JPWO2009078055A1 - Direct type backlight and liquid crystal television incorporating the backlight - Google Patents
Direct type backlight and liquid crystal television incorporating the backlight Download PDFInfo
- Publication number
- JPWO2009078055A1 JPWO2009078055A1 JP2007557257A JP2007557257A JPWO2009078055A1 JP WO2009078055 A1 JPWO2009078055 A1 JP WO2009078055A1 JP 2007557257 A JP2007557257 A JP 2007557257A JP 2007557257 A JP2007557257 A JP 2007557257A JP WO2009078055 A1 JPWO2009078055 A1 JP WO2009078055A1
- Authority
- JP
- Japan
- Prior art keywords
- light
- prism
- lens sheet
- light diffusing
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 34
- 239000002861 polymer material Substances 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000009792 diffusion process Methods 0.000 description 49
- 238000005259 measurement Methods 0.000 description 39
- 230000003287 optical effect Effects 0.000 description 38
- 230000004313 glare Effects 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 28
- 238000000034 method Methods 0.000 description 28
- 235000019557 luminance Nutrition 0.000 description 27
- 238000001816 cooling Methods 0.000 description 24
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 17
- 230000007423 decrease Effects 0.000 description 10
- -1 polypropylene Polymers 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920005992 thermoplastic resin Polymers 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- 230000005865 ionizing radiation Effects 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 229920001342 Bakelite® Polymers 0.000 description 2
- 239000004419 Panlite Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0268—Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
- G02B5/0226—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
- G02B5/0231—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
- G02B5/045—Prism arrays
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133611—Direct backlight including means for improving the brightness uniformity
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
レンズ面及び凹凸条列構造面を有する光拡散性レンズシートであって、レンズ面には透明な高分子材料からなる実質的に三角柱のプリズム部を該三角柱の長軸が互いにほぼ平行になるように一定周期で多数配列し、凹凸条列構造面には高低差Aが2μm〜30μm、周期Bが50μm〜1000μmで、B/Aが10〜50の範囲にある凹凸条列構造が、プリズム部の長軸に対して5度〜30度の振り角度をつけて設けられていることを特徴とする。本発明の光拡散性レンズシートは、光の利用効率が高く、正面から画面が見やすく、光源の配置個所を見え難くするとともに干渉縞の発生も抑えて出射面全体から均質な光を出射することが可能で、更に、バックライトの部品数も低減できるので製造コストが低下するとともに生産性が向上する。A light diffusing lens sheet having a lens surface and a concavo-convex array structure surface, wherein the lens surface has a substantially triangular prism portion made of a transparent polymer material so that the major axes of the triangular prisms are substantially parallel to each other. The concave / convex array structure in which the height difference A is 2 μm to 30 μm, the period B is 50 μm to 1000 μm, and the B / A is in the range of 10 to 50 is formed on the surface of the concave / convex array structure. It is characterized by being provided with a swing angle of 5 to 30 degrees with respect to the major axis. The light diffusing lens sheet of the present invention has high light utilization efficiency, makes it easy to see the screen from the front, makes it difficult to see the location of the light source, and suppresses the generation of interference fringes, and emits uniform light from the entire emission surface. In addition, since the number of backlight components can be reduced, the manufacturing cost is reduced and the productivity is improved.
Description
本発明は、液晶表示装置の光拡散性レンズシートに関し、更に詳しくは、光の利用効率が高く、かつ線状光源を用いた直下型バックライトから均一で高品位な光を得ることができる光拡散性レンズシート、該シートを用いた直下型バックライト、及び該バックライトを組み込んだ液晶テレビに関する。 The present invention relates to a light diffusing lens sheet for a liquid crystal display device. More specifically, the present invention relates to light with high light utilization efficiency and capable of obtaining uniform and high-quality light from a direct type backlight using a linear light source. The present invention relates to a diffusive lens sheet, a direct type backlight using the sheet, and a liquid crystal television incorporating the backlight.
液晶表示装置のバックライトは導光板の端面に光源を配置したエッジライト型と、複数の光源を配置してその上に光拡散板を配備した直下型のバックライトとがある。近年、表示装置が大型化するのに伴って光の利用効率が高く均質な光が得られる面状の直下型バックライトが要求されている。
直下型バックライトの光源としては、主として、線状からなる陰極線管が多く用いられるが、線状光源を並列してバックライトとした場合は場所による明暗差が生じやすく、特に線状光源の真上と該光源同士の中間部との間で明暗差が生じやすい。そこで、これらの光源からの光を均質にするために、拡散機能のある板状の半透明板である光拡散板を通して面状光源とされるのが通例である。しかし、この光拡散板で光源の配置個所が視認できない程度に光を拡散均質化すると、光の利用効率が悪く、即ち光の透過量が少なくなって画面が暗くなり、一方、光の利用効率を良くしようとすると背後の光源が透けて見えてしまい、画面が見にくくなる。The backlight of the liquid crystal display device includes an edge light type in which a light source is arranged on an end face of a light guide plate, and a direct type backlight in which a plurality of light sources are arranged and a light diffusion plate is arranged thereon. In recent years, with the increase in the size of display devices, there has been a demand for a planar direct-type backlight capable of obtaining uniform light with high light use efficiency.
As a light source for a direct type backlight, a linear cathode ray tube is mainly used. However, when a linear light source is used in parallel as a backlight, a difference in brightness is likely to occur depending on the location. A difference in brightness is likely to occur between the top and the intermediate portion between the light sources. Therefore, in order to make the light from these light sources uniform, the light source is usually a planar light source through a light diffusing plate which is a plate-like translucent plate having a diffusing function. However, if light is diffused and homogenized to such an extent that the location of the light source cannot be seen with this light diffusing plate, the light utilization efficiency will be poor, that is, the amount of light transmission will be reduced and the screen will be darkened. If you try to improve, the light source behind you will see through, making it difficult to see the screen.
そこで、光の利用効率を上げてなお且つ光源の配置個所が視認できないようにするために、表面に拡散面を形成した光拡散シートを半透明の光拡散板の上に設置して用いることも行われている。しかし、光の透過率を確保して且つ光源の配置個所を視認できないようにするために、半透明の光拡散板の半透明度を調節し、その上に設置する拡散シートを2枚、3枚と重ねて使用しなければならないため、部品数が増大し製造コストが増大するという問題がある。 Therefore, in order to improve the light utilization efficiency and make the light source arrangement location invisible, it is also possible to use a light diffusion sheet having a diffusion surface formed on the surface on a translucent light diffusion plate. Has been done. However, in order to ensure light transmittance and prevent the location of the light source from being visible, the translucency of the translucent light diffusing plate is adjusted, and two or three diffusion sheets are installed on it. Therefore, there is a problem that the number of parts increases and the manufacturing cost increases.
一方、直下型のバックライトでは、表面にプリズム構造を設けたプリズムシートを光拡散板上に設置することにより、出射される光を光拡散板の法線方向へ集中する集光が行われている。しかし、光源の配置個所を視認できなくする効果については、これだけでは不十分である。その上、特に特定方向に光が出射されることによりギラツキが発生し易い。このギラツキは一般に出射光を集光しようとしてレンズ類を設置した場合に起こりやすいものである。従って、表面に拡散面を形成した拡散シートをプリズムシートの上部又は下部に、更に多くの場合、上部及び下部の両方に設置しなければならない。 On the other hand, in a direct type backlight, a prism sheet having a prism structure on the surface is placed on the light diffusing plate, thereby condensing the emitted light in the normal direction of the light diffusing plate. Yes. However, this is not sufficient for the effect of making it impossible to visually recognize the location of the light source. In addition, glare is likely to occur particularly when light is emitted in a specific direction. This glare is generally likely to occur when lenses are installed to collect emitted light. Therefore, a diffusion sheet having a diffusion surface on the surface must be installed on the top or bottom of the prism sheet, and more often on both the top and bottom.
プリズムシートによる出射光の拡散性を高めるために、光拡散粒子を利用して裏面にコーティングしたもの(特許文献1参照)、プリズム形状部を設けた層と光拡散剤が混錬された層との多層フィルム(特許文献2参照)、更にプリズム機構の内部に光拡散粒子を含ませる方法(特許文献3参照)等が提案されている。しかし、これらはいずれも直下型の光源を見えなくする効果と、光の拡散及びプリズムの集光機能を両立できないという問題を含んでいる。即ち、光拡散粒子等が少ないと光源が画面から見えてしまい、多いと集光機能が低下する。 In order to enhance the diffusibility of the emitted light by the prism sheet, the back surface is coated using light diffusing particles (see Patent Document 1), the layer provided with the prism-shaped portion and the layer kneaded with the light diffusing agent, A multilayer film (see Patent Document 2), a method of incorporating light diffusing particles in the prism mechanism (see Patent Document 3), and the like have been proposed. However, both of these include the problem that the effect of making the direct light source invisible and the light diffusion and light collecting functions of the prism cannot be compatible. That is, if there are few light diffusion particles etc., a light source will be visible from a screen, and if there are many, a condensing function will fall.
一方、直下型の光源の照明装置に於いて透明樹脂の凹凸機構により光の拡散性を得る試みがあり、光源と被照明物との間にプリズム板を設ける方法(特許文献4参照)や、傾斜面のある帯状物を多数設けた光拡散板(特許文献5参照)等、更に、線状光源との位置関係に関した特定の頂角を持つプリズム条列(特許文献6参照)の提案もある。しかしながら、この方法によっても明暗差の解消効果は十分でなく、さらに干渉縞が発生してしまう場合があり、結局均一な光を得ることができない。
本発明は、かかる実情に鑑み、上記従来の問題を解消し、光の利用効率が高く、表示面の法線方向に集光するとともにギラツキの発生を抑えて正面から画面が見やすくし、線状光源の使用に由来する明暗差を実質的になくして光源の配置個所を見え難くするとともに光学部材間で起こる干渉縞の発生も抑えて均質な面光源が得られ、更にバックライトの部品数も低減できる光拡散性レンズシート、該シートを用いた直下型バックライト、及び該バックライトを組み込んだ液晶テレビを提供することを目的とするものである。 In view of such circumstances, the present invention solves the above-described conventional problems, has high light use efficiency, collects light in the normal direction of the display surface, suppresses the occurrence of glare, makes the screen easy to see from the front, and linear A uniform surface light source can be obtained by substantially eliminating the light and dark difference resulting from the use of the light source, making it difficult to see the location of the light source and suppressing the occurrence of interference fringes between optical members, and the number of backlight components An object of the present invention is to provide a light diffusing lens sheet that can be reduced, a direct-type backlight using the sheet, and a liquid crystal television incorporating the backlight.
本発明は上記目的を達成するためになされたもので、本発明の請求項1に係わる発明は、一方の面に透明な高分子材料からなる実質的に三角柱のプリズム部が、該三角柱の長軸が互いにほぼ平行になるように一定周期で多数配列され、
他方の面には高低差Aが2μm〜30μm、周期Bが50μm〜1000μm、B/Aが10〜50の範囲にある凹凸条列構造が、プリズム部の長軸に対して5度〜30度の振り角度をつけて設けられていることを特徴とする光拡散性レンズシートを内容とする。The present invention has been made to achieve the above object, and the invention according to claim 1 of the present invention is characterized in that a prism portion of a substantially triangular prism made of a transparent polymer material on one side has a length of the triangular prism. A large number are arranged at a constant period so that the axes are almost parallel to each other,
On the other surface, an uneven row structure in which the height difference A is 2 μm to 30 μm, the period B is 50 μm to 1000 μm, and the B / A is in the range of 10 to 50 is 5 degrees to 30 degrees with respect to the major axis of the prism portion. The light diffusing lens sheet is characterized by being provided with a swing angle of
本発明の請求項2に係わる発明は、プリズム部の配列周期が10μmから500μmであることを特徴とする請求項1記載の光拡散性レンズシートを内容とする。
The invention according to
本発明の請求項3に係わる発明は、厚さが50μmから500μmであることを特徴とする請求項1又は2記載の光拡散性レンズシートを内容とする。
The invention according to
本発明の請求項4に係わる発明は、並列配列した複数本の線状光源からなる直下型バックライトに用いられることを特徴とする請求項1乃至3のいずれか1項に記載の光拡散性レンズシートを内容とする。
The invention according to
本発明の請求項5に係わる発明は、請求項1〜4のいずれか1項に記載の光拡散性レンズシートのプリズム部の長軸の方向を線状光源の方向とほぼ一致するように配置したことを特徴とする直下型バックライトを内容とする。
The invention according to
本発明の請求項6に係わる発明は、請求項5記載の直下型バックライトを、プリズム部の長軸の方向を液晶テレビの表示面の長手方向に一致するように組み込んだことを特徴とする液晶テレビを内容とする。
The invention according to claim 6 of the present invention is characterized in that the direct type backlight according to
本発明の光拡散性レンズシートは、一方の面に三角柱のプリズム部が配列されたレンズ面を有し、他方の面に特定の高低差Aと周期Bと、両者の比B/Aをもつ凹凸条列構造からなる拡散面を有する光拡散性レンズシートであるから、これを線状光源を用いた直下型のバックライトの光拡散板上にレンズ面を光の射出側になるようにして設けることにより、バックライトの法線方向の明るさが最高となり光の利用効率が高くなるとともに、光源の配置個所による明暗差が解消されギラツキも発生しない液晶表示装置用のバックライトを実現することができる。
更に、凹凸条列構造が、プリズム部の長軸に対して特定の振り角度をつけて設けられているため、干渉縞が発生せず均一な光を発する面光源を得ることができる。
なお、この光拡散性レンズシートは、並列配列した複数本の線状光源からなる直下型バックライトに用いた場合であっても好適な面光源を提供することができ、特に液晶テレビに使用する直下型バックライトのための光拡散性レンズシートとして好適である。
また、プリズム部の長軸方向を線状光源の方向とほぼ一致させるように配置すると、上下方向に発せられる光を制限しつつ、画面の正面及び左右方向には適量の光が発せられるため、本発明の光拡散性レンズシートを配置したバックライトは液晶テレビ用としてさらに好適である。The light diffusing lens sheet of the present invention has a lens surface on which triangular prisms are arranged on one surface, and has a specific height difference A and period B on both surfaces, and a ratio B / A between the two. Since it is a light diffusing lens sheet having a diffusing surface composed of an uneven row structure, the lens surface is placed on the light diffusing plate of a direct type backlight using a linear light source so that the lens surface is on the light exit side. Providing a backlight for a liquid crystal display device that provides the highest brightness in the normal direction of the backlight and improves the light utilization efficiency, eliminates the difference in brightness due to the location of the light source, and does not cause glare. Can do.
Furthermore, since the concave and convex array structure is provided with a specific swing angle with respect to the major axis of the prism portion, a surface light source that emits uniform light without generating interference fringes can be obtained.
This light diffusing lens sheet can provide a suitable surface light source even when used in a direct type backlight composed of a plurality of linear light sources arranged in parallel, and is particularly used for a liquid crystal television. It is suitable as a light diffusing lens sheet for a direct type backlight.
In addition, if the major axis direction of the prism portion is arranged so as to substantially coincide with the direction of the linear light source, an appropriate amount of light is emitted in the front and left and right directions of the screen while limiting the light emitted in the vertical direction. The backlight provided with the light diffusing lens sheet of the present invention is more suitable for a liquid crystal television.
1 光拡散性レンズシート
2 レンズ面
3 プリズム部
4 拡散面
4a 凹凸条列構造
5 凹条列
6 凸条列
L1 プリズム部の長軸方向と平行な線
L2 凹凸条列の長軸方向と平行な線
C プリズム部の配列周期
A 凹凸条列の高低差
B 凹凸条列の周期
b1 凹条列の幅
b2 凸条列の幅
α 振り角度DESCRIPTION OF SYMBOLS 1 Light diffusing
前記したように、直下型バックライトの光拡散板上にプリズムシートを設置すると光拡散板の法線方向へ出射光を集光する効果はあるが、光源の配置個所とその間隙に明暗差があるため均一な光を得ることができない。
そこで、プリズム構造のレンズ面の反対面において各種の光拡散の方法を検討したところ、特定の凹凸条列構造をレンズ面の反対側に設け、その条列の長軸方向を線状光源の長軸方向とほぼ一致させると前記の明暗差の解消に非常に効果があるが、同時に干渉縞が発生してしまい、結局均一な面光源を得ることができないことが判明した。
そこで、さらに鋭意研究を進めたところ、干渉縞が発生するのは、凹凸条列方向とプリズム部の長軸方向を一致させたのが原因であることを見出し、プリズム部の長軸方向と凹凸条列の長軸方向の間に5度〜30度の振り角度をつけることにより、干渉縞の発生を防ぐことができる上に法線方向の明るさも十分であり且つ光源の明暗差を解消することができ、均一な面光源が得られることを見出し本発明に到達した。As described above, installing a prism sheet on the light diffusing plate of the direct type backlight has the effect of condensing the emitted light in the normal direction of the light diffusing plate, but there is a difference in brightness between the location of the light source and its gap. Therefore, uniform light cannot be obtained.
Therefore, when various light diffusion methods were examined on the opposite surface of the lens surface of the prism structure, a specific uneven row structure was provided on the opposite side of the lens surface, and the major axis direction of the row was defined as the length of the linear light source. It has been found that, when substantially matched with the axial direction, it is very effective in eliminating the above-described difference in brightness, but interference fringes are generated at the same time, and a uniform surface light source cannot be obtained after all.
As a result of further diligent research, it was found that the interference fringes were caused by the fact that the concave / convex array direction and the major axis direction of the prism portion were matched. By providing a swing angle of 5 to 30 degrees between the long axis directions of the row, the generation of interference fringes can be prevented, the brightness in the normal direction is sufficient, and the difference in brightness of the light source is eliminated. The present invention has been found that a uniform surface light source can be obtained.
本発明の光拡散性レンズシートは、その一方の面にプリズム部が設けられ(以下、レンズ面と記す)、他方の面に凹凸条列構造(以下、拡散面と記す)が設けられる。ここで、図1に示すとおり、拡散面4の凹凸条列構造4aの長軸方向L2はレンズ面2のプリズム部3の長軸方向L1に対し振り角度αを付けて設けられる。なお、図1において、プリズム部3は実線で示し、凹凸条列構造4aは破線で示している。
The light diffusing lens sheet of the present invention is provided with a prism portion (hereinafter referred to as a lens surface) on one surface and an uneven row structure (hereinafter referred to as a diffusion surface) on the other surface. Here, as shown in FIG. 1, the major axis direction L2 of the concavo-
図1及び図2に示すとおり、レンズ面2には実質的に三角柱からなるプリズム形状部の単位からなるプリズム部3が互いにほぼ平行になるように一定周期Cで配列される。
このプリズム部3は、三角柱の断面の形状が集光能力を発揮し易い、頂角が60度より120度の形状を選ぶことができる。好ましくは70度より110度の範囲である。三角形の形状は特に限定されず、等辺、不等辺のいずれでもよいが、拡散シートの法線方向に集光性能を向上させる点で二等辺三角形が好ましく、従って、頂角に相対した底辺に隣接して隣の二等辺三角形を順次配置し、頂角の列が長軸となり互いにほぼ平行になるように配列した構造とするのが好ましい。この場合、集光能力が著しく減退しない限り、三角柱の頂角及び底角が曲率を持っても差し支えない。
プリズム部3を配列周期Cについては、10μmより500μmの範囲が出射光の均質性を高めるので好ましく、より好ましくは、30μmより200μmの範囲である。As shown in FIGS. 1 and 2,
The
As for the arrangement period C of the
図1及び図3に示すとおり、拡散面4には線状光源の配置個所による明暗差の解消と特定方向に光が射出して発するギラツキの解消のために凹凸条列構造4aが設けられる。凹凸条列構造4aの高低差Aは2μm〜30μmである。高低差Aが2μmより小さいと明暗差及びギラツキ解消の効果がなく、30μmより大きいと凹凸条列構造をプリズムシートの裏面に設けるために高度の加工技術が必要となり、コスト高となるばかりでなく、生産性が低下する。
この凹凸条列構造の周期Bは50μm〜1000μm、好ましくは50μm〜500μmである。周期Bが50μmより小さいとプリズムの集光能力が低下し、1000μmより大きいと凹凸条列の数が少なくなるためプリズムとの干渉が減り、その結果、明暗差が増加し外観が不良となる。
高低差Aに対する周期Bの比B/Aは10〜50の範囲に調整される。この比が10未満では凹凸条列の数が増加するので正面輝度が低くなり、一方、50を越えると凹凸条列の数が少なくなり、その結果、プリズムとの干渉が減って明暗差が大きくなり、外観が不良となる。As shown in FIGS. 1 and 3, the diffusing
A period B of the uneven row structure is 50 μm to 1000 μm, preferably 50 μm to 500 μm. If the period B is smaller than 50 μm, the light condensing ability of the prism is lowered, and if it is larger than 1000 μm, the number of the concavo-convex rows is reduced, so that interference with the prism is reduced. As a result, the difference in brightness is increased and the appearance is deteriorated.
The ratio B / A of the period B to the height difference A is adjusted to a range of 10-50. If this ratio is less than 10, the number of the concave and convex lines increases, so that the front luminance is lowered. On the other hand, if it exceeds 50, the number of the concave and convex lines decreases, and as a result, the interference with the prism is reduced and the difference in brightness is large. And the appearance is poor.
凹凸条列構造4aにおける凹条列5、凸条列6の断面形状は特に限定されないが、長方形状の四角形、斜面を持つ台形等が挙げられる。
また凹条列5と凸条列6の幅の比(b1/b2)も特に限定されず、上記した特定の周期ごとに細い凹条列、凸条列を設けた構造であっても採用できるが、好ましくは1:4〜4:1とし、更に好ましくは1:2〜2:1とし、最も好ましくは1:1付近とすると、明暗差の解消効果が著しく、ギラツキを抑える効果も著しい。
尚、凹凸条列構造4aを構成する凹条列,凸条列は直線状である必要はなく、曲線状や波線状であってもよいが、凹凸条列構造のそれぞれの部分において、プリズム部3の長軸に対して5度から30度の振れ角度とされている必要がある。The cross-sectional shapes of the
Moreover, the ratio (b1 / b2) of the width of the row of
The concave and convex rows constituting the concave /
凹凸条列構造4aは、図1に示すとおり、プリズム部3の長軸に対して5度〜30度の振り角度αをつけて設けられる。即ち、凹凸条列構造4aの方向に平行な線とプリズム部3の長軸方向に平行な線は5度から30度の角度で交わる。これにより、干渉縞の発生がなくなり、プリズム集光機能も増して法線方向の明るさも上昇する。ここで振り角度が5度より小さくなると干渉縞を起こしやすく、一方、30度より大きくなると明暗差を解消する効果が得られなくなり、ギラツキも発生してくる。
As shown in FIG. 1, the
光拡散性レンズシートの材質は透明な高分子材料である限り特に限定されず、通常の光学用の透明樹脂から選ぶことができる。その具体例としては、アクリル樹脂、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、環状ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリアミド系樹脂、ポリアリレート、ポリイミド等を挙げることができる。更に熱可塑性樹脂以外に、アクリル系樹脂等の電離性放射線等により硬化する硬化性樹脂を用いることもできる。
光拡散性レンズシートのレンズ面にプリズム部を形成し、拡散面に凹凸条列構造を形成する方法は、熱可塑性樹脂を用いる方法と硬化性樹脂を用いる方法がある。熱可塑性樹脂の場合には通常の形成方法が可能で、所望の金型内へ射出成形するか、シート状材料を金型により圧縮成形する方法が可能である。
押出成形にあっては、シート状に押し出された材料を加熱下にエンボスするか、溶融押出時に金型ロールに押圧するか、特許第2925069号に記載されているように、前もって型付けされた離型性シートに挟圧して該型を転写して成形することができる。そして、同時成形する場合は、一方の片面は離型性シートにより、他方の片面は金型ロールによって成形することも出来る。
また、硬化性樹脂において、電離性放射線による場合は紫外線硬化樹脂を使用するのが通常である。一般的には透明な支持体上に硬化性樹脂を塗布後、型内で紫外線を照射して成形される。
なお、レンズ面のプリズム部及び拡散面の凹凸条列構造は別々に形成して、これを貼り合わせてもよく、一体で同時に形成してもよい。The material of the light diffusing lens sheet is not particularly limited as long as it is a transparent polymer material, and can be selected from ordinary optical transparent resins. Specific examples thereof include acrylic resins, polycarbonate, polystyrene, polyvinyl chloride, polypropylene, polymethylpentene and other polyolefins, cyclic polyolefins, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and other polyester resins, polyamide resins, poly Examples include arylate and polyimide. Further, in addition to the thermoplastic resin, a curable resin that is cured by ionizing radiation such as an acrylic resin can also be used.
There are a method using a thermoplastic resin and a method using a curable resin as a method of forming a prism portion on the lens surface of a light diffusing lens sheet and forming an uneven row structure on the diffusion surface. In the case of a thermoplastic resin, a normal forming method is possible, and a method of injection molding into a desired mold, or a method of compression-molding a sheet-like material with a mold is possible.
In extrusion molding, the material extruded into a sheet is embossed under heating, pressed against a mold roll during melt extrusion, or released in advance as described in Japanese Patent No. 2925069. The mold can be formed by transferring the mold while sandwiching the mold sheet. And when forming simultaneously, one side can also be shape | molded by a mold release sheet, and the other side can also be shape | molded by a metal mold | die roll.
Further, in the case of curable resin, in the case of using ionizing radiation, it is usual to use an ultraviolet curable resin. In general, after applying a curable resin on a transparent support, it is molded by irradiating ultraviolet rays in a mold.
The prism portion of the lens surface and the concave / convex array structure of the diffusing surface may be formed separately and bonded together, or may be integrally formed at the same time.
以下、本発明の光拡散性レンズシートの使用方法について説明する。
通常、直下型バックライトは複数本の冷陰極線管からなる線状光源を並列に配列し、表示面側に2mm〜4mmの厚さの光拡散板を設置し、その反対側に光反射板を設置して形成されるが、本発明の光拡散性レンズシートはレンズ面を光の出射側にむけて前記光拡散板の上に設置される。
設置する方向はプリズム部の長軸方向が概ね横向きになっている限り特に限定されず、例えば、線状光源の長軸方向と拡散面の凹凸状列の長軸方向を一致させて設置してもよいし、プリズム部の長軸方向を線状光源の長軸と一致させて設置してもよいし、更にこの中間的な位置でも設置することが出来るが、プリズム部の長軸方向を線状光線の方向とほぼ一致させて設置するのが、出射光が光拡散性レンズシートの法線方向に集光し易い点で好ましい。Hereinafter, a method for using the light diffusing lens sheet of the present invention will be described.
Usually, a direct type backlight has a linear light source composed of a plurality of cold cathode ray tubes arranged in parallel, a light diffusing plate having a thickness of 2 mm to 4 mm is installed on the display surface side, and a light reflecting plate is installed on the opposite side. The light diffusing lens sheet of the present invention is installed on the light diffusing plate with the lens surface facing the light exit side.
The installation direction is not particularly limited as long as the major axis direction of the prism portion is substantially lateral, and for example, the major axis direction of the linear light source and the major axis direction of the concavo-convex rows of the diffusion surface are aligned with each other. Alternatively, the major axis direction of the prism portion may be set so as to coincide with the major axis of the linear light source, and further, it may be installed at an intermediate position. It is preferable that the light beam is arranged so as to be substantially coincident with the direction of the shaped light beam because the emitted light is easily condensed in the normal direction of the light diffusing lens sheet.
液晶テレビの場合には、表示面は横長手方が一般的である。そして、表示面の左右斜め方向からも観賞しやすいことが重要であり、上下方向からの観賞はあまり重要でない。従って、表示面の正面方向、左右方向及び左右斜め方向の明るさを確保するには、重要でない上下方向の光を正面方向に集光して出射を調節するのが好ましい。 In the case of a liquid crystal television, the display surface is generally horizontally long. It is important that viewing is easy from the left and right diagonal directions of the display surface, and viewing from the top and bottom directions is not so important. Therefore, in order to ensure the brightness in the front direction, the left-right direction, and the left-right oblique direction of the display surface, it is preferable to adjust the emission by concentrating light in the vertical direction that is not important in the front direction.
ここで、プリズム部を長軸が互いにほぼ平行になるように配列したレンズシートは、長軸方向と、これに直交する垂直方向とで出射輝度が異なり、このプリズムシートにより垂直方向に拡散する光が正面方向に集光されることは知られている。
従って、液晶テレビのバックライトの線状光源が液晶画面の長手方向に設置されていれば、プリズム部の長軸方向及び凹凸状列構造の長軸方向もほぼ液晶画面の長手方向に向けて光拡散性レンズシートを設置するのが得策である。これにより、やや不必要な上下方向への出射は制限的となり正面方向の明るさと表示面の左右斜め方向の明るさを確保して、均質でマイルドな光源とすることができる。更に、必要とあれば、通常の光拡散シートを更に設置しても良い。この光拡散シートはプリズムシートと併用される場合、プリズムシートを中心として、下拡散用と上拡散用が市販されている。Here, the lens sheet in which the prism portions are arranged so that the major axes are substantially parallel to each other has different emission luminances in the major axis direction and the vertical direction perpendicular thereto, and the light diffused in the vertical direction by the prism sheet. Is known to be focused in the front direction.
Therefore, if the linear light source of the backlight of the liquid crystal television is installed in the longitudinal direction of the liquid crystal screen, the major axis direction of the prism portion and the major axis direction of the concavo-convex array structure are also directed toward the longitudinal direction of the liquid crystal screen. It is a good idea to install a diffusive lens sheet. Thereby, the slightly unnecessary upward and downward emission is limited, and the brightness in the front direction and the brightness in the oblique direction on the left and right of the display surface can be secured, and a homogeneous and mild light source can be obtained. Furthermore, if necessary, a normal light diffusion sheet may be further installed. When this light diffusing sheet is used in combination with a prism sheet, the lower diffusing sheet and the upper diffusing sheet are commercially available with the prism sheet as the center.
本発明の光拡散性レンズシートの厚さは任意であるが、液晶テレビの組立て作業時の取扱い性の点からは、通常50μmより500μmが好ましく、連続生産上からは200μmより400μmが好ましい。 The thickness of the light diffusing lens sheet of the present invention is arbitrary, but from the viewpoint of handling at the time of assembling the liquid crystal television, it is usually preferably from 50 μm to 500 μm, and from the viewpoint of continuous production, preferably from 200 μm to 400 μm.
以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
実施例1
(光拡散性レンズシートの製造)
ポリカーボネートの透明樹脂「パンライトL−1225Y」(帝人化成株式会社製)を溶融押出の樹脂温度295℃でダイスよりシート状に押し出し、押出されたシート状溶融樹脂を、プリズム部の形状が予め型付けされた離型性シートと、該プリズム部の長軸方向に対し20度の振り角度をつけて凹凸条列構造をその表面に設けた冷却ロールとの間に挟圧する、特許第2925069号に記載の方法でレンズシートを製造した。
上記離型性シートは、断面の三角形が頂角100度で底辺との角が40度の二等辺三角形である三角柱状を底辺が50μmの周期で隣接して長軸が互いに平行になるように配列したものを用いた。また、上記冷却ロールの凹凸条列構造は、平面視直線状の凹凸条列が60μmの周期で配列されており、凹凸の高低差Aが2μm、周期Bが60μm(凹条列及び凸条列の幅はそれぞれ30μm)、凸条列の断面形状は下底30μm、上底24μmの台形状とした。高低差Aに対する周期Bの比B/Aは30である。
得られたシートの厚みは240μmであった。得られた光拡散性レンズシートの光学特性は、次に示す方法で測定・判定した。測定・判定結果を表1に示す。Example 1
(Manufacture of light diffusing lens sheet)
Polycarbonate transparent resin “Panlite L-1225Y” (manufactured by Teijin Kasei Co., Ltd.) is extruded from a die at a melt extrusion resin temperature of 295 ° C. into a sheet shape, and the extruded sheet-shaped molten resin is pre-shaped with a prism shape. Described in Japanese Patent No. 2925069, which is sandwiched between the formed release sheet and a cooling roll provided with a concavo-convex array structure on the surface thereof with a swing angle of 20 degrees with respect to the major axis direction of the prism portion. The lens sheet was manufactured by the method of.
The releasable sheet has a triangular prism shape having an isosceles triangle in which the cross-sectional triangle is an apex angle of 100 degrees and the base angle is 40 degrees so that the long axes are adjacent to each other with a period of 50 μm and the major axes are parallel to each other. An array was used. Moreover, the uneven | corrugated row | line | column structure of the said cooling roll arrange | positions the uneven | corrugated row | line | column with a planar view linear form with the period of 60 micrometers, the unevenness | corrugation height difference A is 2 micrometers, and the period B is 60 micrometers (concave line and convex line). Each of which has a width of 30 μm), and the cross-sectional shape of the ridges is a trapezoidal shape having a lower base of 30 μm and an upper base of 24 μm. The ratio B / A of the period B to the height difference A is 30.
The thickness of the obtained sheet was 240 μm. The optical properties of the obtained light diffusing lens sheet were measured and determined by the following method. The measurement / judgment results are shown in Table 1.
(光学特性の測定・判定方法)
光拡散性レンズシートの明暗差は、輝度計の受光面を小さくしてバックライトの各部の輝度を測定し、その差を計算することにより測定できる。しかし面光源の品位は肉眼による判定も欠かすことが出来ない。
更にバックライトの品位の特徴付けには特定の方向に強く出射するような光線の存在の有無があり、これはギラツキとして肉眼により判定できる。
従って、輝度計による測定と肉眼による判定とにより、光学特性を評価した。(Measurement / judgment method of optical characteristics)
The brightness difference of the light diffusing lens sheet can be measured by measuring the luminance of each part of the backlight by reducing the light receiving surface of the luminance meter and calculating the difference. However, the quality of the surface light source must be judged by the naked eye.
Further, the quality of the backlight is characterized by the presence or absence of light rays that are strongly emitted in a specific direction, which can be determined by the naked eye as glare.
Therefore, the optical characteristics were evaluated by measurement with a luminance meter and determination with the naked eye.
バックライトの構成
線状の陰極線管16本を横方向に等間隔に列設した縦400mm×横705mmの32インチテレビ用のバックライトを点灯する。このバックライトキャビティ内の線状光源の下に光反射板を配置し、かつ上に厚さ2mmの光拡散板「オプトマックス」(住友ベークライト株式会社製)を設置し、光拡散板上に光拡散性レンズシートを設置した。光拡散性レンズシートはレンズ面を出射面側とし、プリズム部の長軸方向を陰極線管の長軸方向と一致させて設置した。Backlight Configuration A backlight for a 32-inch television having a length of 400 mm and a width of 705 mm, in which 16 linear cathode ray tubes are arranged at equal intervals in the horizontal direction, is turned on. A light reflector is placed under the linear light source in the backlight cavity, and a 2 mm thick light diffuser “Opt Max” (manufactured by Sumitomo Bakelite Co., Ltd.) is installed on the light diffuser. A diffusive lens sheet was installed. The light diffusing lens sheet was installed such that the lens surface was the exit surface side and the major axis direction of the prism portion was matched with the major axis direction of the cathode ray tube.
輝度の測定
光拡散性レンズシートを設置した面の上方500mmの距離に、輝度計ミノルタCA−1500(コニカ・ミノルタ株式会社製)により、測定面積4.8cm2 として、設置した光拡散性レンズシートの中心点の輝度を測定した。Luminance measurement Installed light diffusing lens sheet at a distance of 500 mm above the surface on which the light diffusing lens sheet was installed, using a luminance meter Minolta CA-1500 (manufactured by Konica Minolta Co., Ltd.) as a measurement area of 4.8 cm 2. The brightness of the center point of was measured.
バックライト出射光の外観品位の判定:
ギラツキ:
光源から反射、屈折等により直接各方向からの観賞者の目に入るギラツキ感を下記の基準により目視判定する。
○:ギラツキが見えず、穏やかな出射状況である。
○△:特定の一方向のみ僅かにぎらつきが見える。
△:僅かにギラツキが見えるが、液晶パネルを透過した後は見えなくなる。
×:ギラツキが見え、液晶パネルを透過した後も見える場合がある。Judgment of appearance quality of backlight emission:
Glare:
The glare that enters the viewer's eyes directly from each direction due to reflection, refraction, etc. from the light source is visually determined according to the following criteria.
○: Glittering is not visible and the light is exiting gently.
○ △: Slight glare is seen only in one specific direction.
Δ: Slight glare is seen, but it disappears after passing through the liquid crystal panel.
X: Glitter is visible and may be visible after passing through the liquid crystal panel.
線状光源直上とその中間部との明暗差:
線状光源直上とその中間部との明暗差を下記の基準により目視判定する。
○:明暗差が認められない。
○△:○に近く、明暗差が極く僅かに認められる。
△:明暗差が僅かに認められる。
△×:×に近く、明暗差がかなりはっきり認められる。
×:明暗差がはっきり認められる。Difference in brightness between the line light source and the middle part:
The light / dark difference between the line light source and the intermediate portion thereof is visually determined according to the following criteria.
○: No difference in brightness is recognized.
○ △: Close to ○, with very slight difference in brightness.
Δ: A slight difference in brightness is recognized.
Δ ×: Close to ×, and the difference in brightness is clearly recognized.
X: A contrast difference is clearly recognized.
線状光源直上とその中間部との明暗輝度差:
上記した輝度測定と同様の方法により輝度計トプコンBM−5A(株式会社トプコン社製)を測定面積0.2cm2 に絞り、バックライト上300mmまで接近して、2箇所の冷陰極管の直上とその中間点との輝度を測定し、その輝度差を算出して平均値を得た。Brightness / darkness difference between the linear light source and its middle part:
A luminance meter Topcon BM-5A (manufactured by Topcon Co., Ltd.) was narrowed down to a measurement area of 0.2 cm 2 by the same method as the luminance measurement described above, approached up to 300 mm above the backlight, and immediately above the two cold cathode tubes. The luminance with the intermediate point was measured, and the luminance difference was calculated to obtain an average value.
実施例2
冷却ロールの凹凸条列構造の周期Bを100μm(凹条列、凸条列の幅はそれぞれ50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更した以外は実施例1と同様にして光拡散性レンズシートを作成し、その光学特性を測定・判定した。測定・判定結果を表1に示す。Example 2
Implemented except that the period B of the concave / convex row structure of the cooling roll was changed to a trapezoidal shape of 100 μm (the width of the concave row and the convex row is 50 μm, and the cross-sectional shape of the convex row is the bottom 50 μm and the upper bottom 30 μm). A light diffusing lens sheet was prepared in the same manner as in Example 1, and its optical characteristics were measured and judged. The measurement / judgment results are shown in Table 1.
実施例3
冷却ロールの凹凸条列構造の高低差を10μmに変更した以外は実施例2と同様にして光拡散性レンズシートを作成し、その光学特性を測定・判定した。測定・判定結果を表1に示す。Example 3
A light diffusing lens sheet was prepared in the same manner as in Example 2 except that the height difference of the concavo-convex row structure of the cooling roll was changed to 10 μm, and its optical characteristics were measured and determined. The measurement / judgment results are shown in Table 1.
実施例4
冷却ロールの凹凸条列構造の周期Bを500μm(凹条列の幅は450μm、凸条列の幅は50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更して製造した以外は実施例3と同様にして光拡散性レンズシートを製造し、その光学特性を測定・判定した。測定・判定結果を表1に示す。Example 4
The period B of the concave and convex row structure of the cooling roll is changed to a trapezoidal shape of 500 μm (the width of the concave row is 450 μm, the width of the convex row is 50 μm, the cross-sectional shape of the convex row is 50 μm at the bottom and 30 μm at the top). A light diffusing lens sheet was produced in the same manner as in Example 3 except that the optical characteristics were measured and determined. The measurement / judgment results are shown in Table 1.
実施例5
冷却ロールの凹凸条列構造の高低差Aを15μm、周期Bを250μm(凹条列の幅は200μm、凸条列の幅は50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更した以外は実施例1と同様にして光拡散性レンズシートを製造し、その光学特性を測定・判定した。測定・判定結果を表1に示す。Example 5
The height difference A of the concave / convex row structure of the cooling roll is 15 μm, and the period B is 250 μm (the width of the concave row is 200 μm, the width of the convex row is 50 μm, the cross-sectional shape of the convex row is 50 μm at the bottom, and 30 μm at the top) A light diffusing lens sheet was produced in the same manner as in Example 1 except that the trapezoidal shape was changed, and its optical characteristics were measured and determined. The measurement / judgment results are shown in Table 1.
実施例6
冷却ロールの凹凸条列構造の高低差Aを30μm、周期Bを900μm(凹条列の幅は850μm、凸条列の幅は50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更した以外は実施例1と同様にして光拡散性レンズシートを製造し、その光学特性を測定・判定した。測定・判定結果を表1に示す。Example 6
The height difference A of the concavo-convex row structure of the cooling roll is 30 μm, and the period B is 900 μm (the width of the concave row is 850 μm, the width of the convex row is 50 μm, the cross-sectional shape of the convex row is the bottom 50 μm, the top bottom 30 μm) A light diffusing lens sheet was produced in the same manner as in Example 1 except that the trapezoidal shape was changed, and its optical characteristics were measured and determined. The measurement / judgment results are shown in Table 1.
実施例7〜9
冷却ロールの凹凸条列構造の振り角度を5度、10度、30度に変更した以外は実施例4と同様にして光拡散性レンズシートを製造し、その光学特性を測定・判定した。測定・判定結果を表1に示す。Examples 7-9
A light diffusing lens sheet was produced in the same manner as in Example 4 except that the swing angle of the concave and convex row structure of the cooling roll was changed to 5 degrees, 10 degrees, and 30 degrees, and its optical characteristics were measured and determined. The measurement / judgment results are shown in Table 1.
比較例1
光拡散性レンズシートに代えて市販の光拡散シートBS300(恵和株式会社製)を2枚バックライト光拡散板の上に設置した以外は実施例1と同様にして光学特性を測定・判定した。測定・判定結果を表1に示す。Comparative Example 1
Optical characteristics were measured and determined in the same manner as in Example 1 except that two commercially available light diffusion sheets BS300 (manufactured by Eiwa Co., Ltd.) were installed on the backlight light diffusion plate instead of the light diffusing lens sheet. . The measurement / judgment results are shown in Table 1.
比較例2
光拡散性レンズシートに代えて市販の光拡散シートBS702(恵和株式会社製)を3枚重ねてバックライトの光拡散板上に設置した以外は実施例1と同様にして光学特性を測定・判定した。測定・判定結果を表1に示す。Comparative Example 2
Optical properties were measured in the same manner as in Example 1 except that three commercially available light diffusion sheets BS702 (manufactured by Keiwa Co., Ltd.) were stacked in place of the light diffusing lens sheet and placed on the light diffusion plate of the backlight. Judged. The measurement / judgment results are shown in Table 1.
比較例3
冷却ロールの凹凸状列構造の振り角度を0度に変更した以外は実施例4と同様にしてシートを製造し、得られたシートの光学特性を測定・判定した。測定・判定結果を表1に示す。Comparative Example 3
A sheet was produced in the same manner as in Example 4 except that the swing angle of the concavo-convex row structure of the cooling roll was changed to 0 degree, and the optical characteristics of the obtained sheet were measured and determined. The measurement / judgment results are shown in Table 1.
比較例4
冷却ロールの凹凸条列構造の周期Bを30μm(凹条列、凸条列の幅はそれぞれ15μm、凸条列の断面形状は下底15μm、上底10μm)の台形状に変更した以外は実施例3と同様にしてシートを製造し、得られたシートの光学特性を測定・判定した。測定・判定結果を表1に示す。Comparative Example 4
Implemented except that the period B of the concave / convex row structure of the cooling roll was changed to a trapezoidal shape of 30 μm (the width of the concave row and the convex row is 15 μm, and the cross-sectional shape of the convex row is the bottom 15 μm and the top 10 μm). A sheet was produced in the same manner as in Example 3, and the optical properties of the obtained sheet were measured and determined. The measurement / judgment results are shown in Table 1.
比較例5
冷却ロールの凹凸条列構造の高低差Aを4μm、周期Bを300μm(凹条列の幅は250μm、凸条列の幅は50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更した以外は実施例1と同様にしてシートを製造し、得られたシートの光学特性を測定・判定した。測定・判定結果を表1に示す。Comparative Example 5
The height difference A of the concave / convex row structure of the cooling roll is 4 μm, and the period B is 300 μm (the width of the concave row is 250 μm, the width of the convex row is 50 μm, the cross-sectional shape of the convex row is the bottom 50 μm, the top bottom 30 μm) A sheet was produced in the same manner as in Example 1 except that the trapezoidal shape was changed, and the optical characteristics of the obtained sheet were measured and determined. The measurement / judgment results are shown in Table 1.
比較例6
冷却ロールの凹凸条列構造の振り角度を45度に変更した他は実施例4と同様にして光学シートを製造し、得られたシートの光学特性を測定・判定した。測定・判定結果を表1に示す。Comparative Example 6
An optical sheet was produced in the same manner as in Example 4 except that the swing angle of the concavo-convex row structure of the cooling roll was changed to 45 degrees, and the optical characteristics of the obtained sheet were measured and determined. The measurement / judgment results are shown in Table 1.
比較例7
光拡散性レンズシートを使用しない他は実施例1と同様にして光学特性を測定・判定した。測定・判定結果を表1に示す。Comparative Example 7
The optical characteristics were measured and determined in the same manner as in Example 1 except that the light diffusing lens sheet was not used. The measurement / judgment results are shown in Table 1.
上記表1の実施例及び比較例から明かなように、通常の厚さ2mmの光拡散板のみでは明暗の輝度差は大きく、肉眼で線状光源とその隙間の明暗差ははっきり認められ、中心輝度も低い(比較例7参照)。これに市販の拡散シートを2枚以上重ねると、肉眼では明暗差がほぼ認められなくなるが、部品数が増えて製造コストが上昇し、生産性が低下してしまう(比較例1,2参照)。
これに対して、レンズ面の反対側に凹凸条列構造を設けることによって、光源の明暗差はほとんど解消される。
更に、高低差Aに対する周期B(B/A)の値が重要であり、この値が10未満では輝度が低下し(比較例4参照)、一方、50を越えるとギラツキが大きくなる(比較例5参照)。また、凹凸条列の方向とプリズム部の方向が一致する(振り角度0度)と干渉縞が現れ(比較例3参照)、一方、振り角度が大きすぎるとギラツキが顕著になる(比較例6参照)ことがわかる。
以上の結果、適切な凹凸条列構造をレンズ面の反対面に適切な振り角度で設けることによって、光拡散性レンズシート一枚でも十分にバックライトの品位を改善することができ、輝度の低下もないことが判る(実施例1〜9参照)。As is clear from the examples and comparative examples in Table 1 above, the brightness difference between light and dark is large only with a normal light diffusion plate with a thickness of 2 mm, and the light and dark difference between the linear light source and its gap is clearly recognized by the naked eye. The luminance is also low (see Comparative Example 7). When two or more commercially available diffusion sheets are stacked on this, a difference in brightness is hardly recognized with the naked eye, but the number of parts increases, manufacturing costs increase, and productivity decreases (see Comparative Examples 1 and 2). .
On the other hand, by providing an uneven row structure on the opposite side of the lens surface, the light / dark difference of the light source is almost eliminated.
Further, the value of the period B (B / A) with respect to the height difference A is important. If this value is less than 10, the luminance decreases (see Comparative Example 4), whereas if it exceeds 50, the glare increases (Comparative Example). 5). Further, when the direction of the projections and depressions coincides with the direction of the prism portion (the swing angle is 0 degree), interference fringes appear (see Comparative Example 3). On the other hand, when the swing angle is too large, the glare becomes remarkable (Comparative Example 6). See).
As a result of the above, by providing an appropriate uneven row structure on the opposite surface of the lens surface at an appropriate swing angle, even a single light diffusing lens sheet can sufficiently improve the quality of the backlight, resulting in a decrease in luminance. (See Examples 1 to 9).
叙上のとおり、本発明の光拡散性レンズシートは、プリズム部を有するレンズ面の反対側にプリズム部の長軸の方向に対して特定の振り角度をつけて特定の高低差、周期の凹凸条列構造を設けることにより、線状の光源を持つ直下型のバックライトの光源直上と光源間の明暗やギラツキを解消して品位を大きく向上させ、正面の輝度を高くすることができ、更にバックライトの部品数も低減できるので、液晶表示装置用の光拡散シートとして有用である。 As described above, the light diffusing lens sheet of the present invention has a specific elevation difference and period unevenness with a specific swing angle with respect to the major axis direction of the prism portion on the opposite side of the lens surface having the prism portion. By providing a row structure, it is possible to greatly improve the quality by eliminating the light and darkness and glare between the light source and the light source of the direct type backlight with a linear light source, and to increase the front brightness. Since the number of parts of the backlight can be reduced, it is useful as a light diffusion sheet for a liquid crystal display device.
【書類名】明細書
【発明の名称】 直下型バックライト、及び該バックライトを組み込んだ液晶テレビ
【技術分野】
【0001】
本発明は、液晶表示装置の直下型バックライトに関し、更に詳しくは、光の利用効率が高く、かつ線状光源を用いて均一で高品位な光を得ることができる直下型バックライト、及び該バックライトを組み込んだ液晶テレビに関する。
【背景技術】
【0002】
液晶表示装置のバックライトは導光板の端面に光源を配置したエッジライト型と、複数の光源を配置してその上に光拡散板を配備した直下型のバックライトとがある。近年、表示装置が大型化するのに伴って光の利用効率が高く均質な光が得られる面状の直下型バックライトが要求されている。
直下型バックライトの光源としては、主として、線状からなる陰極線管が多く用いられるが、線状光源を並列してバックライトとした場合は場所による明暗差が生じやすく、特に線状光源の真上と該光源同士の中間部との間で明暗差が生じやすい。そこで、これらの光源からの光を均質にするために、拡散機能のある板状の半透明板である光拡散板を通して面状光源とされるのが通例である。しかし、この光拡散板で光源の配置個所が視認できない程度に光を拡散均質化すると、光の利用効率が悪く、即ち光の透過量が少なくなって画面が暗くなり、一方、光の利用効率を良くしようとすると背後の光源が透けて見えてしまい、画面が見にくくなる。
【0003】
そこで、光の利用効率を上げてなお且つ光源の配置個所が視認できないようにするために、表面に拡散面を形成した光拡散シートを半透明の光拡散板の上に設置して用いることも行われている。しかし、光の透過率を確保して且つ光源の配置個所を視認できないようにするために、半透明の光拡散板の半透明度を調節し、その上に設置する拡散シートを2枚、3枚と重ねて使用しなければならないため、部品数が増大し製造コストが増大するという問題がある。
【0004】
一方、直下型のバックライトでは、表面にプリズム構造を設けたプリズムシートを光拡散板上に設置することにより、出射される光を光拡散板の法線方向へ集中する集光が行われている。しかし、光源の配置個所を視認できなくする効果については、これだけでは不十分である。その上、特に特定方向に光が出射されることによりギラツキが発生し易い。このギラツキは一般に出射光を集光しようとしてレンズ類を設置した場合に起こりやすいものである。従って、表面に拡散面を形成した拡散シートをプリズムシートの上部又は下部に、更に多くの場合、上部及び下部の両方に設置しなければならない。
【0005】
プリズムシートによる出射光の拡散性を高めるために、光拡散粒子を利用して裏面にコーティングしたもの(特許文献1参照)、プリズム形状部を設けた層と光拡散剤が混錬された層との多層フィルム(特許文献2参照)、更にプリズム機構の内部に光拡散粒子を含ませる方法(特許文献3参照)等が提案されている。しかし、これらはいずれも直下型の光源を見えなくする効果と、光の拡散及びプリズムの集光機能を両立できないという問題を含んでいる。即ち、光拡散粒子等が少ないと光源が画面から見えてしまい、多いと集光機能が低下する。
【0006】
一方、直下型の光源の照明装置に於いて透明樹脂の凹凸機構により光の拡散性を得る試みがあり、光源と被照明物との間にプリズム板を設ける方法(特許文献4参照)や、傾斜面のある帯状物を多数設けた光拡散板(特許文献5参照)等、更に、線状光源との位置関係に関した特定の頂角を持つプリズム条列(特許文献6参照)の提案もある。しかしながら、この方法によっても明暗差の解消効果は十分でなく、さらに干渉縞が発生してしまう場合があり、結局均一な光を得ることができない。
【特許文献1】特開平10−300908号公報
【特許文献2】特開平8−313708号公報
【特許文献3】特開平10−68804号公報
【特許文献4】特開平5−333333号公報
【特許文献5】特開平8−297202号公報
【特許文献6】特開2006−195276号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は、かかる実情に鑑み、上記従来の問題を解消し、光の利用効率が高く、表示面の法線方向に集光するとともにギラツキの発生を抑えて正面から画面が見やすくし、線状光源の使用に由来する明暗差を実質的になくして光源の配置個所を見え難くするとともに光学部材間で起こる干渉縞の発生も抑えて均質な面光源が得られる直下型バックライト、及び該バックライトを組み込んだ液晶テレビを提供することを目的とするものである。
【課題を解決するための手段】
【0008】
本発明は上記目的を達成するためになされたもので、本発明の請求項1に係わる発明は、並列配列した複数本の線状光源からなる直下型バックライトであって、
一方の面に透明な高分子材料からなる実質的に三角柱のプリズム部が、該三角柱の長軸が互いにほぼ平行になるように一定周期で多数配列され、
他方の面には高低差Aが2μm〜30μm、周期Bが50μm〜1000μm、B/Aが10〜50の範囲にある凹凸条列構造が、プリズム部の長軸に対して5度〜30度の振り角度をつけて設けられている光拡散性レンズシートが
前記プリズム部が光の出射側になるよう配置されていることを特徴とする直下型バックライトを内容とする。
【0009】
本発明の請求項2に係わる発明は、プリズム部の配列周期が10μmから500μmであることを特徴とする請求項1記載の直下型バックライトを内容とする。
【0010】
本発明の請求項3に係わる発明は、厚さが50μmから500μmであることを特徴とする請求項1又は2記載の直下型バックライトを内容とする。
【0011】
本発明の請求項4に係わる発明は、光拡散性レンズシートのプリズム部の長軸の方向を線状光源の方向とほぼ一致するように配置したことを特徴とする請求項1〜3のいずれか1項に記載の直下型バックライトを内容とする。
【0012】
本発明の請求項5に係わる発明は、請求項1〜4のいずれか1項に記載の直下型バックライトを、プリズム部の長軸の方向を液晶テレビの表示面の長手方向に一致するように組み込んだことを特徴とする液晶テレビを内容とする。
【発明の効果】
【0013】
本発明の直下型バックライトは、一方の面に三角柱のプリズム部が配列されたレンズ面を有し、他方の面に特定の高低差Aと周期Bと、両者の比B/Aをもつ凹凸条列構造からなる拡散面を有する光拡散性レンズシートを、線状光源を用いた直下型のバックライトの光拡散板上にレンズ面を光の射出側になるようにして設けることにより、バックライトの法線方向の明るさが最高となり光の利用効率が高くなるとともに、光源の配置個所による明暗差が解消されギラツキも発生しない。
更に、凹凸条列構造が、プリズム部の長軸に対して特定の振り角度をつけて設けられているため、干渉縞が発生せず均一な光を発する面光源を得ることができる。
なお、この直下型バックライトは、並列配列した複数本の線状光源が用いられているにもかかわらず好適な面光源を提供することができ、特に液晶テレビに使用する直下型バックライトとして好適である。
また、上記の光拡散性レンズシートをプリズム部の長軸方向を線状光源の方向とほぼ一致させるように配置すると、上下方向に発せられる光を制限しつつ、画面の正面及び左右方向には適量の光が発せられるため、このような直下型バックライトは液晶テレビ用としてさらに好適である。
【発明を実施するための最良の形態】
【0014】
前記したように、光拡散板上にプリズムシートが設置された直下型バックライトでは光拡散板の法線方向へ出射光を集光する効果はあるが、光源の配置個所とその間隙に明暗差があるため均一な光を得ることができない。
そこで、プリズム構造のレンズ面の反対面において各種の光拡散の方法を検討したところ、特定の凹凸条列構造をレンズ面の反対側に設け、その条列の長軸方向を線状光源の長軸方向とほぼ一致させると前記の明暗差の解消に非常に効果があるが、同時に干渉縞が発生してしまい、結局均一な面光源を得ることができないことが判明した。
そこで、さらに鋭意研究を進めたところ、干渉縞が発生するのは、凹凸条列方向とプリズム部の長軸方向を一致させたのが原因であることを見出し、プリズム部の長軸方向と凹凸条列の長軸方向の間に5度〜30度の振り角度をつけることにより、干渉縞の発生を防ぐことができる上に法線方向の明るさも十分であり且つ光源の明暗差を解消することができ、均一な面光源が得られることを見出し本発明に到達した。
【0015】
本発明で用いる光拡散性レンズシートは、その一方の面にプリズム部が設けられ(以下、レンズ面と記す)、他方の面に凹凸条列構造(以下、拡散面と記す)が設けられる。ここで、図1に示すとおり、拡散面4の凹凸条列構造4aの長軸方向L2はレンズ面2のプリズム部3の長軸方向L1に対し振り角度αを付けて設けられる。なお、図1において、プリズム部3は実線で示し、凹凸条列構造4aは破線で示している。
【0016】
図1及び図2に示すとおり、レンズ面2には実質的に三角柱からなるプリズム形状部の単位からなるプリズム部3が互いにほぼ平行になるように一定周期Cで配列される。
このプリズム部3は、三角柱の断面の形状が集光能力を発揮し易い、頂角が60度より120度の形状を選ぶことができる。好ましくは70度より110度の範囲である。三角形の形状は特に限定されず、等辺、不等辺のいずれでもよいが、拡散シートの法線方向に集光性能を向上させる点で二等辺三角形が好ましく、従って、頂角に相対した底辺に隣接して隣の二等辺三角形を順次配置し、頂角の列が長軸となり互いにほぼ平行になるように配列した構造とするのが好ましい。この場合、集光能力が著しく減退しない限り、三角柱の頂角及び底角が曲率を持っても差し支えない。
プリズム部3を配列周期Cについては、10μmより500μmの範囲が出射光の均質性を高めるので好ましく、より好ましくは、30μmより200μmの範囲である。
【0017】
図1及び図3に示すとおり、拡散面4には線状光源の配置個所による明暗差の解消と特定方向に光が射出して発するギラツキの解消のために凹凸条列構造4aが設けられる。凹凸条列構造4aの高低差Aは2μm〜30μmである。高低差Aが2μmより小さいと明暗差及びギラツキ解消の効果がなく、30μmより大きいと凹凸条列構造をプリズムシートの裏面に設けるために高度の加工技術が必要となり、コスト高となるばかりでなく、生産性が低下する。
この凹凸条列構造の周期Bは50μm〜1000μm、好ましくは50μm〜500μmである。周期Bが50μmより小さいとプリズムの集光能力が低下し、1000μmより大きいと凹凸条列の数が少なくなるためプリズムとの干渉が減り、その結果、明暗差が増加し外観が不良となる。
高低差Aに対する周期Bの比B/Aは10〜50の範囲に調整される。この比が10未満では凹凸条列の数が増加するので正面輝度が低くなり、一方、50を越えると凹凸条列の数が少なくなり、その結果、プリズムとの干渉が減って明暗差が大きくなり、外観が不良となる。
【0018】
凹凸条列構造4aにおける凹条列5、凸条列6の断面形状は特に限定されないが、長方形状の四角形、斜面を持つ台形等が挙げられる。
また凹条列5と凸条列6の幅の比(b1/b2)も特に限定されず、上記した特定の周期ごとに細い凹条列、凸条列を設けた構造であっても採用できるが、好ましくは1:4〜4:1とし、更に好ましくは1:2〜2:1とし、最も好ましくは1:1付近とすると、明暗差の解消効果が著しく、ギラツキを抑える効果も著しい。
尚、凹凸条列構造4aを構成する凹条列,凸条列は直線状である必要はなく、曲線状や波線状であってもよいが、凹凸条列構造のそれぞれの部分において、プリズム部3の長軸に対して5度から30度の振れ角度とされている必要がある。
【0019】
凹凸条列構造4aは、図1に示すとおり、プリズム部3の長軸に対して5度〜30度の振り角度αをつけて設けられる。即ち、凹凸条列構造4aの方向に平行な線とプリズム部3の長軸方向に平行な線は5度から30度の角度で交わる。これにより、干渉縞の発生がなくなり、プリズム集光機能も増して法線方向の明るさも上昇する。ここで振り角度が5度より小さくなると干渉縞を起こしやすく、一方、30度より大きくなると明暗差を解消する効果が得られなくなり、ギラツキも発生してくる。
【0020】
光拡散性レンズシートの材質は透明な高分子材料である限り特に限定されず、通常の光学用の透明樹脂から選ぶことができる。その具体例としては、アクリル樹脂、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、環状ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリアミド系樹脂、ポリアリレート、ポリイミド等を挙げることができる。更に熱可塑性樹脂以外に、アクリル系樹脂等の電離性放射線等により硬化する硬化性樹脂を用いることもできる。
光拡散性レンズシートのレンズ面にプリズム部を形成し、拡散面に凹凸条列構造を形成する方法は、熱可塑性樹脂を用いる方法と硬化性樹脂を用いる方法がある。熱可塑性樹脂の場合には通常の形成方法が可能で、所望の金型内へ射出成形するか、シート状材料を金型により圧縮成形する方法が可能である。
押出成形にあっては、シート状に押し出された材料を加熱下にエンボスするか、溶融押出時に金型ロールに押圧するか、特許第2925069号に記載されているように、前もって型付けされた離型性シートに挟圧して該型を転写して成形することができる。そして、同時成形する場合は、一方の片面は離型性シートにより、他方の片面は金型ロールによって成形することも出来る。
また、硬化性樹脂において、電離性放射線による場合は紫外線硬化樹脂を使用するのが通常である。一般的には透明な支持体上に硬化性樹脂を塗布後、型内で紫外線を照射して成形される。
なお、レンズ面のプリズム部及び拡散面の凹凸条列構造は別々に形成して、これを貼り合わせてもよく、一体で同時に形成してもよい。
【0021】
以下、光拡散性レンズシートの設置方法について説明する。
通常、直下型バックライトは複数本の冷陰極線管からなる線状光源を並列に配列し、表示面側に2mm〜4mmの厚さの光拡散板を設置し、その反対側に光反射板を設置して形成されるが、この光拡散性レンズシートはレンズ面を光の出射側にむけて前記光拡散板の上に設置される。
設置する方向はプリズム部の長軸方向が概ね横向きになっている限り特に限定されず、例えば、線状光源の長軸方向と拡散面の凹凸状列の長軸方向を一致させて設置してもよいし、プリズム部の長軸方向を線状光源の長軸と一致させて設置してもよいし、更にこの中間的な位置でも設置することが出来るが、プリズム部の長軸方向を線状光線の方向とほぼ一致させて設置するのが、出射光が光拡散性レンズシートの法線方向に集光し易い点で好ましい。
【0022】
液晶テレビの場合には、表示面は横長手方が一般的である。そして、表示面の左右斜め方向からも観賞しやすいことが重要であり、上下方向からの観賞はあまり重要でない。従って、表示面の正面方向、左右方向及び左右斜め方向の明るさを確保するには、重要でない上下方向の光を正面方向に集光して出射を調節するのが好ましい。
【0023】
ここで、プリズム部を長軸が互いにほぼ平行になるように配列したレンズシートは、長軸方向と、これに直交する垂直方向とで出射輝度が異なり、このプリズムシートにより垂直方向に拡散する光が正面方向に集光されることは知られている。
従って、液晶テレビのバックライトの線状光源が液晶画面の長手方向に設置されていれば、プリズム部の長軸方向及び凹凸状列構造の長軸方向もほぼ液晶画面の長手方向に向けて光拡散性レンズシートを設置するのが得策である。これにより、やや不必要な上下方向への出射は制限的となり正面方向の明るさと表示面の左右斜め方向の明るさを確保して、均質でマイルドな光源とすることができる。更に、必要とあれば、通常の光拡散シートを更に設置しても良い。この光拡散シートはプリズムシートと併用される場合、プリズムシートを中心として、下拡散用と上拡散用が市販されている。
【0024】
本発明で用いる光拡散性レンズシートの厚さは任意であるが、液晶テレビの組立て作業時の取扱い性の点からは、通常50μmより500μmが好ましく、連続生産上からは200μmより400μmが好ましい。
【実施例】
【0025】
以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
【0026】
実施例1
(光拡散性レンズシートの製造)
ポリカーボネートの透明樹脂「パンライトL−1225Y」(帝人化成株式会社製)を溶融押出の樹脂温度295℃でダイスよりシート状に押し出し、押出されたシート状溶融樹脂を、プリズム部の形状が予め型付けされた離型性シートと、該プリズム部の長軸方向に対し20度の振り角度をつけて凹凸条列構造をその表面に設けた冷却ロールとの間に挟圧する、特許第2925069号に記載の方法でレンズシートを製造した。
上記離型性シートは、断面の三角形が頂角100度で底辺との角が40度の二等辺三角形である三角柱状を底辺が50μmの周期で隣接して長軸が互いに平行になるように配列したものを用いた。また、上記冷却ロールの凹凸条列構造は、平面視直線状の凹凸条列が60μmの周期で配列されており、凹凸の高低差Aが2μm、周期Bが60μm(凹条列及び凸条列の幅はそれぞれ30μm)、凸条列の断面形状は下底30μm、上底24μmの台形状とした。高低差Aに対する周期Bの比B/Aは30である。
得られたシートの厚みは240μmであった。得られた光拡散性レンズシートを下記のバックライトの上に設置して得られた直下型バックライトの光学特性は、次に示す方法で測定・判定した。測定・判定結果を表1に示す。
【0027】
(光学特性の測定・判定方法)
直下型バックライトの明暗差は、輝度計の受光面を小さくしてバックライトの各部の輝度を測定し、その差を計算することにより測定できる。しかし面光源の品位は肉眼による判定も欠かすことが出来ない。
更にバックライトの品位の特徴付けには特定の方向に強く出射するような光線の存在の有無があり、これはギラツキとして肉眼により判定できる。
従って、輝度計による測定と肉眼による判定とにより、光学特性を評価した。
【0028】
バックライトの構成
線状の陰極線管16本を横方向に等間隔に列設した縦400mm×横705mmの32インチテレビ用のバックライトを点灯する。このバックライトキャビティ内の線状光源の下に光反射板を配置し、かつ上に厚さ2mmの光拡散板「オプトマックス」(住友ベークライト株式会社製)を設置し、光拡散板上に光拡散性レンズシートを設置した。光拡散性レンズシートはレンズ面を出射面側とし、プリズム部の長軸方向を陰極線管の長軸方向と一致させて設置した。
【0029】
輝度の測定
光拡散性レンズシートを設置した面の上方500mmの距離に、輝度計ミノルタCA−1500(コニカ・ミノルタ株式会社製)により、測定面積4.8cm2 として、設置した光拡散性レンズシートの中心点の輝度を測定した。
【0030】
バックライト出射光の外観品位の判定:
ギラツキ:
光源から反射、屈折等により直接各方向からの観賞者の目に入るギラツキ感を下記の基準により目視判定する。
○:ギラツキが見えず、穏やかな出射状況である。
○△:特定の一方向のみ僅かにぎらつきが見える。
△:僅かにギラツキが見えるが、液晶パネルを透過した後は見えなくなる。
×:ギラツキが見え、液晶パネルを透過した後も見える場合がある。
【0031】
線状光源直上とその中間部との明暗差:
線状光源直上とその中間部との明暗差を下記の基準により目視判定する。
○:明暗差が認められない。
○△:○に近く、明暗差が極く僅かに認められる。
△:明暗差が僅かに認められる。
△×:×に近く、明暗差がかなりはっきり認められる。
×:明暗差がはっきり認められる。
【0032】
線状光源直上とその中間部との明暗輝度差:
上記した輝度測定と同様の方法により輝度計トプコンBM−5A(株式会社トプコン社製)を測定面積0.2cm2 に絞り、バックライト上300mmまで接近して、2箇所の冷陰極管の直上とその中間点との輝度を測定し、その輝度差を算出して平均値を得た。
【0033】
実施例2
冷却ロールの凹凸条列構造の周期Bを100μm(凹条列、凸条列の幅はそれぞれ50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更した以外は実施例1と同様にして光拡散性レンズシートを作成し、これを上記のバックライトの上に設置して得られた直下型バックライトについて、その光学特性を測定・判定した。測定・判定結果を表1に示す。
【0034】
実施例3
冷却ロールの凹凸条列構造の高低差を10μmに変更した以外は実施例2と同様にして直下型バックライトを作成し、その光学特性を測定・判定した。測定・判定結果を表1に示す。
【0035】
実施例4
冷却ロールの凹凸条列構造の周期Bを500μm(凹条列の幅は450μm、凸条列の幅は50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更して製造した以外は実施例3と同様にして直下型バックライトを製造し、その光学特性を測定・判定した。測定・判定結果を表1に示す。
【0036】
実施例5
冷却ロールの凹凸条列構造の高低差Aを15μm、周期Bを250μm(凹条列の幅は200μm、凸条列の幅は50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更した以外は実施例1と同様にして直下型バックライトを製造し、その光学特性を測定・判定した。測定・判定結果を表1に示す。
【0037】
実施例6
冷却ロールの凹凸条列構造の高低差Aを30μm、周期Bを900μm(凹条列の幅は850μm、凸条列の幅は50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更した以外は実施例1と同様にして直下型バックライトを製造し、その光学特性を測定・判定した。測定・判定結果を表1に示す。
【0038】
実施例7〜9
冷却ロールの凹凸条列構造の振り角度を5度、10度、30度に変更した以外は実施例4と同様にして直下型バックライトを製造し、その光学特性を測定・判定した。測定・判定結果を表1に示す。
【0039】
比較例1
光拡散性レンズシートに代えて市販の光拡散シートBS300(恵和株式会社製)を2枚バックライト光拡散板の上に設置した以外は実施例1と同様にして光学特性を測定・判定した。測定・判定結果を表1に示す。
【0040】
比較例2
光拡散性レンズシートに代えて市販の光拡散シートBS702(恵和株式会社製)を3枚重ねてバックライトの光拡散板上に設置した以外は実施例1と同様にして光学特性を測定・判定した。測定・判定結果を表1に示す。
【0041】
比較例3
冷却ロールの凹凸状列構造の振り角度を0度に変更した以外は実施例4と同様にしてシートを製造し、得られたシートの光学特性を測定・判定した。測定・判定結果を表1に示す。
【0042】
比較例4
冷却ロールの凹凸条列構造の周期Bを30μm(凹条列、凸条列の幅はそれぞれ15μm、凸条列の断面形状は下底15μm、上底10μm)の台形状に変更した以外は実施例3と同様にしてシートを製造し、得られたシートの光学特性を測定・判定した。測定・判定結果を表1に示す。
【0043】
比較例5
冷却ロールの凹凸条列構造の高低差Aを4μm、周期Bを300μm(凹条列の幅は250μm、凸条列の幅は50μm、凸条列の断面形状は下底50μm、上底30μm)の台形状に変更した以外は実施例1と同様にしてシートを製造し、得られたシートの光学特性を測定・判定した。測定・判定結果を表1に示す。
【0044】
比較例6
冷却ロールの凹凸条列構造の振り角度を45度に変更した他は実施例4と同様にして光学シートを得て、これを上記のバックライトの上に設置して直下型バックライトを製造し、得られた直下型バックライトの光学特性を測定・判定した。測定・判定結果を表1に示す。
【0045】
比較例7
光拡散性レンズシートを使用しない他は実施例1と同様にして光学特性を測定・判定した。測定・判定結果を表1に示す。
【0046】
【表1】
【0047】
上記表1の実施例及び比較例から明かなように、通常の厚さ2mmの光拡散板のみでは明暗の輝度差は大きく、肉眼で線状光源とその隙間の明暗差ははっきり認められ、中心輝度も低い(比較例7参照)。これに市販の拡散シートを2枚以上重ねると、肉眼では明暗差がほぼ認められなくなるが、部品数が増えて製造コストが上昇し、生産性が低下してしまう(比較例1,2参照)。
これに対して、レンズ面の反対側に凹凸条列構造を設けることによって、光源の明暗差はほとんど解消される。
更に、高低差Aに対する周期B(B/A)の値が重要であり、この値が10未満では輝度が低下し(比較例4参照)、一方、50を越えるとギラツキが大きくなる(比較例5参照)。また、凹凸条列の方向とプリズム部の方向が一致する(振り角度0度)と干渉縞が現れ(比較例3参照)、一方、振り角度が大きすぎるとギラツキが顕著になる(比較例6参照)ことがわかる。
以上の結果、適切な凹凸条列構造をレンズ面の反対面に適切な振り角度で設けることによって、光拡散性レンズシート一枚でも十分にバックライトの品位を改善することができ、輝度の低下もないことが判る(実施例1〜9参照)。
【産業上の利用可能性】
【0048】
叙上のとおり、本発明の直下型バックライトは、光拡散性レンズシートのプリズム部を有するレンズ面の反対側にプリズム部の長軸の方向に対して特定の振り角度をつけて特定の高低差、周期の凹凸条列構造を設けることにより、線状の光源を持つ直下型のバックライトの光源直上と光源間の明暗やギラツキを解消して品位を大きく向上させ、正面の輝度を高くすることができ、更にバックライトの部品数も低減できるので、液晶表示装置用の直下型バックライトとして有用である。
【図面の簡単な説明】
【0049】
【図1】本発明で用いる光拡散性レンズシートのプリズム面と凹凸条列構造面の関係を示す概略説明図である。
【図2】本発明で用いる光拡散性レンズシートのプリズム面側のA−A線断面図である。
【図3】本発明で用いる光拡散性レンズシートの凹凸条列構造面側のB−B線断面図である。
【符号の説明】
【0050】
1 光拡散性レンズシート
2 レンズ面
3 プリズム部
4 拡散面
4a 凹凸条列構造
5 凹条列
6 凸条列
L1 プリズム部の長軸方向と平行な線
L2 凹凸条列の長軸方向と平行な線
C プリズム部の配列周期
A 凹凸条列の高低差
B 凹凸条列の周期
b1 凹条列の幅
b2 凸条列の幅
α 振り角度
[Document Name] Description
[Title of the Invention] straightLower backlight, and liquid crystal television incorporating the backlight
【Technical field】
[0001]
The present invention relates to a liquid crystal display device.Direct type backlightMore specifically, the use efficiency of light is high and a linear light source is used.TheUniform and high-quality light can be obtainedDirect type backlight,And a liquid crystal television incorporating the backlight.
[Background]
[0002]
The backlight of the liquid crystal display device includes an edge light type in which a light source is arranged on an end face of a light guide plate, and a direct type backlight in which a plurality of light sources are arranged and a light diffusion plate is arranged thereon. In recent years, with the increase in the size of display devices, there has been a demand for a planar direct-type backlight capable of obtaining uniform light with high light use efficiency.
As a light source for a direct type backlight, a linear cathode ray tube is mainly used. However, when a linear light source is used in parallel as a backlight, a difference in brightness is likely to occur depending on the location. A difference in brightness is likely to occur between the top and the intermediate portion between the light sources. Therefore, in order to make the light from these light sources uniform, the light source is usually a planar light source through a light diffusing plate which is a plate-like translucent plate having a diffusing function. However, if light is diffused and homogenized to such an extent that the location of the light source cannot be seen with this light diffusing plate, the light utilization efficiency will be poor, that is, the amount of light transmission will be reduced and the screen will be darkened. If you try to improve, the light source behind you will see through, making it difficult to see the screen.
[0003]
Therefore, in order to improve the light utilization efficiency and make the light source arrangement location invisible, it is also possible to use a light diffusion sheet having a diffusion surface formed on the surface on a translucent light diffusion plate. Has been done. However, in order to ensure light transmittance and prevent the location of the light source from being visible, the translucency of the translucent light diffusing plate is adjusted, and two or three diffusion sheets are installed on it. Therefore, there is a problem that the number of parts increases and the manufacturing cost increases.
[0004]
On the other hand, in a direct type backlight, a prism sheet having a prism structure on the surface is placed on the light diffusing plate, thereby condensing the emitted light in the normal direction of the light diffusing plate. Yes. However, this is not sufficient for the effect of making it impossible to visually recognize the location of the light source. In addition, glare is likely to occur particularly when light is emitted in a specific direction. This glare is generally likely to occur when lenses are installed to collect emitted light. Therefore, a diffusion sheet having a diffusion surface on the surface must be installed on the top or bottom of the prism sheet, and more often on both the top and bottom.
[0005]
In order to enhance the diffusibility of the emitted light by the prism sheet, the back surface is coated using light diffusing particles (see Patent Document 1), the layer provided with the prism-shaped portion and the layer kneaded with the light diffusing agent, A multilayer film (see Patent Document 2), a method of incorporating light diffusing particles in the prism mechanism (see Patent Document 3), and the like have been proposed. However, both of these include the problem that the effect of making the direct light source invisible and the light diffusion and light collecting functions of the prism cannot be compatible. That is, if there are few light diffusion particles etc., a light source will be visible from a screen, and if there are many, a condensing function will fall.
[0006]
On the other hand, there is an attempt to obtain light diffusibility by a concave / convex mechanism of a transparent resin in an illumination device of a direct type light source, a method of providing a prism plate between a light source and an object to be illuminated (see Patent Document 4), There is also a proposal of a prism array (see Patent Document 6) having a specific apex angle related to the positional relationship with a linear light source, such as a light diffusing plate (see Patent Document 5) provided with a number of strips having inclined surfaces. is there. However, even with this method, the effect of eliminating the difference in brightness and darkness is not sufficient, and interference fringes may be generated, so that uniform light cannot be obtained after all.
[Patent Document 1] Japanese Patent Laid-Open No. 10-300908
[Patent Document 2] JP-A-8-313708
[Patent Document 3] Japanese Patent Laid-Open No. 10-68804
[Patent Document 4] Japanese Patent Laid-Open No. 5-333333
[Patent Document 5] JP-A-8-297202
[Patent Document 6] Japanese Patent Laid-Open No. 2006-195276
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0007]
In view of such circumstances, the present invention solves the above-described conventional problems, has high light use efficiency, collects light in the normal direction of the display surface, suppresses the occurrence of glare, makes the screen easy to see from the front, and linear A uniform surface light source can be obtained by substantially eliminating the light and dark difference resulting from the use of the light source, making it difficult to see the location of the light source, and suppressing the occurrence of interference fringes between optical members.RuIt is an object of the present invention to provide a direct type backlight and a liquid crystal television incorporating the backlight.
[Means for Solving the Problems]
[0008]
The present invention was made to achieve the above object, and the invention according to claim 1 of the present invention isA direct type backlight composed of a plurality of linear light sources arranged in parallel,
A plurality of substantially triangular prism portions made of a transparent polymer material on one side are arranged in a constant cycle so that the major axes of the triangular prisms are substantially parallel to each other,
On the other surface, an uneven row structure in which the height difference A is 2 μm to 30 μm, the period B is 50 μm to 1000 μm, and the B / A is in the range of 10 to 50 is 5 degrees to 30 degrees with respect to the major axis of the prism portion. With a swing angle ofHaveLight diffusing lens sheetBut
A direct-type backlight characterized in that the prism portion is disposed on the light emitting side.Is the content.
[0009]
The invention according to
[0010]
The invention according to
[0011]
Claims of the invention4The invention related to,lightThe long axis direction of the prism portion of the diffusive lens sheet is arranged so as to substantially coincide with the direction of the linear light source.The method according to any one of claims 1 to 3.The content is a direct type backlight.
[0012]
Claims of the invention5The invention relating toIn any one of 1-4The liquid crystal television is characterized in that the direct type backlight described above is incorporated so that the major axis direction of the prism portion coincides with the longitudinal direction of the display surface of the liquid crystal television.
【The invention's effect】
[0013]
Of the present inventionDirect type backlightHas a lens surface in which triangular prisms are arranged on one surface, and a diffusing surface composed of an uneven row structure having a specific height difference A and period B and a ratio B / A between them on the other surface. Light diffusing lens sheet havingTheBy providing a lens surface on the light diffusing plate of a direct type backlight using a linear light source so that it is on the light exit side, the brightness in the normal direction of the backlight is maximized and the light utilization efficiency is improved. It becomes higher, and the light / dark difference due to the location of the light source is eliminated and no glare occurs..
Furthermore, since the concave and convex array structure is provided with a specific swing angle with respect to the major axis of the prism portion, a surface light source that emits uniform light without generating interference fringes can be obtained.
In addition, thisDirect type backlightIs a plurality of linear light sources arranged in parallelDespite being usedIt is possible to provide a suitable surface light source, and particularly a direct type backlight used for an LCD TV.AndIt is preferable.
Also,The above light diffusing lens sheetIf the major axis direction of the prism portion is arranged so as to substantially coincide with the direction of the linear light source, an appropriate amount of light is emitted in the front and left and right directions of the screen while limiting the light emitted in the vertical direction.Direct type like thisThe backlight is more suitable for a liquid crystal television.
BEST MODE FOR CARRYING OUT THE INVENTION
[0014]
As mentioned above,Prism sheet was installed on the light diffusion plateDirect type backlightThenAlthough there is an effect of condensing outgoing light in the normal direction of the light diffusion plate, uniform light cannot be obtained because there is a difference in brightness between the location of the light source and its gap.
Therefore, when various light diffusion methods were examined on the opposite surface of the lens surface of the prism structure, a specific uneven row structure was provided on the opposite side of the lens surface, and the major axis direction of the row was defined as the length of the linear light source. It has been found that, when substantially matched with the axial direction, it is very effective in eliminating the above-described difference in brightness, but interference fringes are generated at the same time, and a uniform surface light source cannot be obtained after all.
As a result of further diligent research, it was found that the interference fringes were caused by the fact that the concave / convex array direction and the major axis direction of the prism portion were matched. By providing a swing angle of 5 to 30 degrees between the long axis directions of the row, the generation of interference fringes can be prevented, the brightness in the normal direction is sufficient, and the difference in brightness of the light source is eliminated. The present invention has been found that a uniform surface light source can be obtained.
[0015]
The present inventionUsed inThe light diffusing lens sheet is provided with a prism portion (hereinafter referred to as a lens surface) on one surface and an uneven row structure (hereinafter referred to as a diffusion surface) on the other surface. Here, as shown in FIG. 1, the major axis direction L2 of the concavo-
[0016]
As shown in FIGS. 1 and 2,
The
As for the arrangement period C of the
[0017]
As shown in FIGS. 1 and 3, the diffusing
A period B of the uneven row structure is 50 μm to 1000 μm, preferably 50 μm to 500 μm. If the period B is smaller than 50 μm, the light condensing ability of the prism is lowered, and if it is larger than 1000 μm, the number of the concavo-convex rows is reduced, so that the interference with the prism is reduced.
The ratio B / A of the period B to the height difference A is adjusted to a range of 10-50. If this ratio is less than 10, the number of the concave and convex lines increases, so that the front luminance is lowered. On the other hand, if it exceeds 50, the number of the concave and convex lines decreases, and as a result, the interference with the prism is reduced and the difference in brightness is large. And the appearance is poor.
[0018]
The cross-sectional shapes of the
Moreover, the ratio (b1 / b2) of the width of the row of
The concave and convex rows constituting the concave /
[0019]
As shown in FIG. 1, the
[0020]
The material of the light diffusing lens sheet is not particularly limited as long as it is a transparent polymer material, and can be selected from ordinary optical transparent resins. Specific examples thereof include polyolefins such as acrylic resin, polycarbonate, polystyrene, polyvinyl chloride, polypropylene, and polymethylpentene, cyclic polyolefin, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamide resins, poly Examples include arylate and polyimide. Further, in addition to the thermoplastic resin, a curable resin that is cured by ionizing radiation such as an acrylic resin can also be used.
There are a method using a thermoplastic resin and a method using a curable resin as a method of forming a prism portion on the lens surface of a light diffusing lens sheet and forming an uneven row structure on the diffusion surface. In the case of a thermoplastic resin, a normal forming method is possible, and a method of injection molding into a desired mold, or a method of compression-molding a sheet-like material with a mold is possible.
In extrusion molding, the material extruded into a sheet is embossed under heating, pressed against a mold roll during melt extrusion, or released in advance as described in Japanese Patent No. 2925069. The mold can be formed by transferring the mold while sandwiching the mold sheet. And when forming simultaneously, one side can also be shape | molded by a mold release sheet, and the other side can also be shape | molded by a metal mold | die roll.
Further, in the case of curable resin, in the case of using ionizing radiation, it is usual to use an ultraviolet curable resin. In general, after applying a curable resin on a transparent support, it is molded by irradiating ultraviolet rays in a mold.
The prism portion of the lens surface and the concave / convex array structure of the diffusing surface may be formed separately and bonded together, or may be integrally formed at the same time.
[0021]
Less than,lightDiffuse lens sheetInstallationA method will be described.
Usually, a direct type backlight has a linear light source composed of a plurality of cold cathode ray tubes arranged in parallel, a light diffusing plate having a thickness of 2 mm to 4 mm is installed on the display surface side, and a light reflecting plate is installed on the opposite side. It is formed by installing,thisThe light diffusing lens sheet is placed on the light diffusing plate with the lens surface facing the light exit side.
The installation direction is not particularly limited as long as the major axis direction of the prism portion is substantially lateral, and for example, the major axis direction of the linear light source and the major axis direction of the concavo-convex rows of the diffusion surface are aligned with each other. Alternatively, the major axis direction of the prism portion may be set so as to coincide with the major axis of the linear light source, and further, it may be installed at an intermediate position. It is preferable that the light beam is arranged so as to be substantially coincident with the direction of the shaped light beam because the emitted light is easily condensed in the normal direction of the light diffusing lens sheet.
[0022]
In the case of a liquid crystal television, the display surface is generally horizontally long. It is important that viewing is easy from the left and right diagonal directions of the display surface, and viewing from the top and bottom directions is not so important. Therefore, in order to ensure the brightness in the front direction, the left-right direction, and the left-right oblique direction of the display surface, it is preferable to adjust the emission by concentrating light in the vertical direction that is not important in the front direction.
[0023]
Here, the lens sheet in which the prism portions are arranged so that the major axes are substantially parallel to each other has different emission luminances in the major axis direction and the vertical direction perpendicular thereto, and the light diffused in the vertical direction by the prism sheet. Is known to be focused in the front direction.
Therefore, if the linear light source of the backlight of the liquid crystal television is installed in the longitudinal direction of the liquid crystal screen, the major axis direction of the prism portion and the major axis direction of the concavo-convex array structure are also directed toward the longitudinal direction of the liquid crystal screen. It is a good idea to install a diffusive lens sheet. Thereby, the slightly unnecessary upward and downward emission is limited, and the brightness in the front direction and the brightness in the oblique direction on the left and right of the display surface can be secured, and a homogeneous and mild light source can be obtained. Furthermore, if necessary, a normal light diffusion sheet may be further installed. When this light diffusing sheet is used in combination with a prism sheet, the lower diffusing sheet and the upper diffusing sheet are commercially available with the prism sheet as the center.
[0024]
The present inventionUsed inThe thickness of the light diffusing lens sheet is arbitrary, but from the viewpoint of handling at the time of assembling the liquid crystal television, it is usually preferably from 50 μm to 500 μm, and from the viewpoint of continuous production, preferably from 200 μm to 400 μm.
【Example】
[0025]
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0026]
Example 1
(Manufacture of light diffusing lens sheet)
Polycarbonate transparent resin “Panlite L-1225Y” (manufactured by Teijin Kasei Co., Ltd.) is extruded into a sheet form from a die at a resin temperature of melt extrusion of 295 ° C., and the extruded sheet-shaped molten resin is pre-shaped with a prism shape. Described in Japanese Patent No. 2925069, which is sandwiched between the formed release sheet and a cooling roll provided with a concavo-convex array structure on the surface thereof with a swing angle of 20 degrees with respect to the major axis direction of the prism portion. The lens sheet was manufactured by the method of.
The releasable sheet has a triangular prism shape in which a triangle of a cross section is an isosceles triangle having an apex angle of 100 degrees and an angle with the base of 40 degrees so that the long axes are adjacent to each other with a period of 50 μm and the major axes are parallel to each other. An array was used. Moreover, the uneven | corrugated row | line | column structure of the said cooling roll arrange | positions the uneven | corrugated row | line | column with a planar view linear form with the period of 60 micrometers, the unevenness | corrugation height difference A is 2 micrometers, and the period B is 60 micrometers (concave line and convex line) Each of which has a width of 30 μm), and the cross-sectional shape of the ridges is a trapezoidal shape having a lower base of 30 μm and an upper base of 24 μm. The ratio B / A of the period B to the height difference A is 30.
The thickness of the obtained sheet was 240 μm. Obtained light diffusing lens sheetThe direct type backlight obtained by installing the above on the following backlightThe optical characteristics of were measured and judged by the following method. The measurement / judgment results are shown in Table 1.
[0027]
(Measurement / judgment method of optical characteristics)
Direct type backlightThe brightness difference can be measured by reducing the light receiving surface of the luminance meter, measuring the luminance of each part of the backlight, and calculating the difference. However, the quality of the surface light source must be judged by the naked eye.
Further, the quality of the backlight is characterized by the presence or absence of light rays that are strongly emitted in a specific direction, which can be determined by the naked eye as glare.
Therefore, the optical characteristics were evaluated by measurement with a luminance meter and determination with the naked eye.
[0028]
Backlight configuration
A backlight for a 32-inch television having a length of 400 mm and a width of 705 mm, in which 16 linear cathode ray tubes are arranged at equal intervals in the horizontal direction, is turned on. A light reflector is placed under the linear light source in the backlight cavity, and a 2 mm thick light diffuser “Opt Max” (manufactured by Sumitomo Bakelite Co., Ltd.) is installed on the light diffuser. A diffusive lens sheet was installed. The light diffusing lens sheet was installed such that the lens surface was the exit surface side and the major axis direction of the prism portion was matched with the major axis direction of the cathode ray tube.
[0029]
Luminance measurement
Measurement area 4.8 cm by luminance meter Minolta CA-1500 (manufactured by Konica Minolta Co., Ltd.) at a distance of 500 mm above the surface where the light diffusing lens sheet is installed.2As a result, the luminance at the center point of the installed light diffusing lens sheet was measured.
[0030]
Judgment of appearance quality of backlight emission:
Glare:
The glare that enters the viewer's eyes directly from each direction due to reflection, refraction, etc. from the light source is visually determined according to the following criteria.
○: Glittering is not visible and the light is exiting gently.
○ △: Slight glare is seen only in one specific direction.
Δ: Slight glare is seen, but it disappears after passing through the liquid crystal panel.
X: Glitter is visible and may be visible after passing through the liquid crystal panel.
[0031]
Difference in brightness between the line light source and the middle part:
The light / dark difference between the line light source and the intermediate portion thereof is visually determined according to the following criteria.
○: No difference in brightness is recognized.
○ △: Close to ○, with very slight difference in brightness.
Δ: A slight difference in brightness is recognized.
Δ ×: Close to ×, and the difference in brightness is clearly recognized.
X: A contrast difference is clearly recognized.
[0032]
Brightness / darkness difference between the linear light source and its middle part:
Luminance meter TOPCON BM-5A (manufactured by Topcon Co., Ltd.) was measured in the same manner as the luminance measurement described above.2The brightness was measured by approaching the backlight to 300 mm above the backlight and measuring the brightness between two cold cathode fluorescent lamps directly above and the midpoint thereof, and the brightness difference was calculated to obtain an average value.
[0033]
Example 2
Implemented except that the period B of the concave / convex row structure of the cooling roll was changed to a trapezoidal shape of 100 μm (the width of the concave row and the convex row is 50 μm, and the cross-sectional shape of the convex row is the bottom 50 μm and the upper bottom 30 μm). Create a light diffusing lens sheet as in Example 1.The direct type backlight obtained by installing this on the above backlightThe optical characteristics were measured and judged. The measurement / judgment results are shown in Table 1.
[0034]
Example 3
Except having changed the height difference of the uneven | corrugated row structure of a cooling roll to 10 micrometers, it carried out similarly to Example 2, and changed it.Direct type backlightThe optical characteristics were measured and judged. The measurement / judgment results are shown in Table 1.
[0035]
Example 4
The period B of the concave and convex row structure of the cooling roll is changed to a trapezoidal shape of 500 μm (the width of the concave row is 450 μm, the width of the convex row is 50 μm, the cross-sectional shape of the convex row is 50 μm at the bottom and 30 μm at the top). Except that manufactured in the same manner as Example 3,Direct type backlightWas manufactured, and its optical characteristics were measured and judged. The measurement / judgment results are shown in Table 1.
[0036]
Example 5
The height difference A of the concave / convex row structure of the cooling roll is 15 μm, and the period B is 250 μm (the width of the concave row is 200 μm, the width of the convex row is 50 μm, the cross-sectional shape of the convex row is 50 μm at the bottom, and 30 μm at the top) Except for the trapezoidal shape, the same as in Example 1Direct type backlightWas manufactured, and its optical characteristics were measured and judged. The measurement / judgment results are shown in Table 1.
[0037]
Example 6
The height difference A of the concavo-convex row structure of the cooling roll is 30 μm, and the period B is 900 μm (the width of the concave row is 850 μm, the width of the convex row is 50 μm, the cross-sectional shape of the convex row is the bottom 50 μm, the top bottom 30 μm) Except for the trapezoidal shape, the same as in Example 1Direct type backlightWas manufactured, and its optical characteristics were measured and judged. The measurement / judgment results are shown in Table 1.
[0038]
Examples 7-9
Except for changing the swing angle of the concavo-convex row structure of the cooling roll to 5 degrees, 10 degrees, and 30 degrees, the same as in Example 4Direct type backlightWas manufactured, and its optical characteristics were measured and judged. The measurement / judgment results are shown in Table 1.
[0039]
Comparative Example 1
Optical characteristics were measured and determined in the same manner as in Example 1 except that two commercially available light diffusion sheets BS300 (manufactured by Eiwa Co., Ltd.) were installed on the backlight light diffusion plate instead of the light diffusing lens sheet. . The measurement / judgment results are shown in Table 1.
[0040]
Comparative Example 2
Optical properties were measured in the same manner as in Example 1 except that three commercially available light diffusion sheets BS702 (manufactured by Keiwa Co., Ltd.) were stacked in place of the light diffusing lens sheet and placed on the light diffusion plate of the backlight. Judged. The measurement / judgment results are shown in Table 1.
[0041]
Comparative Example 3
A sheet was produced in the same manner as in Example 4 except that the swing angle of the concavo-convex row structure of the cooling roll was changed to 0 degree, and the optical characteristics of the obtained sheet were measured and determined. The measurement / judgment results are shown in Table 1.
[0042]
Comparative Example 4
Implemented except that the period B of the concave / convex row structure of the cooling roll was changed to a trapezoidal shape of 30 μm (the width of the concave row and the convex row is 15 μm, and the cross-sectional shape of the convex row is the bottom 15 μm and the top 10 μm). A sheet was produced in the same manner as in Example 3, and the optical properties of the obtained sheet were measured and determined. The measurement / judgment results are shown in Table 1.
[0043]
Comparative Example 5
The height difference A of the concave / convex row structure of the cooling roll is 4 μm, and the period B is 300 μm (the width of the concave row is 250 μm, the width of the convex row is 50 μm, the cross-sectional shape of the convex row is the bottom 50 μm, the top bottom 30 μm) A sheet was produced in the same manner as in Example 1 except that the trapezoidal shape was changed, and the optical characteristics of the obtained sheet were measured and determined. The measurement / judgment results are shown in Table 1.
[0044]
Comparative Example 6
Optical sheet in the same manner as in Example 4 except that the swing angle of the concave and convex row structure of the cooling roll was changed to 45 degrees.And install it on the above backlight, direct type backlightManufactured and obtainedDirect type backlightThe optical properties of were measured and judged. The measurement / judgment results are shown in Table 1.
[0045]
Comparative Example 7
The optical characteristics were measured and determined in the same manner as in Example 1 except that the light diffusing lens sheet was not used. The measurement / judgment results are shown in Table 1.
[0046]
[Table 1]
[0047]
As is clear from the examples and comparative examples in Table 1 above, the brightness difference between light and dark is large only with a normal light diffusion plate with a thickness of 2 mm, and the light and dark difference between the linear light source and its gap is clearly recognized by the naked eye. The luminance is also low (see Comparative Example 7). When two or more commercially available diffusion sheets are stacked on this, a difference in brightness is hardly recognized with the naked eye, but the number of parts increases, manufacturing costs increase, and productivity decreases (see Comparative Examples 1 and 2). .
On the other hand, by providing an uneven row structure on the opposite side of the lens surface, the light / dark difference of the light source is almost eliminated.
Further, the value of the period B (B / A) with respect to the height difference A is important. If this value is less than 10, the luminance decreases (see Comparative Example 4), whereas if it exceeds 50, the glare increases (Comparative Example). 5). Further, when the direction of the projections and depressions coincides with the direction of the prism portion (the swing angle is 0 degree), interference fringes appear (see Comparative Example 3). On the other hand, when the swing angle is too large, the glare becomes remarkable (Comparative Example 6). See).
As a result of the above, by providing an appropriate uneven row structure on the opposite surface of the lens surface at an appropriate swing angle, even a single light diffusing lens sheet can sufficiently improve the quality of the backlight, resulting in a decrease in luminance. (See Examples 1 to 9).
[Industrial applicability]
[0048]
As mentioned above, the present inventionDirect type backlightIsLight diffusing lens sheetDirectly below the linear light source by providing a concave and convex array structure with a specific height difference and period on the opposite side of the lens surface having the prism part with a specific swing angle with respect to the major axis direction of the prism part Eliminates the brightness and glare between the light source and the light source of the mold backlight, greatly improving the quality, increasing the brightness of the front, and reducing the number of parts of the backlight.Direct type backlightUseful as.
[Brief description of the drawings]
[0049]
FIG. 1 shows the present invention.Used inIt is a schematic explanatory drawing which shows the relationship between the prism surface of a light diffusable lens sheet, and an uneven | corrugated row | line | column structure surface.
FIG. 2 shows the present invention.Used inIt is AA sectional view taken on the side of the prism surface of the light diffusing lens sheet.
FIG. 3 shows the present invention.Used inIt is BB sectional drawing of the uneven | corrugated row | line | column structure surface side of a light diffusable lens sheet.
[Explanation of symbols]
[0050]
1 Light diffusing lens sheet
2 Lens surface
3 Prism section
4 Diffusion surface
4a Uneven row structure
5 concave line
6 ridges
L1 Line parallel to the long axis direction of the prism
L2 Line parallel to major axis direction
C Prism unit arrangement period
A Difference in height of uneven rows
B Period of the irregular row
b1 Width of concave row
b2 Width of ridge row
α Swing angle
Claims (6)
他方の面には高低差Aが2μm〜30μm、周期Bが50μm〜1000μm、B/Aが10〜50の範囲にある凹凸条列構造が、プリズム部の長軸に対して5度〜30度の振り角度をつけて設けられていることを特徴とする光拡散性レンズシート。A plurality of substantially triangular prism portions made of a transparent polymer material on one side are arranged in a constant cycle so that the major axes of the triangular prisms are substantially parallel to each other,
On the other surface, an uneven row structure in which the height difference A is 2 μm to 30 μm, the period B is 50 μm to 1000 μm, and the B / A is in the range of 10 to 50 is 5 degrees to 30 degrees with respect to the major axis of the prism portion. A light diffusing lens sheet characterized by being provided with a swing angle of
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2007/001399 WO2009078055A1 (en) | 2007-12-14 | 2007-12-14 | Light diffusing lens sheet, direct backlight using the sheet, and liquid crystal display television having the backlight installed therein |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4277049B1 JP4277049B1 (en) | 2009-06-10 |
JPWO2009078055A1 true JPWO2009078055A1 (en) | 2011-04-28 |
Family
ID=40795183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007557257A Active JP4277049B1 (en) | 2007-12-14 | 2007-12-14 | Direct type backlight and liquid crystal television incorporating the backlight |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4277049B1 (en) |
WO (1) | WO2009078055A1 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0682634A (en) * | 1992-07-07 | 1994-03-25 | Sekisui Chem Co Ltd | Surface light source device |
JP3585509B2 (en) * | 1993-03-15 | 2004-11-04 | 大日本印刷株式会社 | Transmissive liquid crystal display |
JP3455884B2 (en) * | 1993-12-28 | 2003-10-14 | 株式会社エンプラス | Prism sheet |
JPH08203312A (en) * | 1995-01-24 | 1996-08-09 | Toshiba Chem Corp | Lighting system |
JP3711680B2 (en) * | 1997-01-30 | 2005-11-02 | 松下電器産業株式会社 | Beam shaping device |
JPH10300908A (en) * | 1997-04-22 | 1998-11-13 | Dainippon Printing Co Ltd | Lens sheet, surface light source device, and transmission type display device |
JP2000056106A (en) * | 1998-08-05 | 2000-02-25 | Mitsubishi Rayon Co Ltd | Prism sheet and surface light source element |
JP2000056107A (en) * | 1998-08-05 | 2000-02-25 | Mitsubishi Rayon Co Ltd | Prism sheet and surface light source element |
JP3575022B2 (en) * | 2002-03-06 | 2004-10-06 | 船井電機株式会社 | Optical element for optical head and optical head |
JP4522938B2 (en) * | 2005-10-07 | 2010-08-11 | 株式会社クラレ | Light control member provided in illumination device and image display device using the same |
-
2007
- 2007-12-14 JP JP2007557257A patent/JP4277049B1/en active Active
- 2007-12-14 WO PCT/JP2007/001399 patent/WO2009078055A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP4277049B1 (en) | 2009-06-10 |
WO2009078055A1 (en) | 2009-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100864321B1 (en) | Diffuser prism sheet comprising amorphous light diffuser on the valley of prism and lcd back light unit thereby | |
US8274626B2 (en) | Diffuser prism sheet with light diffusing element on valley region, LCD back light unit including the same, and LCD device including the same | |
US7545460B2 (en) | Liquid crystal display, optical sheet manufacturing method, and optical sheet | |
KR100912260B1 (en) | Optical prism sheet having a certain roughness thereon | |
JP4638752B2 (en) | Light diffusion plate | |
US20090097229A1 (en) | Light management films, back light units, and related structures | |
KR100781328B1 (en) | Light guide panel for lcd back light unit and lcd back light unit thereby | |
JP2013225058A (en) | Optical plate and direct point light source backlight device | |
JP2010020132A (en) | Abrasion resistant lens sheet | |
JP4522938B2 (en) | Light control member provided in illumination device and image display device using the same | |
JPWO2008047794A1 (en) | LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME | |
JP5019746B2 (en) | Direct light type backlight unit | |
JP2007316403A (en) | Lens-like diffusion sheet for liquid crystal television | |
JP2011033643A (en) | Optical path changing sheet, backlight unit and display device | |
JP2009265212A (en) | Frictional flaw resistant prism sheet | |
JP2009123397A (en) | Illumination device, and image display device using it | |
JP4826377B2 (en) | Optical sheet and backlight unit and display using the same | |
JP5593653B2 (en) | Light guide plate, backlight unit and display device | |
JP5267098B2 (en) | Lens sheet and display device | |
JP4277049B1 (en) | Direct type backlight and liquid crystal television incorporating the backlight | |
JP4689543B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME | |
JP2008233708A (en) | Diffusion plate with double-sided configuration | |
JP4917403B2 (en) | Light diffusing lens sheet | |
JP5058000B2 (en) | Light diffusing lens sheet, direct type backlight using the sheet, and liquid crystal television incorporating the backlight | |
JP2011133556A (en) | Optical sheet, backlight unit, display device, and die |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090217 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4277049 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130313 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140313 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |