JPWO2009107594A1 - Connection method between cemented carbide and stainless steel - Google Patents

Connection method between cemented carbide and stainless steel Download PDF

Info

Publication number
JPWO2009107594A1
JPWO2009107594A1 JP2010500683A JP2010500683A JPWO2009107594A1 JP WO2009107594 A1 JPWO2009107594 A1 JP WO2009107594A1 JP 2010500683 A JP2010500683 A JP 2010500683A JP 2010500683 A JP2010500683 A JP 2010500683A JP WO2009107594 A1 JPWO2009107594 A1 JP WO2009107594A1
Authority
JP
Japan
Prior art keywords
stainless steel
cemented carbide
rod
shaped material
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010500683A
Other languages
Japanese (ja)
Inventor
睦紀 塩入
睦紀 塩入
貫司 松谷
貫司 松谷
一明 加藤
一明 加藤
金子 典夫
典夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mani Inc
Original Assignee
Mani Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mani Inc filed Critical Mani Inc
Publication of JPWO2009107594A1 publication Critical patent/JPWO2009107594A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Abstract

【課題】 短時間で、ステンレス鋼とタングステンカーバイドなどの超硬合金とを接続できる方法を提供する。【解決手段】 タングステンカーバイドの粉末をコバルトで焼結した超硬合金からなる棒状材12の一方の端面を、前記コバルトの粒子が表面に露出するように平面仕上げする工程と、該平面仕上げされた端面にステンレス鋼の棒状材11の一方の端面を押圧しつつ、前記超硬合金の棒状材12又はステンレス鋼の棒状材11の少なくとも一方を回転させる工程と、回転による摩擦熱でステンレス鋼の棒状材の端部が軟化したとき、前記回転を停止して前記押圧力を高めてステンレス鋼の棒状材11を超硬金属の棒状材12に接合する。【選択図】 図1PROBLEM TO BE SOLVED: To provide a method capable of connecting stainless steel and a cemented carbide such as tungsten carbide in a short time. SOLUTION: One end face of a rod-shaped member 12 made of a cemented carbide obtained by sintering tungsten carbide powder with cobalt is planarly finished so that the cobalt particles are exposed on the surface, and the planar finish is performed. A step of rotating at least one of the cemented carbide rod-shaped material 12 or the stainless steel rod-shaped material 11 while pressing one end surface of the stainless steel rod-shaped material 11 against the end surface; When the end of the material is softened, the rotation is stopped and the pressing force is increased to join the stainless steel rod 11 to the cemented carbide rod 12. [Selection] Figure 1

Description

本発明はタングステンカーバイドを焼結した超硬合金と、ステンレス鋼とを接続する方法に関する。   The present invention relates to a method of connecting a cemented carbide obtained by sintering tungsten carbide and stainless steel.

タングステンカーバイドを主成分とする超硬合金は、靱性があり、耐熱性に優れていることから、金属などの切削加工用の刃物として広く利用されている。また、歯科用の切削工具としても、タングステンカーバイドが使用されている。このような超硬合金を使用することによって、硬い硬度を持った歯牙でも容易に穴を明けることができる。   Cemented carbides mainly composed of tungsten carbide are tough and excellent in heat resistance, and are therefore widely used as cutting tools for cutting metals and the like. Tungsten carbide is also used as a dental cutting tool. By using such a cemented carbide, it is possible to easily make a hole even with a hard tooth.

超硬合金を切削工具として使用する場合、所定の形状及び寸法に成形したチップを、鋼などの台金にロウ付けによって接合するか、或いは台金の部分までを超硬合金としたソリッドタイプとして使用している。   When using cemented carbide as a cutting tool, insert a chip molded to the specified shape and dimensions to a base metal such as steel by brazing, or as a solid type with cemented carbide up to the base metal part. I use it.

しかし、タングステンカーバイドなどの超硬合金は、高価であり、ソリッドタイプとすると、コストアップとなる。また、ソリッドタイプとした場合、切削工具を把持するハンドピースのチャックを摩耗させ、傷めやすく、また抜けやすくなる。一方、ロウ付けには時間が掛かることや、接合強度が弱い、等の問題がある。   However, cemented carbide such as tungsten carbide is expensive, and if it is a solid type, the cost increases. In the case of the solid type, the chuck of the handpiece that holds the cutting tool is worn, easily damaged, and easily removed. On the other hand, brazing has problems such as time consuming and weak bonding strength.

タングステンカーバイドと炭素鋼とを接続する方法としては、特許文献1(特開2003−53558)がある。これは、丸棒状の炭素鋼と、丸棒状のタングステンカーバイドとを押圧した状態で突き合わせ、一方を回転することで摩擦熱を発生させ、摩擦熱で炭素鋼を半溶融状態にしてから回転を止め、接合するものである。   As a method for connecting tungsten carbide and carbon steel, there is Patent Document 1 (Japanese Patent Laid-Open No. 2003-53558). This is because a round bar-shaped carbon steel and a round bar-shaped tungsten carbide are pressed against each other, and one of them is rotated to generate frictional heat. , To be joined.

しかし、この方法は、接合部に熱による残留応力が残りやすく、クラックが入るなどして接合部の強度が不足する、という問題がある。   However, this method has a problem that residual stress due to heat is likely to remain in the joint, and the strength of the joint is insufficient due to cracks.

この問題に対し、特許文献2(特開2004−216410)では、特許文献1と同じように回転摩擦により接続するが、中間に鉄−ニッケル−コバルト系合金を介在させることで、熱応力による残留応力を低減する方法を提案している。   With respect to this problem, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-216410), connection is made by rotational friction as in Patent Document 1, but residual iron-nickel-cobalt-based alloy is interposed in the middle, thereby remaining due to thermal stress. A method for reducing stress is proposed.

しかし、上記特許文献2は、中間材を接合するので、接合の工数が増加し、手間と時間が掛かるという問題がある。   However, since the said patent document 2 joins an intermediate material, there exists a problem that the man-hour of joining increases and it takes time and effort.

ステンレス鋼とタングステンカーバイドとを接続する方法としては、特許文献3(特開平6−199580)が知られている。ここでは、タングステンカーバイドとステンレス鋼を、低酸素雰囲気中で所定の押圧力をもって突き合わせるとともに、突き合わせ部を所定の温度に上昇させて接合することを提案している。所定の温度に上昇させる加熱方法としては、通電によるほか、レーザビームやプラズマビームを使用する方法がある。   As a method of connecting stainless steel and tungsten carbide, Patent Document 3 (Japanese Patent Laid-Open No. 6-199580) is known. Here, it is proposed that tungsten carbide and stainless steel are joined together with a predetermined pressing force in a low oxygen atmosphere, and the butt portion is raised to a predetermined temperature. As a heating method for raising the temperature to a predetermined temperature, there is a method using a laser beam or a plasma beam in addition to energization.

低酸素雰囲気にするのは、次のような理由による。大気中で突き合わせ溶接した場合、大気中の酸素によって脱炭層の成長が促進される。ステンレス鋼には炭素が殆どないので、タングステンカーバイドの炭素が脱炭し、接合部位のタングステンカーバイドの組成が変化し、接合部が脆くなる、という理由である。
特開2003−53558 特開2004−216410 特開平6−199580
The low oxygen atmosphere is used for the following reason. When butt welding is performed in the atmosphere, the growth of the decarburized layer is promoted by oxygen in the atmosphere. This is because the stainless steel has almost no carbon, so the carbon of the tungsten carbide is decarburized, the composition of the tungsten carbide at the joining site changes, and the joint becomes brittle.
JP 2003-53558 A JP-A-2004-216410 JP-A-6-199580

しかしながら、特許文献3に記載の方法では、低酸素雰囲気中で行うので、バッチ処理となり、連続処理ができず、かつ、接合に低酸素雰囲気を保つ部屋などを設ける必要があり、設備代が高額になり、接合に要する時間が長くなるという問題がある。   However, since the method described in Patent Document 3 is performed in a low-oxygen atmosphere, batch processing is performed, continuous processing cannot be performed, and it is necessary to provide a room or the like that maintains a low-oxygen atmosphere for bonding. Therefore, there is a problem that the time required for joining becomes long.

本発明は、このような問題の解決を図ったもので、短時間で、ステンレス鋼とタングステンカーバイドなどの超硬合金とを接続できる方法を提供することを目的としている。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a method capable of connecting stainless steel and a cemented carbide such as tungsten carbide in a short time.

上記の目的を達成するために本発明のステンレス鋼と超硬合金との接合方法は、タングステンカーバイドの粉末をコバルトで焼結した超硬合金からなる棒状材の一方の端面を平滑面に仕上げる工程と、該平滑面に仕上げられた端面とステンレス鋼の棒状材の一方の端面とを互いに押圧しつつ、前記超硬合金の棒状材又はステンレス鋼の棒状材の少なくとも一方を回転させる工程と、回転による摩擦熱でステンレス鋼の棒状材の端部が軟化したとき、前記回転終了間際に若しくは回転を停止して前記押圧力を高めてステンレス鋼の棒状材を超硬金属の棒状材に接合する工程とを有することを特徴としている。   In order to achieve the above object, the joining method of the stainless steel and the cemented carbide of the present invention is a step of finishing one end surface of a rod-shaped material made of cemented carbide obtained by sintering tungsten carbide powder with cobalt to a smooth surface. And rotating the at least one of the cemented carbide rod-shaped material or the stainless steel rod-shaped material while pressing the end surface finished to the smooth surface and one end surface of the stainless steel rod-shaped material, and rotating When the end of the stainless steel rod is softened by the frictional heat generated by the step, the step of joining the stainless steel rod to the carbide rod by increasing the pressing force just before the end of the rotation or stopping the rotation It is characterized by having.

前記互いに押圧された超硬合金の棒状材又はステンレス鋼の棒状材を回転させる工程で、超硬合金の棒状材とステンレス鋼の棒状材の双方を相互に逆方向に回転させる構成としたり、前記回転摩擦に加えて、前記ステンレス鋼の棒状材に通電することで加熱する構成としたり、前記超硬合金の端面の表面粗さ(Rmax)を、0.8〜5.0μmとしたり、前記ステンレス鋼の端面の表面粗さ(Rmax)を、0.8〜5.0μmとしたりしてもよい。平滑面とは表面に凹凸がない平滑な面を指し、平面と曲面の双方を含むが、曲面の場合は、超硬合金の端面とステンレス鋼の棒状材の端面とが相互に重なり合う形状とする。また、平滑面には、鏡面も含まれる。平滑面の平滑度は、140番程度のダイヤモンド砥石・サンドペーパー等で研磨した程度でよい。   In the step of rotating the cemented carbide rod or stainless steel rod pressed against each other, both the cemented carbide rod and the stainless steel rod are rotated in opposite directions, In addition to rotational friction, the stainless steel rod-shaped material is heated by energization, the surface roughness (Rmax) of the end face of the cemented carbide is 0.8 to 5.0 μm, the stainless steel The surface roughness (Rmax) of the end face of the steel may be 0.8 to 5.0 μm. A smooth surface refers to a smooth surface with no irregularities on the surface, and includes both flat and curved surfaces. In the case of a curved surface, the end surface of the cemented carbide and the end surface of the rod-shaped material of stainless steel overlap each other. . Further, the smooth surface includes a mirror surface. The smoothness of the smooth surface may be the same as that polished with a # 140 diamond grindstone or sandpaper.

超硬合金の棒状材と、ステンレス鋼の棒状材とを互いに押圧していずれか一方或いは双方を回転させるが、このとき、超硬合金の端面は、平滑な面に仕上げされているので、接触面が大きくなり、摩擦熱が多く発生する。摩擦熱でステンレス鋼の方が軟化してきたら、回転を停止して、あるいは回転終了間際にさらに押圧力を加えると、超硬合金の棒状材と、ステンレス鋼の棒状材とは接合される。このとき、超硬合金側に含まれているコバルトと、ステンレス鋼とがお互いに相手の領域に入り込み、相互拡散層を形成する。これによって、残留応力が低減し、接合強度を上げることができる。また、密着した状態で回転摩擦を受け、ステンレス鋼が半溶融状態になると周囲を密閉した状態にするので、低酸素状態となり、脱炭は起こらない。また、短時間での接合で、接合部の強度が十分なものとなるとともに、超硬側へのマイクロクラックの発生を抑えることができ、破断を抑えることができる。   One or both of the cemented carbide rod and stainless steel rods are pressed against each other and rotated, but at this time, the end surface of the cemented carbide is finished to a smooth surface, so contact The surface becomes large and a lot of frictional heat is generated. When the stainless steel is softened by frictional heat, if the rotation is stopped or a further pressing force is applied just before the end of the rotation, the cemented carbide rod and the stainless steel rod are joined. At this time, cobalt and stainless steel contained in the cemented carbide side enter each other's region to form an interdiffusion layer. Thereby, the residual stress can be reduced and the bonding strength can be increased. Further, when the stainless steel is in a semi-molten state due to rotational friction in a close contact state, the surroundings are sealed, so that a low oxygen state occurs and decarburization does not occur. In addition, bonding at a short time can provide sufficient strength at the bonded portion, suppress generation of microcracks on the carbide side, and suppress breakage.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の超硬合金とステンレス鋼との接続方法を実施する形態の一例を示す図である。歯科用切削工具として、ここではカーバイドバーを例示して説明する。図1において、ステンレス鋼の丸棒からなる棒状材11は、回転軸21の先端に取り付けられたチャック22の爪23に固く把持されている。他方の超硬合金の丸棒からなる棒状材12は、クランプ台24の把持部25に同じく固く把持されている。   FIG. 1 is a diagram showing an example of an embodiment for carrying out a method for connecting a cemented carbide and stainless steel according to the present invention. Here, a carbide bar will be described as an example of a dental cutting tool. In FIG. 1, a rod-shaped material 11 made of a stainless steel round bar is firmly held by a claw 23 of a chuck 22 attached to the tip of a rotating shaft 21. The rod-shaped member 12 made of the other cemented carbide round rod is also firmly held by the holding portion 25 of the clamp base 24.

超硬合金の棒状材12の接合面となる下端面12aに関しては、特許文献2に、摩擦熱を発生しやすくするため、10μm以上の粗面が望ましいとの記載がある。この考えは、ステンレス鋼とタングステンカーバイドとの接続にも共通するように思える。しかし、この方法でステンレス鋼とタングステンカーバイドを接続しても、うまく接合できない。   With regard to the lower end surface 12a serving as the bonding surface of the cemented carbide rod-shaped member 12, Patent Document 2 describes that a rough surface of 10 μm or more is desirable in order to easily generate frictional heat. This idea seems common to the connection between stainless steel and tungsten carbide. However, even if stainless steel and tungsten carbide are connected by this method, they cannot be joined well.

本発明の発明者は、鋭意研究した結果、ステンレス鋼とタングステンカーバイドを接続する場合、短時間で接合面に相互拡散層を形成することが重要になることを発見した。ステンレス鋼とタングステンカーバイドとを摩擦接触させ、溶融接続させる場合、表面が平滑であれば、タングステンカーバイドを結合しているコバルトがステンレス鋼内に拡散するとともに、ステンレス鋼がタングステンカーバイドのコバルト内に拡散することで、相互拡散層を形成し、強力に結合することができるのである。   As a result of intensive studies, the inventors of the present invention have found that it is important to form an interdiffusion layer on the joint surface in a short time when connecting stainless steel and tungsten carbide. When stainless steel and tungsten carbide are frictionally contacted and melt-bonded, if the surface is smooth, cobalt bonding tungsten carbide diffuses into stainless steel and stainless steel diffuses into cobalt of tungsten carbide By doing so, an interdiffusion layer can be formed and strongly bonded.

そこで、本発明では、超硬合金の棒状材12の下端面12aを、平滑面(平面乃至鏡面)に仕上げている。平面乃至鏡面にするために、実施例では、140番の砥粒で研磨している。下端面を140番より粗い砥粒で研磨すると、摩擦熱が余計に発生するとともに、時間・距離を多く必要とするため、熱影響が大きく、マイクロクラックが発生しやすくなる。また短時間で行うと相互拡散層の形成が不十分で、結合力が低下してしまう。   Therefore, in the present invention, the lower end surface 12a of the cemented carbide rod-like material 12 is finished to be a smooth surface (a flat surface or a mirror surface). In order to obtain a flat or mirror surface, in the embodiment, polishing is performed with No. 140 abrasive grains. When the lower end surface is polished with abrasive grains coarser than No. 140, the frictional heat is generated excessively and more time and distance are required, so that the thermal influence is large and microcracks are easily generated. In addition, if it is carried out in a short time, the formation of the interdiffusion layer is insufficient and the bonding force is reduced.

ステンレス鋼の棒状材11と、超硬合金の棒状材12とが接続したとき相互拡散層の軸方向の長さ(厚さ)が長い(厚い)方が、接合部の強度が上がる。また、残留応力も小さくなる。逆に、相互拡散層が短かったり、無かったりすると、接合部は弱くなる。そのため、超硬合金の棒状材12の下端面12aを平面乃至鏡面にして相互拡散層を形成し易くするのである。   When the stainless steel rod-like material 11 and the cemented carbide rod-like material 12 are connected to each other, the strength of the joint increases as the axial length (thickness) of the interdiffusion layer becomes longer (thick). Also, the residual stress is reduced. Conversely, if the interdiffusion layer is short or absent, the joint becomes weak. Therefore, the lower end surface 12a of the cemented carbide rod-like material 12 is made flat or mirror surface to facilitate the formation of the interdiffusion layer.

相互拡散層の長さを長くするには、ロウ付けをすることが考えられる。ロウ付けの場合、相互拡散層の厚さは5〜40μmとなる。しかし、ロウ付けの場合、相互拡散層の長さをコントロールすることができず、50本の曲げ強度を調べたところ、標準偏差は9.9と製品間のバラツキが大きくなって、安定性に欠けることになる。ここで言う曲げ強度の試験方法はISO8325:2004に従う。   In order to increase the length of the interdiffusion layer, brazing can be considered. In the case of brazing, the thickness of the interdiffusion layer is 5 to 40 μm. However, in the case of brazing, the length of the interdiffusion layer could not be controlled, and when the bending strength of 50 pieces was examined, the standard deviation was 9.9, which showed a large variation between products, resulting in stability. It will be lacking. The bending strength test method referred to here follows ISO 8325: 2004.

これに対し、上記の摩擦接続の場合は、相互拡散層の厚さは1〜5μmではあるが、コントロールが可能であり、50本の曲げ強度を調べたところ、標準偏差は5.2とバラツキが少なく安定した接合強度を得ることができる。   On the other hand, in the case of the above friction connection, although the thickness of the interdiffusion layer is 1 to 5 μm, it can be controlled, and when 50 bending strengths are examined, the standard deviation varies as 5.2. Therefore, a stable bonding strength can be obtained.

接合面を、140番程度で研磨し、表面の粗さ(Rmax)を0.8〜5μmにすると、摩擦接続したとき相互拡散層を形成し易くし、接合が強固なものとなる。望ましくは、0.8〜1.5μmである。表面の粗さ(Rmax)を0.8μm以下にすると、研磨工程に時間が掛かりすぎて製造コストが上がるので、望ましくない。表面の粗さ(Rmax)が10μm以上になると、接合部の強度が低下する。   When the joining surface is polished at about 140 and the surface roughness (Rmax) is set to 0.8 to 5 μm, it becomes easy to form an interdiffusion layer when frictionally connected, and the joining becomes strong. Desirably, it is 0.8-1.5 micrometers. If the surface roughness (Rmax) is 0.8 μm or less, the polishing process takes too much time and the manufacturing cost increases, which is not desirable. When the surface roughness (Rmax) is 10 μm or more, the strength of the joint portion decreases.

ここで、接合部の曲げ強度を調べるため上記方法を用いて曲げ試験を行った所、表面の粗さ(Rmax)が1.4μmのとき、曲げ強度が100本の試験の平均で55Nであり、表面の粗さ(Rmax)が0.8μmのとき、曲げ強度が100本の試験の平均で63Nであり、表面が平滑であるほど接合部の強度が向上することが分かった。   Here, in order to investigate the bending strength of the joint, a bending test was performed using the above method. When the surface roughness (Rmax) was 1.4 μm, the bending strength was 55 N on an average of 100 tests. When the surface roughness (Rmax) was 0.8 μm, the bending strength was 63 N on average in 100 tests, and it was found that the smoother the surface, the stronger the joint.

一方ステンレス鋼の棒状材11の上端面11aは、表面の粗さ(Rmax)が0.8〜5.0μmの仕上げとしてもよいが、カッター類で切断したままの粗面でもよい。ステンレス鋼は、超硬合金に比べて柔らかく、溶け易いからである。また、ステンレス鋼の棒状材の上端面11aと超硬合金の棒状材の下端面12aは、平面でなくてもよい。ただし、上端面11aと下端面12aを重ねたとき、全体が重なり合う形状であることが必要である。   On the other hand, the upper end surface 11a of the rod-shaped material 11 made of stainless steel may be finished with a surface roughness (Rmax) of 0.8 to 5.0 μm, but may be a rough surface that has been cut with a cutter. This is because stainless steel is softer and easier to melt than cemented carbide. Further, the upper end surface 11a of the rod-shaped material made of stainless steel and the lower end surface 12a of the rod-shaped material made of cemented carbide may not be flat. However, when the upper end surface 11a and the lower end surface 12a are overlapped, the entire shape needs to be overlapped.

図1の状態に超硬合金の棒状材12とステンレス鋼の棒状材11をセットしたら、回転軸21を回転させる。同時に、クランプ台24を図1の下方に力fで押圧し、超硬合金の棒状材12の下端面12aをステンレス鋼の丸棒11の上端面11aに押し付ける。接触面は、摩擦熱で高温になり、やがて、ステンレス鋼の棒状材11の上端面11aとその近傍が軟化してくる。   When the cemented carbide rod 12 and the stainless steel rod 11 are set in the state of FIG. 1, the rotating shaft 21 is rotated. At the same time, the clamp base 24 is pressed downward with a force f in FIG. 1, and the lower end surface 12 a of the cemented carbide rod 12 is pressed against the upper end surface 11 a of the stainless steel round bar 11. The contact surface becomes high temperature due to frictional heat, and eventually the upper end surface 11a of the stainless steel rod 11 and its vicinity are softened.

図2は、ステンレス鋼の棒状材11と超硬合金の棒状材12とが接合している状態を示す図である。ステンレス鋼の棒状材11の上端面11a近傍が軟化すると、下端面12aと上端面11aの接触面は、半溶融状態に軟化したステンレス鋼に覆われ、周囲から隔離された状態となる。この状態で回転を停止し、回転終了間際に、若しくは回転を停止してから、クランプ台24の押圧力を力Fに増加する。すると、超硬合金の棒状材12とステンレス鋼の棒状材11とは、接合部13によって接合する。そして、超硬合金の棒状材12からコバルトがステンレス鋼の棒状材11の方に拡散し、ステンレス鋼の棒状材11から超硬合金の棒状材12の方にステンレス鋼が拡散して相互拡散層11b、12bを形成し、接合を強固なものにする。   FIG. 2 is a view showing a state in which a rod-shaped material 11 made of stainless steel and a rod-shaped material 12 made of cemented carbide are joined. When the vicinity of the upper end surface 11a of the stainless steel rod 11 is softened, the contact surface between the lower end surface 12a and the upper end surface 11a is covered with the stainless steel softened in a semi-molten state and is isolated from the surroundings. The rotation is stopped in this state, and the pressing force of the clamp base 24 is increased to the force F just before the end of the rotation or after the rotation is stopped. Then, the cemented carbide rod 12 and the stainless steel rod 11 are joined by the joint 13. Cobalt diffuses from the cemented carbide rod 12 to the stainless steel rod 11, and the stainless steel diffuses from the stainless steel rod 11 to the cemented carbide rod 12. 11b and 12b are formed to strengthen the bonding.

図2に示すように接合部13は、外側に膨らみ、ステンレス鋼が下方に若干垂れた状態になり、接合部13は半溶融したステンレス鋼で密閉され、低酸素状態となるが、相互拡散層11b、12bは、この接合部13の上下に拡がって形成される。   As shown in FIG. 2, the joint portion 13 bulges outward and the stainless steel hangs slightly downward, and the joint portion 13 is sealed with semi-molten stainless steel and is in a low oxygen state. 11b and 12b are formed so as to expand above and below the joint portion 13.

図3は、超硬合金の棒状材12とステンレス鋼の棒状材11とが接合した状態を示す図である。この後、超硬合金の棒状材12部分を所定の形状に研削加工することで、図4に示すようなステンレス鋼の棒状材11の先端にカーバイドバーの刃部15を有するカーバイドバー16が完成する。   FIG. 3 is a view showing a state in which a cemented carbide rod-shaped material 12 and a stainless steel rod-shaped material 11 are joined. Thereafter, the carbide bar 16 having a carbide bar blade 15 at the tip of the stainless steel rod 11 as shown in FIG. 4 is completed by grinding the cemented carbide rod 12 into a predetermined shape. To do.

このカーバイドバー16は、ステンレス鋼の棒状材11の部分をハンドピースのチャックで把持して使用することになる。   The carbide bar 16 is used by gripping a portion of the stainless steel bar 11 with a chuck of a handpiece.

以上の実施例では、ステンレス鋼の棒状材11を回転させたが、超硬合金の棒状材12を回転させてもよい。双方を回転させてもよいが、その場合は、お互いに反対方向に回転させると、摩擦力が大きくなって、接合時間を短縮することができる。また、押圧力を増加させるタイミングとしては、回転を完全に停止させてからでも良いし、回転終了間際など、回転途中で増加させても良い。   In the above embodiment, the stainless steel rod 11 is rotated, but the cemented carbide rod 12 may be rotated. Although both may be rotated, in that case, if they are rotated in directions opposite to each other, the frictional force increases and the joining time can be shortened. In addition, the timing for increasing the pressing force may be after the rotation is completely stopped, or may be increased during the rotation, such as just before the end of the rotation.

本発明の超硬合金とステンレス鋼との接続方法を実施する形態の一例を示す図である。It is a figure which shows an example of the form which implements the connection method of the cemented carbide alloy and stainless steel of this invention. ステンレス鋼の丸棒と超硬合金の丸棒とが接合している状態を示す図である。It is a figure which shows the state which the stainless steel round bar and the cemented carbide round bar have joined. 超硬合金の丸棒とステンレス鋼の丸棒とが接合した状態を示す図である。It is a figure which shows the state which the round bar of the cemented carbide and the round bar of stainless steel joined. カーバイドバーの図である。It is a figure of a carbide bar.

符号の説明Explanation of symbols

11 ステンレス鋼の棒状材
11a 上端面
11b、12b 相互拡散層
12 超硬合金の棒状材
12a 下端面
13 接合部
15 刃部
16 カーバイドバー
21 回転軸
22 チャック
23 爪
24 クランプ台
25 把持部
DESCRIPTION OF SYMBOLS 11 Stainless steel rod-shaped material 11a Upper end surface 11b, 12b Mutual diffusion layer 12 Cemented carbide rod-shaped material 12a Lower end surface 13 Joint part 15 Blade part 16 Carbide bar 21 Rotating shaft 22 Chuck 23 Claw 24 Clamp base 25 Gripping part

Claims (5)

タングステンカーバイドの粉末をコバルトで焼結した超硬合金からなる棒状材の一方の端面を平滑面に仕上げる工程と、該平滑面に仕上げられた端面とステンレス鋼の棒状材の一方の端面とを互いに押圧しつつ、前記超硬合金の棒状材又はステンレス鋼の棒状材の少なくとも一方を回転させる工程と、回転による摩擦熱でステンレス鋼の棒状材の端部が軟化したとき、前記回転終了間際に若しくは回転を停止して前記押圧力を高めてステンレス鋼の棒状材を超硬金属の棒状材に接合する工程とを有することを特徴とする超硬合金とステンレス鋼との接続方法。   A step of finishing one end face of a rod-shaped material made of cemented carbide obtained by sintering tungsten carbide powder with cobalt into a smooth surface, and an end surface finished to the smooth surface and one end surface of a stainless steel rod-shaped material are mutually connected. The step of rotating at least one of the cemented carbide rod or stainless steel rod while pressing, and when the end of the stainless steel rod is softened by the frictional heat generated by the rotation, A method of connecting the cemented carbide and the stainless steel, comprising the step of stopping the rotation and increasing the pressing force to join the rod-shaped material of stainless steel to the rod-shaped material of cemented carbide. 前記互いに押圧された超硬合金の棒状材又はステンレス鋼の棒状材を回転させる工程で、超硬合金の棒状材とステンレス鋼の棒状材の双方を相互に逆方向に回転させることを特徴とする請求項1記載の超硬合金とステンレス鋼との接続方法。   In the step of rotating the cemented carbide rods or stainless steel rods pressed against each other, both the cemented carbide rods and the stainless steel rods are rotated in opposite directions. A method of connecting the cemented carbide according to claim 1 and stainless steel. 前記回転による摩擦に加えて、前記ステンレス鋼の棒状材に通電して加熱することで該ステンレス鋼の棒状材の端部を軟化させることを特徴とする請求項1記載の超硬合金とステンレス鋼との接続方法。   2. The cemented carbide and stainless steel according to claim 1, wherein, in addition to the friction caused by the rotation, the end of the stainless steel rod is softened by energizing and heating the stainless steel rod. How to connect with. 前記超硬合金の端面の表面粗さ(Rmax)を、0.8〜5.0μmとすることを特徴とする請求項1から3のいずれかに記載の超硬合金とステンレス鋼との接続方法。   4. The method of connecting a cemented carbide and a stainless steel according to claim 1, wherein the end surface of the cemented carbide has a surface roughness (Rmax) of 0.8 to 5.0 μm. 5. . 前記ステンレス鋼の端面の表面粗さ(Rmax)を、0.8〜5.0μmとすることを特徴とする請求項4に記載の超硬合金とステンレス鋼との接続方法。   The method for connecting a cemented carbide and a stainless steel according to claim 4, wherein a surface roughness (Rmax) of an end face of the stainless steel is 0.8 to 5.0 µm.
JP2010500683A 2008-02-29 2009-02-24 Connection method between cemented carbide and stainless steel Pending JPWO2009107594A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008049350 2008-02-29
JP2008049350 2008-02-29
PCT/JP2009/053239 WO2009107594A1 (en) 2008-02-29 2009-02-24 Method for connecting cemented carbide and stainless steel

Publications (1)

Publication Number Publication Date
JPWO2009107594A1 true JPWO2009107594A1 (en) 2011-06-30

Family

ID=41015988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010500683A Pending JPWO2009107594A1 (en) 2008-02-29 2009-02-24 Connection method between cemented carbide and stainless steel

Country Status (2)

Country Link
JP (1) JPWO2009107594A1 (en)
WO (1) WO2009107594A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052500B2 (en) * 2013-02-26 2016-12-27 三菱マテリアル株式会社 Composite material of cemented carbide member and steel member and rotary shaft object cutting tool made of this composite material
WO2020235593A1 (en) * 2019-05-21 2020-11-26 Eco-A株式会社 Dental device and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177338A (en) * 1997-09-03 1999-03-23 Mitsubishi Heavy Ind Ltd Friction joining method
JP2003053558A (en) * 2001-08-20 2003-02-26 Honda Machine Service:Kk Producing method for cutting tool
JP2004216410A (en) * 2003-01-14 2004-08-05 Takeshi Honda Cutting tool and its manufacturing method
JP2004276033A (en) * 2003-03-12 2004-10-07 Punch Industry Co Ltd Punch for press die, and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233711A (en) * 1994-02-22 1995-09-05 Ngk Spark Plug Co Ltd Composite tappet and manufacture thereof
JPH10100309A (en) * 1996-10-02 1998-04-21 Sumitomo Coal Mining Co Ltd Sintered hard alloy composite material
JPH10180468A (en) * 1996-12-19 1998-07-07 Mitsubishi Heavy Ind Ltd Friction joining method
JP4007496B2 (en) * 2002-07-15 2007-11-14 パンチ工業株式会社 Resin molding pin and manufacturing method thereof
JP2005230888A (en) * 2004-02-23 2005-09-02 Takeshi Honda Manufacturing method of excavating tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177338A (en) * 1997-09-03 1999-03-23 Mitsubishi Heavy Ind Ltd Friction joining method
JP2003053558A (en) * 2001-08-20 2003-02-26 Honda Machine Service:Kk Producing method for cutting tool
JP2004216410A (en) * 2003-01-14 2004-08-05 Takeshi Honda Cutting tool and its manufacturing method
JP2004276033A (en) * 2003-03-12 2004-10-07 Punch Industry Co Ltd Punch for press die, and method for manufacturing the same

Also Published As

Publication number Publication date
WO2009107594A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US6739327B2 (en) Cutting tool with hardened tip having a tapered base
EP2533926B1 (en) Bur and method of making same
JP5613898B2 (en) Friction processing apparatus and friction processing method
JP5326096B2 (en) Friction stir processing tool
JP2000301364A (en) Rotation friction agitation joining method of dissimiliar metal material
WO2009107594A1 (en) Method for connecting cemented carbide and stainless steel
KR101114501B1 (en) Manufacturing method of PCD cutting tool and the PCD cutting tool
JP5633006B2 (en) Friction stir processing apparatus and friction stir processing method
JP4688110B2 (en) Single crystal diamond tool and method for manufacturing the same
JP4543204B2 (en) Friction stir welding method
WO2019235295A1 (en) Friction stir welding tool and friction stir welding method
JP2004082144A (en) Tool and method for friction stir welding
JP3859559B2 (en) Manufacturing method of bonded joint, bonded joint, friction stir welding method, bonding apparatus and cutting tool
JP4851029B2 (en) Super abrasive tool with sintered super abrasive tip
JPH0563707U (en) Brazing cutting tool
JPH06199580A (en) Method for joining cemented carbide to stainless steel and medical appliance consisting of cemented carbide and stainless steel
JP4428681B2 (en) Single crystal diamond tool
CN105312638B (en) Pcb board target drill and its processing method
JPH11320129A (en) Joining method of chip against shaft end of engine valve
KR100325355B1 (en) A method for brazing WC-Co and tool steel
JPH11294058A (en) Brazed cutting tool excellent in bonding strength
KR100736941B1 (en) A core drill and method for manufacturing the core drill
JP2539910B2 (en) Tool for processing high hardness materials
JP2001105328A (en) Super-abrasive grinding wheel for high-speed grinding
KR20090132676A (en) Cbn endmill using cbn disk and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008