JPWO2009019921A1 - Resin composition and film-like optical member using the same - Google Patents

Resin composition and film-like optical member using the same Download PDF

Info

Publication number
JPWO2009019921A1
JPWO2009019921A1 JP2009526362A JP2009526362A JPWO2009019921A1 JP WO2009019921 A1 JPWO2009019921 A1 JP WO2009019921A1 JP 2009526362 A JP2009526362 A JP 2009526362A JP 2009526362 A JP2009526362 A JP 2009526362A JP WO2009019921 A1 JPWO2009019921 A1 JP WO2009019921A1
Authority
JP
Japan
Prior art keywords
titanium
resin composition
component
film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009526362A
Other languages
Japanese (ja)
Inventor
俊勝 嶋崎
俊勝 嶋崎
香 岡庭
香 岡庭
紘揮 三國
紘揮 三國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2009019921A1 publication Critical patent/JPWO2009019921A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

透明、高屈折率でかつ膜状の光学部材を形成することが可能な樹脂組成物、およびこれを用いた膜状光学部材を提供する。(A)含金属高屈折中間体と、(B)ポリマもしくはオリゴマおよび/または(C)反応性モノマと、を成分として含有する樹脂組成物であって、前記(A)成分は、チタンアルコキシドとアミノアルコールと水を混合し、加水分解反応により得られるものであり、かつ前記(B)成分および/または(C)成分の一部が、ひとつの分子中にエポキシ基とアクリル基の両方を含む樹脂組成物、及び該樹脂組成物を用いてなる膜状光学部材である。A resin composition capable of forming a transparent, high refractive index and film-like optical member, and a film-like optical member using the same are provided. (A) a metal-containing highly refractive intermediate, and (B) a polymer or oligomer and / or (C) a reactive monomer as components, wherein the component (A) includes titanium alkoxide and Amino alcohol and water are mixed and obtained by hydrolysis reaction, and part of the component (B) and / or component (C) contains both an epoxy group and an acrylic group in one molecule. A resin composition, and a film-like optical member using the resin composition.

Description

本発明は、プラスチックレンズ、プリズム、光ファイバー、情報記録基板、フィルター、液晶ディスプレイ用部材、プラズマディスプレイ用部材、プリズムシート、ディフューザー、光散乱フィルム、視野角向上フィルム、輝度向上フィルム、偏光子、太陽電池用集光フィルム等に代表される膜状光学部材、およびそれの製造に用いる樹脂組成物に関し、特に、高い屈折率を有する膜状光学部材、およびそれの製造に用いる樹脂組成物に関する。   The present invention includes a plastic lens, a prism, an optical fiber, an information recording substrate, a filter, a liquid crystal display member, a plasma display member, a prism sheet, a diffuser, a light scattering film, a viewing angle enhancement film, a brightness enhancement film, a polarizer, and a solar cell. More particularly, the present invention relates to a film-shaped optical member typified by a light collecting film and the like, and a resin composition used for manufacturing the same, and particularly to a film-shaped optical member having a high refractive index and a resin composition used for manufacturing the same.

近年、軽量でかつ加工性に富み、各種の光学部材として好適な樹脂材料として、1.6〜2.2程度の高い屈折率を有する透明樹脂材料が要求されている。従来技術における高屈折率樹脂材料は、ポリチオール化合物とポリイソシアネート化合物から得られるチオウレタン(例えば、特許文献1参照。)、エポキシ樹脂またはエピスルフィド樹脂から得られる重合体(例えば、特許文献2参照。)などが挙げられるが、これらイオウ系の高屈折樹脂は、屈折率の限界が1.72程度であるのに加え、硬化前の臭気が激しく、工程上の制約を受ける。また、ベンゼン環に臭素を導入したポリマが既に市販されているが、その屈折率は1.6程度である。   In recent years, a transparent resin material having a high refractive index of about 1.6 to 2.2 has been required as a resin material that is lightweight and rich in workability and is suitable as various optical members. The high refractive index resin material in the prior art is a polymer obtained from a thiourethane obtained from a polythiol compound and a polyisocyanate compound (see, for example, Patent Document 1), an epoxy resin, or an episulfide resin (see, for example, Patent Document 2). These sulfur-based high-refractive resins have a refractive index limit of about 1.72 and a strong odor before curing, which is subject to process restrictions. A polymer in which bromine is introduced into a benzene ring is already on the market, and its refractive index is about 1.6.

また、樹脂中に酸化チタンや酸化亜鉛などの高屈折率金属酸化物微粒子を分散させる技術が提案されているが(例えば、特許文献3参照。)、光散乱を引き起こさないようにこれらの微粒子を分散させるのは極めて難しい。また、チタンアルコキシドのゾルゲル反応を樹脂マトリクス中で行う有機−無機ハイブリッド系も多々報告されているが(例えば、特許文献4、5参照。)、光学用途としては、光散乱を引き起こしてしまうため実用化には至っていない。また、本発明と比較的近いものとして、特許文献6や7が挙げられるが、特許文献6の発明では、粘度が低すぎて1〜1000μm程度の厚膜を形成することはできない。また、特許文献7にある有機・無機ポリマ複合体およびその製造方法では、反応性の高い金属アルコキシドを用いる場合、その反応性制御と均一分散が困難である。例えば、チタンアルコキシドのゾルゲル反応は、非常に反応性が高いため、酸化チタン粒子が光を散乱させる程度以上の粒子サイズ(>100nm)になり易い。   In addition, a technique for dispersing high refractive index metal oxide fine particles such as titanium oxide and zinc oxide in a resin has been proposed (see, for example, Patent Document 3), but these fine particles are used so as not to cause light scattering. It is extremely difficult to disperse. Many organic-inorganic hybrid systems in which a sol-gel reaction of titanium alkoxide is carried out in a resin matrix have been reported (for example, see Patent Documents 4 and 5). It hasn't arrived. Further, Patent Documents 6 and 7 can be cited as relatively close to the present invention. However, in the invention of Patent Document 6, the viscosity is too low to form a thick film of about 1 to 1000 μm. In addition, in the organic / inorganic polymer composite and the method for producing the same disclosed in Patent Document 7, when highly reactive metal alkoxide is used, it is difficult to control the reactivity and uniformly disperse. For example, since the sol-gel reaction of titanium alkoxide is very reactive, it tends to have a particle size (> 100 nm) larger than the titanium oxide particles scatter light.

特公平4−58489号公報Japanese Patent Publication No. 4-58489 特開平3−81320号公報JP-A-3-81320 特開2002−277609号公報JP 2002-277609 A 特開平6−107461号公報JP-A-6-107461 特開2001−89196号公報JP 2001-89196 A 特公平7−14834号公報Japanese Patent Publication No. 7-14834 特開平6−322136号公報JP-A-6-322136

本発明は、従来よりも透明、高屈折率で、製膜性に優れ、長寿命でかつ所望する膜厚の光学部材を形成することが可能な樹脂組成物、およびこれを用いた膜状光学部材を提供することを目的とする。   The present invention provides a resin composition capable of forming an optical member having a desired film thickness, which is more transparent and has a higher refractive index than that of the prior art, has an excellent film forming property, and has a long film life. An object is to provide a member.

前記課題を解決するための手段は以下に通りである。
(1)(A)含金属高屈折中間体と、(B)ポリマもしくはオリゴマおよび/または(C)反応性モノマと、を成分として含有する樹脂組成物であって、
前記(A)成分は、チタンアルコキシドとアミノアルコールと水とを混合し、加水分解反応により得られるものであり、かつ前記(B)成分および/または(C)成分の一部が、ひとつの分子中にエポキシ基とアクリル基との両方を含むことを特徴とする樹脂組成物。
Means for solving the above-described problems are as follows.
(1) A resin composition comprising (A) a metal-containing highly refractive intermediate, (B) a polymer or oligomer and / or (C) a reactive monomer as components,
The component (A) is obtained by mixing titanium alkoxide, amino alcohol, and water and hydrolyzing, and a part of the component (B) and / or the component (C) is a single molecule. A resin composition comprising both an epoxy group and an acrylic group therein.

(2)前記(A)含金属高屈折中間体において、チタンアルコキシド(n)、アミノアルコール(m)、水(l)の混合時のモル比が、l<n≦mである(1)に記載の樹脂組成物。 (2) In the metal-containing highly refractive intermediate (A), the molar ratio of titanium alkoxide (n), amino alcohol (m), and water (l) when mixed is l <n ≦ m (1) The resin composition as described.

(3)前記アミノアルコールが、下記一般式(1)で表されるアミノアルコールである(1)または(2)に記載の樹脂組成物。
(R3−n−N−(ROH)・・・一般式(1)
(一般式(1)中、Nは窒素原子、RはHまたは炭素数1〜20のアルキル基、Rは炭素数1〜20のアルキレン基、nは1〜3の整数である。)
(3) The resin composition according to (1) or (2), wherein the amino alcohol is an amino alcohol represented by the following general formula (1).
(R 1) 3-n -N- (R 2 OH) n ··· formula (1)
(In general formula (1), N is a nitrogen atom, R 1 is H or an alkyl group having 1 to 20 carbon atoms, R 2 is an alkylene group having 1 to 20 carbon atoms, and n is an integer of 1 to 3)

(4)(D)溶媒をさらに含有する(1)〜(3)のいずれかに記載の樹脂組成物。 (4) The resin composition according to any one of (1) to (3), further comprising (D) a solvent.

(5)前記(D)溶媒が、窒素原子を有する溶媒である(4)に記載の樹脂組成物。 (5) The resin composition according to (4), wherein the solvent (D) is a solvent having a nitrogen atom.

(6)前記(1)〜(5)のいずれかに記載の樹脂組成物を用いてなる膜状光学部材。 (6) A film-like optical member using the resin composition according to any one of (1) to (5).

(7)膜厚が1〜1000μmの範囲である(6)に記載の膜状光学部材。 (7) The film-like optical member according to (6), wherein the film thickness is in the range of 1 to 1000 μm.

本発明によれば、従来よりも透明、高屈折率で、製膜性に優れ、長寿命でかつ所望する膜厚の光学部材を形成することが可能な樹脂組成物、およびこれを用いた膜状光学部材を提供することが可能である。   According to the present invention, a resin composition capable of forming an optical member having a desired film thickness, which is transparent, has a higher refractive index, is superior in film forming property, has a long lifetime, and has a desired film thickness. Shaped optical member can be provided.

<樹脂組成物>
本発明の樹脂組成物は、(A)含金属高屈折中間体と、(B)ポリマもしくはオリゴマおよび/または(C)反応性モノマと、を成分として含有する樹脂組成物であって、前記(A)成分は、チタンアルコキシドとアミノアルコールと水を混合し、加水分解反応により得られるものであり、かつ前記(B)成分および/または(C)成分の一部が、ひとつの分子中にエポキシ基とアクリル基の両方を含むことを特徴とする。
<Resin composition>
The resin composition of the present invention is a resin composition containing (A) a metal-containing highly refractive intermediate and (B) a polymer or oligomer and / or (C) a reactive monomer as components, Component A) is obtained by mixing titanium alkoxide, amino alcohol, and water and hydrolyzing, and a part of the component (B) and / or component (C) is an epoxy in one molecule. It contains both groups and acrylic groups.

[(A)含金属高屈折中間体]
前記(A)成分は、部分的に、加水分解反応で縮合されたものであり、また、反応系を加熱することにより、加水分解により発生した副生成物のアルコールを積極的に留去する工程により得られる。なお、上記アミノアルコールは、前記工程中において、チタンアルコキシドに配位し、加水分解反応の進行を制御し、酸化チタン粒子の成長を抑制する役割を有する。従って、酸化チタン粒子の成長を抑制し、硬化物の光散乱を引き起こさないようにすることが可能となる。前記工程における加熱温度は、副生成物のアルコールの沸点付近が好ましく、40〜150℃とすることが好ましく、例えば、副生成物がイソプロピルアルコールの場合には60〜100℃とすることがより好ましい。また、加熱時間としては、チタンアルコキシド量から計算されるアルコールの留去量から決定することが好ましい。
さらに、(A)含金属高屈折中間体を作製する際、チタンアルコキシド(n)、アミノアルコール(m)、水(l)の混合時のモル比が、l<n≦mであることが好ましい。水が多い場合やアミノアルコールが少ない場合には、チタン粒子の析出やゲル化が発生するため、この不等式を満足することで、透明で均質な樹脂組成物ができる。より具体的には、l=2〜6、m=5〜9、n=3〜7あることが好ましい。
[(A) Metal-containing highly refractive intermediate]
The component (A) is partially condensed by a hydrolysis reaction, and by heating the reaction system, the by-product alcohol generated by the hydrolysis is actively distilled off. Is obtained. In addition, the said amino alcohol has a role which coordinates the titanium alkoxide in the said process, controls the progress of a hydrolysis reaction, and suppresses the growth of a titanium oxide particle. Therefore, it becomes possible to suppress the growth of titanium oxide particles and prevent light scattering of the cured product. The heating temperature in the step is preferably near the boiling point of the by-product alcohol, preferably 40 to 150 ° C. For example, when the by-product is isopropyl alcohol, it is more preferably 60 to 100 ° C. . Further, the heating time is preferably determined from the amount of alcohol distilled off calculated from the amount of titanium alkoxide.
Furthermore, when preparing (A) a metal-containing highly refractive intermediate, the molar ratio of the titanium alkoxide (n), amino alcohol (m), and water (l) when mixed is preferably l <n ≦ m. . When water is abundant or amino alcohol is abundant, precipitation and gelation of titanium particles occur. Therefore, by satisfying this inequality, a transparent and homogeneous resin composition can be obtained. More specifically, it is preferable that l = 2-6, m = 5-9, and n = 3-7.

(チタンアルコキシド)
上記(A)含金属高屈折中間体のうちのチタンアルコキシドは、目的に応じて他の金属アルコキシドを部分的に用いることもできる。その金属としては、特に限定されないが、Zn、Zr、La、Th、Taなどがある。
上記(A)含金属高屈折中間体に使用されるチタンアルコキシドの加水分解性アルコキシ基としては、特に限定されないが、例えば、炭素数1〜6のアルコキシ基、具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などが挙げられる。炭素数が3〜6であるとゾルゲル反応が十分に進行することから、好ましくはプロポキシ基、イソプロポキシ基、ブトキシ基であり、特に好ましくはイソプロポキシ基である。金属上のこれらアルコキシ基の種類はすべて同一であっても、違っていても構わない。
(Titanium alkoxide)
The titanium alkoxide in the metal-containing highly refractive intermediate (A) can partially use another metal alkoxide depending on the purpose. The metal is not particularly limited, but includes Zn, Zr, La, Th, Ta, and the like.
Although it does not specifically limit as a hydrolysable alkoxy group of the titanium alkoxide used for said (A) metal-containing highly refractive intermediate, For example, a C1-C6 alkoxy group, Specifically, a methoxy group, ethoxy, Group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, pentyloxy group, hexyloxy group and the like. Since the sol-gel reaction proceeds sufficiently when the carbon number is 3 to 6, a propoxy group, an isopropoxy group, and a butoxy group are preferable, and an isopropoxy group is particularly preferable. The types of these alkoxy groups on the metal may be the same or different.

上記(A)含金属高屈折中間体の合成の際に使われるチタンアルコキシドとしては、例えば、チタニウムテトラメトキシ、チタニウムテトラエトキシ、チタニウムテトラ−n−プロポキシ、チタニウムテトラ−iso−プロポキシ、チタニウムテトラ−n−ブトキシ、チタニウムテトラ−sec−ブトキシ、チタニウムテトラ−tert−ブトキシ、チタニウムテトラフェノキシ等のテトラアルコキシ、チタニウムトリメトキシ、チタニウムトリエトキシ、チタニウムトリプロポキシ、チタニウムフルオロトリメトキシ、チタニウムフルオロトリエトキシ、チタニウムメチルトリメトキシ、チタニウムメチルトリエトキシ、チタニウムメチルトリ−n−プロポキシ、チタニウムメチルトリ−iso−プロポキシ、チタニウムメチルトリ−n−ブトキシ、チタニウムメチルトリ−iso−ブトキシ、チタニウムメチルトリ−tert−ブトキシ、チタニウムメチルトリフェノキシ、チタニウムエチルトリメトキシ、チタニウムエチルトリエトキシ、チタニウムエチルトリ−n−プロポキシ、チタニウムエチルトリ−iso−プロポキシ、チタニウムエチルトリ−n−ブトキシ、チタニウムエチルトリ−iso−ブトキシ、チタニウムエチルトリ−tert−ブトキシ、チタニウムエチルトリフェノキシ、チタニウムn−プロピルトリメトキシ、チタニウムn−プロピルトリエトキシ、チタニウムn−プロピルトリ−n−プロポキシ、チタニウムn−プロピルトリ−iso−プロポキシ、チタニウムn−プロピルトリ−n−ブトキシ、チタニウムn−プロピルトリ−iso−ブトキシ、チタニウムn−プロピルトリ−tert−ブトキシ、チタニウムn−プロピルトリフェノキシ、チタニウムiso−プロピルトリメトキシ、チタニウムiso−プロピルトリエトキシ、チタニウムiso−プロピルトリ−n−プロポキシ、チタニウムiso−プロピルトリ−iso−プロポキシ、チタニウムiso−プロピルトリ−n−ブトキシ、チタニウムiso−プロピルトリ−iso−ブトキシ、チタニウムiso−プロピルトリ−tert−ブトキシ、チタニウムiso−プロピルトリフェノキシ、チタニウムn−ブチルトリメトキシ、チタニウムn−ブチルトリエトキシ、チタニウムn−ブチルトリ−n−プロポキシ、チタニウムn−ブチルトリ−iso−プロポキシ、チタニウムn−ブチルトリ−n−ブトキシ、チタニウムn−ブチルトリ−iso−ブトキシ、チタニウムn−ブチルトリ−tert−ブトキシ、チタニウムn−ブチルトリフェノキシ、チタニウムsec−ブチルトリメトキシ、チタニウムsec−ブチルトリエトキシ、チタニウムsec−ブチルトリ−n−プロポキシ、チタニウムsec−ブチルトリ−iso−プロポキシ、チタニウムsec−ブチルトリ−n−ブトキシ、チタニウムsec−ブチルトリ−iso−ブトキシ、チタニウムsec−ブチルトリ−tert−ブトキシ、チタニウムsec−ブチルトリフェノキシ、チタニウムtert−ブチルトリメトキシ、チタニウムtert−ブチルトリエトキシ、チタニウムtert−ブチルトリ−n−プロポキシ、チタニウムtert−ブチルトリ−iso−プロポキシ、チタニウムtert−ブチルトリ−n−ブトキシ、チタニウムtert−ブチルトリ−iso−ブトキシ、チタニウムtert−ブチルトリ−tert−ブトキシ、チタニウムt−ブチルトリフェノキシ、チタニウムフェニルトリメトキシ、チタニウムフェニルトリエトキシ、チタニウムフェニルトリ−n−プロポキシ、チタニウムフェニルトリ−iso−プロポキシ、チタニウムフェニルトリ−n−ブトキシ、チタニウムフェニルトリ−iso−ブトキシ、チタニウムフェニルトリ−tert−ブトキシ、チタニウムフェニルトリフェノキシ、チタニウムトリフルオロメチルトリメトキシ、チタニウムペンタフルオロエチルトリメトキシ、チタニウム3,3,3−トリフルオロプロピルトリメトキシ、チタニウム3,3,3−トリフルオロプロピルトリエトキシ等のトリアルコキシ、チタニウムジメチルジメトキシ、チタニウムジメチルジエトキシ、チタニウムジメチルジ−n−プロポキシ、チタニウムジメチルジ−iso−プロポキシ、チタニウムジメチルジ−n−ブトキシ、チタニウムジメチルジ−sec−ブトキシ、チタニウムジメチルジ−tert−ブトキシ、チタニウムジメチルジフェノキシ、チタニウムジエチルジメトキシ、チタニウムジエチルジエトキシ、チタニウムジエチルジ−n−プロポキシ、チタニウムジエチルジ−iso−プロポキシ、チタニウムジエチルジ−n−ブトキシ、チタニウムジエチルジ−sec−ブトキシ、チタニウムジエチルジ−tert−ブトキシ、チタニウムジエチルジフェノキシ、チタニウムジ−n−プロピルジメトキシ、チタニウムジ−n−プロピルジエトキシ、チタニウムジ−n−プロピルジ−n−プロポキシ、チタニウムジ−n−プロピルジ−iso−プロポキシ、チタニウムジ−n−プロピルジ−n−ブトキシ、チタニウムジ−n−プロピルジ−sec−ブトキシ、チタニウムジ−n−プロピルジ−tert−ブトキシ、チタニウムジ−n−プロピルジフェノキシ、チタニウムジ−iso−プロピルジメトキシ、チタニウムジ−iso−プロピルジエトキシ、チタニウムジ−iso−プロピルジ−n−プロポキシ、チタニウムジ−iso−プロピルジ−iso−プロポキシ、チタニウムジ−iso−プロピルジ−n−ブトキシ、チタニウムジ−iso−プロピルジ−sec−ブトキシ、チタニウムジ−iso−プロピルジ−tert−ブトキシ、チタニウムジ−iso−プロピルジフェノキシ、チタニウムジ−n−ブチルジメトキシ、チタニウムジ−n−ブチルジエトキシ、チタニウムジ−n−ブチルジ−n−プロポキシ、チタニウムジ−n−ブチルジ−iso−プロポキシ、チタニウムジ−n−ブチルジ−n−ブトキシ、チタニウムジ−n−ブチルジ−sec−ブトキシ、チタニウムジ−n−ブチルジ−tert−ブトキシ、チタニウムジ−n−ブチルジフェノキシ、チタニウムジ−sec−ブチルジメトキシ、チタニウムジ−sec−ブチルジエトキシ、チタニウムジ−sec−ブチルジ−n−プロポキシ、チタニウムジ−sec−ブチルジ−iso−プロポキシ、チタニウムジ−sec−ブチルジ−n−ブトキシ、チタニウムジ−sec−ブチルジ−sec−ブトキシ、チタニウムジ−sec−ブチルジ−tert−ブトキシ、チタニウムジ−sec−ブチルジフェノキシ、チタニウムジ−tert−ブチルジメトキシ、チタニウムジ−tert−ブチルジエトキシ、チタニウムジ−tert−ブチルジ−n−プロポキシ、チタニウムジ−tert−ブチルジ−iso−プロポキシ、チタニウムジ−tert−ブチルジ−n−ブトキシ、チタニウムジ−tert−ブチルジ−sec−ブトキシ、チタニウムジ−tert−ブチルジ−tert−ブトキシ、チタニウムジ−tert−ブチルジフェノキシ、チタニウムジフェニルジメトキシ、チタニウムジフェニルジエトキシ、チタニウムジフェニルジ−n−プロポキシ、チタニウムジフェニルジ−iso−プロポキシ、チタニウムジフェニルジ−n−ブトキシ、チタニウムジフェニルジ−sec−ブトキシ、チタニウムジフェニルジ−tert−ブトキシ、チタニウムジフェニルジフェノキシ、チタニウムビス(3,3,3−トリフルオロプロピル)ジメトキシ、チタニウムメチル(3,3,3−トリフルオロプロピル)ジメトキシ等のジオルガノジアルコキシなどが挙げられ、中でも、プロポキシ基、イソプロポキシ基、ブトキシ基を含むものが好ましく、特に好ましくはイソプロポキシ基である。   Examples of the titanium alkoxide used in the synthesis of the metal-containing highly refractive intermediate (A) include titanium tetramethoxy, titanium tetraethoxy, titanium tetra-n-propoxy, titanium tetra-iso-propoxy, and titanium tetra-n. -Butoxy, titanium tetra-sec-butoxy, titanium tetra-tert-butoxy, titanium tetraphenoxy, etc. tetraalkoxy, titanium trimethoxy, titanium triethoxy, titanium tripropoxy, titanium fluorotrimethoxy, titanium fluorotriethoxy, titanium methyltri Methoxy, titanium methyl triethoxy, titanium methyl tri-n-propoxy, titanium methyl tri-iso-propoxy, titanium methyl tri-n- Toxy, titanium methyl tri-iso-butoxy, titanium methyl tri-tert-butoxy, titanium methyl triphenoxy, titanium ethyl trimethoxy, titanium ethyl triethoxy, titanium ethyl tri-n-propoxy, titanium ethyl tri-iso-propoxy, titanium Ethyltri-n-butoxy, titaniumethyltri-iso-butoxy, titaniumethyltri-tert-butoxy, titaniumethyltriphenoxy, titanium n-propyltrimethoxy, titanium n-propyltriethoxy, titanium n-propyltri-n- Propoxy, titanium n-propyltri-iso-propoxy, titanium n-propyltri-n-butoxy, titanium n-propyltri-iso-butoxy, Titanium n-propyltri-tert-butoxy, titanium n-propyltriphenoxy, titanium iso-propyltrimethoxy, titanium iso-propyltriethoxy, titanium iso-propyltri-n-propoxy, titanium iso-propyltri-iso-propoxy Titanium iso-propyltri-n-butoxy, titanium iso-propyltri-iso-butoxy, titanium iso-propyltri-tert-butoxy, titanium iso-propyltriphenoxy, titanium n-butyltrimethoxy, titanium n-butyltri Ethoxy, titanium n-butyltri-n-propoxy, titanium n-butyltri-iso-propoxy, titanium n-butyltri-n-butoxy, titanium n-butyl Tiltri-iso-butoxy, titanium n-butyltri-tert-butoxy, titanium n-butyltriphenoxy, titanium sec-butyltrimethoxy, titanium sec-butyltriethoxy, titanium sec-butyltri-n-propoxy, titanium sec-butyltri- iso-propoxy, titanium sec-butyltri-n-butoxy, titanium sec-butyltri-iso-butoxy, titanium sec-butyltri-tert-butoxy, titanium sec-butyltriphenoxy, titanium tert-butyltrimethoxy, titanium tert-butyltri Ethoxy, titanium tert-butyltri-n-propoxy, titanium tert-butyltri-iso-propoxy, titanium tert-butyl Rutri-n-butoxy, titanium tert-butyltri-iso-butoxy, titanium tert-butyltri-tert-butoxy, titanium t-butyltriphenoxy, titaniumphenyltrimethoxy, titaniumphenyltriethoxy, titaniumphenyltri-n-propoxy, titanium Phenyltri-iso-propoxy, titaniumphenyltri-n-butoxy, titaniumphenyltri-iso-butoxy, titaniumphenyltri-tert-butoxy, titaniumphenyltriphenoxy, titaniumtrifluoromethyltrimethoxy, titaniumpentafluoroethyltrimethoxy, Titanium 3,3,3-trifluoropropyltrimethoxy, titanium 3,3,3-trifluoropropyltriethoxy, etc. Trialkoxy, titanium dimethyldimethoxy, titanium dimethyldiethoxy, titanium dimethyldi-n-propoxy, titanium dimethyldi-iso-propoxy, titanium dimethyldi-n-butoxy, titanium dimethyldi-sec-butoxy, titanium dimethyldi-tert- Butoxy, titanium dimethyldiphenoxy, titanium diethyldimethoxy, titanium diethyldiethoxy, titanium diethyldi-n-propoxy, titaniumdiethyldi-iso-propoxy, titaniumdiethyldi-n-butoxy, titaniumdiethyldi-sec-butoxy, titaniumdiethyl Di-tert-butoxy, titanium diethyldiphenoxy, titanium di-n-propyldimethoxy, titanium di-n-propyldiet Xy, titanium di-n-propyl di-n-propoxy, titanium di-n-propyl di-iso-propoxy, titanium di-n-propyl di-n-butoxy, titanium di-n-propyl di-sec-butoxy, titanium di-n -Propyl di-tert-butoxy, titanium di-n-propyl diphenoxy, titanium di-iso-propyl dimethoxy, titanium di-iso-propyl diethoxy, titanium di-iso-propyl di-n-propoxy, titanium di-iso-propyl di -Iso-propoxy, titanium di-iso-propyl di-n-butoxy, titanium di-iso-propyl di-sec-butoxy, titanium di-iso-propyl di-tert-butoxy, titanium di-iso-propyl diphenoxy Titanium di-n-butyldimethoxy, titanium di-n-butyldiethoxy, titanium di-n-butyldi-n-propoxy, titanium di-n-butyldi-iso-propoxy, titanium di-n-butyldi-n-butoxy Titanium di-n-butyldi-sec-butoxy, titanium di-n-butyldi-tert-butoxy, titanium di-n-butyldiphenoxy, titanium di-sec-butyldimethoxy, titanium di-sec-butyldiethoxy, titanium Di-sec-butyldi-n-propoxy, titanium di-sec-butyldi-iso-propoxy, titanium di-sec-butyldi-n-butoxy, titanium di-sec-butyldi-sec-butoxy, titanium di-sec-butyldi- tert-butoki Titanium di-sec-butyldiphenoxy, titanium di-tert-butyldimethoxy, titanium di-tert-butyldiethoxy, titanium di-tert-butyldi-n-propoxy, titanium di-tert-butyldi-iso-propoxy, titanium Di-tert-butyldi-n-butoxy, titanium di-tert-butyldi-sec-butoxy, titanium di-tert-butyldi-tert-butoxy, titanium di-tert-butyldiphenoxy, titanium diphenyldimethoxy, titanium diphenyldiethoxy, Titanium diphenyldi-n-propoxy, Titanium diphenyldi-iso-propoxy, Titanium diphenyldi-n-butoxy, Titanium diphenyldi-sec-butoxy, Titanium Examples include diorganodialkoxy such as mudiphenyldi-tert-butoxy, titanium diphenyldiphenoxy, titanium bis (3,3,3-trifluoropropyl) dimethoxy, and titaniummethyl (3,3,3-trifluoropropyl) dimethoxy. Among them, those containing a propoxy group, an isopropoxy group and a butoxy group are preferable, and an isopropoxy group is particularly preferable.

(アミノアルコール)
前記(A)成分の作製の際に使用されるアミノアルコールは、下記一般式(1);
(R3−n−N−(ROH)・・・一般式(1)
で表されるアミノアルコールが好ましい。ここで、Nは窒素原子、RはHまたは炭素数1〜20のアルキル基、Rは炭素数1〜20のアルキレン基、nは1〜3の整数である。R又はRが複数となる場合、当該複数の基はそれぞれ同じでも異なっていてもよい。
なお、一般式(1)において、「N」と「R」及び「ROH」との間の直線は単結合を意味しているのではなく、3本あるNの結合手のそれぞれに「R」及び「ROH」が、nの数に応じて分配されることを示すために便宜上描いた直線を意味する。従って、一般式(1)において、Nは常に3本の結合手を有し、0〜2個の「R」、及び1〜3個の「ROH」のうちの合計3個が3本の結合手を介してNに結合する。
(Amino alcohol)
The amino alcohol used in the preparation of the component (A) is represented by the following general formula (1);
(R 1) 3-n -N- (R 2 OH) n ··· formula (1)
The amino alcohol represented by these is preferable. Here, N is a nitrogen atom, R 1 is H or an alkyl group having 1 to 20 carbon atoms, R 2 is an alkylene group having 1 to 20 carbon atoms, and n is an integer of 1 to 3. When R 1 or R 2 is plural, the plural groups may be the same or different.
In the general formula (1), the straight line between “N” and “R 1 ” and “R 2 OH” does not mean a single bond, but each of the three N bond hands. “R 1 ” and “R 2 OH” mean straight lines drawn for convenience to show that they are distributed according to the number of n. Therefore, in the general formula (1), N always has three bonds, and a total of three of 0 to 2 “R 1 ” and 1 to 3 “R 2 OH” is 3 It binds to N through the bond of the book.

一般式(1)中、前記RはHまたは炭素数1〜20のアルキル基を表すが、該アルキル基としては、直鎖状、分岐鎖状または環状でもよい。該アルキル基の炭素数は1〜6が好ましく、1〜3がより好ましい。
このようなアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ターシャリーブチル基、ノルマルヘキシル基、ノルマルオクチル基、ノルマルノニル基、イソノニル基、ターシャリーノニル基、シクロヘキシル基等が挙げられ、中でも、メチル基、エチル基、ノルマルプロピル基、イソプロピル基が好ましい。
In the general formula (1), R 1 represents H or an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be linear, branched or cyclic. 1-6 are preferable and, as for carbon number of this alkyl group, 1-3 are more preferable.
Examples of such an alkyl group include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, a tertiary butyl group, a normal hexyl group, a normal octyl group, a normal nonyl group, an isononyl group, Examples thereof include a tertiary nonyl group and a cyclohexyl group, and among them, a methyl group, an ethyl group, a normal propyl group, and an isopropyl group are preferable.

前記Rは炭素数1〜20のアルキレン基を表すが、該アルキレン基としては、直鎖状、分岐鎖状でもよい。該アルキレン基の炭素数は1〜6が好ましく、1〜3がより好ましい。
このようなアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基等が挙げられ、中でも、メチレン基、エチレン基、プロピレン基が好ましい。
R 2 represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be linear or branched. 1-6 are preferable and, as for carbon number of this alkylene group, 1-3 are more preferable.
Examples of such an alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, and a pentylene group. Among them, a methylene group, an ethylene group, and a propylene group are preferable.

以上の一般式(1)で表されるアミノアルコールとしては、例えば、2−エチルアミノエタノール、ジイソプロパノールアミン、ジエタノールアミン、2−ジメチルアミノエタノール、トリエタノールアミン、1,1’,1”−ニトリロトリ−2−プロパノール、N−n−ブチル−2,2’−イミノエタノール、1−アミノ−2−プロパノール、3−アミノ−1−プロパノール、2−(メチルアミノ)エタノール、2−アミノエタノールなどが挙げられ、中でも、2−エチルアミノエタノール、ジイソプロパノールアミン、ジエタノールアミン、2−ジメチルアミノエタノール、トリエタノールアミン、2−アミノエタノールが好ましい。   Examples of amino alcohols represented by the above general formula (1) include 2-ethylaminoethanol, diisopropanolamine, diethanolamine, 2-dimethylaminoethanol, triethanolamine, 1,1 ′, 1 ″ -nitrilotri- Examples include 2-propanol, Nn-butyl-2,2′-iminoethanol, 1-amino-2-propanol, 3-amino-1-propanol, 2- (methylamino) ethanol, 2-aminoethanol and the like. Of these, 2-ethylaminoethanol, diisopropanolamine, diethanolamine, 2-dimethylaminoethanol, triethanolamine, and 2-aminoethanol are preferable.

他方、前記一般式(1)で表されるアミノアルコール以外のアミノアルコールの例としては、N−アセチルエタノールアミン、アセチルアミノメチルアルコールなどが挙げられるが、これらに限定されるものではない。   On the other hand, examples of amino alcohols other than the amino alcohol represented by the general formula (1) include N-acetylethanolamine and acetylaminomethyl alcohol, but are not limited thereto.

[(B)ポリマ若しくはオリゴマ]
上記(B)ポリマもしくはオリゴマとしては、特に限定されないが、光透過率や屈折率が高く、可塑性があり、耐候性の良いものが好ましく、例えば、エポキシ樹脂、ポリアミド、ポリウレタン、ポリ尿素、ポリイミン、ポリイミド、ポリアミドイミド、ポリビニル、ポリアクリル、ポリエーテル、ポリスルフィド、ポリエステル、ポリカーボネート、ポリケトンなどが挙げられ、中でも、エポキシ樹脂、ポリウレタン、ポリアクリル、ポリエステルが好ましい。
上記(B)成分を配合させる場合、その配合量は、(A)成分100重量部に対して、1〜100重量部であることが好ましい。
[(B) Polymer or oligomer]
The (B) polymer or oligomer is not particularly limited, but preferably has high light transmittance and refractive index, is plastic, and has good weather resistance. For example, epoxy resin, polyamide, polyurethane, polyurea, polyimine, Examples thereof include polyimide, polyamideimide, polyvinyl, polyacryl, polyether, polysulfide, polyester, polycarbonate, polyketone, and among them, epoxy resin, polyurethane, polyacryl, and polyester are preferable.
When the component (B) is blended, the blending amount is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the component (A).

[(C)反応性モノマ]
上記(C)反応性モノマとは、通常、熱や光により重合、硬化する樹脂組成物の成分となる。(C)成分の重合形態には、例えば、イオン重合やラジカル重合がよく知られているが、本発明は、それら重合形態を限定するものではない。(C)成分としては、具体的には、エポキシ誘導体、イソシアネート、(メタ)アクリレート、ジカルボン酸、ジオール、ジアミン、スチレン、イソプレン、ブタジエン、アクリロニトリル、プロピレン、エチレンが挙げられ、中でも、エポキシ誘導体、イソシアネート、(メタ)アクリレート、ジカルボン酸、ジオール、ジアミン、スチレンが好ましい。
上記(C)成分を配合させる場合、その配合量は、(A)成分100重量部に対して、1〜100重量部であることが好ましい。さらに、(B)成分と(C)成分の合計量は、(A)成分100重量部に対して、1重量部以上であることが好ましい。
[(C) Reactive monomer]
The (C) reactive monomer is usually a component of a resin composition that is polymerized and cured by heat or light. For example, ionic polymerization and radical polymerization are well known as the polymerization form of the component (C), but the present invention does not limit these polymerization forms. Specific examples of the component (C) include epoxy derivatives, isocyanates, (meth) acrylates, dicarboxylic acids, diols, diamines, styrene, isoprene, butadiene, acrylonitrile, propylene, and ethylene. , (Meth) acrylate, dicarboxylic acid, diol, diamine and styrene are preferred.
When the component (C) is blended, the blending amount is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the component (A). Furthermore, the total amount of the component (B) and the component (C) is preferably 1 part by weight or more with respect to 100 parts by weight of the component (A).

本発明においては、前記(B)成分および/または(C)成分の一部が、ひとつの分子中にエポキシ基とアクリル基の両方を含む。なお、(B)成分および/または(C)成分の一部のひとつの分子中に、エポキシ基とアクリル基とを両方を含まなくても、単一の割れのない均質な膜質の光学部材を得ることは可能である。しかし、エポキシ基のみを含む場合には、アミノアルコールが硬化剤となることがあり、樹脂組成物のポットライフが短くなる欠点がある。また、アクリル基のみを含む場合には、高屈折率樹脂層だけでなく、更に別の膜を積層して光学部材を作製するとき、加熱、加圧等により、高屈折率樹脂層に割れが発生することがある。そこで、アクリル基とエポキシ基の両方を含むことによって、これらの問題を解決でき、割れのない均質な膜質の光学部材が得られる。アクリル基とエポキシ基の数については、それぞれ1個以上を含むことが望ましい。以上のような、ひとつの分子中にエポキシ基とアクリル基の両方を含む(B)成分および/または(C)成分としては、例えば、グリシジル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4−エポキシシクロヘキシルメチル(メタ)アクリレートなどが挙げられるが、これらに限定されない。また、メタクリル酸、エピクロロヒドリンなどを原料として合成してもよい。なお、(メタ)アクリレートとは、メタクリレート又はアクリレートの意味であり、たとえば、メチル(メタ)アクリレートは、メチルメタクリレート又はメチルアクリレートを意味する。   In the present invention, a part of the component (B) and / or the component (C) contains both an epoxy group and an acrylic group in one molecule. In addition, even if it does not contain both an epoxy group and an acrylic group in one molecule of the component (B) and / or the component (C), an optical member having a uniform film quality without a single crack is obtained. It is possible to get. However, when it contains only an epoxy group, amino alcohol may become a curing agent, and there is a drawback that the pot life of the resin composition is shortened. In addition, when only an acrylic group is included, not only the high refractive index resin layer but also another layer is laminated to produce an optical member. May occur. Therefore, by including both an acrylic group and an epoxy group, these problems can be solved, and an optical member having a uniform film quality without cracks can be obtained. About the number of acrylic groups and epoxy groups, it is desirable to include one or more each. Examples of the (B) component and / or (C) component containing both an epoxy group and an acrylic group in one molecule as described above include, for example, glycidyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate glycidyl. Examples include ether, 3,4-epoxycyclohexylmethyl (meth) acrylate, and the like, but are not limited thereto. Further, methacrylic acid, epichlorohydrin or the like may be synthesized as a raw material. In addition, (meth) acrylate means a methacrylate or acrylate, for example, methyl (meth) acrylate means methyl methacrylate or methyl acrylate.

[(D)溶媒]
本発明の樹脂組成物においては、(D)溶媒をさらに含有することが好ましい。(D)溶媒としては、炭化水素溶剤、エーテル・ケトン類溶剤、エステル系溶剤、ハロゲン化炭化水素類、鉱物油や合成油、動植物油、アルコール系溶剤等が挙げられ、これらは1種類もしくは2種類以上を組み合わせて使用することができる。中でも、炭化水素溶剤、エーテル・ケトン類溶剤、エステル系溶剤、ハロゲン化炭化水素類、アルコール系溶剤が好適に使用することができる。
さらに、窒素原子がチタンアルコキシドを安定化させるという観点から、窒素原子を有する溶媒を含有することがより好ましい。窒素原子を有する溶媒としては、N−メチルピロリドン、N,N−ジメチルアセトアミドが挙げられ、N−メチルピロリドンを好適に使用することができる。
[(D) Solvent]
In the resin composition of this invention, it is preferable to further contain (D) solvent. Examples of the solvent (D) include hydrocarbon solvents, ether / ketone solvents, ester solvents, halogenated hydrocarbons, mineral oils, synthetic oils, animal and vegetable oils, alcohol solvents, and the like. More than one type can be used in combination. Of these, hydrocarbon solvents, ether / ketone solvents, ester solvents, halogenated hydrocarbons, and alcohol solvents can be preferably used.
Furthermore, it is more preferable to contain the solvent which has a nitrogen atom from a viewpoint that a nitrogen atom stabilizes a titanium alkoxide. Examples of the solvent having a nitrogen atom include N-methylpyrrolidone and N, N-dimethylacetamide, and N-methylpyrrolidone can be preferably used.

本発明の樹脂組成物は、上記(D)成分を配合する場合、その配合量は、(A)成分100重量部に対して、1〜1000重量部であることが好ましい。上記(D)成分は、特に塗膜形成のための希釈剤として使用され、例えば、刷毛塗り、スピン塗布法、スプレー法、スリットコーター、グラビア印刷、スクリーン印刷などの方法により塗布された後、ホットプレート、電気炉などで揮発され、均一な塗布膜を得るのに有効な成分である。   When the resin composition of the present invention is blended with the component (D), the blending amount is preferably 1-1000 parts by weight with respect to 100 parts by weight of the component (A). The component (D) is particularly used as a diluent for forming a coating film. For example, it is applied by a method such as brush coating, spin coating, spraying, slit coater, gravure printing, screen printing, It is a component effective for obtaining a uniform coating film by being volatilized in a plate, an electric furnace or the like.

[(E)添加剤]
本発明の樹脂組成物においては、(E)添加剤をさらに含有することが好ましい。(E)添加剤としては、必要な場合は、光ラジカル重合開始剤や熱ラジカル重合開始剤等の重合開始剤を用い、さらに必要に応じて、紫外線吸収剤、光安定化剤、酸化防止剤等の安定化剤、カップリング剤、難燃剤などを用いることができる。
[(E) Additive]
The resin composition of the present invention preferably further contains (E) an additive. (E) As an additive, if necessary, a polymerization initiator such as a photo radical polymerization initiator or a heat radical polymerization initiator is used, and if necessary, an ultraviolet absorber, a light stabilizer, an antioxidant. Etc., stabilizers, coupling agents, flame retardants and the like can be used.

これらラジカル重合開始剤の配合量は、(B)成分と(C)成分の総量100重量部に対して0.01〜10重量部の範囲であることが好ましく、0.1〜5重量部の範囲であることがより好ましい。上記紫外線吸収剤や光安定化剤は、通常、(B)成分と(C)成分の総量100重量部に対し0.05〜20重量部の範囲で添加されうる。上記酸化防止剤は、充填材との相性や目的とする成形作業性及び樹脂保存安定性などの条件により種類、量を変えて添加する。通常、酸化防止剤は、樹脂組成物中、10〜10,000ppmである。カップリング剤は、通常、(B)成分と(C)成分の総量100重量部に対し、0.001〜5重量部添加する。上記難燃剤の添加量は(B)成分と(C)成分の総量100重量部に対し10〜300重量部の範囲で用いることが好ましい。本発明の樹脂組成物は、上記した(A)成分と、(B)成分および/または(C)成分とを含み、その他必要に応じて添加される成分を、通常の樹脂組成物と同様に攪拌、混合することにより得ることができる。   The blending amount of these radical polymerization initiators is preferably in the range of 0.01 to 10 parts by weight with respect to 100 parts by weight of the total amount of the components (B) and (C), and 0.1 to 5 parts by weight. A range is more preferable. The said ultraviolet absorber and light stabilizer can be normally added in 0.05-20 weight part with respect to 100 weight part of total amounts of (B) component and (C) component. The above-mentioned antioxidant is added in various kinds and amounts depending on conditions such as compatibility with the filler, desired molding workability and resin storage stability. Usually, the antioxidant is 10 to 10,000 ppm in the resin composition. The coupling agent is usually added in an amount of 0.001 to 5 parts by weight based on 100 parts by weight of the total amount of the component (B) and the component (C). The amount of the flame retardant added is preferably 10 to 300 parts by weight with respect to 100 parts by weight of the total amount of the component (B) and the component (C). The resin composition of the present invention includes the above-described component (A), the component (B) and / or the component (C), and other components added as necessary in the same manner as in a normal resin composition. It can be obtained by stirring and mixing.

<膜状光学部材>
本発明の膜状光学部材は、例えば、本発明の樹脂組成物を基材上に塗布、乾燥し、必要に応じて硬化させることにより得ることができる。樹脂組成物を基材上に塗布する方法としては、特に限定されないが、例えば、刷毛塗り、スピン塗布法、スプレー法、スリットコーター、グラビア印刷、スクリーン印刷などを挙げることができる。また、上記基材としては、ガラス板、プラスチック板、プラスチックフィルム、太陽電池セルなどを挙げることができる。
<Film optical member>
The film-like optical member of the present invention can be obtained, for example, by applying the resin composition of the present invention on a substrate, drying it, and curing it as necessary. The method for applying the resin composition on the substrate is not particularly limited, and examples thereof include brush coating, spin coating, spraying, slit coater, gravure printing, and screen printing. Examples of the substrate include a glass plate, a plastic plate, a plastic film, and a solar battery cell.

また、樹脂組成物の塗布後に行う乾燥は、膜中の溶剤が十分に揮発すればよく、その方法や条件は特に限定されないが、例えば、ホットプレート、電気炉等を用い、好ましくは50〜150℃、より好ましくは60〜120℃の範囲で行うことができる。乾燥温度50℃未満では、(D)成分などの乾燥が不十分になる恐れがあり、150℃を超えると(C)成分などが揮発してしまう恐れがあり、良好な硬化膜をえることが困難になる傾向がある。   In addition, the drying performed after the application of the resin composition is sufficient if the solvent in the film is sufficiently volatilized, and the method and conditions thereof are not particularly limited. For example, a hot plate, an electric furnace or the like is used, and preferably 50 to 150. It can be carried out in the range of 60 ° C., more preferably 60 to 120 ° C. If the drying temperature is less than 50 ° C., drying of the component (D) may be insufficient, and if it exceeds 150 ° C., the component (C) may volatilize, and a good cured film can be obtained. Tend to be difficult.

乾燥後の硬化は、熱硬化性配合の場合には、その成分や配合量により硬化温度と時間を適宜決定すればよいが、好ましくは100〜200℃の温度で2〜60分間、より好ましくは130〜200℃の温度で2〜30分間加熱して行うことができる。この加熱が100℃未満であると、十分な硬化が行えない恐れがある。また、樹脂組成物が光硬化性配合の場合にも特に制限されないが、高圧水銀灯などを用い、100〜2000mJ/cmで露光し、硬化させることが好ましい。In the case of thermosetting blending, the curing after drying may be determined appropriately depending on the component and blending amount, but preferably at a temperature of 100 to 200 ° C. for 2 to 60 minutes, more preferably It can be performed by heating at a temperature of 130 to 200 ° C. for 2 to 30 minutes. If this heating is less than 100 ° C., sufficient curing may not be achieved. Moreover, although it does not restrict | limit especially when a resin composition is a photocurable mixing | blending, It is preferable to expose and harden | cure at 100-2000 mJ / cm < 2 > using a high pressure mercury lamp.

本発明の膜状光学部材の膜厚は、本発明の樹脂組成物の粘度を調整したり、膜形成手段やその条件を適宜選択したりすることにより、容易に所望厚さに形成することが可能である。例えば、上記(D)成分である溶剤の配合量を少なくすると、樹脂組成物の粘度が上昇し、比較的厚膜の光学部材を形成しやすくなり、上記(D)成分の配合量を多くすると、樹脂組成物の粘度が低下し、比較的薄膜の光学部材を形成しやすくなる。また、樹脂組成物の塗布手段として、スピン塗布法を適用する場合には、その回転数を下げたり、塗布回数を増やしたりすることで、比較的厚膜の光学部材を形成することができ、その回転数を上げたり、塗布回数を減らしたりすることで、比較的薄膜の光学部材を形成することが可能である。具体的に好ましい厚さは、用途にもよるが1〜1000μmの範囲である。   The film thickness of the film-shaped optical member of the present invention can be easily formed to a desired thickness by adjusting the viscosity of the resin composition of the present invention or by appropriately selecting the film forming means and its conditions. Is possible. For example, when the blending amount of the solvent as the component (D) is decreased, the viscosity of the resin composition is increased, and it becomes easier to form a relatively thick optical member. When the blending amount of the component (D) is increased. The viscosity of the resin composition decreases, and it becomes easier to form a relatively thin optical member. In addition, when applying the spin coating method as a coating means for the resin composition, a relatively thick optical member can be formed by reducing the number of rotations or increasing the number of coating times. A relatively thin optical member can be formed by increasing the number of rotations or decreasing the number of coatings. A specific preferable thickness is in the range of 1 to 1000 μm although it depends on the application.

以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.

(実施例1)
(A)成分;含金属高屈折中間体を、以下に示す工程により作製した。
4つ口のセパラブルフラスコの1つに攪拌羽、1つに窒素供給、1つに揮発成分を留去できるように連結管、リービッヒ冷却器を接続しておいた。ジエタノールアミン11.04g(0.105mol)、水1.08g(0.06mol)、N−メチルピロリドン33.44gを、100mlセパラブルフラスコに入れ、窒素流下、攪拌した。数分後、攪拌が十分に行われたのを確認し、チタニウムテトライソプロポキシド21.32g(0.075mol)をなるべく空気に触れないように注意しながら加えた。チタニウムテトライソプロポキシドを加えると、フラスコの温度は上昇するが、室温程度にまで冷えた後、80℃オイルバスを用いて、揮発成分の留去を行った。この際の留去物(揮発成分)は、チタニウムテトライソプロポキシドの加水分解反応による副生成物のイソプロピルアルコールである。更に、水0.54g、ジエタノールアミン3.15gをよく混ぜた混合物を用意しておき、上記留去を6時間行った後に、フラスコを室温まで冷却し、この混合物を添加した。作製した液体をA液[(A)成分;含金属高屈折中間体]とした。なお、実施例において、室温とは、5〜35℃を表す。
Example 1
Component (A): A metal-containing highly refractive intermediate was produced by the steps shown below.
One of the four-necked separable flasks was equipped with a stirring blade, supplied with nitrogen, and connected with a connecting tube and a Liebig condenser so that volatile components could be distilled off. Diethanolamine (11.04 g, 0.105 mol), water (1.08 g, 0.06 mol), and N-methylpyrrolidone (33.44 g) were placed in a 100 ml separable flask and stirred under a nitrogen stream. After a few minutes, it was confirmed that the stirring was sufficiently performed, and 21.32 g (0.075 mol) of titanium tetraisopropoxide was added with care so as not to touch the air as much as possible. When titanium tetraisopropoxide was added, the temperature of the flask increased, but after cooling to about room temperature, volatile components were distilled off using an 80 ° C. oil bath. The distillate (volatile component) at this time is isopropyl alcohol, which is a by-product of the hydrolysis reaction of titanium tetraisopropoxide. Further, a mixture in which 0.54 g of water and 3.15 g of diethanolamine were mixed well was prepared, and after the above distillation was performed for 6 hours, the flask was cooled to room temperature, and this mixture was added. The produced liquid was designated as A liquid [component (A); metal-containing highly refractive intermediate]. In addition, in an Example, room temperature represents 5-35 degreeC.

前記A液95重量部に対し、(B)成分および/または(C)成分として、B1液(日本化成株式会社製4HBAGE(4−ヒドロキシブチルアクリレートグリシジルエーテル))5重量部を加え十分に攪拌し、得られた樹脂組成物を、半導体用シリコンウエハにスピンコートし、150℃のホットプレートで10分間加熱、溶媒を除去し、1μmの薄膜を得た。この薄膜の波長632.8nmにおける屈折率を以下のようにして測定したところ1.64であり、また、この樹脂組成物は、密封状態で室温放置3ヶ月経過後も粘度に変化は見られなかった。   Add 5 parts by weight of B1 liquid (4HBAGE (4-hydroxybutyl acrylate glycidyl ether) manufactured by Nippon Kasei Co., Ltd.) as component (B) and / or (C) with respect to 95 parts by weight of the above-mentioned A liquid and sufficiently stir. The obtained resin composition was spin-coated on a silicon wafer for semiconductor, heated on a hot plate at 150 ° C. for 10 minutes, and the solvent was removed to obtain a 1 μm thin film. The refractive index at a wavelength of 632.8 nm of this thin film was measured as follows, and it was 1.64. In addition, this resin composition did not show a change in viscosity even after 3 months at room temperature in a sealed state. It was.

[屈折率の測定]
自動エリプソメータ(ファイブラボ社製MARY−102)を用いて、He−Neレーザー(波長632.8nm)での屈折率を測定した。
[Measurement of refractive index]
The refractive index with a He-Ne laser (wavelength 632.8 nm) was measured using an automatic ellipsometer (MARY-102 manufactured by Fibrabo).

直径130mm、幅470mmのロール状の鉄製基材を回転させながら、銅めっきを行って、鉄に銅が200μm積層されたロール基材を得た。さらに、ニッケルめっきを行って、ニッケルが200μm積層された原型基材を得た。これを研磨して表面が鏡面となるように加工した。次にこれを回転させながら先端が頂角90°のダイヤモンドバイトで一定周期、一定振幅で押圧し、ピッチ20μm、深さ10μmのピラミッド形状が一定高さで周期的に並んだロール状転写原型を得た。加工周期はロール回転速度で制御し、加工深さはバイト振幅で制御した。   While rotating a roll-shaped iron substrate having a diameter of 130 mm and a width of 470 mm, copper plating was performed to obtain a roll substrate in which 200 μm of copper was laminated on iron. Furthermore, nickel plating was performed to obtain a prototype base material on which 200 μm of nickel was laminated. This was polished and processed so that the surface became a mirror surface. Next, a roll-shaped transfer prototype in which pyramids with a pitch of 20 μm and a depth of 10 μm are periodically arranged at a constant height are pressed with a diamond tool having an apex angle of 90 ° with a constant period and a constant amplitude while rotating the tip. Obtained. The machining cycle was controlled by the roll rotation speed, and the machining depth was controlled by the bite amplitude.

基材として厚さ50μmのポリエチレンテレフタレートフィルムを用い、基材に下塗り層として光硬化性樹脂溶液(日立化成工業株式会社製ヒタロイド7981)をコンマコーターで10μmの膜厚になるよう塗布乾燥し被転写フィルムを得た。次に前記ロール状転写原型を押し当て、紫外線を照射し光硬化性樹脂を硬化しロール状転写原型から分離し、ロール状転写原型表面のピラミッド形状の反転形状が光硬化性樹脂層(下塗り層)の表面に転写された光学シートを得た。   A polyethylene terephthalate film having a thickness of 50 μm is used as a base material, and a photocurable resin solution (Hitaroid 7981 manufactured by Hitachi Chemical Co., Ltd.) is applied to the base material as an undercoat layer by a comma coater, dried, and transferred. A film was obtained. Next, the roll-shaped transfer prototype is pressed, irradiated with ultraviolet rays to cure the photocurable resin and separated from the roll-shaped transfer prototype, and the inverted shape of the pyramid shape on the surface of the roll-shaped transfer prototype is a photocurable resin layer (undercoat layer) The optical sheet transferred to the surface of) was obtained.

A液95重量部に対し、(B)成分および/または(C)成分として、B1液(日本化成株式会社製4HBAGE(4−ヒドロキシブチルアクリレートグリシジルエーテル))5重量部を加え十分に攪拌し、得られた樹脂組成物を、前記光学シートにアプリケーターを用いて、10μmの膜厚に塗工し、120℃10分で乾燥後、スライドガラス上に配置し、真空ラミネーターを用いて、150℃で25分ラミネートした。得られた高屈折率樹脂層(膜状光学部材)は透明で割れのない均質な膜質だった。
なお、透明性の評価については、目視にて、白濁、黄変等のないことを確認した。
With respect to 95 parts by weight of A liquid, 5 parts by weight of B1 liquid (4HBAGE (4-hydroxybutyl acrylate glycidyl ether) manufactured by Nippon Kasei Co., Ltd.) is added as component (B) and / or (C) and sufficiently stirred. The obtained resin composition was applied to the optical sheet with a thickness of 10 μm using an applicator, dried at 120 ° C. for 10 minutes, then placed on a slide glass, and at 150 ° C. using a vacuum laminator. Laminated for 25 minutes. The obtained high refractive index resin layer (film-like optical member) was transparent and had a uniform film quality without cracks.
In addition, about transparency evaluation, it confirmed visually that there was no cloudiness, yellowing, etc.

(実施例2)
実施例1で得たA液95重量部に対し、(B)成分および/または(C)成分として、B2液(共栄社化学株式会社製ライトエステルG(グリシジルメタクリレート))5重量部を加え十分に攪拌し、得られた樹脂組成物を、半導体用シリコンウエハにスピンコートし、150℃のホットプレートで10分間加熱、溶媒を除去し、1μmの薄膜を得た。この薄膜の波長632.8nmにおける屈折率を実施例1と同様にして測定したところ1.64であり、また、この樹脂組成物は、密封状態で室温放置3ヶ月経過後も粘度に変化は見られなかった。
(Example 2)
5 parts by weight of B2 liquid (Light Ester G (glycidyl methacrylate) manufactured by Kyoeisha Chemical Co., Ltd.) as Component (B) and / or (C) is sufficiently added to 95 parts by weight of Liquid A obtained in Example 1. The resulting resin composition was spin-coated on a silicon wafer for semiconductor, heated on a hot plate at 150 ° C. for 10 minutes, and the solvent was removed to obtain a 1 μm thin film. The refractive index of this thin film at a wavelength of 632.8 nm was measured in the same manner as in Example 1. As a result, it was found that this resin composition changed in viscosity even after 3 months at room temperature in a sealed state. I couldn't.

実施例1で得たA液95重量部に対し、(B)成分および/または(C)成分として、B2液(共栄社化学株式会社製ライトエステルG(グリシジルメタクリレート))5重量部を加え十分に攪拌し、得られた樹脂組成物を、実施例1で得た光学シートにアプリケーターを用いて、10μmの膜厚に塗工し、120℃10分で乾燥後、スライドガラス上に配置し、真空ラミネーターを用いて、150℃で25分ラミネートした。得られた高屈折率樹脂層(膜状光学部材)は透明で割れのない均質な膜質だった。   5 parts by weight of B2 liquid (Light Ester G (glycidyl methacrylate) manufactured by Kyoeisha Chemical Co., Ltd.) as Component (B) and / or (C) is sufficiently added to 95 parts by weight of Liquid A obtained in Example 1. Stir and apply the resin composition obtained to the optical sheet obtained in Example 1 to a film thickness of 10 μm using an applicator, dry at 120 ° C. for 10 minutes, place on a slide glass, and vacuum Lamination was performed at 150 ° C. for 25 minutes using a laminator. The obtained high refractive index resin layer (film-like optical member) was transparent and had a uniform film quality without cracks.

(実施例3)
セパラブルフラスコに、N−メチルピロリドン1494gに、クラレ社製クラレポリオールP1010、4965gを加え十分に攪拌した。これに住化バイエルウレタン社製ディスモジュール−W1009gを約2時間かけて滴下し、B3液((B)ポリマもしくはオリゴマ)を得た。
実施例1で得たA液95重量部に対し、(B)成分として、B3液1重量部、(C)成分として、B2液4重量部を加え十分に攪拌し、得られた樹脂組成物を、半導体用シリコンウエハにスピンコートし、150℃のホットプレートで10分間加熱、溶媒を除去し、 1μmの薄膜を得た。この薄膜の波長632.8nmにおける屈折率を実施例1と同様にして測定したところ1.64であり、また、この樹脂組成物は、密封状態で室温放置3ヶ月経過後も粘度に変化は見られなかった。
実施例1で得たA液95重量部に対し、(B)成分として、B3液1重量部、(C)成分として、B2液4重量部を加え十分に攪拌し、得られた樹脂組成物を、実施例1で得た光学シートにアプリケーターを用いて、10μmの膜厚に塗工し、120℃10分で乾燥後、スライドガラス上に配置し、真空ラミネーターを用いて、150℃で25分ラミネートした。得られた高屈折率樹脂層(膜状光学部材)は透明で割れのない均質な膜質だった。
(Example 3)
To a separable flask, 4965 g of Kuraray polyol P1010 manufactured by Kuraray Co., Ltd. was added to 1494 g of N-methylpyrrolidone and sufficiently stirred. To this, Dismodule-W1009 g manufactured by Sumika Bayer Urethane Co., Ltd. was dropped over about 2 hours to obtain B3 liquid ((B) polymer or oligomer).
With respect to 95 parts by weight of the liquid A obtained in Example 1, 1 part by weight of the liquid B3 as the component (B) and 4 parts by weight of the liquid B2 as the component (C) were sufficiently stirred, and the resulting resin composition was obtained. Was spin-coated on a silicon wafer for semiconductor, heated on a hot plate at 150 ° C. for 10 minutes, and the solvent was removed to obtain a 1 μm thin film. The refractive index of this thin film at a wavelength of 632.8 nm was measured in the same manner as in Example 1. As a result, it was found that this resin composition changed in viscosity even after 3 months at room temperature in a sealed state. I couldn't.
With respect to 95 parts by weight of the liquid A obtained in Example 1, 1 part by weight of the liquid B3 as the component (B) and 4 parts by weight of the liquid B2 as the component (C) were sufficiently stirred, and the resulting resin composition was obtained. Was coated on the optical sheet obtained in Example 1 to a thickness of 10 μm using an applicator, dried at 120 ° C. for 10 minutes, placed on a slide glass, and 25 ° C. at 150 ° C. using a vacuum laminator. Laminated for minutes. The obtained high refractive index resin layer (film-like optical member) was transparent and had a uniform film quality without cracks.

(比較例1)
実施例1で得たA液95重量部に対し、B3液として新中村化学工業株式会社製A−400(ポリエチレングリコール ジアクリレート)を5重量部加え十分に攪拌し、得られた樹脂組成物を、半導体用シリコンウエハにスピンコートし、150℃のホットプレートで10分間加熱、溶媒を除去し、1μmの薄膜を得た。この薄膜の波長632.8nmにおける屈折率は1.65であり、また、この樹脂組成物は、密封状態で室温放置3ヶ月経過後も粘度に変化は見られなかった。
(Comparative Example 1)
5 parts by weight of A-400 (polyethylene glycol diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd. was added as the B3 liquid to 95 parts by weight of the A liquid obtained in Example 1, and the resulting resin composition was stirred sufficiently. Then, the silicon wafer for semiconductor was spin-coated, heated on a hot plate at 150 ° C. for 10 minutes, and the solvent was removed to obtain a 1 μm thin film. This thin film had a refractive index of 1.65 at a wavelength of 632.8 nm, and the resin composition showed no change in viscosity even after 3 months at room temperature in a sealed state.

実施例1で得たA液95重量部に対し、B3液として新中村化学工業株式会社製A−400(ポリエチレングリコール ジアクリレート)を5重量部加え十分に攪拌し、得られた樹脂組成物を、実施例1で得た光学シートにアプリケーターを用いて、10μmの膜厚に塗工し、120℃10分で乾燥後、スライドガラス上に配置し、真空ラミネーターを用いて、150℃で25分ラミネートした。得られた高屈折率樹脂層(膜状光学部材)にはクラックが発生していた。   5 parts by weight of A-400 (polyethylene glycol diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd. was added as the B3 liquid to 95 parts by weight of the A liquid obtained in Example 1, and the resulting resin composition was stirred sufficiently. Using an applicator, the optical sheet obtained in Example 1 was coated to a thickness of 10 μm, dried at 120 ° C. for 10 minutes, placed on a slide glass, and then using a vacuum laminator for 25 minutes at 150 ° C. Laminated. Cracks occurred in the resulting high refractive index resin layer (film-like optical member).

(比較例2)
実施例1で得たA液95重量部に対し、B4液として大日本インキ化学工業株式会社製EXA−4850−1000(液状エポキシ樹脂)を5重量部加え十分に攪拌し、得られた樹脂組成物を、半導体用シリコンウエハにスピンコートし、150℃のホットプレートで10分間加熱、溶媒を除去し、1μmの薄膜を得た。この薄膜の波長632.8nmにおける屈折率は1.64であり、また、この樹脂組成物は、密封状態で室温放置3ヶ月経過後、室温で流動性がなくなり、粘度が増加した。
(Comparative Example 2)
5 parts by weight of EXA-4850-1000 (liquid epoxy resin) manufactured by Dainippon Ink & Chemicals, Inc. as B4 liquid was added to 95 parts by weight of the liquid A obtained in Example 1, and the resulting resin composition was sufficiently stirred. The product was spin-coated on a silicon wafer for semiconductor, heated on a hot plate at 150 ° C. for 10 minutes, and the solvent was removed to obtain a 1 μm thin film. This thin film had a refractive index of 1.64 at a wavelength of 632.8 nm, and this resin composition lost fluidity at room temperature after 3 months in a sealed state and increased in viscosity.

実施例1で得たA液95重量部に対し、B4液として大日本インキ化学工業株式会社製EXA−4850−1000(液状エポキシ樹脂)を5重量部加え十分に攪拌し、得られた樹脂組成物を、実施例1で得た光学シートにアプリケーターを用いて、10μmの膜厚に塗工し、120℃10分で乾燥後、スライドガラス上に配置し、真空ラミネーターを用いて、150℃で25分ラミネートした。得られた高屈折率樹脂層(膜状光学部材)は透明で割れのない均質な膜質だった。   5 parts by weight of EXA-4850-1000 (liquid epoxy resin) manufactured by Dainippon Ink & Chemicals, Inc. as B4 liquid was added to 95 parts by weight of the liquid A obtained in Example 1, and the resulting resin composition was sufficiently stirred. The product was applied to the optical sheet obtained in Example 1 to a film thickness of 10 μm using an applicator, dried at 120 ° C. for 10 minutes, placed on a slide glass, and at 150 ° C. using a vacuum laminator. Laminated for 25 minutes. The obtained high refractive index resin layer (film-like optical member) was transparent and had a uniform film quality without cracks.

(比較例3)
4つ口のセパラブルフラスコの1つに攪拌羽、1つに窒素供給、1つに揮発成分を留去できるように連結管、リービッヒ冷却器を接続しておいた。ジエタノールアミン10.51g(0.10mol)、水1.80g(0.10mol)を、100mlセパラブルフラスコに入れ、窒素流下、攪拌した。数分後、攪拌が十分に行われたのを確認し、チタニウムテトライソプロポキシド28.42g(0.10mol)をなるべく空気に触れないように注意しながら、加えた。チタニウムテトライソプロポキシドを加えると、フラスコの温度は上昇するが、室温程度にまで冷えた後、80℃オイルバスを用いて、揮発成分(イソプロピルアルコール)の留去を行った。更に、トルエン3.65g、和光純薬社製ポリテトラメチレンオキシド(平均分子量1400)7.00gをよく混ぜた混合物を用意しておき、上記留去を6時間行った後に、フラスコを室温まで冷却し、この混合物を添加し、溶解した。その後、住化バイエルウレタン社製ディスモジュール−W6.3gを添加して、攪拌すると、溶液は白濁し、固化した。
(Comparative Example 3)
One of the four-necked separable flasks was equipped with a stirring blade, supplied with nitrogen, and connected with a connecting tube and a Liebig condenser so that volatile components could be distilled off. Diethanolamine 10.51 g (0.10 mol) and water 1.80 g (0.10 mol) were placed in a 100 ml separable flask and stirred under a stream of nitrogen. After a few minutes, it was confirmed that the stirring was sufficiently performed, and 28.42 g (0.10 mol) of titanium tetraisopropoxide was added while being careful not to touch the air as much as possible. When titanium tetraisopropoxide was added, the temperature of the flask increased, but after cooling to about room temperature, the volatile component (isopropyl alcohol) was distilled off using an 80 ° C. oil bath. Furthermore, a mixture in which 3.65 g of toluene and 7.00 g of polytetramethylene oxide (average molecular weight 1400) manufactured by Wako Pure Chemical Industries, Ltd. were mixed well was prepared, and after the above distillation was performed for 6 hours, the flask was cooled to room temperature. The mixture was added and dissolved. Thereafter, 6.3 g of Dismodule-W manufactured by Sumika Bayer Urethane Co., Ltd. was added and stirred, and the solution became cloudy and solidified.

以上実施例及び比較例について評価結果などを表1、表2に示す。   Tables 1 and 2 show the evaluation results and the like for the examples and comparative examples.

Figure 2009019921
Figure 2009019921

Figure 2009019921
Figure 2009019921

本発明によれば、従来よりも透明、高屈折率で、製膜性に優れ、長寿命でかつ所望する膜厚の光学部材を形成することが可能な樹脂組成物、およびこれを用いた光学部材を提供できることがわかった。   According to the present invention, a resin composition capable of forming an optical member having a desired film thickness, which is transparent, has a higher refractive index, is superior in film forming property, has a long lifetime, and has an optical property using the same. It has been found that a member can be provided.

Claims (7)

(A)含金属高屈折中間体と、(B)ポリマもしくはオリゴマおよび/または(C)反応性モノマと、を成分として含有する樹脂組成物であって、
前記(A)成分は、チタンアルコキシドとアミノアルコールと水とを混合し、加水分解反応により合成されるものであり、かつ前記(B)成分および/または(C)成分の一部が、ひとつの分子中にエポキシ基とアクリル基との両方を含むことを特徴とする樹脂組成物。
A resin composition comprising (A) a metal-containing highly refractive intermediate, (B) a polymer or oligomer and / or (C) a reactive monomer as components,
The component (A) is synthesized by mixing titanium alkoxide, amino alcohol, and water and hydrolyzing, and a part of the component (B) and / or the component (C) is a single component. A resin composition comprising both an epoxy group and an acrylic group in a molecule.
前記(A)含金属高屈折中間体の合成において、チタンアルコキシド(n)、アミノアルコール(m)、水(l)の混合時のモル比が、l<n≦mである請求項1に記載の樹脂組成物。   2. The synthesis of (A) the metal-containing highly refractive intermediate, wherein the molar ratio of titanium alkoxide (n), aminoalcohol (m), and water (l) when mixed is l <n ≦ m. Resin composition. 前記アミノアルコールが、下記一般式(1)で表されるアミノアルコールである請求項1または2に記載の樹脂組成物。
(R3−n−N−(ROH)・・・一般式(1)
(一般式(1)中、Nは窒素原子、RはHまたは炭素数1〜20のアルキル基、Rは炭素数1〜20のアルキレン基、nは1〜3の整数である。R又はRが複数となる場合、当該複数の基はそれぞれ同じでも異なっていてもよい。)
The resin composition according to claim 1 or 2, wherein the amino alcohol is an amino alcohol represented by the following general formula (1).
(R 1) 3-n -N- (R 2 OH) n ··· formula (1)
(In the general formula (1), N is a nitrogen atom, R 1 is H or an alkyl group having 1 to 20 carbon atoms, R 2 is an alkylene group having 1 to 20 carbon atoms, and n is an integer of 1 to 3) When 1 or R 2 is plural, the plural groups may be the same or different.)
(D)溶媒をさらに含有する請求項1〜3のいずれか1項に記載の樹脂組成物。   (D) The resin composition according to any one of claims 1 to 3, further comprising a solvent. 前記(D)溶媒が、窒素原子を有する溶媒である請求項4に記載の樹脂組成物。   The resin composition according to claim 4, wherein the solvent (D) is a solvent having a nitrogen atom. 請求項1〜5のいずれか1項に記載の樹脂組成物を用いてなる膜状光学部材。   The film-form optical member formed using the resin composition of any one of Claims 1-5. 膜厚が1〜1000μmの範囲である請求項6に記載の膜状光学部材。   The film-shaped optical member according to claim 6, wherein the film thickness is in the range of 1 to 1000 μm.
JP2009526362A 2007-08-06 2008-05-21 Resin composition and film-like optical member using the same Pending JPWO2009019921A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007204124 2007-08-06
JP2007204124 2007-08-06
JP2008055096 2008-03-05
JP2008055096 2008-03-05
PCT/JP2008/059328 WO2009019921A1 (en) 2007-08-06 2008-05-21 Resin composition and film-shaped optical member utilizing the same

Publications (1)

Publication Number Publication Date
JPWO2009019921A1 true JPWO2009019921A1 (en) 2010-10-28

Family

ID=40341157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009526362A Pending JPWO2009019921A1 (en) 2007-08-06 2008-05-21 Resin composition and film-like optical member using the same

Country Status (3)

Country Link
JP (1) JPWO2009019921A1 (en)
TW (1) TW200906934A (en)
WO (1) WO2009019921A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255124A (en) * 2005-07-29 2008-10-23 Hitachi Chem Co Ltd Resin composition and filmy optical member using the same
JP4849525B2 (en) * 2006-04-04 2012-01-11 花王株式会社 Resin composition

Also Published As

Publication number Publication date
WO2009019921A1 (en) 2009-02-12
TW200906934A (en) 2009-02-16

Similar Documents

Publication Publication Date Title
JP5114487B2 (en) Hard coating agent composition
CN102070981B (en) Ultraviolet curing paint and preparation method and application thereof
JP6088484B2 (en) Coating composition and method for producing the same, and plastic lens and method for producing the same
CN102056993B (en) Photocurable acrylic coating compositions having good adhesion properties to a subsequent coating and corresponding coated substrates
US10045942B2 (en) Porous metal oxide particles, production method thereof and application thereof
CN1977189A (en) Microlens
TWI357431B (en) Composition for active energy ray curable coating
EP1963448B1 (en) Coatings for optical elements
WO2008044618A1 (en) Curable resin composition, optical material, and method of regulating optical material
CN1791646A (en) Nano-structured surface coating process, nano-structured coatings and articles comprising the coating
KR20130132477A (en) Curable composition for coating containing fluorine-containing hyperbranched polymer
US20120172483A1 (en) process for production of cured molded article, and cured molded article
CN107406690A (en) Resin composite for forming hard coat layer and its solidfied material
JP2011001420A (en) Photosensitive resin composition, photosensitive inkjet ink, photosensitive adhesive, photosensitive coating agent, and semiconductor sealing material
CN114031893B (en) High refractive index photo-curing composition, preparation method and application thereof
JP2010037534A (en) Composite particle, resin composition, and its cured product
CN102807814B (en) Nano silica-modified recoatable ultraviolet (UV) varnish used on plastic and preparation method for varnish
JP2010070640A (en) Hydrolyzable silicon compound, method for producing hydrolyzable silicon compound, condensate of hydrolyzable silicon compound, resin additive, inorganic surface modifier, film forming agent, and resin composition
TWI405803B (en) Resin composition, flim-shape optical part using the same and fabricating method of the same
JP2009299074A (en) Curable resin composition for molded body, molded body and method for producing same
JP2009132860A (en) Resin composition and film-formed optical member using the same
JPWO2009019921A1 (en) Resin composition and film-like optical member using the same
JP2009114436A (en) Resin composition, film-like optical member using the same, and method for producing resin composition
CN114836126A (en) Hydrophilic antifogging coating and preparation method thereof, and protective film and preparation method thereof
JP2009132910A (en) Resin composition, film optical member using the same, and method for production of resin composition