JPWO2009144944A1 - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
JPWO2009144944A1
JPWO2009144944A1 JP2010514376A JP2010514376A JPWO2009144944A1 JP WO2009144944 A1 JPWO2009144944 A1 JP WO2009144944A1 JP 2010514376 A JP2010514376 A JP 2010514376A JP 2010514376 A JP2010514376 A JP 2010514376A JP WO2009144944 A1 JPWO2009144944 A1 JP WO2009144944A1
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
semiconductor layer
type semiconductor
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010514376A
Other languages
Japanese (ja)
Other versions
JP4671002B2 (en
Inventor
時岡 秀忠
秀忠 時岡
渕上 宏幸
宏幸 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP4671002B2 publication Critical patent/JP4671002B2/en
Publication of JPWO2009144944A1 publication Critical patent/JPWO2009144944A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明の光電変換装置は、n型半導体層とp型半導体層とを有する第1光電変換層と、n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれてトンネル伝導性を有するとともに、透光性の中間層と、が基板上に積層された光電変換装置である。前記中間層が前記第1光電変換層のn型の半導体層の電子エネルギーレベルと前記第2光電変換層のp型の半導体層の正孔エネルギーレベルとが近づくように、前記第1光電変換層のn型の半導体層の前記中間層との界面近傍の電子エネルギーレベルまたは前記第2光電変換層のp型の半導体層の前記中間層との界面近傍の正孔エネルギーレベルを変化させる金属酸化物材料からなる。このため層間のトンネル伝導が増進され、高効率な光電変換装置を実現することができる。The photoelectric conversion device of the present invention includes a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer, an n-type semiconductor layer and a p-type semiconductor layer, and the first photoelectric conversion layer and the light absorption wavelength. It is sandwiched between a second photoelectric conversion layer having different characteristics, an n-type semiconductor layer of the first photoelectric conversion layer, and a p-type semiconductor layer of the second photoelectric conversion layer. The intermediate layer is a photoelectric conversion device laminated on a substrate. In the first photoelectric conversion layer, the intermediate layer approaches the electron energy level of the n-type semiconductor layer of the first photoelectric conversion layer and the hole energy level of the p-type semiconductor layer of the second photoelectric conversion layer. Metal oxide that changes the electron energy level of the n-type semiconductor layer in the vicinity of the interface with the intermediate layer or the hole energy level of the second photoelectric conversion layer in the vicinity of the interface with the intermediate layer of the p-type semiconductor layer Made of material. For this reason, tunnel conduction between layers is enhanced, and a highly efficient photoelectric conversion device can be realized.

Description

この発明は、光エネルギーを電気エネルギーに変換する光電変換装置に関する。   The present invention relates to a photoelectric conversion device that converts light energy into electrical energy.

光エネルギーを電気エネルギーに変換する光電変換装置として、光吸収波長特性の異なる複数の薄膜光電変換層が積層された積層型薄膜太陽電池が知られている。このような従来の積層型薄膜太陽電池では、例えば透明電極が形成された絶縁性透明基板に薄膜半導体をp型層、i型層、n型層の順に堆積した光電変換層からなる素子を複数積層して形成し、裏面電極として反射導電膜を形成して、絶縁性透明基板側からの光入射により光起電力を発生する。   As a photoelectric conversion device that converts light energy into electric energy, a stacked thin film solar cell in which a plurality of thin film photoelectric conversion layers having different light absorption wavelength characteristics are stacked is known. In such a conventional laminated thin film solar cell, for example, a plurality of elements each including a photoelectric conversion layer in which a thin film semiconductor is deposited in the order of a p-type layer, an i-type layer, and an n-type layer on an insulating transparent substrate on which a transparent electrode is formed. A reflective conductive film is formed as a back electrode, and a photovoltaic power is generated by light incidence from the insulating transparent substrate side.

積層された複数の光電変換素子それぞれの間には、素子間で電荷を滞りなく伝えるために導電性を有する層が挿入される。またこの層では特定の波長領域の光を反射或いは透過させる光学特性を有した材料が用いられている。たとえば、特許文献1には中間層の材料として、ZnO、ITO、あるいはSnOを用いることが示されている。Between each of the plurality of stacked photoelectric conversion elements, a conductive layer is inserted in order to transfer charges between the elements without delay. In this layer, a material having an optical characteristic of reflecting or transmitting light in a specific wavelength region is used. For example, Patent Document 1 discloses that ZnO, ITO, or SnO 2 is used as a material for the intermediate layer.

特開2006−120747号公報JP 2006-120747 A

従来は透光性とキャリア導電性を両立するためZnO、ITO、あるいはSnOのような透光性導電膜を用いている。しかしながら、これらの材料の導電膜を用いても光電変換層が発生する電流が高い場合に、流れる電流が中間層の抵抗によって制限されて光電変換装置の光変換効率が低下してしまうことがある。Conventionally, a translucent conductive film such as ZnO, ITO, or SnO 2 is used in order to achieve both translucency and carrier conductivity. However, even when a conductive film made of these materials is used, if the current generated by the photoelectric conversion layer is high, the flowing current is limited by the resistance of the intermediate layer, which may reduce the light conversion efficiency of the photoelectric conversion device. .

本発明は斯かる事情に鑑みてなされたものであり、積層型の光電変換装置において中間層の両側に位置する光電変換層間の導電性を改善し、高効率な光電変換装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a highly efficient photoelectric conversion device by improving conductivity between photoelectric conversion layers located on both sides of an intermediate layer in a stacked photoelectric conversion device. Objective.

本発明の光電変換装置は、n型半導体層とp型半導体層とを有する第1光電変換層と、n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれてトンネル伝導性を有するとともに、前記第2光電変換層のp型半導体層に接する主成分が酸化アルミニウムである透光性の中間層と、が基板上に積層された光電変換装置、とした。   The photoelectric conversion device of the present invention includes a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer, an n-type semiconductor layer and a p-type semiconductor layer, and the first photoelectric conversion layer and the light absorption wavelength. The second photoelectric conversion layer having different characteristics, the n-type semiconductor layer of the first photoelectric conversion layer, and the p-type semiconductor layer of the second photoelectric conversion layer are sandwiched between the second photoelectric conversion layer and the second photoelectric conversion layer. A photoelectric conversion device in which a light-transmitting intermediate layer whose main component in contact with the p-type semiconductor layer of the photoelectric conversion layer is aluminum oxide was stacked on a substrate was obtained.

また、本発明の光電変換装置は、n型半導体層とp型半導体層とを有する第1光電変換層と、n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれてトンネル伝導性を有するとともに、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層とに接する主成分がハフニウム酸化物である透光性の中間層と、が基板上に積層された光電変換装置、とした。   In addition, the photoelectric conversion device of the present invention includes a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer, an n-type semiconductor layer and a p-type semiconductor layer, and the first photoelectric conversion layer and the light. The second photoelectric conversion layer having different absorption wavelength characteristics, the n-type semiconductor layer of the first photoelectric conversion layer, and the p-type semiconductor layer of the second photoelectric conversion layer have tunnel conductivity, and A photoelectric conversion in which an n-type semiconductor layer of the first photoelectric conversion layer and a translucent intermediate layer whose main component is hafnium oxide in contact with the p-type semiconductor layer of the second photoelectric conversion layer are stacked on the substrate Device.

本発明の光電変換装置では、前記第2光電変換層のp型半導体層に接する主成分が酸化アルミニウムである透光性の中間層、または前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層とに接する主成分がハフニウム酸化物である透光性の中間層を有するので、中間層との界面における第1光電変換層のn型の半導体層の電子エネルギーレベルと第2光電変換層のp型の半導体層の正孔エネルギーレベルとが近づき、層間のトンネル伝導が増進される。トンネル伝導が増進される結果、第1光電変換層と第2光電変換層の間の導電性が改善され、高効率な光電変換装置を実現することができる。   In the photoelectric conversion device of the present invention, the translucent intermediate layer whose main component in contact with the p-type semiconductor layer of the second photoelectric conversion layer is aluminum oxide, or the n-type semiconductor layer of the first photoelectric conversion layer and the first Since the main component in contact with the p-type semiconductor layer of the two photoelectric conversion layers has a translucent intermediate layer whose hafnium oxide is the electron energy of the n-type semiconductor layer of the first photoelectric conversion layer at the interface with the intermediate layer The level and the hole energy level of the p-type semiconductor layer of the second photoelectric conversion layer approach each other, and tunnel conduction between layers is enhanced. As a result of the enhancement of tunnel conduction, the conductivity between the first photoelectric conversion layer and the second photoelectric conversion layer is improved, and a highly efficient photoelectric conversion device can be realized.

本発明の実施の形態1の光電変換装置の断面の一部を示す断面図である。It is sectional drawing which shows a part of cross section of the photoelectric conversion apparatus of Embodiment 1 of this invention. 本発明の中間層とその両側に接合された半導体層のエネルギー概念図である。It is an energy conceptual diagram of the intermediate | middle layer of this invention, and the semiconductor layer joined to the both sides. 本発明の実施の形態2の光電変換装置の断面の一部を示す断面図である。It is sectional drawing which shows a part of cross section of the photoelectric conversion apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の光電変換装置の断面の一部を示す断面図である。It is sectional drawing which shows a part of cross section of the photoelectric conversion apparatus of Embodiment 3 of this invention. 本発明の実施の形態4の光電変換装置の断面の一部を示す断面図である。It is sectional drawing which shows a part of cross section of the photoelectric conversion apparatus of Embodiment 4 of this invention. 本発明の実施の形態5の光電変換装置の断面の一部を示す断面図である。It is sectional drawing which shows a part of cross section of the photoelectric conversion apparatus of Embodiment 5 of this invention. 本発明の実施の形態6の光電変換装置の断面の一部を示す断面図である。It is sectional drawing which shows a part of cross section of the photoelectric conversion apparatus of Embodiment 6 of this invention.

1 光電変換装置、2 基板、3 透明電極、4 非晶質Si光電変換層、4a p型非晶質SiC半導体層、4b i型非晶質Si半導体層、4c n型非晶質Si半導体層、4d n型非晶質Si半導体層、5 中間層、5a 酸化Si層、5b 酸化アルミニウム層、6 微結晶Si光電変換層、6a p型微結晶Si半導体層、6b i型微結晶Si半導体層、6c n型微結晶Si半導体層、6d p型微結晶Si半導体層、7 裏面電極、8 アンダーコート、11 透明導電層、301、304 中間層、302 n型半導体層、303 p型半導体層。   1 photoelectric conversion device, 2 substrate, 3 transparent electrode, 4 amorphous Si photoelectric conversion layer, 4a p-type amorphous SiC semiconductor layer, 4b i-type amorphous Si semiconductor layer, 4c n-type amorphous Si semiconductor layer 4d n-type amorphous Si semiconductor layer, 5 intermediate layer, 5a Si oxide layer, 5b aluminum oxide layer, 6 microcrystalline Si photoelectric conversion layer, 6a p-type microcrystalline Si semiconductor layer, 6b i-type microcrystalline Si semiconductor layer , 6c n-type microcrystalline Si semiconductor layer, 6d p-type microcrystalline Si semiconductor layer, 7 back electrode, 8 undercoat, 11 transparent conductive layer, 301, 304 intermediate layer, 302 n-type semiconductor layer, 303 p-type semiconductor layer.

<実施の形態1>
図1は本実施の形態1の光電変換装置の断面の一部を示す断面図である。光電変換装置1は絶縁性であり透明な基板2と、その上に微細な凹凸である表面テクスチャ構造を有する透明電極3、非晶質Si光電変換層4、中間層5、微結晶Si光電変換層6、裏面電極7が順に積層された構成を備える。また基板2上には不純物の阻止層として、必要に応じて図示するような酸化Siのアンダーコート8を施しておいてもよい。
<Embodiment 1>
FIG. 1 is a cross-sectional view illustrating a part of a cross section of the photoelectric conversion device according to the first embodiment. The photoelectric conversion device 1 is an insulating and transparent substrate 2, a transparent electrode 3 having a surface texture structure that is fine irregularities thereon, an amorphous Si photoelectric conversion layer 4, an intermediate layer 5, a microcrystalline Si photoelectric conversion The layer 6 and the back electrode 7 are provided in order. An Si oxide undercoat 8 as shown may be applied on the substrate 2 as an impurity blocking layer as required.

非晶質Si光電変換層4と微結晶Si光電変換層6とはともにSiを主成分とするが結晶構造の違いにより異なるバンドギャップを有し、従って異なる光吸収波長特性を有する。本実施の形態1の光電変換装置1は透明の基板2を用いて、主として基板側から入射する光を電気に変換する装置である。非晶質Si光電変換層4の発電素子と微結晶Si光電変換層6の発電素子とが積層方向に直列に接続されて、それぞれの光電変換層で発生した電流が透明電極3と裏面電極7とから取り出される構成である。このような光電変換装置はタンデム型太陽電池として知られている。タンデム型太陽電池では、一般に、光を入射する側に主として短い波長の光を吸収して電気エネルギーに変換するバンドギャップの大きい光電変換層、裏面側に前者よりも長い波長の光を吸収して電気エネルギーに変換するバンドギャップの小さい光電変換層が配置される。光吸収波長特性の異なる光電変換層として、本実施の形態1では非晶質Si層と微結晶Si層と結晶化率の異なる材料を用いたが、元素組成の異なる層としてもよい。たとえば、Si半導体層に添加するGeやCの割合を変化してバンドギャップを調整して積層する光電変換層で光吸収波長特性が異なるように調整してもよい。また、積層される光電変換層は3つ以上としてもよい。その場合、中間層が各光電変換層の間にあるように2つ以上ある構成としてもよい。また、基板からの積層順序を反対として、基板と反対側の膜面側から光を入射する構成としてもよい。膜面側から光を入射する場合、基板は透明でなくてよい。   Both the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6 are mainly composed of Si, but have different band gaps depending on the crystal structure, and thus have different light absorption wavelength characteristics. The photoelectric conversion device 1 of the first embodiment is a device that converts light incident mainly from the substrate side into electricity using a transparent substrate 2. The power generation element of the amorphous Si photoelectric conversion layer 4 and the power generation element of the microcrystalline Si photoelectric conversion layer 6 are connected in series in the stacking direction, and the current generated in each photoelectric conversion layer is transferred to the transparent electrode 3 and the back electrode 7. It is the structure taken out from. Such a photoelectric conversion device is known as a tandem solar cell. In tandem solar cells, in general, a photoelectric conversion layer with a large band gap that absorbs light with a short wavelength on the light incident side and converts it into electrical energy, and a light with a wavelength longer than the former on the back side. A photoelectric conversion layer having a small band gap for conversion into electric energy is disposed. As the photoelectric conversion layer having different light absorption wavelength characteristics, materials having different crystallization rates from the amorphous Si layer and the microcrystalline Si layer are used in the first embodiment, but layers having different element compositions may be used. For example, the photoelectric conversion layer may be adjusted to have different light absorption wavelength characteristics by changing the ratio of Ge or C added to the Si semiconductor layer to adjust the band gap. In addition, three or more photoelectric conversion layers may be stacked. In that case, it is good also as a structure which has two or more so that an intermediate | middle layer may exist between each photoelectric converting layer. Alternatively, the stacking order from the substrate may be reversed, and light may be incident from the film surface side opposite to the substrate. When light is incident from the film surface side, the substrate does not have to be transparent.

非晶質Si光電変換層4は、基板側から順にp型非晶質SiC半導体層4a、i型非晶質Si半導体層4b、n型非晶質Si半導体層4cが積層された層で構成されている。またp型非晶質SiC半導体層4aとi型非晶質Si半導体層4bとの間にi型非晶質SiC半導体層を挿入しても良い。微結晶Si光電変換層6は、基板側から順に、p型微結晶Si半導体層6a、i型微結晶Si半導体層6b、n型微結晶Si半導体層6cが積層された層で構成されている。   The amorphous Si photoelectric conversion layer 4 is a layer in which a p-type amorphous SiC semiconductor layer 4a, an i-type amorphous Si semiconductor layer 4b, and an n-type amorphous Si semiconductor layer 4c are stacked in this order from the substrate side. Has been. Further, an i-type amorphous SiC semiconductor layer may be inserted between the p-type amorphous SiC semiconductor layer 4a and the i-type amorphous Si semiconductor layer 4b. The microcrystalline Si photoelectric conversion layer 6 is composed of a layer in which a p-type microcrystalline Si semiconductor layer 6a, an i-type microcrystalline Si semiconductor layer 6b, and an n-type microcrystalline Si semiconductor layer 6c are stacked in this order from the substrate side. .

裏面電極7はたとえばAlやAl合金などの反射率の高い金属を使用する。Alの代わりにAgを用いてもよい。反射性能に優れた裏面電極7を用いると、微結晶Si光電変換層6を透過した光は裏面電極7により再び微結晶Si光電変換層6側に反射されて光電変換されるので変換効率が向上する。光電変換される波長域の光を効果的に反射するために図のように裏面電極7とn型微結晶Si半導体層6cとの間に適当な光学特性を有するZnOなどの透明導電層11を挿入してもよい。   For the back electrode 7, for example, a metal having high reflectivity such as Al or Al alloy is used. Ag may be used instead of Al. When the back electrode 7 having excellent reflection performance is used, the light transmitted through the microcrystalline Si photoelectric conversion layer 6 is reflected again by the back electrode 7 toward the microcrystalline Si photoelectric conversion layer 6 and is photoelectrically converted, thereby improving the conversion efficiency. To do. A transparent conductive layer 11 such as ZnO having appropriate optical characteristics is provided between the back electrode 7 and the n-type microcrystalline Si semiconductor layer 6c as shown in FIG. It may be inserted.

中間層5は非晶質Si光電変換層4と微結晶Si光電変換層6とに挟まれた層である。中間層5は非晶質Si光電変換層4で吸収されなかった光を微結晶Si光電変換層6側に透過すると同時に微結晶Si光電変換層6で発生と微結晶Si光電変換層6との間を電気伝導させる。また、中間層5が微結晶Si光電変換層6で吸収する波長域の光を透過する一方、非晶質Si光電変換層4で吸収する波長域の光を非晶質Si光電変換層4側に反射する光学特性を備えると、非晶質Si光電変換層4を通過した光が再び非晶質Si光電変換層4を通過して光電変換されるので変換効率が向上する。   The intermediate layer 5 is a layer sandwiched between the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6. The intermediate layer 5 transmits light that has not been absorbed by the amorphous Si photoelectric conversion layer 4 to the microcrystalline Si photoelectric conversion layer 6 side. Conduct electricity between them. The intermediate layer 5 transmits light in the wavelength region absorbed by the microcrystalline Si photoelectric conversion layer 6, while the light in the wavelength region absorbed by the amorphous Si photoelectric conversion layer 4 transmits the light in the amorphous Si photoelectric conversion layer 4 side. If the optical characteristic is reflected, the light passing through the amorphous Si photoelectric conversion layer 4 passes through the amorphous Si photoelectric conversion layer 4 again and undergoes photoelectric conversion, so that the conversion efficiency is improved.

中間層5はその層の両側に接合された光電変換層間のキャリアを滞りなく伝えなければならないため、キャリア伝導性が必須である。光電変換層間でキャリア伝導が妨げられると、実効的な素子間接続抵抗が高くなり、太陽電池の曲線因子(Fill Factor: FF)が低下し、結果として発電効率が低下する。そのため中間層は透過率とキャリア導電率を両立させなければならない。   Since the intermediate layer 5 has to transmit carriers between photoelectric conversion layers bonded to both sides of the layer without any delay, carrier conductivity is essential. When carrier conduction is hindered between the photoelectric conversion layers, the effective inter-element connection resistance is increased, and the fill factor (FF) of the solar cell is decreased, resulting in a decrease in power generation efficiency. Therefore, the intermediate layer must satisfy both the transmittance and the carrier conductivity.

本実施の形態1では中間層5の構造を、非晶質Si光電変換層4側に酸化Si層5a、反対側の微結晶Si光電変換層6側をAlなどの酸化アルミニウムを主成分に含有する酸化アルミニウム層5bとする2層構造とした。なお、この層5bは、AlO(X−1〜1.5)のように酸素欠損を有する層であってもよい。酸化Si層5aや酸化アルミニウム層5bはスパッタ法や、CVD法などで形成することができる。酸化Si層5aにはリン、ボロンといった不純物を添加してもよい。また、酸化性の強いオゾンガスや活性酸素の雰囲気にさらすことで非晶質Si光電変換層の表面を酸化してできた層であってもよい。酸化アルミニウム層5bには、金属元素に主としてAlを有していればAl以外の金属が添加されていてもよい。また、Si、リン、ボロンなどの元素が含まれていてもよい。酸化アルミニウム層5bは酸化Si層5a上に一旦金属アルミニウムを成膜後、それを酸化して形成しても良い。また酸化Si層5aのかわりにZnO層や酸化ハフニウム化合物(HfO)層としても良い。In the first embodiment, the structure of the intermediate layer 5 is mainly composed of an oxide Si layer 5a on the amorphous Si photoelectric conversion layer 4 side and an aluminum oxide such as Al 2 O 3 on the opposite microcrystalline Si photoelectric conversion layer 6 side. It was set as the 2 layer structure used as the aluminum oxide layer 5b contained in a component. The layer 5b may be a layer having oxygen vacancies, such as AlO x (X-1 to 1.5). The Si oxide layer 5a and the aluminum oxide layer 5b can be formed by sputtering or CVD. Impurities such as phosphorus and boron may be added to the oxidized Si layer 5a. Further, it may be a layer formed by oxidizing the surface of the amorphous Si photoelectric conversion layer by exposure to an atmosphere of strong oxidizing ozone gas or active oxygen. A metal other than Al may be added to the aluminum oxide layer 5b as long as it mainly contains Al as a metal element. Further, elements such as Si, phosphorus, and boron may be included. The aluminum oxide layer 5b may be formed by once forming metal aluminum on the oxidized Si layer 5a and then oxidizing it. A ZnO layer or a hafnium oxide compound (HfO 2 ) layer may be used instead of the Si oxide layer 5a.

中間層5では主としてトンネル伝導とキャリア再結合とによって非晶質Si光電変換層4と微結晶Si光電変換層6との間に電流が流れる。本実施の形態1の中間層5を構成する酸化Si層5a、酸化アルミニウム層5bは基本的に絶縁性の材料であるが、十分に薄くすることによってトンネル電流が流れるようになる。その厚みはたとえば1〜10nm程度とするとよい。また、中間層5を構成する酸化Si層5a、酸化アルミニウム層5bは連続膜となることが望ましいが、それぞれの界面をおおむね覆っていればよく、完全な連続膜とならずに一部に穴を有するような膜であってもよい。   In the intermediate layer 5, current flows between the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6 mainly by tunnel conduction and carrier recombination. The Si oxide layer 5a and the aluminum oxide layer 5b constituting the intermediate layer 5 of the first embodiment are basically insulating materials, but a tunnel current flows by making them sufficiently thin. For example, the thickness may be about 1 to 10 nm. Moreover, it is desirable that the Si oxide layer 5a and the aluminum oxide layer 5b constituting the intermediate layer 5 are continuous films. However, it is only necessary to cover the respective interfaces. It may be a film having

次に、このような中間層5の作用について説明する。上記のように構成された光電変換装置では中間層5の酸化Si層5aには正の電荷が、酸化アルミニウム層5bには負の電荷が保持される。酸化Siなどの酸化膜には正に帯電しやすい傾向があることが知られている。一方、酸化アルミニウムは酸化Siなどの酸化膜とは異なり、負の電荷を保持する傾向を有することが知られている。たとえば文献Journal of Applied Physics、Volume102、054513の(3ページ13行目)にその傾向が述べられている。そのため酸化Si層5aに接している非晶質Si光電変換層4内のn型非晶質Si半導体層4cの酸化Si層5aとの界面付近に電子が、微結晶Si光電変換層6のp型微結晶Si半導体層6aの酸化アルミニウム層5bとの界面付近に正孔が蓄積される。これにより非晶質Si光電変換層内のn型非晶質Si半導体層4cの伝導帯エネルギーと微結晶Si光電変換層内のp型微結晶Si半導体層6aの価電子帯エネルギーの差が小さくなり、これ光電素子間のトンネル伝導、キャリア再結合の効率が向上する。   Next, the operation of such an intermediate layer 5 will be described. In the photoelectric conversion device configured as described above, positive charges are held in the Si oxide layer 5a of the intermediate layer 5, and negative charges are held in the aluminum oxide layer 5b. It is known that an oxide film such as Si oxide tends to be positively charged. On the other hand, aluminum oxide is known to have a tendency to hold negative charges, unlike an oxide film such as Si oxide. For example, the trend is described in the document Journal of Applied Physics, Volume 102, 054513 (page 3, line 13). Therefore, electrons are present near the interface between the n-type amorphous Si semiconductor layer 4c and the oxidized Si layer 5a in the amorphous Si photoelectric conversion layer 4 in contact with the oxidized Si layer 5a. Holes are accumulated in the vicinity of the interface between the type microcrystalline Si semiconductor layer 6a and the aluminum oxide layer 5b. This reduces the difference between the conduction band energy of the n-type amorphous Si semiconductor layer 4c in the amorphous Si photoelectric conversion layer and the valence band energy of the p-type microcrystalline Si semiconductor layer 6a in the microcrystalline Si photoelectric conversion layer. This improves the efficiency of tunnel conduction and carrier recombination between the photoelectric elements.

図2は中間層5とその両側に接合されたn型半導体層、p型半導体層の伝導帯、価電子帯のエネルギー概念図である。図2の(a)は従来のZnO、ITO、あるいはSnOのような材料を用いた場合の概念図、(b)は本実施の形態1の場合の概念図を示す。図中の点線はフェルミレベルを示す。従来の(a)の場合は中間層301の両側に位置するn型半導体層302の伝導帯エネルギー(Ec,n)、価電子帯エネルギー(Ev,n)、p型半導体層303の伝導帯エネルギー(Ec,p)、価電子帯エネルギ(Ev,p)のエネルギーレベルは中間層5近傍でも変化しない。一方、本実施の形態1の(b)では、p型微結晶Si半導体層6a側を酸化アルミニウム層5bとして、n型非晶質Si半導体層4cを酸化Si層5aなどの誘電体層としたことにより、それぞれの層の電荷と正孔の蓄積傾向の違いによって、中間層304との界面の近傍ではn型半導体層、p型半導体層のエネルギーレベルの傾きが変化し、n型半導体層302の伝導帯エネルギ(Ec,n)と、p型半導体層303の価電子帯エネルギ(Ev,p)が接近する。つまり、各半導体層の中間層との接合膜界面近傍でn型半導体層の電子エネルギーレベルとp型半導体層の正孔エネルギーレベルが近づくようにそれぞれのエネルギーレベルが変化している。このように、n型伝導帯−p型層価電子帯間のエネルギギャップが小さくと層間のトンネル伝導が増進され、キャリア再結合が増進されて、電流が流れやすくなる。FIG. 2 is an energy conceptual diagram of the conduction band and valence band of the intermediate layer 5 and the n-type semiconductor layer and the p-type semiconductor layer bonded to both sides thereof. 2A is a conceptual diagram in the case of using a conventional material such as ZnO, ITO, or SnO 2 , and FIG. 2B is a conceptual diagram in the case of the first embodiment. The dotted line in the figure indicates the Fermi level. In the conventional case (a), the conduction band energy (Ec, n), valence band energy (Ev, n) of the n-type semiconductor layer 302 located on both sides of the intermediate layer 301, and the conduction band energy of the p-type semiconductor layer 303. The energy level of (Ec, p) and valence band energy (Ev, p) does not change even in the vicinity of the intermediate layer 5. On the other hand, in (b) of the first embodiment, the p-type microcrystalline Si semiconductor layer 6a side is the aluminum oxide layer 5b, and the n-type amorphous Si semiconductor layer 4c is a dielectric layer such as the Si oxide layer 5a. As a result, the inclination of the energy level of the n-type semiconductor layer and the p-type semiconductor layer changes in the vicinity of the interface with the intermediate layer 304 due to the difference in charge and hole accumulation tendency of each layer, and the n-type semiconductor layer 302 is changed. The conduction band energy (Ec, n) of the p-type semiconductor layer 303 approaches that of the conduction band energy (Ec, n). That is, the respective energy levels change so that the electron energy level of the n-type semiconductor layer and the hole energy level of the p-type semiconductor layer approach each other in the vicinity of the interface between the junction layers of the semiconductor layers and the intermediate layer. Thus, when the energy gap between the n-type conduction band and the p-type layer valence band is small, tunnel conduction between layers is enhanced, carrier recombination is enhanced, and current flows easily.

以上のように、本実施の形態1では中間層5として、p型微結晶Si半導体層6aとの界面に接する側を酸化アルミニウム層5bとして、n型非晶質Si半導体層4cとの界面に接する側を酸化Si層5aなどの誘電体層としたことにより、n型半導体層の電子エネルギーレベルとp型半導体層の正孔エネルギーレベルが近づき、p型微結晶Si半導体層6aとn型非晶質Si半導体層4cとの間でトンネル電流が流れやすくなり、結果として光電変換装置の効率が改善される。   As described above, in the first embodiment, as the intermediate layer 5, the side in contact with the interface with the p-type microcrystalline Si semiconductor layer 6a is the aluminum oxide layer 5b, and the interface with the n-type amorphous Si semiconductor layer 4c. By making the contact side a dielectric layer such as the oxidized Si layer 5a, the electron energy level of the n-type semiconductor layer and the hole energy level of the p-type semiconductor layer are close to each other. A tunnel current easily flows between the crystalline Si semiconductor layer 4c, and as a result, the efficiency of the photoelectric conversion device is improved.

なお、p型微結晶Si半導体層6a側を酸化アルミニウムを主成分に含有する層5bとすれば、n型非晶質Si半導体層4cは酸化Si層5aのかわりにZnO、酸化ハフニウム化合物(HfO)などの誘電体材料を用いても同様な効果が得られる。また、中間層5は酸化アルミ化合物層5bと酸化Si層5aとの2層としたが、厚み方向に酸化アルミ化合物から酸化Siに組成が順次変化する傾斜組成の構造を有していてもよい。If the p-type microcrystalline Si semiconductor layer 6a side is a layer 5b containing aluminum oxide as a main component, the n-type amorphous Si semiconductor layer 4c is composed of ZnO and hafnium oxide compounds (HfO) instead of the Si oxide layer 5a. Similar effects can be obtained by using a dielectric material such as 2 ). The intermediate layer 5 has two layers of the aluminum oxide compound layer 5b and the Si oxide layer 5a. However, the intermediate layer 5 may have a gradient composition structure in which the composition sequentially changes from the aluminum oxide compound to the Si oxide in the thickness direction. .

<実施の形態2>
図3は本実施の形態2の光電変換装置の断面の一部を示す断面図である。本実施の形態2の光電変換装置は実施の形態1の光電変換装置の中間層5を酸化アルミニウムを主成分として含有する1層からなる層とした以外は基本的に同じ構造を有するものとした。
<Embodiment 2>
FIG. 3 is a cross-sectional view showing a part of a cross section of the photoelectric conversion device according to the second embodiment. The photoelectric conversion device according to the second embodiment basically has the same structure except that the intermediate layer 5 of the photoelectric conversion device according to the first embodiment is a single layer containing aluminum oxide as a main component. .

酸化アルミニウムには負の電荷が保持される傾向があることにより、中間層5を酸化アルミ化合物で構成された1層からなる層とした場合でも、中間層5が接する微結晶Si光電変換層6のp型微結晶Si半導体層6aの界面付近に正孔が蓄積される。これによりp型微結晶Si半導体層6aの中間層5との界面付近の正孔エネルギーレベルの傾きが変化して、非晶質Si光電変換層内のn型非晶質Si半導体層4cの伝導帯エネルギーと微結晶Si光電変換層内のp型微結晶Si半導体層6aの価電子帯エネルギーの差が小さくなる。結果として光電素子間のトンネル伝導、キャリア再結合の効率が向上して、光電変換層間の実効的な接続抵抗が低下し、発電効率の高い光電変換装置が実現できる。光電変換層間のエネルギーを近づける作用の点では2層構成の実施の形態1の方が優れるが、膜構成が1層で良いため製造が容易である。   Since aluminum oxide tends to hold negative charges, the microcrystalline Si photoelectric conversion layer 6 in contact with the intermediate layer 5 even when the intermediate layer 5 is a single layer composed of an aluminum oxide compound. Holes are accumulated near the interface of the p-type microcrystalline Si semiconductor layer 6a. This changes the inclination of the hole energy level in the vicinity of the interface between the p-type microcrystalline Si semiconductor layer 6a and the intermediate layer 5, and the conduction of the n-type amorphous Si semiconductor layer 4c in the amorphous Si photoelectric conversion layer. The difference between the band energy and the valence band energy of the p-type microcrystalline Si semiconductor layer 6a in the microcrystalline Si photoelectric conversion layer is reduced. As a result, the tunnel conduction between the photoelectric elements and the efficiency of carrier recombination are improved, the effective connection resistance between the photoelectric conversion layers is lowered, and a photoelectric conversion device with high power generation efficiency can be realized. The first embodiment having a two-layer structure is superior in terms of the action of bringing the energy between the photoelectric conversion layers closer, but the manufacturing is easy because the film structure may be one layer.

<実施の形態3>
図4は本実施の形態3の光電変換装置の断面の一部を示す断面図である。本実施の形態3光電変換装置は実施の形態2の光電変換装置の中間層5の主成分を酸化アルミニウムのかわりに酸化ハフニウムとした以外は基本的に同じ構造を有するものとした。
<Embodiment 3>
FIG. 4 is a cross-sectional view showing a part of a cross section of the photoelectric conversion device according to the third embodiment. The photoelectric conversion device of the present third embodiment basically has the same structure except that the main component of the intermediate layer 5 of the photoelectric conversion device of the second embodiment is made of hafnium oxide instead of aluminum oxide.

中間層5の酸化ハフニウムはスパッタ法や、CVD法などで形成することができる。酸化ハフニウムには、ハフニウム以外の金属を添加してもよい。またハフニウムの酸化物を主成分として含有すればよく、たとえば窒素添加ハフニウムシリケート(HfSiON)などの材料であってもよい。また、その中間層5の膜厚はトンネル伝導を引き起こすために、十分薄い方が望ましい。   The hafnium oxide of the intermediate layer 5 can be formed by sputtering or CVD. A metal other than hafnium may be added to hafnium oxide. Moreover, it is sufficient to contain a hafnium oxide as a main component. For example, a material such as nitrogen-added hafnium silicate (HfSiON) may be used. Further, it is desirable that the thickness of the intermediate layer 5 be sufficiently thin in order to cause tunnel conduction.

このようなハフニウム酸化物はSi半導体との界面にフェルミレベルピニングの現象を生じる物質として知られている。フェルミレベルは、通常、n型多結晶Siでは伝導帯の近く、p型多結晶Siでは価電子帯の近くに位置する。フェルミレベルピニングは、ハフニウム酸化物の薄膜がn型多結晶Siとp型多結晶Siとの間に挟まれそれぞれの界面に接する構造を有する場合に、ハフニウム酸化物の薄膜との界面のn型多結晶Siおよびp型多結晶Siフェルミレベルがピニングされたかのようにほぼ同じ位置に引き寄せられる現象である。本実施の形態3の場合には、非晶質Si光電変換層4内のn型非晶質Si半導体層4cのフェルミレベルと、微結晶Si光電変換層6内のp型微結晶Si半導体層6aのフェルミレベルのエネルギー差がおよそ0.2eVに接近する。これにより非晶質Si光電変換層内のn型非晶質Si半導体層4cと微結晶Si光電変換層内のp型微結晶Si半導体層6aの伝導、キャリア再結合の効率が向上する。その結果光電素子間の実効的な接続抵抗が低下し、発電効率の高い光電変換装置が実現できる。   Such a hafnium oxide is known as a substance that causes the phenomenon of Fermi level pinning at the interface with the Si semiconductor. The Fermi level is usually located near the conduction band in n-type polycrystalline Si and near the valence band in p-type polycrystalline Si. Fermi level pinning is a method in which a hafnium oxide thin film is sandwiched between n-type polycrystalline Si and p-type polycrystalline Si and has a structure in contact with each interface. This is a phenomenon in which polycrystalline Si and p-type polycrystalline Si Fermi levels are attracted to almost the same position as if they were pinned. In the case of the third embodiment, the Fermi level of the n-type amorphous Si semiconductor layer 4c in the amorphous Si photoelectric conversion layer 4 and the p-type microcrystalline Si semiconductor layer in the microcrystalline Si photoelectric conversion layer 6 are used. The energy difference at the Fermi level of 6a approaches 0.2 eV. This improves the efficiency of conduction and carrier recombination between the n-type amorphous Si semiconductor layer 4c in the amorphous Si photoelectric conversion layer and the p-type microcrystalline Si semiconductor layer 6a in the microcrystalline Si photoelectric conversion layer. As a result, the effective connection resistance between the photoelectric elements decreases, and a photoelectric conversion device with high power generation efficiency can be realized.

<実施の形態4>
図5は本実施の形態4の光電変換装置の断面の一部を示す断面図である。本実施の形態4の光電変換装置は実施の形態1の光電変換装置の中間層5とn型非晶質Si半導体層4cとの間に前記n型非晶質Si半導体層4cよりキャリア密度が高いn型非晶質Si半導体層4dを挿入して、中間層5とp型微結晶Si半導体層6aとの間に前記p型微結晶Si半導体層6aよりキャリア密度が高いp型微結晶Si半導体層6dを挿入した以外は基本的に同じ構造を有するものとした。
<Embodiment 4>
FIG. 5 is a cross-sectional view showing a part of the cross section of the photoelectric conversion device according to the fourth embodiment. The photoelectric conversion device according to the fourth embodiment has a carrier density higher than that of the n-type amorphous Si semiconductor layer 4c between the intermediate layer 5 and the n-type amorphous Si semiconductor layer 4c of the photoelectric conversion device according to the first embodiment. By inserting a high n-type amorphous Si semiconductor layer 4d, p-type microcrystalline Si having a carrier density higher than that of the p-type microcrystalline Si semiconductor layer 6a between the intermediate layer 5 and the p-type microcrystalline Si semiconductor layer 6a. The structure is basically the same except that the semiconductor layer 6d is inserted.

中間層5に接した半導体層は中間層界面付近は中間層ポテンシャルの影響により空乏化する。空乏化した領域(以下空乏層とする)は伝導に寄与するキャリアが低減するため、抵抗が高くなる。したがって実行的な接続抵抗の増加を招く可能性がある。空乏層膜厚は半導体層のキャリア濃度が増加すると低減する。したがって空乏層膜厚を低減するためにはキャリア密度が高いことが望ましい。   The semiconductor layer in contact with the intermediate layer 5 is depleted near the interface of the intermediate layer due to the influence of the intermediate layer potential. In the depleted region (hereinafter referred to as a depletion layer), the number of carriers contributing to conduction is reduced, and thus the resistance is increased. Therefore, there is a possibility of causing an increase in effective connection resistance. The depletion layer thickness decreases as the carrier concentration of the semiconductor layer increases. Accordingly, it is desirable that the carrier density is high in order to reduce the depletion layer thickness.

しかし半導体層のキャリア密度が高いと、半導体層での光吸収が増加する。光電素子ではn型半導体層とp型半導体層で吸収された光は電流発生に寄与しない。したがって光吸収の観点からはn型、p型半導体層のキャリア密度は低いほうが望ましい。   However, when the carrier density of the semiconductor layer is high, light absorption in the semiconductor layer increases. In the photoelectric element, light absorbed by the n-type semiconductor layer and the p-type semiconductor layer does not contribute to current generation. Therefore, from the viewpoint of light absorption, it is desirable that the n-type and p-type semiconductor layers have a low carrier density.

本実施の形態4では中間層付近のみn型、p型半導体層のキャリア密度を増加させるため、空乏層の延長を抑えながら、n型、p型半導体層での光吸収を極力抑制することが可能となる。例えばSiではキャリア密度が1E19/cm程度の場合、空乏層膜厚は1nm程度となるので、n型半導体層4d、p型半導体層6dのキャリア密度は1E19/cm以上が望ましいと考えられる。これにより、光電素子間の実効的な接続抵抗が低下し、且つ発生電流を低下させない光電変換装置が実現できる。In the fourth embodiment, since the carrier density of the n-type and p-type semiconductor layers is increased only in the vicinity of the intermediate layer, light absorption in the n-type and p-type semiconductor layers can be suppressed as much as possible while suppressing the extension of the depletion layer. It becomes possible. For example, in Si, when the carrier density is about 1E19 / cm 3 , the depletion layer thickness is about 1 nm. Therefore, it is considered that the carrier density of the n-type semiconductor layer 4d and the p-type semiconductor layer 6d is preferably 1E19 / cm 3 or more. . Thereby, an effective connection resistance between the photoelectric elements can be reduced, and a photoelectric conversion device that does not reduce the generated current can be realized.

<実施の形態5>
図6は本実施の形態5の光電変換装置の断面の一部を示す断面図である。本実施の形態5の光電変換装置は実施の形態2の光電変換装置の中間層5とn型非晶質Si半導体層4cとの間に前記n型非晶質Si半導体層4cよりキャリア密度が高いn型非晶質Si半導体層4dを挿入して、中間層5とp型微結晶Si半導体層6aとの間に前記p型微結晶Si半導体層6aよりキャリア密度が高いp型微結晶Si半導体層6dを挿入した以外は基本的に同じ構造を有するものとした。中間層5は酸化アルミニウムを主成分として含有する1層からなる層である。
<Embodiment 5>
FIG. 6 is a cross-sectional view showing a part of the cross section of the photoelectric conversion device of the fifth embodiment. The photoelectric conversion device of the fifth embodiment has a carrier density higher than that of the n-type amorphous Si semiconductor layer 4c between the intermediate layer 5 and the n-type amorphous Si semiconductor layer 4c of the photoelectric conversion device of the second embodiment. By inserting a high n-type amorphous Si semiconductor layer 4d, p-type microcrystalline Si having a carrier density higher than that of the p-type microcrystalline Si semiconductor layer 6a between the intermediate layer 5 and the p-type microcrystalline Si semiconductor layer 6a. The structure is basically the same except that the semiconductor layer 6d is inserted. The intermediate layer 5 is a single layer containing aluminum oxide as a main component.

実施の形態4と同様に本実施の形態5では中間層付近のみn型、p型半導体層のキャリア密度を増加させるため、空乏層の延長を抑えながら、n型、p型半導体層での光吸収を極力抑制することが可能となる。これにより、光電素子間の実効的な接続抵抗が低下し、且つ発生電流を低下させない光電変換装置が実現できる。   As in the fourth embodiment, in the fifth embodiment, the carrier density of the n-type and p-type semiconductor layers is increased only in the vicinity of the intermediate layer, so that light in the n-type and p-type semiconductor layers is suppressed while suppressing the extension of the depletion layer. It is possible to suppress absorption as much as possible. Thereby, an effective connection resistance between the photoelectric elements can be reduced, and a photoelectric conversion device that does not reduce the generated current can be realized.

<実施の形態6>
図7は本実施の形態6の光電変換装置の断面の一部を示す断面図である。本実施の形態6の光電変換装置は実施の形態3の光電変換装置の中間層5とn型非晶質Si半導体層4cとの間に前記n型非晶質Si半導体層4cよりキャリア密度が高いn型非晶質Si半導体層4dを挿入して、中間層5とp型微結晶Si半導体層6aとの間に前記p型微結晶Si半導体層6aよりキャリア密度が高いp型微結晶Si半導体層6dを挿入した以外は基本的に同じ構造を有するものとした。中間層5はハフニウムの酸化物を主成分とする層である。
<Embodiment 6>
FIG. 7 is a cross-sectional view showing a part of a cross section of the photoelectric conversion device according to the sixth embodiment. The photoelectric conversion device of the sixth embodiment has a carrier density higher than that of the n-type amorphous Si semiconductor layer 4c between the intermediate layer 5 and the n-type amorphous Si semiconductor layer 4c of the photoelectric conversion device of the third embodiment. By inserting a high n-type amorphous Si semiconductor layer 4d, p-type microcrystalline Si having a carrier density higher than that of the p-type microcrystalline Si semiconductor layer 6a between the intermediate layer 5 and the p-type microcrystalline Si semiconductor layer 6a. The structure is basically the same except that the semiconductor layer 6d is inserted. The intermediate layer 5 is a layer mainly composed of hafnium oxide.

実施の形態4と同様に本実施の形態6でも中間層付近のみn型、p型半導体層のキャリア密度を増加させるため、空乏層の延長を抑えながら、n型、p型半導体層での光吸収を極力抑制することが可能となる。これにより、光電素子間の実効的な接続抵抗が低下し、且つ発生電流を低下させない光電変換装置が実現できる。   As in the fourth embodiment, in the sixth embodiment as well, the carrier density of the n-type and p-type semiconductor layers is increased only in the vicinity of the intermediate layer. It is possible to suppress absorption as much as possible. Thereby, an effective connection resistance between the photoelectric elements can be reduced, and a photoelectric conversion device that does not reduce the generated current can be realized.

以上の実施の形態で述べたように本発明の光電変換装置では、それぞれn型の半導体層とp型の半導体層とを有するとともに互いに光吸収波長特性の異なる第1光電変換層および第2光電変換層が積層され、第1光電変換層のn型の半導体層と第2光電変換層のp型の半導体層との間に透光性の中間層を有し、中間層との界面における第1光電変換層のn型の半導体層の電子エネルギーレベルと第2光電変換層のp型の半導体層の正孔エネルギーレベルとが近づくように、第1光電変換層のn型の半導体層の中間層との界面近傍の電子エネルギーレベルまたは第2光電変換層のp型の半導体層の中間層との界面近傍の正孔エネルギーレベルが変化する。このため中間層を挟む第1光電変換層のn型の半導体層と第2光電変換層のp型の半導体層との間での実効的な接続抵抗が低下し、発電効率の高い光電変換装置が実現できる。以上の実施の形態の構成は特にSiを主成分とする半導体層からなる光電変換層の変換効率向上に適する。   As described in the above embodiments, in the photoelectric conversion device of the present invention, the first photoelectric conversion layer and the second photoelectric conversion layer each having an n-type semiconductor layer and a p-type semiconductor layer and having different light absorption wavelength characteristics from each other. The conversion layer is stacked, and has a light-transmitting intermediate layer between the n-type semiconductor layer of the first photoelectric conversion layer and the p-type semiconductor layer of the second photoelectric conversion layer, and the conversion layer is formed at the interface with the intermediate layer. The middle of the n-type semiconductor layer of the first photoelectric conversion layer so that the electron energy level of the n-type semiconductor layer of the first photoelectric conversion layer and the hole energy level of the p-type semiconductor layer of the second photoelectric conversion layer are close to each other. The electron energy level in the vicinity of the interface with the layer or the hole energy level in the vicinity of the interface with the intermediate layer of the p-type semiconductor layer of the second photoelectric conversion layer changes. For this reason, the effective connection resistance between the n-type semiconductor layer of the first photoelectric conversion layer and the p-type semiconductor layer of the second photoelectric conversion layer sandwiching the intermediate layer is reduced, and the photoelectric conversion device having high power generation efficiency Can be realized. The configuration of the above embodiment is particularly suitable for improving the conversion efficiency of a photoelectric conversion layer made of a semiconductor layer containing Si as a main component.

光エネルギーを電気エネルギーに変換する光電変換装置において、中間層の両側に位置する光電変換層間の導電性を改善し、高効率な光電変換装置を提供することができるようになる。   In a photoelectric conversion device that converts light energy into electrical energy, the conductivity between the photoelectric conversion layers located on both sides of the intermediate layer can be improved, and a highly efficient photoelectric conversion device can be provided.

本発明の光電変換装置は、n型半導体層とp型半導体層とを有する第1光電変換層と、n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれて厚みが1〜10nmでトンネル伝導性を有するとともに、前記第2光電変換層のp型半導体層に接する主成分が負の電荷を保持する酸化アルミニウムである透光性の中間層と、が基板上に積層された光電変換装置、とした。 The photoelectric conversion device of the present invention includes a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer, an n-type semiconductor layer and a p-type semiconductor layer, and the first photoelectric conversion layer and the light absorption wavelength. Tunnel conductivity with a thickness of 1 to 10 nm sandwiched between a second photoelectric conversion layer having different characteristics, an n-type semiconductor layer of the first photoelectric conversion layer, and a p-type semiconductor layer of the second photoelectric conversion layer And a photoelectric conversion device in which a translucent intermediate layer in which the main component in contact with the p-type semiconductor layer of the second photoelectric conversion layer is aluminum oxide holding negative charges is laminated on a substrate. .

また、本発明の光電変換装置は、n型半導体層とp型半導体層とを有する第1光電変換層と、n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれて厚みが1〜10nmでトンネル伝導性を有するとともに、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層とに接する主成分がハフニウム酸化物である透光性の中間層と、が基板上に積層された光電変換装置、とした。
また、本発明の光電変換装置は、n型半導体層とp型半導体層とを有する第1光電変換層と、n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれて厚みが1〜10nmでトンネル伝導性を有するとともに、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層とに接する主成分が前記n型半導体層のフェルミレベルと前記p型半導体層とフェルミレベルとをほぼ同じ位置に引き寄せるフェルミレベルピニングの現象を有する透光性の材料からなる中間層と、が基板上に積層された光電変換装置、とした。
In addition, the photoelectric conversion device of the present invention includes a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer, an n-type semiconductor layer and a p-type semiconductor layer, and the first photoelectric conversion layer and the light. Tunnel conduction with a thickness of 1 to 10 nm sandwiched between a second photoelectric conversion layer having different absorption wavelength characteristics, an n-type semiconductor layer of the first photoelectric conversion layer, and a p-type semiconductor layer of the second photoelectric conversion layer And a translucent intermediate layer whose main component contacting the n-type semiconductor layer of the first photoelectric conversion layer and the p-type semiconductor layer of the second photoelectric conversion layer is hafnium oxide. And a photoelectric conversion device stacked on each other.
In addition, the photoelectric conversion device of the present invention includes a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer, an n-type semiconductor layer and a p-type semiconductor layer, and the first photoelectric conversion layer and the light. Tunnel conduction with a thickness of 1 to 10 nm sandwiched between a second photoelectric conversion layer having different absorption wavelength characteristics, an n-type semiconductor layer of the first photoelectric conversion layer, and a p-type semiconductor layer of the second photoelectric conversion layer And the main components in contact with the n-type semiconductor layer of the first photoelectric conversion layer and the p-type semiconductor layer of the second photoelectric conversion layer are Fermi levels of the n-type semiconductor layer, the p-type semiconductor layer, and Fermi A photoelectric conversion device in which an intermediate layer made of a light-transmitting material having a Fermi level pinning phenomenon that draws the level to substantially the same position is laminated on the substrate.

中間層5は非晶質Si光電変換層4と微結晶Si光電変換層6とに挟まれた層である。中間層5は非晶質Si光電変換層4で吸収されなかった光を微結晶Si光電変換層6側に透過すると同時に微結晶Si光電変換層6と微結晶Si光電変換層6との間を電気伝導させる。また、中間層5が微結晶Si光電変換層6で吸収する波長域の光を透過する一方、非晶質Si光電変換層4で吸収する波長域の光を非晶質Si光電変換層4側に反射する光学特性を備えると、非晶質Si光電変換層4を通過した光が再び非晶質Si光電変換層4を通過して光電変換されるので変換効率が向上する。
The intermediate layer 5 is a layer sandwiched between the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6. The intermediate layer 5 transmits light not absorbed by the amorphous Si photoelectric conversion layer 4 to the microcrystalline Si photoelectric conversion layer 6 side, and at the same time, passes between the microcrystalline Si photoelectric conversion layer 6 and the microcrystalline Si photoelectric conversion layer 6. Conduct electricity. The intermediate layer 5 transmits light in the wavelength region absorbed by the microcrystalline Si photoelectric conversion layer 6, while the light in the wavelength region absorbed by the amorphous Si photoelectric conversion layer 4 transmits the light in the amorphous Si photoelectric conversion layer 4 side. If the optical characteristic is reflected, the light passing through the amorphous Si photoelectric conversion layer 4 passes through the amorphous Si photoelectric conversion layer 4 again and undergoes photoelectric conversion, so that the conversion efficiency is improved.

本発明の光電変換装置は、n型半導体層とp型半導体層とを有する第1光電変換層と、n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれて厚みが1〜10nmでトンネル伝導性を有するとともに、前記第2光電変換層のp型半導体層に接する主成分が負の電荷を保持する酸化アルミニウムである透光性の中間層と、が基板上に積層され、前記中間層の前記第1光電変換層のn型半導体層に接する主成分が正の電荷を保持する酸化Si、ZnO、酸化ハフニウムのいずれかである、光電変換装置、とした。 The photoelectric conversion device of the present invention includes a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer, an n-type semiconductor layer and a p-type semiconductor layer, and the first photoelectric conversion layer and the light absorption wavelength. Tunnel conductivity with a thickness of 1 to 10 nm sandwiched between a second photoelectric conversion layer having different characteristics, an n-type semiconductor layer of the first photoelectric conversion layer, and a p-type semiconductor layer of the second photoelectric conversion layer which has the second principal component in contact with the p-type semiconductor layer of the photoelectric conversion layer is an oxide of aluminum that holds the negative charges transparent intermediate layer, but is deposited on a substrate, wherein said intermediate layer first A photoelectric conversion device in which the main component in contact with the n-type semiconductor layer of one photoelectric conversion layer is any one of Si oxide, ZnO, and hafnium oxide that holds a positive charge .

なお、p型微結晶Si半導体層6a側を酸化アルミニウムを主成分に含有する層5bとすれば、n型非晶質Si半導体層4cは酸化Si層5aのかわりにZnO、酸化ハフニウム化合物(HfO)などの誘電体材料を用いても同様な効果が得られる。また、中間層5は酸化アルミ化合物層5bと酸化Si層5aとの2層としたが、厚み方向に酸化アルミ化合物から酸化Siに組成が順次変化する傾斜組成の構造を有していてもよい。 If the p-type microcrystalline Si semiconductor layer 6a side is a layer 5b containing aluminum oxide as a main component, the n-type amorphous Si semiconductor layer 4c side is ZnO, a hafnium oxide compound (instead of the Si oxide layer 5a). Similar effects can be obtained by using a dielectric material such as HfO 2 ). The intermediate layer 5 has two layers of the aluminum oxide compound layer 5b and the Si oxide layer 5a. However, the intermediate layer 5 may have a gradient composition structure in which the composition sequentially changes from the aluminum oxide compound to the Si oxide in the thickness direction. .

Claims (7)

n型半導体層とp型半導体層とを有する第1光電変換層と、
n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、
前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれてトンネル伝導性を有するとともに、前記第2光電変換層のp型半導体層に接する主成分が酸化アルミニウムである透光性の中間層と、
が基板上に積層された光電変換装置。
a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer;
a second photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer and having a light absorption wavelength characteristic different from that of the first photoelectric conversion layer;
It is sandwiched between the n-type semiconductor layer of the first photoelectric conversion layer and the p-type semiconductor layer of the second photoelectric conversion layer, has tunnel conductivity, and is in contact with the p-type semiconductor layer of the second photoelectric conversion layer. A light-transmitting intermediate layer whose main component is aluminum oxide;
Is a photoelectric conversion device laminated on a substrate.
前記中間層の前記第1光電変換層のn型半導体層に接する主成分が酸化Si、ZnO、酸化ハフニウムのいずれかである請求項1に記載の光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein a main component of the intermediate layer in contact with the n-type semiconductor layer of the first photoelectric conversion layer is any one of Si oxide, ZnO, and hafnium oxide. n型半導体層とp型半導体層とを有する第1光電変換層と、
n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、
前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれてトンネル伝導性を有するとともに、前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層とに接する主成分がハフニウム酸化物である透光性の中間層と、
が基板上に積層された光電変換装置。
a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer;
a second photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer and having a light absorption wavelength characteristic different from that of the first photoelectric conversion layer;
Between the n-type semiconductor layer of the first photoelectric conversion layer and the p-type semiconductor layer of the second photoelectric conversion layer and having tunnel conductivity, the n-type semiconductor layer of the first photoelectric conversion layer and the A translucent intermediate layer whose main component in contact with the p-type semiconductor layer of the second photoelectric conversion layer is hafnium oxide;
Is a photoelectric conversion device laminated on a substrate.
第1光電変換層および第2光電変換層はSiを主成分とすることを特徴とする請求項1または3に記載の光電変換装置。 The photoelectric conversion device according to claim 1 or 3, wherein the first photoelectric conversion layer and the second photoelectric conversion layer contain Si as a main component. 前記第1光電変換層のn型半導体層は、不純物濃度の異なる複数の層からなって、複数の層のうち前記中間層に接する層の不純物濃度が最も高いことを特徴とする請求項1または3に記載の光電変換装置。 The n-type semiconductor layer of the first photoelectric conversion layer includes a plurality of layers having different impurity concentrations, and the impurity concentration of a layer in contact with the intermediate layer among the plurality of layers is the highest. 3. The photoelectric conversion device according to 3. 前記第2光電変換層のp型半導体層は、不純物濃度の異なる複数の層からなって、複数の層のうち前記中間層に接する層の不純物濃度が最も高いことを特徴とする請求項1または3に記載の光電変換装置。 The p-type semiconductor layer of the second photoelectric conversion layer is composed of a plurality of layers having different impurity concentrations, and the impurity concentration of a layer in contact with the intermediate layer among the plurality of layers is the highest. 3. The photoelectric conversion device according to 3. n型半導体層とp型半導体層とを有する第1光電変換層と、
n型半導体層とp型半導体層とを有するとともに前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、
前記第1光電変換層のn型半導体層と前記第2光電変換層のp型半導体層との間に挟まれてトンネル伝導性を有するとともに、金属酸化物材料からなる透光性の中間層と、
が基板上に積層され、
前記中間層の金属酸化物材料は前記第1光電変換層のn型の半導体層の電子エネルギーレベルと前記第2光電変換層のp型の半導体層の正孔エネルギーレベルとが近づくように、前記第1光電変換層のn型の半導体層の前記中間層との界面近傍の電子エネルギーレベルまたは前記第2光電変換層のp型の半導体層の前記中間層との界面近傍の正孔エネルギーレベルを変化させる材料であることを特徴とする光電変換装置。
a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer;
a second photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer and having a light absorption wavelength characteristic different from that of the first photoelectric conversion layer;
A light-transmitting intermediate layer made of a metal oxide material having tunnel conductivity sandwiched between an n-type semiconductor layer of the first photoelectric conversion layer and a p-type semiconductor layer of the second photoelectric conversion layer; ,
Are stacked on the substrate,
The intermediate layer metal oxide material is arranged so that the electron energy level of the n-type semiconductor layer of the first photoelectric conversion layer approaches the hole energy level of the p-type semiconductor layer of the second photoelectric conversion layer. The electron energy level in the vicinity of the interface between the n-type semiconductor layer of the first photoelectric conversion layer and the intermediate layer or the hole energy level in the vicinity of the interface between the p-type semiconductor layer of the second photoelectric conversion layer and the intermediate layer. A photoelectric conversion device which is a material to be changed.
JP2010514376A 2008-05-30 2009-05-28 Photoelectric conversion device Expired - Fee Related JP4671002B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008142661 2008-05-30
JP2008142661 2008-05-30
PCT/JP2009/002362 WO2009144944A1 (en) 2008-05-30 2009-05-28 Photoelectric converter

Publications (2)

Publication Number Publication Date
JP4671002B2 JP4671002B2 (en) 2011-04-13
JPWO2009144944A1 true JPWO2009144944A1 (en) 2011-10-06

Family

ID=41376834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010514376A Expired - Fee Related JP4671002B2 (en) 2008-05-30 2009-05-28 Photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP4671002B2 (en)
WO (1) WO2009144944A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295059B2 (en) * 2009-09-25 2013-09-18 三菱電機株式会社 Photoelectric conversion device and manufacturing method thereof
JP5188487B2 (en) * 2009-11-30 2013-04-24 三菱電機株式会社 Photoelectric conversion device
JP5388899B2 (en) * 2010-02-26 2014-01-15 三菱電機株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5253438B2 (en) * 2010-03-01 2013-07-31 三菱電機株式会社 Manufacturing method of solar cell
JP5247748B2 (en) * 2010-03-17 2013-07-24 三菱電機株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP2011249497A (en) * 2010-05-26 2011-12-08 Sharp Corp Intermediate layer for laminated type photoelectric conversion device, laminated type photoelectric conversion device, and method of manufacturing laminated type photoelectric conversion device
CN102947947B (en) 2010-06-21 2015-11-25 三菱电机株式会社 Photo-electric conversion device
JP5487449B2 (en) * 2010-07-28 2014-05-07 学校法人明治大学 Solar cell
JP5550624B2 (en) * 2010-12-24 2014-07-16 三菱電機株式会社 Photoelectric conversion device, manufacturing method thereof, and photoelectric conversion module
JP5677341B2 (en) * 2012-03-01 2015-02-25 三菱電機株式会社 PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION MODULE
CN103378208A (en) * 2012-04-25 2013-10-30 杜邦太阳能有限公司 Solar cell
KR102024084B1 (en) * 2013-06-14 2019-09-23 엘지전자 주식회사 Solar cell and method for manufacturing the same
CN113471322B (en) * 2020-03-30 2022-12-02 隆基绿能科技股份有限公司 Laminated photovoltaic device and production method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196583A (en) * 1985-02-25 1986-08-30 Sharp Corp Photovoltaic device
US5322572A (en) * 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
JPH05145095A (en) * 1991-11-18 1993-06-11 Sanyo Electric Co Ltd Photovoltaic element
FR2690279B1 (en) * 1992-04-15 1997-10-03 Picogiga Sa MULTISPECTRAL PHOTOVOLTAUIC COMPONENT.
JPH0758355A (en) * 1993-05-12 1995-03-03 Optical Coating Lab Inc Uv / ir reflection solar cell cover
JPH0715025A (en) * 1993-06-21 1995-01-17 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JP2002261308A (en) * 2001-03-01 2002-09-13 Kanegafuchi Chem Ind Co Ltd Thin-film photoelectric conversion module
JP2003142709A (en) * 2001-10-31 2003-05-16 Sharp Corp Laminated solar battery and method for manufacturing the same
JP4565912B2 (en) * 2003-07-24 2010-10-20 京セラ株式会社 Multi-junction semiconductor element and solar cell element using the same
JP2005197140A (en) * 2004-01-09 2005-07-21 Sony Corp Photoexcitation type functional device and its manufacturing method
JP4568531B2 (en) * 2004-05-07 2010-10-27 三菱重工業株式会社 Integrated solar cell and method of manufacturing integrated solar cell
KR100886383B1 (en) * 2007-04-05 2009-03-02 (주)실리콘화일 Crystalline solar cell having stacking structure and method of the crystalline solar cell

Also Published As

Publication number Publication date
WO2009144944A1 (en) 2009-12-03
JP4671002B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4671002B2 (en) Photoelectric conversion device
JP4901834B2 (en) High performance photoelectric device
US8779281B2 (en) Solar cell
JP2006120745A (en) Thin film silicon laminated solar cell
JP2012530378A (en) Solar cell and manufacturing method thereof
WO2011000055A1 (en) Hot carrier energy conversion structure and method of fabricating the same
CN111279492A (en) Solar cell, multijunction solar cell, solar cell module, and solar power generation system
US20150295099A1 (en) High work-function buffer layers for silicon-based photovoltaic devices
US20170098722A1 (en) Solar cell
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
WO2009110409A1 (en) Solar cell
TWI506801B (en) Solar battery
JP2011124474A (en) Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell
JP5295059B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2009141059A (en) Thin-film photoelectric converter
JP5388899B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
KR20120119807A (en) Solar cell
TWI578552B (en) Solar cell, solar battery and method for making the same
JP5188487B2 (en) Photoelectric conversion device
JP6066231B2 (en) Structure of heterojunction solar cell
TWI470818B (en) Solar battery
US20110308569A1 (en) Multi-terminal solar panel
JP5247748B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
CN114883425B (en) Light-facing surface structure of crystalline silicon heterojunction solar cell
JP4146635B2 (en) Multilayer thin film photoelectric conversion device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees