招いてしまう。
そこで、複数の参照フレームのうち、対象フレームに時間軸上最も近い参照フレーム以外の参照フレームについての動き探索を行う場合、テンプレート動き予測・補償部76は、ステップS72において、MRF探索中心算出部77に、参照フレーム上の探索中心を算出させる。そして、テンプレート動き予測・補償部76は、ステップS73において、MRF探索中心算出部77により算出された探索中心の周辺数画素からなる所定の範囲での動き探索を行い、補償処理を行って、予測画像を生成する。
上述したステップS71乃至S73の処理について、図14を参照しながら詳しく説明する。図14の例においては、時間軸tが時間の経過を表しており、左から順に、参照ピクチャ番号ref_id=N-1の参照フレーム、…、参照ピクチャ番号ref_id=1の参照フレーム、参照ピクチャ番号ref_id=0の参照フレーム、いまから符号化される対象フレームが示されている。すなわち、参照ピクチャ番号ref_id=0の参照フレームは、複数の参照フレームの中で、対象フレームに対する時間軸t上の距離が最も近い参照フレームである。対して、参照ピクチャ番号ref_id=N-1の参照フレームは、複数の参照フレームの中で、対象フレームに対する時間軸t上の距離が最も遠い参照フレームである。
テンプレート動き予測・補償部76は、ステップS71において、対象フレームと、対象フレームに時間軸上の距離が最も近い参照ピクチャ番号ref_id=0の参照フレームとの間で、インターテンプレート予測モードの動き予測、補償処理を行う。
このステップS71の処理により、まず、参照ピクチャ番号ref_id=0の参照フレーム上の所定の探索範囲において、対象フレーム上の対象ブロックAに対して隣接するとともに、すでに符号化済みの画素で構成されるテンプレート領域Bの画素値と相関が最も高くなる領域B0が探索される。この結果、探索された領域B0に対応するブロックA0を、対象ブロックAに対する予測画像として、対象ブロックAに対する動きベクトルtmmv0が探索される。
次に、ステップS72において、MRF探索中心算出部77は、ステップS71において探索された動きベクトルtmmv0を用いて、対象フレームと次に対象フレームに時間軸上の距離が近い参照ピクチャ番号ref_id=1の参照フレームにおける動き探索中心を算出する。
このステップS72の処理により、対象フレームと参照ピクチャ番号ref_id=0の参照フレームとの時間軸t上の距離t0、および、対象フレームと参照ピクチャ番号ref_id=1の参照フレームとの時間軸t上の距離t1とが考慮されて、式(9)となる探索中心mvcが求められる。すなわち、探索中心mvcは、図14において点線で示されるように、時間軸上1つ前の参照フレームで求められた動きベクトルtmmv0を、参照ピクチャ番号ref_id=1の参照フレームに対して時間軸上の距離でスケーリングしたものである。なお、実際には、この探索中心mvcは、整数画素精度に丸められて用いられる。
また、H.264/AVC方式においては、圧縮画像中には、対象フレームに対する時間軸t上の距離t0、t1に相当する情報が存在しないため、ピクチャの出力順序を示す情報であるPOC(Picture Order Count)を用いる。
そして、ステップS73において、テンプレート動き予測・補償部76は、式(9)で求められた参照ピクチャ番号ref_id=1の参照フレーム上の探索中心mvcの周辺の所定の範囲E1での動き探索を行い、補償処理を行って、予測画像を生成する。
このステップS73の処理により、参照ピクチャ番号ref_id=1の参照フレーム上の探索中心mvcの周辺の所定の範囲E1において、対象フレーム上の対象ブロックAに対して隣接するとともに、すでに符号化済みの画素で構成されるテンプレート領域Bの画素値と相関が最も高くなる領域B1が探索される。この結果、探索された領域B1に対応するブロックA1を、対象ブロックAに対する予測画像として、対象ブロックAに対する動きベクトルtmmv1が探索される。
以上のように、動きベクトルを探索する範囲を、時間軸上1つ前の参照フレームで求められた動きベクトルを、次の参照フレームに対して、対象フレームに対する時間軸上の距離でスケーリングした探索中心を中心とした所定の範囲に制限するようにした。これにより、参照ピクチャ番号ref_id=1の参照フレームにおいては、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。
次に、テンプレート動き予測・補償部76は、ステップS74において、すべての参照フレームについての処理が終了したか否かを判定する。ステップS74において、まだ終了していないと判定された場合、処理は、ステップS72に戻り、それ以降の処理が繰り返される。
すなわち、今度は、ステップS72において、MRF探索中心算出部77は、前回のステップS73において探索された動きベクトルtmmv1を用いて、対象フレームと近い参照ピクチャ番号ref_id=1の次に対象フレームに時間軸上の距離が近い参照ピクチャ番号ref_id=2の参照フレームにおける動き探索中心を算出する。
このステップS72の処理により、対象フレームと参照ピクチャ番号ref_id=1の参照フレームとの時間軸t上の距離t1、および、対象フレームと参照ピクチャ番号ref_id=2の参照フレームとの時間軸t上の距離t2とが考慮されて、式(10)となる探索中心mvcが求められる。
そして、ステップS73において、テンプレート動き予測・補償部76は、式(10)で求められた探索中心mvcの周辺の所定の範囲E2での動き探索を行い、補償処理を行って、予測画像を生成する。
これらの処理は、最終的に、参照ピクチャ番号ref_id=N-1である最後の参照フレームまで、すなわち、ステップS74において、すべての参照フレームについての処理が終了したと判定されるまで、順に繰り返される。その結果、参照ピクチャ番号ref_id=0の参照フレームの動きベクトルtmmv0乃至参照ピクチャ番号ref_id=N-1の参照フレームの動きベクトルtmmvN-1が求められる。
なお、式(9)および式(10)を任意の整数k(0<k<N)で表すと、式(11)となる。すなわち、参照ピクチャ番号ref_id=k-1の参照フレームにおいて求められた動きベクトルtmmvk-1を用いて、対象フレームと参照ピクチャ番号ref_id= k-1の参照フレーム、および、対象フレームと参照ピクチャ番号ref_id=kの参照フレームとの時間軸t上の距離をそれぞれtk-1,tkとすると、参照ピクチャ番号ref_id=kの参照フレームの探索中心は、式(11)で表される。
ステップS74において、すべての参照フレームについての処理が終了したと判定された場合、処理は、ステップS75に進む。ステップS75において、テンプレート動き予測・補償部76は、ステップS71またはS73の処理において求められたすべての参照フレームに対する予測画像から、対象ブロックに対するインターテンプレートモードの予測画像を決定する。
すなわち、すべての参照フレームに対する予測画像のうち、SAD(Sum of Absolute Difference)などを用いて求められる予測誤差が最少のものが、対象ブロックに対する予測画像として決定される。
ステップS75において、テンプレート動き予測・補償部76は、インターテンプレート予測モードに対して、上述した式(5)または式(6)で示されるコスト関数値を算出する。ここで算出されたコスト関数値は、決定した予測画像とともに動き予測・補償部75に供給され、上述した図6のステップS34で最適インター予測モードを決定する際に用いられる。
以上のように、画像符号化装置51において、マルチ参照フレームのインターテンプレート予測モードでの動き予測・補償処理を行う際に、時間軸上1つ前の参照フレームで求められた動きベクトル情報を用いて、次の参照フレームにおける探索中心を求め、それを利用して動き探索を行うようにした。これにより、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。
また、これらの処理は、画像符号化装置51だけでなく、図18の画像復号装置101においても実行される。したがって、インターテンプレート予測モードの対象ブロックにおいては、動きベクトル情報のみならず、参照フレーム情報をも送る必要がないため、符号化効率を改善することができる。
なお、H.264/AVC方式においては、defaultで参照ピクチャ番号ref_idの割り振りが行われるが、参照ピクチャ番号ref_idの付け替えをユーザが行うことも可能である。
図15は、H.264/AVC方式におけるdefaultの参照ピクチャ番号ref_idの割り振りを示しており、図16は、ユーザにより付け替えられた参照ピクチャ番号ref_idの割り振りの例を示している。図15および図16においては、左から右に時間が経過している。
図15のdefaultの例においては、これから符号化する対象ピクチャに時間的に最も近い参照ピクチャから順に参照ピクチャ番号ref_idが割り振られている。
すなわち、対象ピクチャの(時間的に)1つ前の参照ピクチャには、参照ピクチャ番号ref_id=0が割り振られており、対象ピクチャの2つ前の参照ピクチャには、参照ピクチャ番号ref_id=1が割り振られている。対象ピクチャの3つ前の参照ピクチャには、参照ピクチャ番号ref_id=2が割り振られており、対象ピクチャの4つ前の参照ピクチャには、参照ピクチャ番号ref_id=3が割り振られている。
一方、図16の例においては、対象ピクチャの2つ前の参照ピクチャに参照ピクチャ番号ref_id=0が割り振られており、対象ピクチャの3つ前の参照ピクチャに、参照ピクチャ番号ref_id=1が割り振られている。また、対象ピクチャの1つ前の参照ピクチャに参照ピクチャ番号ref_id=2が割り振られており、対象ピクチャの4つ前の参照ピクチャに、参照ピクチャ番号ref_id=3が割り振られている。
画像を符号化する際、より頻繁に参照されるピクチャにより小さい参照ピクチャ番号ref_idを割り振った方が圧縮画像の符号量を少なくすることが可能である。したがって、通常、図15のdefaultのように、これから符号化する対象ピクチャに、時間的に最も近い参照ピクチャから順に参照ピクチャ番号ref_idを割り振っていくことで、参照ピクチャ番号ref_idに要する符号量を削減することができる。
ただし、フラッシュなどの理由により、直前のピクチャを用いた予測効率が極端に低いなどの場合、図16の例のように、参照ピクチャ番号ref_idを割り振ることで、符号量を削減することができる。
図14を参照して上述したインターテンプレート予測モードでの動き予測・補償処理は、図15の例の場合には、対象フレームに時間軸上の距離が近い参照フレーム順、すなわち、参照ピクチャ番号ref_idの小さい順に行われる。一方、図16の例の場合には、対象フレームに時間軸上の距離が近い参照フレーム順とはならないが、参照ピクチャ番号ref_idの小さい順に行われる。すなわち、図14のインターテンプレート予測モードでの動き予測・補償処理は、参照ピクチャ番号ref_idがある場合には、参照ピクチャ番号ref_idの小さい順に行われる。
なお、図15および図16の例においては、前方向予測の例を示しているが、後方向予測についても同様であるので、その図示および説明は省略される。また、参照フレームを識別するための情報は、参照ピクチャ番号ref_idに限らない。ただし、参照ピクチャ番号ref_idに相当するパラメータが存在しない圧縮画像の場合には、前方向予測、後方向予測ともに、対象ピクチャから、時間軸上近い順に、参照フレームを処理していくものとする。
また、H.264/AVC方式においては、短時間参照ピクチャ(Short Term Reference Picture)と長時間参照ピクチャ(Long Term Reference Picture)が規定されている。例えば、具体的なアプリケーションとして、TV(television)会議などを考える場合、背景画像に関しては、長時間参照ピクチャをメモリに格納し、復号処理が終了するまでこれが参照可能となる。一方、人物の動きに関しては、復号処理が進むごとに、FIFO(First_In_First_Out)で、メモリに格納・破棄されていく短時間参照ピクチャが参照される、というように利用される。
図14を参照して上述したインターテンプレート予測モードでの動き予測・補償処理は、この場合においては、短時間参照ピクチャのみに適用される。一方、長時間参照ピクチャにおいては、図12のステップS71の処理と同様の通常のインターテンプレート予測モードでの動き予測・補償処理が実行される。すなわち、長時間参照ピクチャの場合、参照フレーム上の予め設定されている所定の探索範囲内において、インターテンプレート動き予測処理が行われる。
さらに、図14を参照して上述したインターテンプレート予測モードでの動き予測・補償処理は、Multi-Hypothesis Motion Compensationにも適用される。図17を参照して、Multi-Hypothesis Motion Compensationについて説明する。
図17の例においては、いまから符号化される対象フレームFnと、符号化済みのフレームFn-5,…, Fn-1が示されている。フレームFn-1は、対象フレームFnの1つ前のフレームであり、フレームFn-2は、対象フレームFnの2つ前のフレームであり、フレームFn-3は、対象フレームFnの3つ前のフレームである。また、フレームFn-4は、対象フレームFnの4つ前のフレームであり、フレームFn-5は、対象フレームFnの5つ前のフレームである。
対象フレームFnには、ブロックAnが示されている。ブロックAnは、1つ前のフレームFn-1のブロックAn-1と相関があるとされて、動きベクトルVn-1が探索され、2つ前のフレームFn-2のブロックAn-2と相関があるとされて、動きベクトルVn-2が探索され、3つ前のフレームFn-3のブロックAn-3と相関があるとされて、動きベクトルVn-3が探索されている。
すなわち、H.264/AVC方式においては、Pスライスなら1枚、Bスライスなら2枚の参照フレームのみを用いて予測画像の生成を行うことが規定されている。これに対して、Multi-Hypothesis Motion Compensationにおいては、N>3となるようなNに対しても、Predを予測画像、Ref(id)を参照フレームのIDがidであるような参照画像であるとするなら、式(12)のようにして予測画像の生成を行うことが可能である。
このMulti-Hypothesis Motion Compensationに、図14を参照して上述したインターテンプレート予測モードでの動き予測・補償処理が適用される場合には、図12のステップS71乃至S73のようにして求められた参照フレームの各予測画像を用いて、式(12)により予測画像の生成が行われる。
したがって、通常のMulti-Hypothesis Motion Compensationにおいては、全ての参照フレームに対する動きベクトル情報を、圧縮画像中に符号化して、復号側に送る必要があったが、インターテンプレート予測モードでの動き予測・補償処理の場合には、その必要がないため、符号化効率を向上することができる。
符号化された圧縮画像は、所定の伝送路を介して伝送され、画像復号装置により復号される。図18は、このような画像復号装置の一実施の形態の構成を表している。
画像復号装置101は、蓄積バッファ111、可逆復号部112、逆量子化部113、逆直交変換部114、演算部115、デブロックフィルタ116、画面並べ替えバッファ117、D/A変換部118、フレームメモリ119、スイッチ120、イントラ予測部121、動き予測・補償部122、テンプレート動き予測・補償部123、MRF探索中心算出部124、およびスイッチ125により構成されている。
蓄積バッファ111は伝送されてきた圧縮画像を蓄積する。可逆復号部112は、蓄積バッファ111より供給された、図1の可逆符号化部66により符号化された情報を、可逆符号化部66の符号化方式に対応する方式で復号する。逆量子化部113は可逆復号部112により復号された画像を、図1の量子化部65の量子化方式に対応する方式で逆量子化する。逆直交変換部114は、図1の直交変換部64の直交変換方式に対応する方式で逆量子化部113の出力を逆直交変換する。
逆直交変換された出力は演算部115によりスイッチ125から供給される予測画像と加算されて復号される。デブロックフィルタ116は、復号された画像のブロック歪を除去した後、フレームメモリ119に供給し、蓄積させるとともに、画面並べ替えバッファ117に出力する。
画面並べ替えバッファ117は、画像の並べ替えを行う。すなわち、図1の画面並べ替えバッファ62により符号化の順番のために並べ替えられたフレームの順番が、元の表示の順番に並べ替えられる。D/A変換部118は、画面並べ替えバッファ117から供給された画像をD/A変換し、図示せぬディスプレイに出力し、表示させる。
スイッチ120は、インター処理される画像と参照される画像をフレームメモリ119から読み出し、動き予測・補償部122に出力するとともに、イントラ予測に用いられる画像をフレームメモリ119から読み出し、イントラ予測部121に供給する。
イントラ予測部121には、ヘッダ情報を復号して得られたイントラ予測モードに関する情報が可逆復号部112から供給される。イントラ予測部121は、この情報に基づいて、予測画像を生成し、生成した予測画像を、スイッチ125に出力する。
動き予測・補償部122には、ヘッダ情報を復号して得られた情報(予測モード情報、動きベクトル情報、参照フレーム情報)が可逆復号部112から供給される。インター予測モードである情報が供給された場合、動き予測・補償部122は、動きベクトル情報と参照フレーム情報に基づいて画像に動き予測と補償処理を施し、予測画像を生成する。インターテンプレート予測モードである情報が供給された場合、動き予測・補償部122は、フレームメモリ119から読み出されたインター処理される画像と参照される画像をテンプレート動き予測・補償部123に供給し、インターテンプレート予測モードでの動き予測・補償処理を行わせる。
また、動き予測・補償部122は、予測モード情報に応じて、インター予測モードにより生成された予測画像、または、インターテンプレート予測モードにより生成された予測画像のどちらか一方をスイッチ125に出力する。
テンプレート動き予測・補償部123は、フレームメモリ119から読み出されたインター処理される画像と参照される画像に基づいて、インターテンプレート予測モードの動き予測と補償処理を行い、予測画像を生成する。なお、この動き予測・補償処理は、画像符号化装置51のテンプレート動き予測・補償部76の処理と基本的に同じ処理である。
すなわち、テンプレート動き予測・補償部123は、複数の参照フレームのうち、対象フレームに時間軸上最も近い参照フレームについては、予め設定されている所定の範囲でのインターテンプレート予測モードの動き探索を行い、補償処理を行って、予測画像を生成する。他方、それ以外の参照フレームについては、テンプレート動き予測・補償部123は、MRF探索中心算出部124により算出される探索中心の周辺の所定の範囲でのインターテンプレート予測モードの動き探索を行い、補償処理を行って、予測画像を生成する。
したがって、複数の参照フレームのうち、対象フレームに時間軸上最も近い参照フレーム以外の参照フレームについての動き探索を行う場合、テンプレート動き予測・補償部123は、フレームメモリ119から読み出されたインター処理される画像と参照される画像を、MRF探索中心算出部124に供給する。なお、このとき、探索対象となる参照フレームの時間軸上1つ前の参照フレームについて探索された動きベクトル情報もMRF探索中心算出部124に供給される。
また、テンプレート動き予測・補償部123は、複数の参照フレームについて生成された予測画像のうち、予測誤差が最小のものを、対象ブロックに対する予測画像であると決定する。そして、テンプレート動き予測・補償部123は、決定した予測画像を、動き予測・補償部122に供給する。
MRF探索中心算出部124は、複数の参照フレームのうち、探索対象となる参照フレームの時間軸上1つ前の参照フレームについて探索された動きベクトル情報を用いて、探索対象となる参照フレームにおける動きベクトルの探索中心を算出する。なお、この算出処理は、画像符号化装置51のMRF探索中心算出部77の処理と基本的に同じ処理である。
スイッチ125は、動き予測・補償部122またはイントラ予測部121により生成された予測画像を選択し、演算部115に供給する。
次に、図19のフローチャートを参照して、画像復号装置101が実行する復号処理について説明する。
ステップS131において、蓄積バッファ111は伝送されてきた画像を蓄積する。ステップS132において、可逆復号部112は、蓄積バッファ111から供給される圧縮画像を復号する。すなわち、図1の可逆符号化部66により符号化されたIピクチャ、Pピクチャ、並びにBピクチャが復号される。
このとき、動きベクトル情報、参照フレーム情報、予測モード情報(イントラ予測モード、インター予測モード、またはインターテンプレート予測モードを表す情報)、フラグ情報も復号される。
すなわち、予測モード情報がイントラ予測モード情報である場合、予測モード情報は、イントラ予測部121に供給される。予測モード情報がインター予測モード情報である場合、予測モード情報と対応する動きベクトル情報は、動き予測・補償部122に供給される。予測モード情報がインターテンプレート予測モード情報である場合、予測モード情報は、動き予測・補償部122に供給される。
ステップS133において、逆量子化部113は可逆復号部112により復号された変換係数を、図1の量子化部65の特性に対応する特性で逆量子化する。ステップS134において逆直交変換部114は逆量子化部113により逆量子化された変換係数を、図1の直交変換部64の特性に対応する特性で逆直交変換する。これにより図1の直交変換部64の入力(演算部63の出力)に対応する差分情報が復号されたことになる。
ステップS135において、演算部115は、後述するステップS141の処理で選択され、スイッチ125を介して入力される予測画像を差分情報と加算する。これにより元の画像が復号される。ステップS136においてデブロックフィルタ116は、演算部115より出力された画像をフィルタリングする。これによりブロック歪みが除去される。
ステップS137においてフレームメモリ119は、フィルタリングされた画像を記憶する。
ステップS137においてフレームメモリ119は、フィルタリングされた画像を記憶する。
ステップS138において、イントラ予測部121、動き予測・補償部122、またはテンプレート動き予測・補償部123は、可逆復号部112から供給される予測モード情報に対応して、それぞれ画像の予測処理を行う。
すなわち、可逆復号部112からイントラ予測モード情報が供給された場合、イントラ予測部121は、イントラ予測モードのイントラ予測処理を行う。可逆復号部112からインター予測モード情報が供給された場合、動き予測・補償部122は、インター予測モードの動き予測・補償処理を行う。また、可逆復号部112からインターテンプレート予測モード情報が供給された場合、テンプレート動き予測・補償部123は、インターテンプレート予測モードの動き予測・補償処理を行う。
ステップS138における予測処理の詳細は、図20を参照して後述するが、この処理により、イントラ予測部121により生成された予測画像、動き予測・補償部122により生成された予測画像、またはテンプレート動き予測・補償部123により生成された予測画像がスイッチ125に供給される。
ステップS139において、スイッチ125は予測画像を選択する。すなわち、イントラ予測部121により生成された予測画像、動き予測・補償部122により生成された予測画像、またはテンプレート動き予測・補償部123により生成された予測画像が供給されるので、供給された予測画像が選択されて演算部115に供給され、上述したように、ステップS134において逆直交変換部114の出力と加算される。
ステップS140において、画面並べ替えバッファ117は並べ替えを行う。すなわち画像符号化装置51の画面並べ替えバッファ62により符号化のために並べ替えられたフレームの順序が、元の表示の順序に並べ替えられる。
ステップS141において、D/A変換部118は、画面並べ替えバッファ117からの画像をD/A変換する。この画像が図示せぬディスプレイに出力され、画像が表示される。
次に、図20のフローチャートを参照して、図19のステップS138の予測処理を説明する。
イントラ予測部121は、ステップS171において、対象ブロックがイントラ符号化されているか否かを判定する。可逆復号部112からイントラ予測モード情報がイントラ予測部121に供給されると、イントラ予測部121は、ステップ171において、対象ブロックがイントラ符号化されていると判定し、処理は、ステップS172に進む。
イントラ予測部121は、ステップS172において、イントラ予測を行う。すなわち、処理対象の画像がイントラ処理される画像である場合、必要な画像がフレームメモリ119から読み出され、スイッチ120を介してイントラ予測部121に供給される。ステップS172において、イントラ予測部121は、可逆復号部112から供給されるイントラ予測モード情報に従ってイントラ予測し、予測画像を生成する。生成した予測画像は、スイッチ125に出力される。
一方、ステップS171において、イントラ符号化されていないと判定された場合、処理は、ステップS173に進む。
処理対象の画像がインター処理される画像である場合、可逆復号部112からインター予測モード情報、参照フレーム情報、動きベクトル情報が動き予測・補償部122に供給される。ステップS173において、動き予測・補償部122は、可逆復号部112からの予測モード情報が、インター予測モード情報であるか否かを判定し、インター予測モード情報であると判定した場合、ステップS174において、インター動き予測を行う。
処理対象の画像がインター予測処理される画像である場合、必要な画像がフレームメモリ119から読み出され、スイッチ120を介して動き予測・補償部122に供給される。ステップS174において動き予測・補償部122は、可逆復号部112から供給される動きベクトルに基づいて、インター予測モードの動き予測をし、予測画像を生成する。
生成した予測画像は、スイッチ125に出力される。
生成した予測画像は、スイッチ125に出力される。
ステップS173において、インター予測モード情報ではないと判定された場合、すなわち、インターテンプレート予測モード情報である場合、処理は、ステップS175に進み、インターテンプレート動き予測処理が行われる。
このステップS175のインターテンプレート動き予測処理について図21のフローチャートを参照して説明する。なお、図21のステップS191乃至S195の処理は、図12のステップS71乃至S75の処理と基本的に同様の処理を行うため、繰り返しになるのでその詳細な説明は省略する。
処理対象の画像がインターテンプレート予測処理される画像である場合、必要な画像がフレームメモリ119から読み出され、スイッチ120および動き予測・補償部122を介してテンプレート動き予測・補償部123に供給される。
テンプレート動き予測・補償部123は、ステップS191において、対象フレームに対して時間軸上の距離が最も近い参照フレームについて、インターテンプレート予測モードの動き予測、補償処理を行う。すなわち、テンプレート動き予測・補償部123は、対象フレームに対して、時間軸上の距離が最も近い参照フレームについて、インターテンプレートマッチング方式に基づいて動きベクトルを探索する。そして、テンプレート動き予測・補償部123は、探索した動きベクトルに基づいて参照画像に動き予測と補償処理を施し、予測画像を生成する。
テンプレート動き予測・補償部123は、ステップS192において、複数の参照フレームのうち、対象フレームに時間軸上最も近い参照フレーム以外の参照フレームについての動き探索を行うため、MRF探索中心算出部124に、参照フレーム上の探索中心を算出させる。そして、テンプレート動き予測・補償部123は、ステップS193において、MRF探索中心算出部124により算出された探索中心の周辺の所定の範囲での動き探索を行い、補償処理を行って、予測画像を生成する。
テンプレート動き予測・補償部123は、ステップS194において、すべての参照フレームについての処理が終了したか否かを判定する。ステップS194において、まだ終了していないと判定された場合、処理は、ステップS192に戻り、それ以降の処理が繰り返される。
ステップS194において、すべての参照フレームについての処理が終了したと判定された場合、処理は、ステップS195に進む。ステップS195において、テンプレート動き予測・補償部123は、ステップS191またはS193の処理において求められたすべての参照フレームに対する予測画像から、対象ブロックに対するインターテンプレートモードの予測画像を決定する。
すなわち、すべての参照フレームに対する予測画像のうち、SAD(Sum of Absolute Difference)などを用いて求められる予測誤差が最少のものが、対象ブロックに対する予測画像として決定され、決定された予測画像は、動き予測・補償部122を介して、スイッチ125に供給される。
以上のように、テンプレートマッチングに基づく動き予測を、画像符号化装置および画像復号装置の両方で行うことにより、動きベクトル情報および参照フレーム情報などを送らずに、良質な画質を表示させることができる。
さらに、マルチ参照フレームのインターテンプレート予測モードでの動き予測・補償処理を行う際に、時間軸上1つ前の参照フレームで求められた動きベクトル情報を用いて、次の参照フレームにおける探索中心を求め、それを利用して動き探索を行うようにした。
これにより、符号化効率の低下を最小限に抑えながら、演算量の増大を抑制することができる。
これにより、符号化効率の低下を最小限に抑えながら、演算量の増大を抑制することができる。
また、H.264/AVC方式による動き予測・補償処理を行う際に、テンプレートマッチングに基づく予測も行い、コスト関数値のよい方を選択して符号化処理を行うようにしたので、符号化効率を向上することができる。
なお、上記説明においては、マクロブロックの大きさが、16×16画素の場合について説明してきたが、本発明は、”Video Coding Using Extended Block Sizes”,VCEG-AD09,ITU-Telecommunications Standardization Sector STUDY GROUP Question 16 - Contribution 123, Jan 2009に記載の拡張されたマクロブロックサイズに対しても適用することが可能である。
図22は、拡張されたマクロブロックサイズの例を示す図である。上記記載では、マクロブロックサイズが32×32画素に拡張されている。
図22の上段には、左から、32×32画素、32×16画素、16×32画素、および16×16画素のブロック(パーティション)に分割された32×32画素で構成されるマクロブロックが順に示されている。図22の中段には、左から、16×16画素、16×8画素、8×16画素、および8×8画素のブロックに分割された16×16画素で構成されるブロックが順に示されている。また、図22の下段には、左から、8×8画素、8×4画素、4×8画素、および4×4画素のブロックに分割された8×8画素のブロックが順に示されている。
すなわち、32×32画素のマクロブロックは、図22の上段に示される32×32画素、32×16画素、16×32画素、および16×16画素のブロックでの処理が可能である。
また、上段の右側に示される16×16画素のブロックは、H.264/AVC方式と同様に、中段に示される16×16画素、16×8画素、8×16画素、および8×8画素のブロックでの処理が可能である。
さらに、中段の右側に示される8×8画素のブロックは、H.264/AVC方式と同様に、下段に示される8×8画素、8×4画素、4×8画素、および4×4画素のブロックでの処理が可能である。
このような階層構造を採用することにより、拡張されたマクロブロックサイズにおいては、16×16画素のブロック以下に関してH.264/AVC方式と互換性を保ちながら、そのスーパーセットとして、より大きなブロックが定義されている。
以上のように提案される拡張されたマクロブロックサイズにも本発明を適用することができる。
以上においては、符号化方式としてH.264/AVC方式を用いるようにしたが、その他の符号化方式/復号方式を用いることもできる。
なお、本発明は、例えば、MPEG、H.26x等の様に、離散コサイン変換等の直交変換と動き補償によって圧縮された画像情報(ビットストリーム)を、衛星放送、ケーブルTV(テレビジョン)、インターネット、および携帯電話機などのネットワークメディアを介して受信する際に、あるいは、光、磁気ディスク、およびフラッシュメモリのような記憶メディア上で処理する際に用いられる画像符号化装置および画像復号装置に適用することができる。また、本発明は、それらの画像符号化装置および画像復号装置などに含まれる動き予測補償装置にも適用することができる。
上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。一連の処理をソフトウエアにより実行させる場合には、そのソフトウエアを構成するプログラムが、専用のハードウエアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、プログラム記録媒体からインストールされる。
コンピュータにインストールされ、コンピュータによって実行可能な状態とされるプログラムを格納するプログラム記録媒体は、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory),DVD(Digital Versatile Disc)を含む)、光磁気ディスクを含む)、もしくは半導体メモリなどよりなるパッケージメディアであるリムーバブルメディア、または、プログラムが一時的もしくは永続的に格納されるROMやハードディスクなどにより構成される。プログラム記録媒体へのプログラムの格納は、必要に応じてルータ、モデムなどのインタフェースを介して、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の通信媒体を利用して行われる。
なお、本明細書において、プログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、上述した画像符号化装置51や画像復号装置101は、任意の電子機器に適用することができる。以下にその例について説明する。
図23は、本発明を適用した画像復号装置を用いるテレビジョン受像機の主な構成例を示すブロック図である。
図23に示されるテレビジョン受像機300は、地上波チューナ313、ビデオデコーダ315、映像信号処理回路318、グラフィック生成回路319、パネル駆動回路320、および表示パネル321を有する。
地上波チューナ313は、地上アナログ放送の放送波信号を、アンテナを介して受信し、復調し、映像信号を取得し、それをビデオデコーダ315に供給する。ビデオデコーダ315は、地上波チューナ313から供給された映像信号に対してデコード処理を施し、得られたデジタルのコンポーネント信号を映像信号処理回路318に供給する。
映像信号処理回路318は、ビデオデコーダ315から供給された映像データに対してノイズ除去などの所定の処理を施し、得られた映像データをグラフィック生成回路319に供給する。
グラフィック生成回路319は、表示パネル321に表示させる番組の映像データや、ネットワークを介して供給されるアプリケーションに基づく処理による画像データなどを生成し、生成した映像データや画像データをパネル駆動回路320に供給する。また、グラフィック生成回路319は、項目の選択などにユーザにより利用される画面を表示するための映像データ(グラフィック)を生成し、それを番組の映像データに重畳したりすることによって得られた映像データをパネル駆動回路320に供給するといった処理も適宜行う。
パネル駆動回路320は、グラフィック生成回路319から供給されたデータに基づいて表示パネル321を駆動し、番組の映像や上述した各種の画面を表示パネル321に表示させる。
表示パネル321はLCD(Liquid Crystal Display)などよりなり、パネル駆動回路320による制御に従って番組の映像などを表示させる。
また、テレビジョン受像機300は、音声A/D(Analog/Digital)変換回路314、音声信号処理回路322、エコーキャンセル/音声合成回路323、音声増幅回路324、およびスピーカ325も有する。
地上波チューナ313は、受信した放送波信号を復調することにより、映像信号だけでなく音声信号も取得する。地上波チューナ313は、取得した音声信号を音声A/D変換回路314に供給する。
音声A/D変換回路314は、地上波チューナ313から供給された音声信号に対してA/D変換処理を施し、得られたデジタルの音声信号を音声信号処理回路322に供給する。
音声信号処理回路322は、音声A/D変換回路314から供給された音声データに対してノイズ除去などの所定の処理を施し、得られた音声データをエコーキャンセル/音声合成回路323に供給する。
エコーキャンセル/音声合成回路323は、音声信号処理回路322から供給された音声データを音声増幅回路324に供給する。
音声増幅回路324は、エコーキャンセル/音声合成回路323から供給された音声データに対してD/A変換処理、増幅処理を施し、所定の音量に調整した後、音声をスピーカ325から出力させる。
さらに、テレビジョン受像機300は、デジタルチューナ316およびMPEGデコーダ317も有する。
デジタルチューナ316は、デジタル放送(地上デジタル放送、BS(Broadcasting Satellite)/CS(Communications Satellite)デジタル放送)の放送波信号を、アンテナを介して受信し、復調し、MPEG-TS(Moving Picture Experts Group-Transport Stream)を取得し、それをMPEGデコーダ317に供給する。
MPEGデコーダ317は、デジタルチューナ316から供給されたMPEG-TSに施されているスクランブルを解除し、再生対象(視聴対象)になっている番組のデータを含むストリームを抽出する。MPEGデコーダ317は、抽出したストリームを構成する音声パケットをデコードし、得られた音声データを音声信号処理回路322に供給するとともに、ストリームを構成する映像パケットをデコードし、得られた映像データを映像信号処理回路318に供給する。また、MPEGデコーダ317は、MPEG-TSから抽出したEPG(Electronic Program Guide)データを図示せぬ経路を介してCPU332に供給する。
テレビジョン受像機300は、このように映像パケットをデコードするMPEGデコーダ317として、上述した画像復号装置101を用いる。したがって、MPEGデコーダ317は、画像復号装置101の場合と同様に、マルチ参照フレームのインターテンプレート予測モードでの動き予測・補償処理を行う際に、時間軸上1つ前の参照フレームで求められた動きベクトル情報を用いて、次の参照フレームにおける探索中心を求め、それを利用して動き探索を行う。これにより、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。
MPEGデコーダ317から供給された映像データは、ビデオデコーダ315から供給された映像データの場合と同様に、映像信号処理回路318において所定の処理が施される。そして、所定の処理が施された映像データは、グラフィック生成回路319において、生成された映像データ等が適宜重畳され、パネル駆動回路320を介して表示パネル321に供給され、その画像が表示される。
MPEGデコーダ317から供給された音声データは、音声A/D変換回路314から供給された音声データの場合と同様に、音声信号処理回路322において所定の処理が施される。そして、所定の処理が施された音声データは、エコーキャンセル/音声合成回路323を介して音声増幅回路324に供給され、D/A変換処理や増幅処理が施される。その結果、所定の音量に調整された音声がスピーカ325から出力される。
また、テレビジョン受像機300は、マイクロホン326、およびA/D変換回路327も有する。
A/D変換回路327は、音声会話用のものとしてテレビジョン受像機300に設けられるマイクロホン326により取り込まれたユーザの音声の信号を受信する。A/D変換回路327は、受信した音声信号に対してA/D変換処理を施し、得られたデジタルの音声データをエコーキャンセル/音声合成回路323に供給する。
エコーキャンセル/音声合成回路323は、テレビジョン受像機300のユーザ(ユーザA)の音声のデータがA/D変換回路327から供給されている場合、ユーザAの音声データを対象としてエコーキャンセルを行う。そして、エコーキャンセル/音声合成回路323は、エコーキャンセルの後、他の音声データと合成するなどして得られた音声のデータを、音声増幅回路324を介してスピーカ325より出力させる。
さらに、テレビジョン受像機300は、音声コーデック328、内部バス329、SDRAM(Synchronous Dynamic Random Access Memory)330、フラッシュメモリ331、CPU332、USB(Universal Serial Bus) I/F333、およびネットワークI/F334も有する。
A/D変換回路327は、音声会話用のものとしてテレビジョン受像機300に設けられるマイクロホン326により取り込まれたユーザの音声の信号を受信する。A/D変換回路327は、受信した音声信号に対してA/D変換処理を施し、得られたデジタルの音声データを音声コーデック328に供給する。
音声コーデック328は、A/D変換回路327から供給された音声データを、ネットワーク経由で送信するための所定のフォーマットのデータに変換し、内部バス329を介してネットワークI/F334に供給する。
ネットワークI/F334は、ネットワーク端子335に装着されたケーブルを介してネットワークに接続される。ネットワークI/F334は、例えば、そのネットワークに接続される他の装置に対して、音声コーデック328から供給された音声データを送信する。また、ネットワークI/F334は、例えば、ネットワークを介して接続される他の装置から送信される音声データを、ネットワーク端子335を介して受信し、それを、内部バス329を介して音声コーデック328に供給する。
音声コーデック328は、ネットワークI/F334から供給された音声データを所定のフォーマットのデータに変換し、それをエコーキャンセル/音声合成回路323に供給する。
エコーキャンセル/音声合成回路323は、音声コーデック328から供給される音声データを対象としてエコーキャンセルを行い、他の音声データと合成するなどして得られた音声のデータを、音声増幅回路324を介してスピーカ325より出力させる。
SDRAM330は、CPU332が処理を行う上で必要な各種のデータを記憶する。
フラッシュメモリ331は、CPU332により実行されるプログラムを記憶する。フラッシュメモリ331に記憶されているプログラムは、テレビジョン受像機300の起動時などの所定のタイミングでCPU332により読み出される。フラッシュメモリ331には、デジタル放送を介して取得されたEPGデータ、ネットワークを介して所定のサーバから取得されたデータなども記憶される。
例えば、フラッシュメモリ331には、CPU332の制御によりネットワークを介して所定のサーバから取得されたコンテンツデータを含むMPEG-TSが記憶される。フラッシュメモリ331は、例えばCPU332の制御により、そのMPEG-TSを、内部バス329を介してMPEGデコーダ317に供給する。
MPEGデコーダ317は、デジタルチューナ316から供給されたMPEG-TSの場合と同様に、そのMPEG-TSを処理する。このようにテレビジョン受像機300は、映像や音声等よりなるコンテンツデータを、ネットワークを介して受信し、MPEGデコーダ317を用いてデコードし、その映像を表示させたり、音声を出力させたりすることができる。
また、テレビジョン受像機300は、リモートコントローラ351から送信される赤外線信号を受光する受光部337も有する。
受光部337は、リモートコントローラ351からの赤外線を受光し、復調して得られたユーザ操作の内容を表す制御コードをCPU332に出力する。
CPU332は、フラッシュメモリ331に記憶されているプログラムを実行し、受光部337から供給される制御コードなどに応じてテレビジョン受像機300の全体の動作を制御する。CPU332とテレビジョン受像機300の各部は、図示せぬ経路を介して接続されている。
USB I/F333は、USB端子336に装着されたUSBケーブルを介して接続される、テレビジョン受像機300の外部の機器との間でデータの送受信を行う。ネットワークI/F334は、ネットワーク端子335に装着されたケーブルを介してネットワークに接続し、ネットワークに接続される各種の装置と音声データ以外のデータの送受信も行う。
テレビジョン受像機300は、MPEGデコーダ317として画像復号装置101を用いることにより、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。その結果として、テレビジョン受像機300は、アンテナを介して受信した放送波信号や、ネットワークを介して取得したコンテンツデータから、より高速に、より高精細な復号画像を得て、表示することができる。
図24は、本発明を適用した画像符号化装置および画像復号装置を用いる携帯電話機の主な構成例を示すブロック図である。
図24に示される携帯電話機400は、各部を統括的に制御するようになされた主制御部450、電源回路部451、操作入力制御部452、画像エンコーダ453、カメラI/F部454、LCD制御部455、画像デコーダ456、多重分離部457、記録再生部462、変復調回路部458、および音声コーデック459を有する。これらは、バス460を介して互いに接続されている。
また、携帯電話機400は、操作キー419、CCD(Charge Coupled Devices)カメラ416、液晶ディスプレイ418、記憶部423、送受信回路部463、アンテナ414、マイクロホン(マイク)421、およびスピーカ417を有する。
電源回路部451は、ユーザの操作により終話および電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話機400を動作可能な状態に起動する。
携帯電話機400は、CPU、ROMおよびRAM等でなる主制御部450の制御に基づいて、音声通話モードやデータ通信モード等の各種モードで、音声信号の送受信、電子メールや画像データの送受信、画像撮影、またはデータ記録等の各種動作を行う。
例えば、音声通話モードにおいて、携帯電話機400は、マイクロホン(マイク)421で集音した音声信号を、音声コーデック459によってデジタル音声データに変換し、これを変復調回路部458でスペクトラム拡散処理し、送受信回路部463でデジタルアナログ変換処理および周波数変換処理する。携帯電話機400は、その変換処理により得られた送信用信号を、アンテナ414を介して図示しない基地局へ送信する。基地局へ伝送された送信用信号(音声信号)は、公衆電話回線網を介して通話相手の携帯電話機に供給される。
また、例えば、音声通話モードにおいて、携帯電話機400は、アンテナ414で受信した受信信号を送受信回路部463で増幅し、さらに周波数変換処理およびアナログデジタル変換処理し、変復調回路部458でスペクトラム逆拡散処理し、音声コーデック459によってアナログ音声信号に変換する。携帯電話機400は、その変換して得られたアナログ音声信号をスピーカ417から出力する。
更に、例えば、データ通信モードにおいて電子メールを送信する場合、携帯電話機400は、操作キー419の操作によって入力された電子メールのテキストデータを、操作入力制御部452において受け付ける。携帯電話機400は、そのテキストデータを主制御部450において処理し、LCD制御部455を介して、画像として液晶ディスプレイ418に表示させる。
また、携帯電話機400は、主制御部450において、操作入力制御部452が受け付けたテキストデータやユーザ指示等に基づいて電子メールデータを生成する。携帯電話機400は、その電子メールデータを、変復調回路部458でスペクトラム拡散処理し、送受信回路部463でデジタルアナログ変換処理および周波数変換処理する。携帯電話機400は、その変換処理により得られた送信用信号を、アンテナ414を介して図示しない基地局へ送信する。基地局へ伝送された送信用信号(電子メール)は、ネットワークおよびメールサーバ等を介して、所定のあて先に供給される。
また、例えば、データ通信モードにおいて電子メールを受信する場合、携帯電話機400は、基地局から送信された信号を、アンテナ414を介して送受信回路部463で受信し、増幅し、さらに周波数変換処理およびアナログデジタル変換処理する。携帯電話機400は、その受信信号を変復調回路部458でスペクトラム逆拡散処理して元の電子メールデータを復元する。携帯電話機400は、復元された電子メールデータを、LCD制御部455を介して液晶ディスプレイ418に表示する。
なお、携帯電話機400は、受信した電子メールデータを、記録再生部462を介して、記憶部423に記録する(記憶させる)ことも可能である。
この記憶部423は、書き換え可能な任意の記憶媒体である。記憶部423は、例えば、RAMや内蔵型フラッシュメモリ等の半導体メモリであってもよいし、ハードディスクであってもよいし、磁気ディスク、光磁気ディスク、光ディスク、USBメモリ、またはメモリカード等のリムーバブルメディアであってもよい。もちろん、これら以外のものであってもよい。
さらに、例えば、データ通信モードにおいて画像データを送信する場合、携帯電話機400は、撮像によりCCDカメラ416で画像データを生成する。CCDカメラ416は、レンズや絞り等の光学デバイスと光電変換素子としてのCCDを有し、被写体を撮像し、受光した光の強度を電気信号に変換し、被写体の画像の画像データを生成する。その画像データを、カメラI/F部454を介して、画像エンコーダ453で、例えばMPEG2やMPEG4等の所定の符号化方式によって圧縮符号化することにより符号化画像データに変換する。
携帯電話機400は、このような処理を行う画像エンコーダ453として、上述した画像符号化装置51を用いる。したがって、画像エンコーダ453は、画像符号化装置51の場合と同様に、マルチ参照フレームのインターテンプレート予測モードでの動き予測・補償処理を行う際に、時間軸上1つ前の参照フレームで求められた動きベクトル情報を用いて、次の参照フレームにおける探索中心を求め、それを利用して動き探索を行う。これにより、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。
なお、携帯電話機400は、このとき同時に、CCDカメラ416で撮像中にマイクロホン(マイク)421で集音した音声を、音声コーデック459においてアナログデジタル変換し、さらに符号化する。
携帯電話機400は、多重分離部457において、画像エンコーダ453から供給された符号化画像データと、音声コーデック459から供給されたデジタル音声データとを、所定の方式で多重化する。携帯電話機400は、その結果得られる多重化データを、変復調回路部458でスペクトラム拡散処理し、送受信回路部463でデジタルアナログ変換処理および周波数変換処理する。携帯電話機400は、その変換処理により得られた送信用信号を、アンテナ414を介して図示しない基地局へ送信する。基地局へ伝送された送信用信号(画像データ)は、ネットワーク等を介して、通信相手に供給される。
なお、画像データを送信しない場合、携帯電話機400は、CCDカメラ416で生成した画像データを、画像エンコーダ453を介さずに、LCD制御部455を介して液晶ディスプレイ418に表示させることもできる。
また、例えば、データ通信モードにおいて、簡易ホームページ等にリンクされた動画像ファイルのデータを受信する場合、携帯電話機400は、基地局から送信された信号を、アンテナ414を介して送受信回路部463で受信し、増幅し、さらに周波数変換処理およびアナログデジタル変換処理する。携帯電話機400は、その受信信号を変復調回路部458でスペクトラム逆拡散処理して元の多重化データを復元する。携帯電話機400は、多重分離部457において、その多重化データを分離して、符号化画像データと音声データとに分ける。
携帯電話機400は、画像デコーダ456において、符号化画像データを、MPEG2やMPEG4等の所定の符号化方式に対応した復号方式でデコードすることにより、再生動画像データを生成し、これを、LCD制御部455を介して液晶ディスプレイ418に表示させる。これにより、例えば、簡易ホームページにリンクされた動画像ファイルに含まれる動画データが液晶ディスプレイ418に表示される。
携帯電話機400は、このような処理を行う画像デコーダ456として、上述した画像復号装置101を用いる。したがって、画像デコーダ456は、画像復号装置101の場合と同様に、マルチ参照フレームのインターテンプレート予測モードでの動き予測・補償処理を行う際に、時間軸上1つ前の参照フレームで求められた動きベクトル情報を用いて、次の参照フレームにおける探索中心を求め、それを利用して動き探索を行う。これにより、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。
このとき、携帯電話機400は、同時に、音声コーデック459において、デジタルの音声データをアナログ音声信号に変換し、これをスピーカ417より出力させる。これにより、例えば、簡易ホームページにリンクされた動画像ファイルに含まれる音声データが再生される。
なお、電子メールの場合と同様に、携帯電話機400は、受信した簡易ホームページ等にリンクされたデータを、記録再生部462を介して、記憶部423に記録する(記憶させる)ことも可能である。
また、携帯電話機400は、主制御部450において、撮像されてCCDカメラ416で得られた2次元コードを解析し、2次元コードに記録された情報を取得することができる。
さらに、携帯電話機400は、赤外線通信部481で赤外線により外部の機器と通信することができる。
携帯電話機400は、画像エンコーダ453として画像符号化装置51を用いることにより、処理の高速化を実現するとともに、例えばCCDカメラ416において生成された画像データを符号化して生成する符号化データの符号化効率を向上させることができる。結果として、携帯電話機400は、符号化効率のよい符号化データ(画像データ)を、他の装置に提供することができる。
また、携帯電話機400は、画像デコーダ456として画像復号装置101を用いることにより、処理の高速化を実現するとともに、精度の高い予測画像を生成することができる。その結果として、携帯電話機400は、例えば、簡易ホームページにリンクされた動画像ファイルから、より高精細な復号画像を得て、表示することができる。
なお、以上において、携帯電話機400が、CCDカメラ416を用いるように説明したが、このCCDカメラ416の代わりに、CMOS(Complementary Metal Oxide Semiconductor)を用いたイメージセンサ(CMOSイメージセンサ)を用いるようにしてもよい。この場合も、携帯電話機400は、CCDカメラ416を用いる場合と同様に、被写体を撮像し、被写体の画像の画像データを生成することができる。
また、以上においては携帯電話機400として説明したが、例えば、PDA(Personal Digital Assistants)、スマートフォン、UMPC(Ultra Mobile Personal Computer)、ネットブック、ノート型パーソナルコンピュータ等、この携帯電話機400と同様の撮像機能や通信機能を有する装置であれば、どのような装置であっても携帯電話機400の場合と同様に、画像符号化装置51および画像復号装置101を適用することができる。
図25は、本発明を適用した画像符号化装置および画像復号装置を用いるハードディスクレコーダの主な構成例を示すブロック図である。
図25に示されるハードディスクレコーダ(HDDレコーダ)500は、チューナにより受信された、衛星や地上のアンテナ等より送信される放送波信号(テレビジョン信号)に含まれる放送番組のオーディオデータとビデオデータを、内蔵するハードディスクに保存し、その保存したデータをユーザの指示に応じたタイミングでユーザに提供する装置である。
ハードディスクレコーダ500は、例えば、放送波信号よりオーディオデータとビデオデータを抽出し、それらを適宜復号し、内蔵するハードディスクに記憶させることができる。また、ハードディスクレコーダ500は、例えば、ネットワークを介して他の装置からオーディオデータやビデオデータを取得し、それらを適宜復号し、内蔵するハードディスクに記憶させることもできる。
さらに、ハードディスクレコーダ500は、例えば、内蔵するハードディスクに記録されているオーディオデータやビデオデータを復号してモニタ560に供給し、モニタ560の画面にその画像を表示させる。また、ハードディスクレコーダ500は、モニタ560のスピーカよりその音声を出力させることができる。
ハードディスクレコーダ500は、例えば、チューナを介して取得された放送波信号より抽出されたオーディオデータとビデオデータ、または、ネットワークを介して他の装置から取得したオーディオデータやビデオデータを復号してモニタ560に供給し、モニタ560の画面にその画像を表示させる。また、ハードディスクレコーダ500は、モニタ560のスピーカよりその音声を出力させることもできる。
もちろん、この他の動作も可能である。
図25に示されるように、ハードディスクレコーダ500は、受信部521、復調部522、デマルチプレクサ523、オーディオデコーダ524、ビデオデコーダ525、およびレコーダ制御部526を有する。ハードディスクレコーダ500は、さらに、EPGデータメモリ527、プログラムメモリ528、ワークメモリ529、ディスプレイコンバータ530、OSD(On Screen Display)制御部531、ディスプレイ制御部532、記録再生部533、D/Aコンバータ534、および通信部535を有する。
また、ディスプレイコンバータ530は、ビデオエンコーダ541を有する。記録再生部533は、エンコーダ551およびデコーダ552を有する。
受信部521は、リモートコントローラ(図示せず)からの赤外線信号を受信し、電気信号に変換してレコーダ制御部526に出力する。レコーダ制御部526は、例えば、マイクロプロセッサなどにより構成され、プログラムメモリ528に記憶されているプログラムに従って、各種の処理を実行する。レコーダ制御部526は、このとき、ワークメモリ529を必要に応じて使用する。
通信部535は、ネットワークに接続され、ネットワークを介して他の装置との通信処理を行う。例えば、通信部535は、レコーダ制御部526により制御され、チューナ(図示せず)と通信し、主にチューナに対して選局制御信号を出力する。
復調部522は、チューナより供給された信号を、復調し、デマルチプレクサ523に出力する。デマルチプレクサ523は、復調部522より供給されたデータを、オーディオデータ、ビデオデータ、およびEPGデータに分離し、それぞれ、オーディオデコーダ524、ビデオデコーダ525、またはレコーダ制御部526に出力する。
オーディオデコーダ524は、入力されたオーディオデータを、例えばMPEG方式でデコードし、記録再生部533に出力する。ビデオデコーダ525は、入力されたビデオデータを、例えばMPEG方式でデコードし、ディスプレイコンバータ530に出力する。レコーダ制御部526は、入力されたEPGデータをEPGデータメモリ527に供給し、記憶させる。
ディスプレイコンバータ530は、ビデオデコーダ525またはレコーダ制御部526より供給されたビデオデータを、ビデオエンコーダ541により、例えばNTSC(National Television Standards Committee)方式のビデオデータにエンコードし、記録再生部533に出力する。また、ディスプレイコンバータ530は、ビデオデコーダ525またはレコーダ制御部526より供給されるビデオデータの画面のサイズを、モニタ560のサイズに対応するサイズに変換する。ディスプレイコンバータ530は、画面のサイズが変換されたビデオデータを、さらに、ビデオエンコーダ541によってNTSC方式のビデオデータに変換し、アナログ信号に変換し、ディスプレイ制御部532に出力する。
ディスプレイ制御部532は、レコーダ制御部526の制御のもと、OSD(On Screen Display)制御部531が出力したOSD信号を、ディスプレイコンバータ530より入力されたビデオ信号に重畳し、モニタ560のディスプレイに出力し、表示させる。
モニタ560にはまた、オーディオデコーダ524が出力したオーディオデータが、D/Aコンバータ534によりアナログ信号に変換されて供給されている。モニタ560は、このオーディオ信号を内蔵するスピーカから出力する。
記録再生部533は、ビデオデータやオーディオデータ等を記録する記憶媒体としてハードディスクを有する。
記録再生部533は、例えば、オーディオデコーダ524より供給されるオーディオデータを、エンコーダ551によりMPEG方式でエンコードする。また、記録再生部533は、ディスプレイコンバータ530のビデオエンコーダ541より供給されるビデオデータを、エンコーダ551によりMPEG方式でエンコードする。記録再生部533は、そのオーディオデータの符号化データとビデオデータの符号化データとをマルチプレクサにより合成する。記録再生部533は、その合成データをチャネルコーディングして増幅し、そのデータを、記録ヘッドを介してハードディスクに書き込む。
記録再生部533は、再生ヘッドを介してハードディスクに記録されているデータを再生し、増幅し、デマルチプレクサによりオーディオデータとビデオデータに分離する。記録再生部533は、デコーダ552によりオーディオデータおよびビデオデータをMPEG方式でデコードする。記録再生部533は、復号したオーディオデータをD/A変換し、モニタ560のスピーカに出力する。また、記録再生部533は、復号したビデオデータをD/A変換し、モニタ560のディスプレイに出力する。
レコーダ制御部526は、受信部521を介して受信されるリモートコントローラからの赤外線信号により示されるユーザ指示に基づいて、EPGデータメモリ527から最新のEPGデータを読み出し、それをOSD制御部531に供給する。OSD制御部531は、入力されたEPGデータに対応する画像データを発生し、ディスプレイ制御部532に出力する。ディスプレイ制御部532は、OSD制御部531より入力されたビデオデータをモニタ560のディスプレイに出力し、表示させる。これにより、モニタ560のディスプレイには、EPG(電子番組ガイド)が表示される。
また、ハードディスクレコーダ500は、インターネット等のネットワークを介して他の装置から供給されるビデオデータ、オーディオデータ、またはEPGデータ等の各種データを取得することができる。
通信部535は、レコーダ制御部526に制御され、ネットワークを介して他の装置から送信されるビデオデータ、オーディオデータ、およびEPGデータ等の符号化データを取得し、それをレコーダ制御部526に供給する。レコーダ制御部526は、例えば、取得したビデオデータやオーディオデータの符号化データを記録再生部533に供給し、ハードディスクに記憶させる。このとき、レコーダ制御部526および記録再生部533が、必要に応じて再エンコード等の処理を行うようにしてもよい。
また、レコーダ制御部526は、取得したビデオデータやオーディオデータの符号化データを復号し、得られるビデオデータをディスプレイコンバータ530に供給する。ディスプレイコンバータ530は、ビデオデコーダ525から供給されるビデオデータと同様に、レコーダ制御部526から供給されるビデオデータを処理し、ディスプレイ制御部532を介してモニタ560に供給し、その画像を表示させる。
また、この画像表示に合わせて、レコーダ制御部526が、復号したオーディオデータを、D/Aコンバータ534を介してモニタ560に供給し、その音声をスピーカから出力させるようにしてもよい。
さらに、レコーダ制御部526は、取得したEPGデータの符号化データを復号し、復号したEPGデータをEPGデータメモリ527に供給する。
以上のようなハードディスクレコーダ500は、ビデオデコーダ525、デコーダ552、およびレコーダ制御部526に内蔵されるデコーダとして画像復号装置101を用いる。したがって、ビデオデコーダ525、デコーダ552、およびレコーダ制御部526に内蔵されるデコーダは、画像復号装置101の場合と同様に、マルチ参照フレームのインターテンプレート予測モードでの動き予測・補償処理を行う際に、時間軸上1つ前の参照フレームで求められた動きベクトル情報を用いて、次の参照フレームにおける探索中心を求め、それを利用して動き探索を行う。これにより、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。
したがって、ハードディスクレコーダ500は、処理の高速化を実現するとともに、精度の高い予測画像を生成することができる。その結果として、ハードディスクレコーダ500は、例えば、チューナを介して受信されたビデオデータの符号化データや、記録再生部533のハードディスクから読み出されたビデオデータの符号化データや、ネットワークを介して取得したビデオデータの符号化データから、より高精細な復号画像を得て、モニタ560に表示させることができる。
また、ハードディスクレコーダ500は、エンコーダ551として画像符号化装置51を用いる。したがって、エンコーダ551は、画像符号化装置51の場合と同様に、マルチ参照フレームのインターテンプレート予測モードでの動き予測・補償処理を行う際に、時間軸上1つ前の参照フレームで求められた動きベクトル情報を用いて、次の参照フレームにおける探索中心を求め、それを利用して動き探索を行う。これにより、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。
したがって、ハードディスクレコーダ500は、例えば、処理の高速化を実現させるとともに、ハードディスクに記録する符号化データの符号化効率を向上させることができる。その結果として、ハードディスクレコーダ500は、ハードディスクの記憶領域をより効率よく使用することができる。
なお、以上においては、ビデオデータやオーディオデータをハードディスクに記録するハードディスクレコーダ500について説明したが、もちろん、記録媒体はどのようなものであってもよい。例えばフラッシュメモリ、光ディスク、またはビデオテープ等、ハードディスク以外の記録媒体を適用するレコーダであっても、上述したハードディスクレコーダ500の場合と同様に、画像符号化装置51および画像復号装置101を適用することができる。
図26は、本発明を適用した画像復号装置および画像符号化装置を用いるカメラの主な構成例を示すブロック図である。
図26に示されるカメラ600は、被写体を撮像し、被写体の画像をLCD616に表示させたり、それを画像データとして、記録メディア633に記録したりする。
レンズブロック611は、光(すなわち、被写体の映像)を、CCD/CMOS612に入射させる。CCD/CMOS612は、CCDまたはCMOSを用いたイメージセンサであり、受光した光の強度を電気信号に変換し、カメラ信号処理部613に供給する。
カメラ信号処理部613は、CCD/CMOS612から供給された電気信号を、Y,Cr,Cbの色差信号に変換し、画像信号処理部614に供給する。画像信号処理部614は、コントローラ621の制御の下、カメラ信号処理部613から供給された画像信号に対して所定の画像処理を施したり、その画像信号をエンコーダ641で例えばMPEG方式により符号化したりする。画像信号処理部614は、画像信号を符号化して生成した符号化データを、デコーダ615に供給する。さらに、画像信号処理部614は、オンスクリーンディスプレイ(OSD)620において生成された表示用データを取得し、それをデコーダ615に供給する。
以上の処理において、カメラ信号処理部613は、バス617を介して接続されるDRAM(Dynamic Random Access Memory)618を適宜利用し、必要に応じて画像データや、その画像データが符号化された符号化データ等をそのDRAM618に保持させる。
デコーダ615は、画像信号処理部614から供給された符号化データを復号し、得られた画像データ(復号画像データ)をLCD616に供給する。また、デコーダ615は、画像信号処理部614から供給された表示用データをLCD616に供給する。LCD616は、デコーダ615から供給された復号画像データの画像と表示用データの画像を適宜合成し、その合成画像を表示する。
オンスクリーンディスプレイ620は、コントローラ621の制御の下、記号、文字、または図形からなるメニュー画面やアイコンなどの表示用データを、バス617を介して画像信号処理部614に出力する。
コントローラ621は、ユーザが操作部622を用いて指令した内容を示す信号に基づいて、各種処理を実行するとともに、バス617を介して、画像信号処理部614、DRAM618、外部インタフェース619、オンスクリーンディスプレイ620、およびメディアドライブ623等を制御する。FLASH ROM624には、コントローラ621が各種処理を実行する上で必要なプログラムやデータ等が格納される。
例えば、コントローラ621は、画像信号処理部614やデコーダ615に代わって、DRAM618に記憶されている画像データを符号化したり、DRAM618に記憶されている符号化データを復号したりすることができる。このとき、コントローラ621は、画像信号処理部614やデコーダ615の符号化・復号方式と同様の方式によって符号化・復号処理を行うようにしてもよいし、画像信号処理部614やデコーダ615が対応していない方式により符号化・復号処理を行うようにしてもよい。
また、例えば、操作部622から画像印刷の開始が指示された場合、コントローラ621は、DRAM618から画像データを読み出し、それを、バス617を介して外部インタフェース619に接続されるプリンタ634に供給して印刷させる。
さらに、例えば、操作部622から画像記録が指示された場合、コントローラ621は、DRAM618から符号化データを読み出し、それを、バス617を介してメディアドライブ623に装着される記録メディア633に供給して記憶させる。
記録メディア633は、例えば、磁気ディスク、光磁気ディスク、光ディスク、または半導体メモリ等の、読み書き可能な任意のリムーバブルメディアである。記録メディア633は、もちろん、リムーバブルメディアとしての種類も任意であり、テープデバイスであってもよいし、ディスクであってもよいし、メモリカードであってもよい。もちろん、非接触ICカード等であっても良い。
また、メディアドライブ623と記録メディア633を一体化し、例えば、内蔵型ハードディスクドライブやSSD(Solid State Drive)等のように、非可搬性の記憶媒体により構成されるようにしてもよい。
外部インタフェース619は、例えば、USB入出力端子などで構成され、画像の印刷を行う場合に、プリンタ634と接続される。また、外部インタフェース619には、必要に応じてドライブ631が接続され、磁気ディスク、光ディスク、あるいは光磁気ディスクなどのリムーバブルメディア632が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて、FLASH ROM624にインストールされる。
さらに、外部インタフェース619は、LANやインターネット等の所定のネットワークに接続されるネットワークインタフェースを有する。コントローラ621は、例えば、操作部622からの指示に従って、DRAM618から符号化データを読み出し、それを外部インタフェース619から、ネットワークを介して接続される他の装置に供給させることができる。また、コントローラ621は、ネットワークを介して他の装置から供給される符号化データや画像データを、外部インタフェース619を介して取得し、それをDRAM618に保持させたり、画像信号処理部614に供給したりすることができる。
以上のようなカメラ600は、デコーダ615として画像復号装置101を用いる。したがって、デコーダ615は、画像復号装置101の場合と同様に、マルチ参照フレームのインターテンプレート予測モードでの動き予測・補償処理を行う際に、時間軸上1つ前の参照フレームで求められた動きベクトル情報を用いて、次の参照フレームにおける探索中心を求め、それを利用して動き探索を行う。これにより、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。
したがって、カメラ600は、処理の高速化を実現するとともに、精度の高い予測画像を生成することができる。その結果として、カメラ600は、例えば、CCD/CMOS612において生成された画像データや、DRAM618または記録メディア633から読み出されたビデオデータの符号化データや、ネットワークを介して取得したビデオデータの符号化データから、より高精細な復号画像を得て、LCD616に表示させることができる。
また、カメラ600は、エンコーダ641として画像符号化装置51を用いる。したがって、エンコーダ641は、画像符号化装置51の場合と同様に、マルチ参照フレームのインターテンプレート予測モードでの動き予測・補償処理を行う際に、時間軸上1つ前の参照フレームで求められた動きベクトル情報を用いて、次の参照フレームにおける探索中心を求め、それを利用して動き探索を行う。これにより、符号化効率の低下を最小限に抑えながら、演算量の削減を実現することができる。
したがって、カメラ600は、例えば、処理の高速化を実現させるとともに、ハードディスクに記録する符号化データの符号化効率をことができる。その結果として、カメラ600は、DRAM618や記録メディア633の記憶領域をより効率よく使用することができる。
なお、コントローラ621が行う復号処理に画像復号装置101の復号方法を適用するようにしてもよい。同様に、コントローラ621が行う符号化処理に画像符号化装置51の符号化方法を適用するようにしてもよい。
また、カメラ600が撮像する画像データは動画像であってもよいし、静止画像であってもよい。
もちろん、画像符号化装置51および画像復号装置101は、上述した装置以外の装置やシステムにも適用可能である。
51 画像符号化装置, 66 可逆符号化部, 74 イントラ予測部, 75 動き予測・補償部, 76 テンプレート動き予測・補償部, 77 MRF探索中心算出部, 78 予測画像選択部, 101 画像復号装置, 112 可逆復号部, 121 イントラ予測部, 122 動き予測・補償部, 123 テンプレート動き予測・補償部, 124 MRF探索中心算出部, 125 スイッチ
Claims (11)
- フレームの第1の対象ブロックの第1の参照フレームで探索された前記第1の対象ブロックの動きベクトルを用いて、前記フレームに対する時間軸上の距離が前記第1の参照フレームの次に近い第2の参照フレームにおける探索中心を算出する探索中心算出部と、
前記探索中心算出部により算出された前記第2の参照フレームにおける前記探索中心の周辺の所定の探索範囲で、前記第1の対象ブロックの動きベクトルを、前記第1の対象ブロックに対して所定の位置関係で隣接するとともに復号画像から生成されるテンプレートを利用して探索する動き予測部と
を備える画像処理装置。 - 前記探索中心算出部は、前記第1の参照フレームで前記動き予測部により探索された前記第1の対象ブロックの動きベクトルを、前記フレームに対する時間軸上の距離でスケーリングすることで、前記第2の参照フレームにおける前記探索中心を算出する
請求項1に記載の画像処理装置。 - 前記フレームと参照ピクチャ番号ref_id=k-1の前記第1の参照フレームとの時間軸上の距離をtk-1とし、前記フレームと参照ピクチャ番号ref_id=kの前記第2の参照フレームとの時間軸上の距離をtkとし、前記第1の参照フレームで前記動き予測部により探索された前記第1の対象ブロックの動きベクトルをtmmvk-1としたとき、
前記探索中心算出部は、
前記動き予測部は、前記探索中心算出部により算出された前記第2の参照フレームにおける前記探索中心mvcの周辺の所定の探索範囲で、前記第1の対象ブロックの動きベクトルを、前記テンプレートを利用して探索する
請求項2に記載の画像処理装置。 - 前記探索中心算出部は、tk/tk-1の値を、N/2M(N,Mは整数)の形で近似することにより、前記探索中心mvcの算出を、シフト演算のみで行う
請求項3に記載の画像処理装置。 - 前記時間軸上の距離tk,tk-1として、POC(Picture Order Count)を用いる
請求項3に記載の画像処理装置。 - 画像圧縮情報中に参照ピクチャ番号ref_idに相当するパラメータがない場合、前方向、後方向予測共に、時間軸上で前記フレームに近い順の参照フレームから処理を行う
請求項3に記載の画像復号装置。 - 前記動き予測部は、前記フレームに時間軸上の距離が最も近い前記第1の参照フレームにおいては、前記第1の対象ブロックの動きベクトルを、前記テンプレートを利用して所定の範囲で探索する
請求項2に記載の画像処理装置。 - 前記動き予測部は、前記第2の参照フレームがLong Term Reference Pictureである場合、前記第2の参照フレームにおいては、前記第1の対象ブロックの動きベクトルを、前記テンプレートを利用して所定の範囲で探索する
請求項2に記載の画像処理装置。 - 符号化された動きベクトルの情報を復号する復号部と、
前記復号部により復号された前記フレームの第2の対象ブロックの動きベクトルを用いて予測画像を生成する予測画像生成部と
をさらに備える請求項2に記載の画像処理装置。 - 前記動き予測部は、前記フレームの第2の対象ブロックの動きベクトルを、前記第2の対象ブロックを利用して探索し、
前記動き予測部により探索された前記第1の対象ブロックの動きベクトルに基づく予測画像と、前記動き予測部により探索された前記第2の対象ブロックの動きベクトルに基づく予測画像のうちの一方を選択する画像選択部とをさらに備える
請求項2に記載の画像処理装置。 - 画像処理装置が、
フレームの対象ブロックの第1の参照フレームで探索された前記対象ブロックの動きベクトルを用いて、前記フレームに対する時間軸上の距離が前記第1の参照フレームの次に近い第2の参照フレームにおける探索中心を算出し、
算出された前記第2の参照フレームにおける前記探索中心の周辺の所定の探索範囲で、前記対象ブロックの動きベクトルを、前記対象ブロックに対して所定の位置関係で隣接するとともに復号画像から生成されるテンプレートを利用して探索するステップを
含む画像処理方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008243960 | 2008-09-24 | ||
JP2008243960 | 2008-09-24 | ||
PCT/JP2009/066491 WO2010035733A1 (ja) | 2008-09-24 | 2009-09-24 | 画像処理装置および方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2010035733A1 true JPWO2010035733A1 (ja) | 2012-02-23 |
Family
ID=42059732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010530847A Withdrawn JPWO2010035733A1 (ja) | 2008-09-24 | 2009-09-24 | 画像処理装置および方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110164684A1 (ja) |
JP (1) | JPWO2010035733A1 (ja) |
CN (1) | CN102160384A (ja) |
WO (1) | WO2010035733A1 (ja) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8385404B2 (en) | 2008-09-11 | 2013-02-26 | Google Inc. | System and method for video encoding using constructed reference frame |
US8837592B2 (en) | 2010-04-14 | 2014-09-16 | Mediatek Inc. | Method for performing local motion vector derivation during video coding of a coding unit, and associated apparatus |
JP5606625B2 (ja) * | 2010-07-21 | 2014-10-15 | ドルビー ラボラトリーズ ライセンシング コーポレイション | ビデオ符号化のための高度な動きモデルを使った参照処理 |
US8824558B2 (en) * | 2010-11-23 | 2014-09-02 | Mediatek Inc. | Method and apparatus of spatial motion vector prediction |
JP5711514B2 (ja) * | 2010-12-14 | 2015-04-30 | 日本電信電話株式会社 | 符号化装置、復号装置、符号化方法、復号方法、符号化プログラム及び復号プログラム |
JP2012151576A (ja) | 2011-01-18 | 2012-08-09 | Hitachi Ltd | 画像符号化方法、画像符号化装置、画像復号方法及び画像復号装置 |
US8638854B1 (en) | 2011-04-07 | 2014-01-28 | Google Inc. | Apparatus and method for creating an alternate reference frame for video compression using maximal differences |
JP5786478B2 (ja) * | 2011-06-15 | 2015-09-30 | 富士通株式会社 | 動画像復号装置、動画像復号方法、及び動画像復号プログラム |
JP5682477B2 (ja) * | 2011-06-29 | 2015-03-11 | 株式会社Jvcケンウッド | 画像符号化装置、画像符号化方法、および画像符号化プログラム |
JP5682478B2 (ja) * | 2011-06-29 | 2015-03-11 | 株式会社Jvcケンウッド | 画像復号装置、画像復号方法、および画像復号プログラム |
KR101935976B1 (ko) | 2011-10-28 | 2019-01-07 | 선 페이턴트 트러스트 | 화상 부호화 방법, 화상 복호 방법, 화상 부호화 장치 및 화상 복호 장치 |
CN107948656B (zh) | 2011-10-28 | 2021-06-01 | 太阳专利托管公司 | 图像解码方法及图像解码装置 |
JP2013157061A (ja) * | 2012-01-31 | 2013-08-15 | Sony Corp | 情報処理装置、情報処理方法、及びプログラム |
KR20130103140A (ko) * | 2012-03-09 | 2013-09-23 | 한국전자통신연구원 | 영상압축 전에 행해지는 전처리 방법, 영상 압축률 개선을 위한 적응성 움직임 추정방법 및 영상 타입별 영상 데이터 제공방법 |
WO2013162980A2 (en) * | 2012-04-23 | 2013-10-31 | Google Inc. | Managing multi-reference picture buffers for video data coding |
US9609341B1 (en) | 2012-04-23 | 2017-03-28 | Google Inc. | Video data encoding and decoding using reference picture lists |
RU2673846C1 (ru) * | 2012-07-02 | 2018-11-30 | Самсунг Электроникс Ко., Лтд. | Способ и устройство для прогнозирования вектора движения для кодирования видео или декодирования видео |
CN104104961B (zh) * | 2013-04-10 | 2018-09-21 | 华为技术有限公司 | 一种视频编码方法、解码方法和装置 |
US9756331B1 (en) | 2013-06-17 | 2017-09-05 | Google Inc. | Advance coded reference prediction |
US9807411B2 (en) * | 2014-03-18 | 2017-10-31 | Panasonic Intellectual Property Management Co., Ltd. | Image coding apparatus, image decoding apparatus, image processing system, image coding method, and image decoding method |
EP3152907B1 (en) * | 2015-05-29 | 2021-01-06 | SZ DJI Technology Co., Ltd. | System and method for video processing |
WO2019152283A1 (en) | 2018-02-02 | 2019-08-08 | Apple Inc. | Techniques of multi-hypothesis motion compensation |
US11924440B2 (en) | 2018-02-05 | 2024-03-05 | Apple Inc. | Techniques of multi-hypothesis motion compensation |
US11206417B2 (en) * | 2019-05-30 | 2021-12-21 | Tencent America LLC | Method and apparatus for video coding |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6202344B1 (en) * | 1998-07-14 | 2001-03-20 | Paul W. W. Clarke | Method and machine for changing agricultural mulch |
US6289052B1 (en) * | 1999-06-07 | 2001-09-11 | Lucent Technologies Inc. | Methods and apparatus for motion estimation using causal templates |
US6728315B2 (en) * | 2002-07-24 | 2004-04-27 | Apple Computer, Inc. | Method and apparatus for variable accuracy inter-picture timing specification for digital video encoding with reduced requirements for division operations |
WO2005046072A1 (en) * | 2003-10-09 | 2005-05-19 | Thomson Licensing | Direct mode derivation process for error concealment |
JP4213646B2 (ja) * | 2003-12-26 | 2009-01-21 | 株式会社エヌ・ティ・ティ・ドコモ | 画像符号化装置、画像符号化方法、画像符号化プログラム、画像復号装置、画像復号方法、及び画像復号プログラム。 |
JP2006020095A (ja) * | 2004-07-01 | 2006-01-19 | Sharp Corp | 動きベクトル検出回路、画像符号化回路、動きベクトル検出方法および画像符号化方法 |
US20070248270A1 (en) * | 2004-08-13 | 2007-10-25 | Koninklijke Philips Electronics, N.V. | System and Method for Compression of Mixed Graphic and Video Sources |
KR101201930B1 (ko) * | 2004-09-16 | 2012-11-19 | 톰슨 라이센싱 | 국부적 밝기 변동을 이용한 가중화된 예측을 가진 비디오 코덱 |
JP4064973B2 (ja) * | 2005-03-23 | 2008-03-19 | 株式会社東芝 | ビデオエンコーダ及びこれを用いた携帯無線端末装置 |
DE602006020556D1 (de) * | 2005-04-01 | 2011-04-21 | Panasonic Corp | Bilddecodierungsvorrichtung und bilddecodierungsverfahren |
JP4551814B2 (ja) * | 2005-05-16 | 2010-09-29 | Okiセミコンダクタ株式会社 | 無線通信装置 |
CN101218829A (zh) * | 2005-07-05 | 2008-07-09 | 株式会社Ntt都科摩 | 动态图像编码装置、动态图像编码方法、动态图像编码程序、动态图像解码装置、动态图像解码方法以及动态图像解码程序 |
JP2007043651A (ja) * | 2005-07-05 | 2007-02-15 | Ntt Docomo Inc | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法及び動画像復号プログラム |
WO2007092215A2 (en) * | 2006-02-02 | 2007-08-16 | Thomson Licensing | Method and apparatus for adaptive weight selection for motion compensated prediction |
AU2007244443A1 (en) * | 2006-04-28 | 2007-11-08 | Ntt Docomo, Inc. | Image predictive coding device, image predictive coding method, image predictive coding program, image predictive decoding device, image predictive decoding method and image predictive decoding program |
-
2009
- 2009-09-24 WO PCT/JP2009/066491 patent/WO2010035733A1/ja active Application Filing
- 2009-09-24 US US13/119,717 patent/US20110164684A1/en not_active Abandoned
- 2009-09-24 CN CN2009801370361A patent/CN102160384A/zh active Pending
- 2009-09-24 JP JP2010530847A patent/JPWO2010035733A1/ja not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CN102160384A (zh) | 2011-08-17 |
WO2010035733A1 (ja) | 2010-04-01 |
US20110164684A1 (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010035733A1 (ja) | 画像処理装置および方法 | |
JP5234368B2 (ja) | 画像処理装置および方法 | |
WO2010035730A1 (ja) | 画像処理装置および方法 | |
JP6057140B2 (ja) | 画像処理装置および方法、プログラム、並びに、記録媒体 | |
TWI405469B (zh) | Image processing apparatus and method | |
WO2010101064A1 (ja) | 画像処理装置および方法 | |
WO2010035734A1 (ja) | 画像処理装置および方法 | |
WO2011024685A1 (ja) | 画像処理装置および方法 | |
WO2010035731A1 (ja) | 画像処理装置および方法 | |
JPWO2010095560A1 (ja) | 画像処理装置および方法 | |
JP2014187700A (ja) | 復号装置および方法 | |
WO2011086964A1 (ja) | 画像処理装置および方法、並びにプログラム | |
JPWO2011078002A1 (ja) | 画像処理装置および方法、並びにプログラム | |
WO2011089973A1 (ja) | 画像処理装置および方法 | |
WO2010035732A1 (ja) | 画像処理装置および方法 | |
JPWO2010064674A1 (ja) | 画像処理装置および画像処理方法、並びにプログラム | |
WO2013065572A1 (ja) | 符号化装置および方法、並びに、復号装置および方法 | |
WO2010010943A1 (ja) | 画像処理装置および方法 | |
JP2011146980A (ja) | 画像処理装置および方法 | |
WO2010035735A1 (ja) | 画像処理装置および方法 | |
JP2014143716A (ja) | 画像処理装置および方法、プログラム、並びに記録媒体 | |
WO2011125625A1 (ja) | 画像処理装置および方法 | |
JP6268556B2 (ja) | 画像処理装置および方法、プログラム、並びに、記録媒体 | |
JP2013150347A (ja) | 画像処理装置および方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20121204 |