JPH1177338A - Friction joining method - Google Patents

Friction joining method

Info

Publication number
JPH1177338A
JPH1177338A JP9254296A JP25429697A JPH1177338A JP H1177338 A JPH1177338 A JP H1177338A JP 9254296 A JP9254296 A JP 9254296A JP 25429697 A JP25429697 A JP 25429697A JP H1177338 A JPH1177338 A JP H1177338A
Authority
JP
Japan
Prior art keywords
joining
materials
friction
strength
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9254296A
Other languages
Japanese (ja)
Inventor
Seiichi Kawaguchi
聖一 川口
Koji Tsukimoto
晃司 月元
Seiji Asada
誠治 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9254296A priority Critical patent/JPH1177338A/en
Publication of JPH1177338A publication Critical patent/JPH1177338A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable joining of high-strength materials with high reliability in a state approximate to room temp. without elevating the temp. of the joining materials themselves as far as possible at the time of friction joining of the high-strength materials. SOLUTION: This method consists in forming joint surfaces by forming the end faces of the two high-strength materials 1, 2 which are the joining materials to roughness of about Rmax<=0.5 μm, more preferably Rmax<=0.1 μm, then bringing the end faces of the two high-strength materials 1, 2 into direct contact with each other. The joining materials are joined with each other by rotating both relatively in a pressurized state to generate the prescribed friction heat on the joint surfaces, then stopping the rotating motion and further applying pressurizing force thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、従来の摩擦圧接よ
りも低温で接合が可能な摩擦接合方法、特に炭素鋼や低
合金鋼に加えて原子炉の監視試験片の再生や超伝導線の
接合に好適な摩擦接合方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a friction welding method capable of joining at a lower temperature than conventional friction welding. In particular, the present invention relates to regeneration of a monitoring specimen of a nuclear reactor and superconducting wire in addition to carbon steel and low alloy steel. The present invention relates to a friction joining method suitable for joining.

【0002】[0002]

【従来の技術】摩擦圧接とは固相溶接方法の一種であ
り、接合材の原子同士が原子間距離まで近づくことが必
要であり、その為に接合材の接合面が塑性変形する必要
がある。接合材を塑性変形させる手段の一つとして、接
合面に高圧力を加える場合がある。しかし接合材が棒状
体であると、高圧力によって接合材全体が座屈変形して
しまうことがある。そこで、接合材相互の接合面を高速
に相対回転し、摩擦接触による摩擦熱で加熱し、接合材
が変形し易くなった時点で圧力を加えて押圧しながら接
合するものである。
2. Description of the Related Art Friction welding is a type of solid-phase welding method in which atoms of a joining material need to be close to the interatomic distance, and the joining surface of the joining material must be plastically deformed. . As one of means for plastically deforming the joining material, a high pressure may be applied to the joining surface. However, if the joining material is a rod, the entire joining material may be buckled and deformed by high pressure. Therefore, the joining surfaces of the joining materials are relatively rotated at a high speed, heated by frictional heat due to frictional contact, and when the joining material is easily deformed, the joining is performed while applying pressure and pressing.

【0003】ところで、従来の摩擦接合方法は、端面は
機械加工のままで摩擦圧接における回転数、圧力、及び
温度の変化の時間的展開を示す図3に点線Bで示すよう
に、圧接される接合材を対向して配置して端面同士を相
互に接触させ、両接合材のいずれか一方を相対的に所定
の回転数N1 で回転させる。所定の回転数N1 に達した
後、所定の摩擦圧力P1 を加え、所定の摩擦時間ta1
が経過すると摩擦熱を生じる。そして摩擦熱がTaにな
り両接合材が適当な軟化状態に達したところで回転を停
止し、次いで、所定のアプセット時間ta2中、相互に
アプセット圧P2’をかけることにより圧接を行うよう
にしたものである。
[0003] In the conventional friction welding method, the end face is kept in a machined state, and is pressed as shown by a dotted line B in Fig. 3 showing the time development of the rotation speed, pressure and temperature in friction welding. bonding material mutually contacting the oppositely disposed end faces, and one to rotate the one with relatively predetermined rotational speed N 1 of the joining material. After reaching a predetermined rotational speed N 1, adding a predetermined frictional pressure P 1, a predetermined friction time ta 1
When the time elapses, frictional heat is generated. The frictional heat is stopped rotating at both the bonding material becomes Ta reaches an appropriate softened state, then, in a predetermined upset time ta 2, to perform the pressure by applying upset pressure P 2 'to each other It was done.

【0004】また、摩擦圧接において摩擦熱の上昇は、
通常、同種材料では接合材の融点が限度であり、異種材
の摩擦では融点の低い方の融点が限度である。従って、
従来の摩擦接合方法では、2つの接合材が鉄鋼材料のよ
うな高強度材であると、接合材の温度は800℃以上に
も達していた。さらに、従来の摩擦接合方法によればア
ルミニウム、銅などのように、比較的軟質の材料の接合
は容易であるが、チタン、ステンレス鋼、セラミックス
等の比較的に高強度の材料は接合し難かった。また、接
合部には接合を妨害する酸化物や、汚れ等が発生した。
In friction welding, the rise in frictional heat is
Usually, the melting point of the joining material is the limit for the same kind of material, and the lower melting point is the limit for the friction of different materials. Therefore,
In the conventional friction joining method, when the two joining materials are high-strength materials such as steel materials, the temperature of the joining materials has reached 800 ° C. or more. Furthermore, according to the conventional friction joining method, it is easy to join relatively soft materials such as aluminum and copper, but it is difficult to join relatively high-strength materials such as titanium, stainless steel and ceramics. Was. In addition, oxides, dirt, and the like that hinder the bonding were generated at the bonding portions.

【0005】そこで、特開平3−184683号公報に
は、以下のような摩擦接合方法が提案されていた。すな
わち、先ず図6に示すように回転チャック台4に一方の
接合材17を把持し、固定チャック台5に軟質の中間材
料19を把持し、一方の接合材17の端面17aを中間
材料19の端面19aに当接させ、当接した接合面12
aの近傍を気密チャンバー14によって気密に包囲し、
気密チャンバー14内を不活性雰囲気に保持して矢印P
で示すように接合面12aに向けて加圧し、接合材17
を回転させながら摩擦熱によって接合した。次いで、図
7に示すように固定チャック台5に他方の接合材18を
把持し、一方の接合材17に接合された中間材料19の
他端面19bに他方の接合材料18の端面18aを当接
させた。さらに、この接合面12bを気密チャンバー1
4によって気密に包囲し、気密チャンバー14内を不活
性雰囲気に保持して矢印Pで示すように接合面12bに
向けて加圧し、接合材17を回転させながら摩擦熱によ
って接合することにより、接合し難い高強度材の接合を
可能としたものであった。
Therefore, Japanese Patent Application Laid-Open No. 3-184683 has proposed the following friction joining method. That is, first, as shown in FIG. 6, one of the bonding materials 17 is gripped by the rotary chuck table 4, the soft intermediate material 19 is gripped by the fixed chuck table 5, and the end face 17 a of the one bonding material 17 is The contact surface 12 is brought into contact with the end face 19a,
a is hermetically surrounded by an airtight chamber 14;
The inside of the airtight chamber 14 is maintained in an inert atmosphere and the arrow P
As shown in the figure, pressure is applied to the bonding surface 12a, and the bonding material 17 is pressed.
Were rotated and joined by frictional heat. Next, as shown in FIG. 7, the other joining material 18 is gripped by the fixed chuck table 5, and the other end surface 19 b of the intermediate material 19 joined to the one joining material 17 is brought into contact with the end surface 18 a of the other joining material 18. I let it. Further, this joint surface 12b is connected to the airtight chamber 1
4, the inside of the airtight chamber 14 is kept in an inert atmosphere, pressurized toward the bonding surface 12b as indicated by an arrow P, and the bonding is performed by frictional heat while the bonding material 17 is rotated. This enabled joining of high-strength materials that were difficult to perform.

【0006】その他の圧接方法として、材料を低温で接
合する拡散接合も行われた。この方法では接合面を鏡面
に仕上げた後、真空中でArイオンビームを照射して接
合面を清浄にし、圧力を加えて接合するものである。さ
らに、半田付けにより接合することもあった。また、特
願平8−354537号のように接合前にあらかじめ接
合面に軟質材を被覆して大気中で接合する方法もあっ
た。
As another pressure welding method, diffusion bonding for bonding materials at a low temperature has also been performed. In this method, after the bonding surface is finished to a mirror surface, the bonding surface is cleaned by irradiating an Ar ion beam in a vacuum, and bonding is performed by applying pressure. Further, they may be joined by soldering. Further, there is also a method in which a bonding surface is coated with a soft material in advance before bonding and the bonding is performed in the atmosphere as disclosed in Japanese Patent Application No. 8-3554537.

【0007】[0007]

【発明が解決しようとする課題】上述の従来のこの種の
方法では、以下のような問題があった。即ち、摩擦熱の
上昇は一般に同種材料では接合材の融点が限度であり、
異種材の摩擦では融点の低い方の融点が限度である。従
って、従来の摩擦圧接では、2つの接合材が鉄鋼材料の
ような高強度材であると、接合材の温度は800℃以上
にも達した。そのために、鉄鋼材料が変態して強度など
の特性が変わり、小さな力によっても容易に変形してし
まうことになった。
The above-mentioned conventional method of the type described above has the following problems. That is, the rise in frictional heat is generally limited to the melting point of the joining material for the same type of material,
In the friction of different materials, the lower melting point is the limit. Therefore, in the conventional friction welding, when the two joining materials are high-strength materials such as steel materials, the temperature of the joining materials reaches 800 ° C. or more. As a result, the steel material is transformed to change properties such as strength, and easily deformed by a small force.

【0008】さらに、上述の特開平3−184683号
公報に記載された場合には、接合作業において、真空チ
ャンバー内で行なう必要があるため、接合する前に毎回
真空引きの作業が必要となり、作業に多大な時間を要
し、作業性も悪く、コスト的にも不利であった。また、
前記した低温の拡散接合方法によれば、大規模で特殊な
接合装置が必要になるだけでなく、鉄鋼材料のような強
度の高い材料の接合は不可能であるために、AlやCu
のような軟質材料同士の接合に限定されていた。また、
半田付けは簡便な方法であるが、接合強度が低く、構造
材の接合には適用できないという問題があった。一方、
特願平8−354537号のように、予め端面に軟質材
を被覆する方法は、大気中で接合可能であるが、被覆処
理に時間を要した。
Further, in the case described in the above-mentioned Japanese Patent Application Laid-Open No. 3-184683, since the joining operation needs to be performed in a vacuum chamber, a vacuuming operation is required before joining each time. It takes a lot of time, the workability is poor, and the cost is disadvantageous. Also,
According to the low-temperature diffusion bonding method described above, not only a large-scale special bonding device is required, but also it is impossible to bond a high-strength material such as a steel material.
Is limited to the joining of soft materials. Also,
Although soldering is a simple method, it has a problem that it cannot be applied to joining structural materials due to low joining strength. on the other hand,
As disclosed in Japanese Patent Application No. 8-3554537, the method of coating the end face with a soft material in advance can be bonded in the air, but the coating process requires time.

【0009】本発明の目的は、かかる課題を解決する為
に、高強度材を摩擦接合するにあたり、接合材自身の温
度をできるだけ上昇させることなく、高強度材料を室温
に近い状態で信頼性の高い接合を可能にする摩擦接合方
法を提供することにある。
An object of the present invention is to solve the above problem by frictionally joining a high-strength material without increasing the temperature of the joining material itself as much as possible, while maintaining the reliability of the high-strength material near room temperature. An object of the present invention is to provide a friction joining method that enables high joining.

【0010】[0010]

【課題を解決するための手段】本発明は、2つの接合材
を加圧状態で相対回転させ、接合面に所定の摩擦熱を発
生させた後、前記回転運動を停止して更に加圧力を加え
る事により、前記接合材同士を接合する摩擦接合方法に
おいて、接合材である2つの高強度材の端面粗さを約R
max0.5μm以下、好ましくはRmax0.1μm
以下にして接合面を形成して後、前記2つの高強度材の
端面同士を直接接触させて、両者を加圧状態で相対回転
させ、接合面に所定の摩擦熱を発生させた後、前記回転
運動を停止して更に加圧力(アプセット圧力)を加える
事により、前記接合材同士を接合することを特徴とす
る。
SUMMARY OF THE INVENTION According to the present invention, two joining materials are relatively rotated in a pressurized state, and after a predetermined frictional heat is generated on the joining surface, the rotating motion is stopped to further apply a pressing force. In addition, in the friction joining method for joining the joining materials, the end surface roughness of the two high-strength materials as the joining material is reduced by about R
max 0.5 μm or less, preferably Rmax 0.1 μm
After forming the joining surface in the following, the end surfaces of the two high-strength materials are brought into direct contact with each other, and the two are relatively rotated in a pressurized state to generate a predetermined frictional heat on the joining surface. The rotational members are stopped, and a pressing force (upset pressure) is further applied to join the joining materials to each other.

【0011】なお、本発明の摩擦接合方法には、接合材
である2つの高強度材のいずれか一方を固定し、他方を
駆動装置により回転させ、前記2つの高強度材を直接端
面接触させた状態で軸方向に押圧して加圧状態で相対回
転させ摩擦により発熱させるとともに、両接合材の接合
部が所定の温度になったときに、ブレーキを用いて回転
を停止させ、更にアプセット圧力を加えて両接合材を接
合するようにしたブレーキ式圧接方法や、あるいは接合
材の一方を固定し、他方をフライホイールを持つ軸に取
り付けて回転させ、摩擦部で回転エネルギーが消費され
て回転を急速に低下させ、更に前記回転運動を停止した
後アプセット圧力を加えるようにしたフライホイール式
圧接方法など、種々の摩擦圧接方法を包含するものであ
る。
In the friction joining method according to the present invention, one of the two high-strength materials, which is a joining material, is fixed, and the other is rotated by a driving device to bring the two high-strength materials into direct end-face contact. When the joint between both joining materials reaches a predetermined temperature, the rotation is stopped using a brake, and the upset pressure is further reduced. Brake type welding method in which both joining materials are joined by adding a joint, or one of the joining materials is fixed and the other is attached to a shaft with a flywheel and rotated, and the frictional part consumes rotational energy and rotates And a variety of friction welding methods such as a flywheel type welding method in which an upset pressure is applied after the rotation is stopped.

【0012】又高強度材には塑性変形に対する強さを有
する材料、例えば炭素鋼、低合金鋼、構造用合金鋼、工
具鋼、ステンレス鋼等の鉄鋼材料、超硬合金、サーメッ
ト、さらにはポリカーボネート、ポリアセタール等の合
成樹脂を包含するものである。更に、本発明の摩擦接合
方法には異種の高強度材を摩擦接合する場合も含まれる
ことはいうまでもない。
High-strength materials include materials having strength against plastic deformation, such as carbon steel, low alloy steel, structural alloy steel, tool steel, stainless steel and other steel materials, cemented carbide, cermet, and polycarbonate. And synthetic resins such as polyacetal. Further, it goes without saying that the friction joining method of the present invention includes a case where different kinds of high-strength materials are joined by friction.

【0013】[0013]

【作用】本発明によれば、前記した接合工程による接合
前に予め、精密研磨することにより、大気中でも容易に
接合するので、接合面を気密チャンバーなどで囲んで不
活性雰囲気の下で摩擦接合を行う必要がなく、簡単な装
置で容易に行われる。従って本発明の摩擦接合方法によ
れば、先ず高強度の接合材の端面を精密研磨して、次い
で2つの接合材を対向させて配置し、前記2つの高強度
材を直接端面接触させて接合面を形成する。次いで接合
材を相互に所定の摩擦圧力で加圧して相対回転すると摩
擦熱により接合面の研磨部分が早期に軟化状態に達す
る。このとき、回転を中止し、アプセット圧力をさらに
加圧して接合材を摩擦接合するものである。
According to the present invention, prior to the joining in the joining step described above, the joining is easily performed even in the air by precision polishing in advance. Therefore, the joining surface is surrounded by an airtight chamber or the like, and friction joining is performed under an inert atmosphere. It is not necessary to perform the operation, and the operation can be easily performed with a simple device. Therefore, according to the friction joining method of the present invention, first, the end faces of the high-strength joining material are precisely polished, then the two joining materials are arranged to face each other, and the two high-strength materials are brought into direct end-face contact and joined. Form a surface. Next, when the joining materials are pressed against each other at a predetermined friction pressure and then relatively rotated, the polished portion of the joining surface reaches a softened state early due to frictional heat. At this time, the rotation is stopped, and the upset pressure is further increased to frictionally join the joining materials.

【0014】本発明に類似する技術として、本出願人は
先に接合材の端面に予めAu、Ag、Cuの軟質材を被
覆して接合面を形成してから、前記の摩擦接合工程に入
り、前記軟質材のみを変形させて接合することを特徴と
する摩擦接合方法を提案している(特願平8−3545
37号、非公知の先願技術)。しかしながらかかる先願
技術は接合材同士が直接接触するものではなく、軟質材
を介して接合するものである為に、その接合材部分の強
度が低下する。一方本発明によれば、接合材同士が軟質
材を介して接合するものでなく直接接触するものである
為に、その接合材部分の強度が低下することがない。
As a technique similar to the present invention, the present applicant first coats an end surface of a joining material with a soft material of Au, Ag, or Cu to form a joining surface, and then enters the friction joining step. A friction joining method characterized by deforming and joining only the soft material is proposed (Japanese Patent Application No. 8-3545).
37, non-known prior application technology). However, in the prior art, the joining materials are not directly in contact with each other, but are joined via a soft material, so that the strength of the joining material portion is reduced. On the other hand, according to the present invention, since the joining materials are not joined via the soft material but are in direct contact with each other, the strength of the joining material portion does not decrease.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。図1には本発明の一実施形態に係る摩
擦圧接装置の一例の説明図であり、該装置が符号16で
示されている。また、図2は本発明の摩擦接合時の接合
状態を示す要部の側面図であり、図3は本発明及び従来
例の摩擦圧接方法の時間の経過に伴う回転数、圧力、及
び温度の変化を示す摩擦圧接サイクル図である。図1に
おいて、摩擦圧接装置16には電動機3からプーリ/ベ
ルト8及び回転軸9を介して回転駆動される回転チャッ
ク台4を備えており、この回転チャック台4には一方の
高強度材1を把持している。さらに、回転チャック台4
に対向して固定チャック台5が配置されていて、他方の
高強度材2を把持している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only. FIG. 1 is an explanatory view of an example of a friction welding apparatus according to an embodiment of the present invention, and the apparatus is indicated by reference numeral 16. FIG. 2 is a side view of a main part showing a joining state at the time of friction joining according to the present invention, and FIG. 3 is a graph showing rotation speed, pressure, and temperature over time of the friction welding method of the present invention and the conventional example. It is a friction welding cycle diagram which shows a change. In FIG. 1, the friction welding device 16 includes a rotary chuck table 4 that is driven to rotate by a motor 3 via a pulley / belt 8 and a rotating shaft 9. Is gripping. Further, the rotary chuck table 4
A stationary chuck table 5 is disposed to face the other and grips the other high-strength material 2.

【0016】固定チャック台5は、基台6に設置されて
いて、油圧シリンダ7aとこの油圧シリンダ7aに挿通
されたピストン7bからなる押圧手段7によって矢印1
1で示すように、前記の基台6上を摺動できるようにな
っている。このために、高強度材1の端面1aと高強度
材2の端面2a同士を接触させて接合面12を形成し、
電動機3を介して回転チャック台4のチャックを回転さ
せることにより接合面12に摩擦熱を発生させることが
できる。回転チャック台4と同軸の回転軸9の周囲には
ブレーキ10が設置されていて、高強度材1、2の接合
面12が所定の軟化状態に達した時点で回転を停止し、
さらに押圧手段7によってさらにアプセット圧を付加
し、両高強度材1、2を接合することができるようにな
っている。
The fixed chuck base 5 is mounted on a base 6, and is provided with an arrow 1 by a pressing means 7 comprising a hydraulic cylinder 7a and a piston 7b inserted through the hydraulic cylinder 7a.
As shown by reference numeral 1, the base 6 can be slid. For this purpose, an end surface 1a of the high-strength material 1 and an end surface 2a of the high-strength material 2 are brought into contact with each other to form a joint surface 12,
By rotating the chuck of the rotary chuck table 4 via the electric motor 3, frictional heat can be generated on the joint surface 12. A brake 10 is installed around a rotary shaft 9 coaxial with the rotary chuck table 4 and stops rotating when the joint surface 12 of the high-strength materials 1 and 2 reaches a predetermined softened state.
Further, an upset pressure is further applied by the pressing means 7, so that the high strength materials 1 and 2 can be joined.

【0017】本発明の摩擦接合方法の第1の実施形態を
説明する。先ず、図2に示すように高強度材(接合材)
1、2として16mmφ×40mmLの丸棒(低合金鋼
(例:JIS G 3120 SQV2A材))1と1
0mm角×40mmL の角棒(炭素鋼材)2を用い、その端
面1a、2aにRmax粗さ0.1μm〜0.03μm
の加工したものを準備する。次いで、回転チャック台4
に前記の鋼材の丸棒1を取り付ける。続いて、他方の炭
素鋼の角棒2を固定チャック台5に取り付け、2つの接
合材1、2を対向させる。さらに、押圧手段7である油
圧シリンダ7a、ピストン7bを駆動して固定チャック
台5を基台6上を移動させ、接触面を形成する。次い
で、押圧手段7により、図3の実線Aに示すように回転
数Nと圧力P1 を変化させる。
A first embodiment of the friction joining method of the present invention will be described. First, as shown in FIG. 2, a high-strength material (joining material)
16 mmφ × 40 mmL round bar (low alloy steel (example: JIS G 3120 SQV2A material)) 1 and 1 as 1 and 2
Using a square bar (carbon steel material) 2 of 0 mm square × 40 mmL, Rmax roughness 0.1 μm to 0.03 μm is applied to the end surfaces 1 a and 2 a.
Prepare the processed one. Next, the rotary chuck table 4
The round bar 1 made of the above-mentioned steel material is attached to the above. Subsequently, the other carbon steel square bar 2 is attached to the fixed chuck base 5, and the two joining materials 1 and 2 are opposed to each other. Further, the hydraulic chuck 7a and the piston 7b, which are the pressing means 7, are driven to move the fixed chuck base 5 on the base 6 to form a contact surface. Next, the rotation speed N and the pressure P 1 are changed by the pressing means 7 as shown by the solid line A in FIG.

【0018】即ち本実施形態の摩擦接合方法において
は、2つの接合材1、2の端面1a、2aにRmax粗
さ0.1μm〜0.03μmの加工した後、接合される
接合材1、2の端面同士を相互に接触させ、接合材1を
従来技術の回転数N1 よりも少ない回転数Nで回転させ
る。所定の回転数Nに達した後、所定の摩擦圧力P1
加え、所定の摩擦時間t1 が経過すると摩擦熱を生じ
る。そして摩擦熱がTになり両接合材1、2が適当な軟
化状態に達したところで回転を停止し、次いで、所定の
アプセット時間t2 中、相互にアプセット圧P2 をかけ
ることにより接合を行う。
That is, in the friction joining method of the present embodiment, the end faces 1a, 2a of the two joining materials 1, 2 are processed to have a Rmax roughness of 0.1 μm to 0.03 μm, and then the joining materials 1, 2 the end faces into contact with each other, rotating with a small rotational speed N than the bonding material 1 rotational speed N 1 of the prior art. After reaching a predetermined number of revolutions N, a predetermined friction pressure P 1 is applied, and when a predetermined friction time t 1 elapses, frictional heat is generated. The frictional heat is stopped rotating at both bonding materials 1 and 2 becomes T has reached the appropriate softened state, then, in a predetermined upset time t 2, performing bonding by mutually make a upset pressure P 2 .

【0019】従って図3の摩擦圧接サイクル図におい
て、実線Aで示す本発明の摩擦接合方法と点線Bで示す
従来の摩擦接合方法とを比較してみると、回転数は従来
技術の回転数N1 よりも少ない回転数Nの領域で摩擦接
触し、この摩擦熱で軟質材が短時間で軟化するので、従
来の摩擦時間ta1 に比して短時間t1 で回転を中止す
る。このときの温度Tは従来のTaに対して低い温度で
接合を行なうことになる。この為、圧接時間は従来例で
はta1 +ta2 であるのに対し本発明ではt1+t2
であり、きわめて短時間で接合が終了する。なお、摩擦
圧力P1 やアプセット圧力P2 には大きな差はない。
Accordingly, in the friction welding cycle diagram of FIG. 3, when comparing the friction joining method of the present invention indicated by the solid line A with the conventional friction joining method indicated by the dotted line B, the number of revolutions is equal to the number of revolutions of the prior art. friction contact with the region of small rotational speed N than 1, since the soft material in the frictional heat is softened in a short time, to stop the rotation in a short period of time t 1 compared to the conventional friction time ta 1. At this time, the bonding is performed at a temperature T lower than that of the conventional Ta. For this reason, the press-contact time is ta 1 + ta 2 in the conventional example, but is t 1 + t 2 in the present invention.
And the bonding is completed in a very short time. Incidentally, there is no significant difference in the frictional pressure P 1 and the upset pressure P 2.

【0020】従って本実施形態によれば、図3の点線B
に示す従来技術に比較して加熱温度を大幅に低くする事
が出来、高強度材を摩擦接合するにあたり、接合材自身
の温度をできるだけ上昇させることなく、高強度材を室
温に近い状態での信頼性の高い接合を可能にする。
Therefore, according to the present embodiment, the dotted line B in FIG.
The heating temperature can be greatly reduced compared to the conventional technology shown in the above, and in friction welding of high strength materials, the high strength materials can be kept close to room temperature without raising the temperature of the joining materials themselves as much as possible. Enables highly reliable bonding.

【0021】図5はかかる実施形態の効果を確認するグ
ラフ図である。図5のグラフ図は、総寄りしろと接合面
から2mm、4mm離れた位置における角棒2の表面温
度分布を示している。尚測温位置は本グラフの右上に示
している。尚、本実施形態の場合、圧力P1 として80
0から50kgfに変化させて矢印13の方向に回転さ
せる。又回転数は3,600rpmとした。
FIG. 5 is a graph for confirming the effect of this embodiment. The graph of FIG. 5 shows the surface temperature distribution of the square bar 2 at the position of 2 mm and 4 mm away from the joint surface and the joint surface. The temperature measurement position is shown at the upper right of this graph. In the case of this embodiment, 80 as the pressure P 1
Rotate in the direction of arrow 13 while changing from 0 to 50 kgf. The rotation speed was 3,600 rpm.

【0022】尚、ここで寄りしろとは接合面上の盛り上
がり部である「バリ」が生じたときの接合材1(高強度
材)と接合材2(角棒)の損耗の長さを示し、寄りしろ
は摩擦寄りしろ(摩擦時間ta1 における損耗)とアプ
セット寄りしろ(アプセット時間ta2 における損耗)
の2つがあり両者の和を総寄りしろという。
Here, the deviation refers to the length of wear of the joining material 1 (high-strength material) and the joining material 2 (square bar) when "burrs", which are bulges on the joining surface, occur. more white is (wear in friction time ta 1) white friction near the upset near white (wear in upsetting time ta 2)
And the sum of the two is said to be all-out.

【0023】図5において端面1a、1bが機械加工の
まま(粗さRmax:3μm)の従来技術のものは接合
時の総寄りしろが最大3.28mmと大きく、且つ接合
面から2mm離れた角棒2の表面温度は860℃と高
い。一方、精密研磨(Rmax=0.1μm)のものは
接合時の総寄りしろが最大0.46mmで且つ前記表面
温度は410℃前後であり、更に超精密研磨(Rmax
=0.03μm)にしたものは、接合時の総寄りしろが
最大0.17mmで且つ接合面から2mm離れた角棒2
の表面温度は260℃前後であり接合時の温度を約30
0℃以下に下げることができた。
In FIG. 5, the conventional technology in which the end surfaces 1a and 1b are machined (roughness Rmax: 3 μm) has a large total deviation at the time of joining as a maximum of 3.28 mm and an angle 2 mm away from the joining surface. The surface temperature of the rod 2 is as high as 860 ° C. On the other hand, in the case of precision polishing (Rmax = 0.1 μm), the total deviation at the time of joining is 0.46 mm at the maximum and the surface temperature is around 410 ° C.
= 0.03 μm), a square rod 2 with a maximum total deviation of 0.17 mm at the time of joining and 2 mm away from the joining surface.
Has a surface temperature of about 260 ° C. and a bonding temperature of about 30 ° C.
The temperature could be lowered to 0 ° C or less.

【0024】これらの接合材1、2を100℃で衝撃試
験した結果、20kgf−m以上のじん性が得られ母材
と同等の特性を有することが確認できた。
As a result of an impact test of these joining materials 1 and 2 at 100 ° C., it was confirmed that toughness of 20 kgf-m or more was obtained, and that they had the same properties as the base material.

【0025】次に、本発明の摩擦接合方法の比較例を図
4に基づいて説明する。図4は、図1の装置に接合面1
2を囲んで気密チャンバー14が設けられている。この
気密チャンバー14は基台6上に脚部により支持されて
いる。さらに、前記気密チャンバー14にはHeやAr
等の不活性ガスを不活性ガス源15から導くようにして
ある。このような構造の摩擦圧接装置16を用い、不活
性雰囲気の下で前述の実施の形態1とほぼ同様な方法に
より接合しても本発明と同様な効果を得る事が出来た。
従って図1に示す実施形態は、気密チャンバー14で接
合面12を囲み、気密チャンバー14内を不活性雰囲気
に保った図4に示す比較例と同等な効果を得る事が出来
る。
Next, a comparative example of the friction joining method of the present invention will be described with reference to FIG. FIG. 4 shows the device of FIG.
A hermetic chamber 14 is provided surrounding 2. The airtight chamber 14 is supported on the base 6 by legs. Further, the air-tight chamber 14 contains He or Ar.
And the like are introduced from an inert gas source 15. The same effect as that of the present invention could be obtained by using the friction pressure welding device 16 having such a structure and joining it in an inert atmosphere by a method substantially similar to that of the first embodiment.
Therefore, the embodiment shown in FIG. 1 can obtain the same effect as the comparative example shown in FIG. 4 in which the bonding surface 12 is surrounded by the airtight chamber 14 and the inside of the airtight chamber 14 is kept in an inert atmosphere.

【0026】[0026]

【発明の効果】以上説明したように、本発明の摩擦接合
方法によれば、接合材の接合端面を精密研磨若しくは超
精密研磨したので、従来の摩擦圧接に比して低い温度で
接合が可能となり、高強度材の特性が失われることはな
い。又本発明によれば、接合材同士が軟質材を介して接
合するものでなく直接接触するものである為に、その接
合部分の強度が低下することがない。さらに、気密チャ
ンバーで接合面を囲み、気密チャンバー内を不活性雰囲
気に保つ必要がなく、構造が簡単な装置を使用すること
ができる。その上、不活性雰囲気にするための面倒な操
作が不要となり、不活性ガスの供給路や、真空ポンプな
どが不要で、低コストで高強度材の摩擦接合を実施する
ことができる。尚、本発明は気密チャンバーで接合面を
囲み、気密チャンバー内を不活性雰囲気に保った装置に
適用する事を排除するものではなく、かかる装置も当然
に本発明の技術範囲に含まれる。
As described above, according to the friction joining method of the present invention, the joining end face of the joining material is precisely polished or ultra-precision polished, so that joining can be performed at a lower temperature than conventional friction welding. , And the characteristics of the high-strength material are not lost. Further, according to the present invention, since the joining materials are in direct contact with each other, not joined via the soft material, the strength of the joined portion does not decrease. Further, it is not necessary to surround the joint surface with the airtight chamber and keep the inside of the airtight chamber in an inert atmosphere, so that a device having a simple structure can be used. In addition, a troublesome operation for creating an inert atmosphere is not required, a supply path for an inert gas, a vacuum pump, and the like are not required, and friction joining of a high-strength material can be performed at low cost. Note that the present invention does not exclude application to a device in which the joint surface is surrounded by an airtight chamber and the inside of the airtight chamber is maintained in an inert atmosphere, and such a device is naturally included in the technical scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に用いられる摩擦圧接装置の
説明図である。
FIG. 1 is an explanatory diagram of a friction welding device used in an embodiment of the present invention.

【図2】図1の接合部分の拡大側面図である。FIG. 2 is an enlarged side view of a joining portion of FIG.

【図3】本発明(実線A)と従来例(点線B)の摩擦圧
接サイクル図である。
FIG. 3 is a friction welding cycle diagram of the present invention (solid line A) and a conventional example (dotted line B).

【図4】本発明の比較例として用いられた摩擦圧接装置
の説明図である。
FIG. 4 is an explanatory view of a friction welding device used as a comparative example of the present invention.

【図5】本発明及び従来方法における熱影響部の最高加
熱温度と総寄りしろとの関係を示すグラフ図である。
FIG. 5 is a graph showing the relationship between the maximum heating temperature of the heat-affected zone and the total margin in the present invention and the conventional method.

【図6】従来の摩擦圧接方法の第1の接合工程を示す説
明図である。
FIG. 6 is an explanatory view showing a first joining step of the conventional friction welding method.

【図7】図6に示す従来の摩擦圧接方法の第2の工程を
示す説明図である。
FIG. 7 is an explanatory view showing a second step of the conventional friction welding method shown in FIG.

【符号の説明】 1、2 高強度材(接合材) 1a、2a 端面 4 回転チャック台 5 固定チャック台 6 基台 7 押圧手段 7a 油圧シリンダ 7b ピストン 9 回転軸 10 ブレーキ[Description of Signs] 1, 2 High-strength material (joining material) 1a, 2a End face 4 Rotating chuck table 5 Fixed chuck table 6 Base 7 Pressing means 7a Hydraulic cylinder 7b Piston 9 Rotating shaft 10 Brake

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2つの接合材を加圧状態で相対回転さ
せ、接合面に所定の摩擦熱を発生させた後、前記回転運
動を停止して更に加圧力を加える事により、前記接合材
同士を接合する摩擦接合方法において、 接合材である2つの高強度材の端面粗さを約Rmax
0.5μm以下、好ましくはRmax0.1μm以下に
して接合面を形成して後、前記2つの高強度材の端面同
士を直接接触させて、両者を加圧状態で相対回転させ、
接合面に所定の摩擦熱を発生させた後、前記回転運動を
停止して更に加圧力を加える事により、前記接合材同士
を接合することを特徴とする摩擦接合方法。
1. A method according to claim 1, further comprising: rotating the two joining members in a pressurized state to generate a predetermined frictional heat on the joining surface; In the friction joining method for joining the two, the end surface roughness of the two high-strength materials as joining materials is set to about Rmax
After forming a joining surface with 0.5 μm or less, preferably Rmax 0.1 μm or less, the end surfaces of the two high-strength materials are brought into direct contact with each other, and both are relatively rotated in a pressurized state,
A friction joining method comprising joining the joining materials by generating a predetermined frictional heat on the joining surface, and then stopping the rotational movement and further applying a pressing force.
JP9254296A 1997-09-03 1997-09-03 Friction joining method Withdrawn JPH1177338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9254296A JPH1177338A (en) 1997-09-03 1997-09-03 Friction joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9254296A JPH1177338A (en) 1997-09-03 1997-09-03 Friction joining method

Publications (1)

Publication Number Publication Date
JPH1177338A true JPH1177338A (en) 1999-03-23

Family

ID=17263014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9254296A Withdrawn JPH1177338A (en) 1997-09-03 1997-09-03 Friction joining method

Country Status (1)

Country Link
JP (1) JPH1177338A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066271A1 (en) * 2001-08-20 2003-08-14 Veri-Tek International, Corp. Synchronized tubular friction welding arrangement
US7275677B2 (en) 2001-08-20 2007-10-02 Veri-Tek International Corporation Synchronized tubular friction welding arrangement
WO2009107594A1 (en) * 2008-02-29 2009-09-03 マニー株式会社 Method for connecting cemented carbide and stainless steel
JP2010197150A (en) * 2009-02-24 2010-09-09 Ihi Corp Device and method for evaluating damage
WO2017022184A1 (en) * 2015-07-31 2017-02-09 国立大学法人大阪大学 Friction bonding method
JP2017070997A (en) * 2015-09-18 2017-04-13 ゼネラル・エレクトリック・カンパニイ Inertia welding method
KR20190113875A (en) * 2017-02-02 2019-10-08 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Linear friction welding method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066271A1 (en) * 2001-08-20 2003-08-14 Veri-Tek International, Corp. Synchronized tubular friction welding arrangement
US7275677B2 (en) 2001-08-20 2007-10-02 Veri-Tek International Corporation Synchronized tubular friction welding arrangement
WO2009107594A1 (en) * 2008-02-29 2009-09-03 マニー株式会社 Method for connecting cemented carbide and stainless steel
JPWO2009107594A1 (en) * 2008-02-29 2011-06-30 マニー株式会社 Connection method between cemented carbide and stainless steel
JP2010197150A (en) * 2009-02-24 2010-09-09 Ihi Corp Device and method for evaluating damage
JPWO2017022184A1 (en) * 2015-07-31 2018-05-31 国立大学法人大阪大学 Friction welding method
KR20180027575A (en) * 2015-07-31 2018-03-14 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Friction joining method
CN107848065A (en) * 2015-07-31 2018-03-27 国立大学法人大阪大学 Friction welding method
WO2017022184A1 (en) * 2015-07-31 2017-02-09 国立大学法人大阪大学 Friction bonding method
EP3330034A4 (en) * 2015-07-31 2019-04-10 Osaka University Friction bonding method
US11161199B2 (en) * 2015-07-31 2021-11-02 Osaka University Friction bonding method
JP2017070997A (en) * 2015-09-18 2017-04-13 ゼネラル・エレクトリック・カンパニイ Inertia welding method
KR20190113875A (en) * 2017-02-02 2019-10-08 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Linear friction welding method
US11273518B2 (en) * 2017-02-02 2022-03-15 Osaka University Linear friction welding method

Similar Documents

Publication Publication Date Title
US6601751B2 (en) Method and apparatus for joining
JP4277117B2 (en) Dissimilar metal joined body of nickel / titanium alloy material and pure titanium material and joining method thereof
AU2004201124B8 (en) Device and method to join the faces of parts
US20070241163A1 (en) Apparatus And Method For Friction Stir Spot Welding
EP0404531B1 (en) Friction bonding apparatus
CA3042636C (en) Linear friction welding apparatus and method
US20130064672A1 (en) Method of manufacturing a turbine rotor
US9475148B2 (en) Friction stir processing method for a workpiece having surface coating
JPH1177338A (en) Friction joining method
US3597832A (en) Inertia welding of steel to aluminum
JP2004528990A (en) Anvil for friction stir welding of high temperature materials
JP4479416B2 (en) Friction spot welding method and apparatus
JP4740289B2 (en) Friction stir welding equipment
JP2003126968A (en) Method and device for direct acting friction welding
CN112317947A (en) Continuous driving friction welding method for aluminum bar and steel bar with outer conical end face
CA2212250A1 (en) Friction assisted diffusion bonding
US3657800A (en) Friction welded graphitic valve lifters
JPH10180468A (en) Friction joining method
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
JP7114029B2 (en) metal joining method
JP3710870B2 (en) Ultrasonic welding method and apparatus
US20220320620A1 (en) Method for separating members that were previously joined
JP3207465B2 (en) Aluminum or aluminum alloy friction welding method
JP2760111B2 (en) Friction welding method
JP7365646B2 (en) Linear friction welding method and joined structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207