JPWO2009001796A1 - Terahertz band device element and method for manufacturing terahertz band device element - Google Patents

Terahertz band device element and method for manufacturing terahertz band device element Download PDF

Info

Publication number
JPWO2009001796A1
JPWO2009001796A1 JP2009520577A JP2009520577A JPWO2009001796A1 JP WO2009001796 A1 JPWO2009001796 A1 JP WO2009001796A1 JP 2009520577 A JP2009520577 A JP 2009520577A JP 2009520577 A JP2009520577 A JP 2009520577A JP WO2009001796 A1 JPWO2009001796 A1 JP WO2009001796A1
Authority
JP
Japan
Prior art keywords
znte
terahertz
substrate
band device
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009520577A
Other languages
Japanese (ja)
Other versions
JP5090449B2 (en
Inventor
朝日 聰明
聰明 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2009520577A priority Critical patent/JP5090449B2/en
Publication of JPWO2009001796A1 publication Critical patent/JPWO2009001796A1/en
Application granted granted Critical
Publication of JP5090449B2 publication Critical patent/JP5090449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

テラヘルツ波発生器やテラヘルツ波検出器等のテラヘルツ帯デバイスにおいて、優れた特性を発揮できるテラヘルツ帯デバイス用素子及びその製造方法を提供する。テラヘルツ波を発生又は検出するためのテラヘルツ帯デバイス用素子において、結晶方位が(110)、(111)或いは電気光学効果を有した方位、厚みが5〜100μm、表面粗さが1μm以下であるZnTe単結晶基板を備えるようにした。さらに、1又は複数の開口部を有する板状保持部材に、前記開口部が覆われるようにZnTe単結晶基板を貼着してテラヘルツ帯デバイス用素子を構成するようにした。An element for a terahertz band device capable of exhibiting excellent characteristics in a terahertz band device such as a terahertz wave generator or a terahertz wave detector, and a method for manufacturing the element. In a terahertz band device element for generating or detecting terahertz waves, the crystal orientation is (110), (111) or an orientation having an electro-optic effect, the thickness is 5 to 100 μm, and the surface roughness is 1 μm or less. A single crystal substrate was provided. Further, a terahertz band device element is configured by attaching a ZnTe single crystal substrate to a plate-like holding member having one or more openings so that the openings are covered.

Description

本発明は、テラヘルツ波発生器やテラヘルツ波検出器等に用いられるテラヘルツ帯デバイス用素子及びその製造方法に関し、特に、電気光学結晶であるZnTe単結晶を利用したテラヘルツ帯デバイス用素子及びその製造方法に関する。   The present invention relates to an element for a terahertz band device used for a terahertz wave generator, a terahertz wave detector, and the like, and a manufacturing method thereof. About.

一般に、サブミリ波から遠赤外域を含む周波数領域(0.1〜10THz)はテラヘルツ電磁波領域と総称され、光波と電波の境界に位置する。近年では、酸化物単結晶や化合物半導体単結晶からなる電気光学結晶(Electro-Optic Crystal)や半導体の光伝導スイッチ素子をフェムト秒レーザで励起することによりテラヘルツ波を発生する技術や、電気光学結晶の複屈折の特性を利用してテラヘルツ波を検出する技術が開発される等、テラヘルツ波に関する技術は著しく進歩している。   In general, a frequency region (0.1 to 10 THz) including a submillimeter wave to a far infrared region is collectively referred to as a terahertz electromagnetic wave region, and is located at a boundary between a light wave and a radio wave. In recent years, technologies that generate terahertz waves by exciting femtosecond lasers with electro-optic crystals (electro-optic crystals) composed of oxide single crystals or compound semiconductor single crystals, and semiconductor photoconductive switch elements, and electro-optic crystals The technology related to terahertz waves has been remarkably advanced, such as the development of technology for detecting terahertz waves using the characteristics of birefringence.

例えば、非特許文献1には、広帯域のテラヘルツ超短パルスのサンプリング技術である電気光学サンプリング(EOS)について記載されている。また、ZnTe単結晶をテラヘルツ検出器として用いる場合、入射するレーザ(光パルス)とテラヘルツ波(テラヘルツパルス)間での完全な位相整合は不可能であるため、薄い結晶の方が分散が小さくなって、検出される帯域幅が広くなることが記載されている。つまり、入射するレーザとテラヘルツ波の位相整合はZnTe単結晶基板の厚さに依存するので、基板厚さを薄くして整合性をよくすれば、テラヘルツ波の検出帯域を広くすることができる。   For example, Non-Patent Document 1 describes electro-optic sampling (EOS), which is a broadband terahertz ultrashort pulse sampling technique. In addition, when a ZnTe single crystal is used as a terahertz detector, perfect phase matching between the incident laser (light pulse) and the terahertz wave (terahertz pulse) is impossible, so the dispersion of the thin crystal is smaller. Thus, it is described that the detected bandwidth becomes wider. That is, the phase matching between the incident laser and the terahertz wave depends on the thickness of the ZnTe single crystal substrate. Therefore, if the substrate thickness is reduced to improve the matching, the terahertz wave detection band can be widened.

また、非特許文献2には、非線形光学効果を用いたテラヘルツ波発生に関する技術が記載されている。例えば、GaSeを用いた場合の差周波発生に関する技術として、GaSeは負の一軸性結晶のため、入射した励起光の垂直方向成分は常光、水平方向成分は異常光となり、常光と異常光は屈折率が異なるために同じパルス内の異なる周波数成分間の差周波が発生することが記載されている。
一方、ZnTeは等軸結晶のため、通常、常光と異常光に屈折率差はないが、結晶中に「ひずみ」があると常光と異常光に屈折率差が生じるので、上述したGaSeと同様にテラヘルツ波が差周波として発生することとなる。例えば、ヘムト秒レーザをZnTe単結晶基板に照射することによりテラヘルツ波を発生させることができる。
Non-Patent Document 2 describes a technique related to terahertz wave generation using a nonlinear optical effect. For example, as a technology related to difference frequency generation when using GaSe, GaSe is a negative uniaxial crystal, so the vertical component of incident excitation light is ordinary light, the horizontal component is abnormal light, and ordinary light and abnormal light are refracted. It is described that a difference frequency between different frequency components in the same pulse is generated due to different rates.
On the other hand, since ZnTe is an equiaxed crystal, there is usually no difference in refractive index between ordinary light and extraordinary light. However, if there is “strain” in the crystal, a difference in refractive index occurs between ordinary light and extraordinary light. Then, terahertz waves are generated as difference frequencies. For example, a terahertz wave can be generated by irradiating a ZnTe single crystal substrate with a hemtosecond laser.

このように、ZnTe単結晶はテラヘルツ波検出器及びテラヘルツ波発生器等のテラヘルツ帯デバイス用の素子として利用されている。特に、広帯域のテラヘルツ波の発生及び検出には、厚さ50μm以下の極薄ZnTe基板が使用されている。
また、この厚さ50μm以下の極薄ZnTe基板は取り扱いが困難であることから、従来は、例えば石英ガラス基板上にZnTe基板を設けるようにして機械的強度を補強している。
Thus, the ZnTe single crystal is used as an element for terahertz band devices such as a terahertz wave detector and a terahertz wave generator. In particular, an ultrathin ZnTe substrate having a thickness of 50 μm or less is used for generation and detection of a broadband terahertz wave.
Further, since this ultra-thin ZnTe substrate having a thickness of 50 μm or less is difficult to handle, conventionally, for example, a ZnTe substrate is provided on a quartz glass substrate to reinforce the mechanical strength.

図7A、図7Bは、ZnTe基板を用いた従来のテラヘルツ帯デバイス用素子の用途例について示した説明図である。図7A、図7Bに示すように、テラヘルツ波検出素子及びテラヘルツ波発生素子は、ZnTe基板2が石英ガラス基板1に貼着されて構成されている。例えば、石英ガラス基板1上に鏡面研磨したZnTe基板2の片面を接着剤などで貼り付けた後、さらに他方の表面を鏡面研磨して所望の厚さとされる。   7A and 7B are explanatory views showing application examples of a conventional element for a terahertz band device using a ZnTe substrate. As shown in FIGS. 7A and 7B, the terahertz wave detection element and the terahertz wave generation element are configured by bonding a ZnTe substrate 2 to a quartz glass substrate 1. For example, after one surface of a ZnTe substrate 2 mirror-polished on a quartz glass substrate 1 is attached with an adhesive or the like, the other surface is further mirror-polished to a desired thickness.

図7Aに示すように、テラヘルツ波検出素子では石英ガラス基板1側からテラヘルツ波及びプローブ光(直線偏光)が入射され、ZnTe基板2からプローブ光(楕円偏光)が出射される。また、図7Bに示すように、テラヘルツ波発生素子では石英ガラス基板1側から励起光が入射され、ZnTe基板2からテラヘルツ波が出射される。
テラヘルツセンシングテクノロジー 第8章(2006)、監修:大森豊昭、発行所:株式会社エヌ・ティー・エス テラヘルツテクノロジー 第II章1(2005)、監訳:大森豊昭、発行所:株式会社エヌ・ティー・エス
As shown in FIG. 7A, in the terahertz wave detection element, a terahertz wave and probe light (linearly polarized light) are incident from the quartz glass substrate 1 side, and probe light (elliptical polarized light) is emitted from the ZnTe substrate 2. As shown in FIG. 7B, in the terahertz wave generating element, excitation light is incident from the quartz glass substrate 1 side, and terahertz waves are emitted from the ZnTe substrate 2.
Terahertz Sensing Technology Chapter 8 (2006), Supervision: Toyoaki Omori, Publisher: NTS Corporation Terahertz Technology Chapter II 1 (2005), supervisor: Toyoaki Omori, publisher: NTS Corporation

しかしながら、図7Aに示すテラヘルツ波検出素子においては、入射したテラヘルツ波は、ZnTe基板2に到達する前に接着剤や石英ガラス基板1によって吸収され信号強度が低下するため、テラヘルツ波によりZnTe基板2に生じる電界は、本来のテラヘルツ波の信号強度を反映したものとならない虞がある。そのため、テラヘルツ波を精度よく検出することが困難となる。   However, in the terahertz wave detecting element shown in FIG. 7A, the incident terahertz wave is absorbed by the adhesive or the quartz glass substrate 1 before reaching the ZnTe substrate 2, and the signal intensity is reduced. There is a possibility that the electric field generated in the above will not reflect the signal strength of the original terahertz wave. Therefore, it becomes difficult to detect terahertz waves with high accuracy.

また、図7Bに示すテラヘルツ波発生素子においては、照射した励起光(例えば、ヘムト秒レーザ)のパルス幅が、石英ガラス基板1や接着剤を透過する際に広がってしまうため、ZnTe基板2において必要な周波数を有するテラヘルツ波が発生されない虞がある。例えば、当初のパルス幅で数THzまで発生するものが、パルス幅の広がりにより1THz程度にしかならない場合がある。   Further, in the terahertz wave generating element shown in FIG. 7B, the pulse width of the irradiated excitation light (for example, hemtosecond laser) spreads when passing through the quartz glass substrate 1 or the adhesive, and therefore in the ZnTe substrate 2 There is a possibility that a terahertz wave having a necessary frequency is not generated. For example, what is generated up to several THz in the initial pulse width may be only about 1 THz due to the spread of the pulse width.

また、ZnTe基板2を所望の厚さまで研磨した後、石英ガラス基板1に貼着する場合、薄く研磨する際にZnTe基板の周辺部などが破損することが多々ある。   Further, when the ZnTe substrate 2 is polished to a desired thickness and then adhered to the quartz glass substrate 1, the periphery of the ZnTe substrate is often damaged when thinly polished.

本発明は、テラヘルツ波発生器やテラヘルツ波検出器等のテラヘルツ帯デバイスにおいて優れた特性を発揮できるとともに、取り扱いが容易なテラヘルツ帯デバイス用素子及びその製造方法を提供することを目的とする。   It is an object of the present invention to provide an element for a terahertz band device that can exhibit excellent characteristics in a terahertz band device such as a terahertz wave generator or a terahertz wave detector, and that can be easily handled, and a method for manufacturing the element.

請求項1に記載の発明は、上記目的を達成するためになされたもので、テラヘルツ波を発生又は検出するためのテラヘルツ帯デバイス用素子であって、結晶方位が(110)、(111)、或いは電気光学効果を有した方位、厚みが5〜100μm、表面粗さが1μm以下であるZnTe単結晶基板を備えることを特徴とする。   Invention of Claim 1 was made | formed in order to achieve the said objective, Comprising: The element for terahertz band devices for generating or detecting a terahertz wave, Comprising: (110), (111), Alternatively, a ZnTe single crystal substrate having an orientation having an electrooptic effect, a thickness of 5 to 100 μm, and a surface roughness of 1 μm or less is provided.

つまり、テラヘルツ波発素子に用いられるZnTe単結晶基板において、厚みが薄い方が発生するテラヘルツ波は広帯域となるので、所定の帯域を確保するために、ZnTe単結晶基板のレーザ光が入射する領域の厚みを100μm以下とするのが望ましい。一方、テラヘルツ波の発生強度としてはある程度の厚みのZnTe単結晶基板をレーザ光が通過する必要があり、それがZnTe単結晶基板の厚み下限となる。例えば、テラヘルツ波の発生強度の観点から、ZnTe単結晶基板の厚みは5μm以上であることが好ましい。   That is, in the ZnTe single crystal substrate used for the terahertz wave generating element, the terahertz wave generated by the thinner one has a wide band. Therefore, in order to secure a predetermined band, the region where the laser beam of the ZnTe single crystal substrate is incident It is desirable that the thickness of the film be 100 μm or less. On the other hand, as the generation intensity of the terahertz wave, the laser light needs to pass through a ZnTe single crystal substrate having a certain thickness, which is the lower limit of the thickness of the ZnTe single crystal substrate. For example, from the viewpoint of the generation intensity of terahertz waves, the thickness of the ZnTe single crystal substrate is preferably 5 μm or more.

請求項2に記載の発明は、請求項1に記載のテラヘルツ帯デバイス用素子において、1又は複数の開口部を有する板状保持部材に、前記ZnTe単結晶基板が前記開口部を覆うように貼着されてなることを特徴とする。   According to a second aspect of the present invention, in the element for a terahertz band device according to the first aspect, the ZnTe single crystal substrate is attached to a plate-shaped holding member having one or a plurality of openings so as to cover the openings. It is characterized by being worn.

請求項3に記載の発明は、請求項2に記載のテラヘルツ帯デバイス用素子において、前記板状保持部材は、前記ZnTe単結晶基板を貼着する凹状収容部を有し、前記凹状収容部の底面の一部に前記開口部が形成されていることを特徴とする。   According to a third aspect of the present invention, in the element for a terahertz band device according to the second aspect, the plate-like holding member has a concave accommodating portion to which the ZnTe single crystal substrate is attached, and the concave accommodating portion The opening is formed in a part of the bottom surface.

請求項4に記載の発明は、請求項3に記載のテラヘルツ帯デバイス用素子において、前記凹状収容部は、前記ZnTe単結晶基板を嵌合可能な形状を有することを特徴とする。   According to a fourth aspect of the present invention, in the terahertz band device element according to the third aspect, the concave accommodating portion has a shape capable of fitting the ZnTe single crystal substrate.

請求項5に記載の発明は、テラヘルツ波を発生又は検出するためのテラヘルツ帯デバイス用素子であって、結晶方位が(110)、(111)、或いは電気光学効果を有した方位、表面粗さが1μm以下であり、一部の厚みが5〜100μmで、それ以外の厚みは100μmを超えるZnTe単結晶基板を備えることを特徴とする。   The invention according to claim 5 is an element for a terahertz band device for generating or detecting a terahertz wave, wherein the crystal orientation is (110), (111), an orientation having an electro-optic effect, and surface roughness. Is a ZnTe single crystal substrate having a thickness of 5 μm to 100 μm and a thickness of other than 100 μm.

請求項6に記載の発明は、テラヘルツ帯デバイス用素子の製造方法において、結晶方位が(110)、(111)、或いは電気光学効果を有した方位であるZnTe単結晶基板を、1又は複数の開口部を有する板状保持部材に、前記開口部を覆うように貼着する工程と、ZnTe単結晶基板の厚みが5〜100μm、表面粗さが1μm以下となるように前記貼着工程後に前記ZnTe単結晶基板表面を研磨する工程と、を有することを特徴とする。   According to a sixth aspect of the present invention, there is provided a method for manufacturing an element for a terahertz band device, wherein a ZnTe single crystal substrate having a crystal orientation of (110), (111) or an orientation having an electro-optic effect is provided in one or more The step of sticking to the plate-like holding member having an opening so as to cover the opening, and after the sticking step so that the thickness of the ZnTe single crystal substrate is 5 to 100 μm and the surface roughness is 1 μm or less. And polishing the surface of the ZnTe single crystal substrate.

請求項7に記載の発明は、テラヘルツ帯デバイス用素子の製造方法において、1又は複数の開口部が形成された凹状収容部を有する板状保持部材を用い、結晶方位が(110)、(111)、或いは電気光学効果を有した方位であるZnTe単結晶基板を、前記凹状収容部に、前記開口部を覆うように貼着する工程と、ZnTe単結晶基板の厚みが5〜100μm、表面粗さが1μm以下となるように前記貼着工程後に前記ZnTe単結晶基板表面を研磨する工程と、を有することを特徴とする。   According to a seventh aspect of the present invention, in the method for manufacturing a device for a terahertz band device, a plate-like holding member having a concave accommodating portion in which one or a plurality of openings are formed, and the crystal orientation is (110), (111 ), Or a step of attaching a ZnTe single crystal substrate having an orientation having an electro-optic effect to the concave housing portion so as to cover the opening, and the thickness of the ZnTe single crystal substrate is 5 to 100 μm, the surface roughness Polishing the surface of the ZnTe single crystal substrate after the attaching step so that the thickness is 1 μm or less.

請求項8に記載の発明は、請求項7に記載のテラヘルツ帯デバイス用素子の製造方法において、前記凹状収容部の深さは、5〜100μmであることを特徴とする。
請求項9に記載の発明は、請求項6から8の何れか一項に記載のテラヘルツ帯デバイス用素子の製造方法において、前記開口部から前記ZnTe単結晶基板の表面をエッチングする工程を有することを特徴とする。
The invention according to claim 8 is the method of manufacturing an element for a terahertz band device according to claim 7, wherein the depth of the concave accommodating portion is 5 to 100 μm.
Invention of Claim 9 has the process of etching the surface of the said ZnTe single crystal substrate from the said opening part in the manufacturing method of the element for terahertz band devices as described in any one of Claim 6 to 8. It is characterized by.

本発明に係るテラヘルツ帯デバイス用素子によれば、テラヘルツ波発生器やテラヘルツ波検出器等のテラヘルツ帯デバイスに用いた場合に、板状保持部材である石英ガラス基板や接着剤などが、テラヘルツ波の発生又は検出に悪影響を及ぼすのを防止できるので、優れた特性を有するテラヘルツ帯デバイスを実現することができる。
また、テラヘルツ帯デバイス用素子の全体としての厚さが薄くなるわけではないので、適度の機械的強度を有することとなり、取り扱いが容易となる。
According to the element for a terahertz band device according to the present invention, when used in a terahertz band device such as a terahertz wave generator or a terahertz wave detector, a quartz glass substrate or an adhesive that is a plate-like holding member is not a terahertz wave. Therefore, a terahertz band device having excellent characteristics can be realized.
Further, since the thickness of the entire element for a terahertz band device is not reduced, it has an appropriate mechanical strength and is easy to handle.

また、本発明に係るテラヘルツ帯デバイス用素子の製造方法によれば、ZnTe単結晶基板が破損することなく容易に所望の厚さとすることができるので、所望の特性を有するテラヘルツ帯デバイス用素子を歩留まりよく製造することができる。   In addition, according to the method for manufacturing a terahertz band device element according to the present invention, the ZnTe single crystal substrate can be easily formed to a desired thickness without being damaged. Therefore, a terahertz band device element having desired characteristics can be obtained. It can be manufactured with good yield.

板状保持部材としての石英ガラス基板の上面図である。It is a top view of the quartz glass substrate as a plate-shaped holding member. 板状保持部材としての石英ガラス基板のA−A断面図である。It is AA sectional drawing of the quartz glass substrate as a plate-shaped holding member. 石英ガラス基板にZnTe基板を貼着した状態を示す上面図である。It is a top view which shows the state which bonded the ZnTe board | substrate to the quartz glass board | substrate. 石英ガラス基板にZnTe基板を貼着した状態を示すA−A断面図である。It is AA sectional drawing which shows the state which bonded the ZnTe board | substrate to the quartz glass board | substrate. 第1実施例に係る製造方法により完成したテラヘルツ帯デバイス用素子の断面図である。It is sectional drawing of the element for terahertz band devices completed with the manufacturing method which concerns on 1st Example. 第1実施例に係るテラヘルツ帯デバイス用素子の用途例について示した説明図である。It is explanatory drawing shown about the usage example of the element for terahertz band devices which concern on 1st Example. 第1実施例に係るテラヘルツ帯デバイス用素子の用途例について示した説明図である。It is explanatory drawing shown about the usage example of the element for terahertz band devices which concern on 1st Example. レジスト膜を形成されたZnTe基板の上面図である。It is a top view of a ZnTe substrate on which a resist film is formed. レジスト膜を形成されたZnTe基板のB−B断面図である。It is BB sectional drawing of the ZnTe board | substrate with which the resist film was formed. 第2実施例に係る製造方法により完成したテラヘルツ帯デバイス用素子の断面図である。It is sectional drawing of the element for terahertz band devices completed with the manufacturing method which concerns on 2nd Example. ZnTe基板を用いた従来のテラヘルツ帯デバイス用素子の用途例について示した説明図である。It is explanatory drawing shown about the example of a use of the conventional element for terahertz band devices using a ZnTe board | substrate. ZnTe基板を用いた従来のテラヘルツ帯デバイス用素子の用途例について示した説明図である。It is explanatory drawing shown about the example of a use of the conventional element for terahertz band devices using a ZnTe board | substrate.

符号の説明Explanation of symbols

1 石英ガラス基板(板状保持部材)
2 ZnTe基板
12 開口部
1 Quartz glass substrate (plate-shaped holding member)
2 ZnTe substrate 12 opening

以下、本発明の好適な実施の形態を図面に基づいて説明する。
(第1実施例)
第1実施例では、板状保持部材としての石英ガラス基板1を用いたテラヘルツ帯デバイス用素子の製造方法について示す。
図1Aは板状保持部材としての石英ガラス基板の上面図、図1Bは板状保持部材としての石英ガラス基板のA−A断面図、図2Aは石英ガラス基板にZnTe単結晶基板を貼着した状態を示す上面図、図2Bは石英ガラス基板にZnTe単結晶基板を貼着した状態を示すA−A断面図、図3は完成したテラヘルツ帯デバイス用素子の断面図である。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
(First embodiment)
In the first embodiment, a method for manufacturing an element for a terahertz band device using a quartz glass substrate 1 as a plate-like holding member will be described.
FIG. 1A is a top view of a quartz glass substrate as a plate-shaped holding member, FIG. 1B is a cross-sectional view taken along line AA of the quartz glass substrate as a plate-shaped holding member, and FIG. 2A is a ZnTe single crystal substrate attached to the quartz glass substrate. FIG. 2B is a cross-sectional view taken along line AA showing a state in which a ZnTe single crystal substrate is bonded to a quartz glass substrate, and FIG. 3 is a cross-sectional view of the completed device for a terahertz band device.

図1A、図1Bに示すように、第1実施例で使用する石英ガラス基板1は、円盤状部材の直径に沿って凹状の溝部11が形成されており、この凹状溝部11の底面中央に円形の開口部12が形成されている。すなわち、石英ガラス基板1は、ZnTe単結晶基板2を貼着する凹状溝部11を有し、凹状溝部11の底面の一部(中央部)に開口部12が形成されている。   As shown in FIGS. 1A and 1B, the quartz glass substrate 1 used in the first embodiment has a concave groove portion 11 formed along the diameter of the disk-shaped member, and a circular shape is formed at the center of the bottom surface of the concave groove portion 11. The opening 12 is formed. That is, the quartz glass substrate 1 has a concave groove portion 11 to which the ZnTe single crystal substrate 2 is attached, and an opening 12 is formed in a part (center portion) of the bottom surface of the concave groove portion 11.

ここで、石英ガラス基板1の各寸法は、直径R=19.9mm、厚さh1=1mm、凹状溝部の深さh2=10μm、幅W=10.2mm、開口部12の直径r=6mmとしている。なお、本実施例では、凹状溝部11の深さh2により貼着されるZnTe基板の厚さを制御するので、所望する厚さに応じてこの凹状溝部11の深さは5〜100μmの範囲で適宜変更される。また、その他の寸法は一例であり、特に限定されるものではない。   Here, the dimensions of the quartz glass substrate 1 are as follows: diameter R = 19.9 mm, thickness h1 = 1 mm, concave groove depth h2 = 10 μm, width W = 10.2 mm, and opening 12 diameter r = 6 mm. Yes. In this embodiment, since the thickness of the ZnTe substrate to be attached is controlled by the depth h2 of the concave groove portion 11, the depth of the concave groove portion 11 is in the range of 5 to 100 μm depending on the desired thickness. It is changed appropriately. The other dimensions are examples and are not particularly limited.

まず、インゴットから、例えば、厚さt=数100μm、(110)面で切断された10.2mm四方の正方形状のZnTe基板2(アズカット・ウェハ)を用意し、このZnTe基板2の表面を鏡面研磨し、表面粗さを1μm以下とする。
ここで、ZnTe基板2の一辺は石英ガラス基板1の凹状溝部11の幅Wと同じとしている。これにより、ZnTe基板2は凹状溝部11に嵌合されるので、貼着する位置を容易に決定できる上、ZnTe基板2を貼着した後の研磨工程においてZnTe基板2が応力により剥がれ易くなるのを防止できる。
First, for example, a 10.2 mm square ZnTe substrate 2 (as-cut wafer) having a thickness t = several hundred μm and cut at a (110) plane is prepared, and the surface of the ZnTe substrate 2 is mirror-finished. Polishing to make the surface roughness 1 μm or less.
Here, one side of the ZnTe substrate 2 is the same as the width W of the concave groove 11 of the quartz glass substrate 1. Thereby, since the ZnTe substrate 2 is fitted in the concave groove portion 11, the position to be bonded can be easily determined, and the ZnTe substrate 2 is easily peeled off by stress in the polishing step after the ZnTe substrate 2 is bonded. Can be prevented.

次いで、図2A、図2Bに示すように、ZnTe基板2を石英ガラス基板1の開口部12を覆うように載置し、開口部12に対応する領域以外の部分において接着剤等で貼着する。このとき、ZnTe基板2の鏡面研磨した表面が凹状溝部11との接触面となり、接触部位では接着剤を介してZnTe基板2と凹状溝部11の底面が接触することとなる。   Next, as shown in FIGS. 2A and 2B, the ZnTe substrate 2 is placed so as to cover the opening 12 of the quartz glass substrate 1, and is adhered with an adhesive or the like in a portion other than the region corresponding to the opening 12. . At this time, the mirror-polished surface of the ZnTe substrate 2 becomes a contact surface with the concave groove portion 11, and at the contact portion, the ZnTe substrate 2 and the bottom surface of the concave groove portion 11 come into contact with each other through an adhesive.

次いで、ZnTe基板2の裏面(図2では上側の面)を粗研磨して石英ガラス基板1の面と同じ高さとする。つまり、凹状溝部11の高さh2を予め所望の高さとすることにより、ZnTe基板2の厚さを容易に所望の厚さとすることができる。
さらに、ZnTe基板2の裏面を鏡面研磨して表面粗さが1μm以下となるようにする。この研磨工程において、研磨装置の取付治具には石英ガラス基板1が保持されることとなる。したがって、ZnTe基板2には取付治具からの応力は加わらなくなるので、研磨工程においてZnTe基板2が破損するのを効果的に防止できる。
そして、研磨面を洗浄して、図3に示すテラヘルツ帯デバイス用素子10が完成する。
Next, the back surface (upper surface in FIG. 2) of the ZnTe substrate 2 is roughly polished to have the same height as the surface of the quartz glass substrate 1. That is, by setting the height h2 of the concave groove portion 11 to a desired height in advance, the thickness of the ZnTe substrate 2 can be easily set to a desired thickness.
Further, the back surface of the ZnTe substrate 2 is mirror-polished so that the surface roughness is 1 μm or less. In this polishing process, the quartz glass substrate 1 is held on the mounting jig of the polishing apparatus. Therefore, since stress from the mounting jig is not applied to the ZnTe substrate 2, it is possible to effectively prevent the ZnTe substrate 2 from being damaged in the polishing process.
Then, the polished surface is washed to complete the terahertz band device element 10 shown in FIG.

第1実施例に係る製造方法によれば、石英ガラス基板1を用いてテラヘルツ帯デバイス用素子10を製造するので、研磨工程などでZnTe基板2が破損することなく容易に所望の厚さとすることができる。これにより、製造工程におけるテラヘルツ帯デバイス用素子10の歩留まりを格段に向上できる。
また、このようにして製造されたテラヘルツ帯デバイス用素子10は、結晶方位が(110)、厚みが5〜100μm、表面粗さが1μm以下であるZnTe基板2を備えるので、テラヘルツ波発生器やテラヘルツ波検出器等のテラヘルツ帯デバイスにおいて、優れた特性を発揮する。
According to the manufacturing method according to the first embodiment, the element 10 for a terahertz band device is manufactured using the quartz glass substrate 1, and therefore the ZnTe substrate 2 is easily set to a desired thickness without being damaged in a polishing process or the like. Can do. Thereby, the yield of the element 10 for terahertz band devices in a manufacturing process can be improved markedly.
Further, the terahertz device element 10 manufactured in this way includes the ZnTe substrate 2 having a crystal orientation of (110), a thickness of 5 to 100 μm, and a surface roughness of 1 μm or less. Excellent characteristics in terahertz band devices such as terahertz wave detectors.

また、テラヘルツ帯デバイス用素子10において、ZnTe基板2の中央部表裏面は外部に露呈されているので、テラヘルツ波や励起光の入射時に、石英ガラス基板1や接着剤などが悪影響を及ぼすのを防止できる。したがって、優れた特性を有するテラヘルツ帯デバイスを実現することができる。   Further, in the terahertz band device element 10, the front and back surfaces of the central portion of the ZnTe substrate 2 are exposed to the outside, so that when the terahertz wave or the excitation light is incident, the quartz glass substrate 1 or the adhesive has an adverse effect. Can be prevented. Therefore, a terahertz band device having excellent characteristics can be realized.

すなわち、図4Aに示すように、テラヘルツ波検出素子では、石英ガラス基板1側から入射されたテラヘルツ波及びプローブ光(直線偏光)は、開口部12を通して直接ZnTe基板2に入射されるので、出射されるプローブ光(楕円偏光)は入射したテラヘルツ波の信号強度を正確に反映したものとなる。
また、図4Bに示すように、テラヘルツ波発生素子では、石英ガラス基板1側から入射された励起光(例えば、ヘムト秒レーザ)は直接ZnTe基板2に入射されるので、ZnTe基板2において必要な周波数を有するテラヘルツ波を確実に発生させることができる。
That is, as shown in FIG. 4A, in the terahertz wave detecting element, the terahertz wave and the probe light (linearly polarized light) incident from the quartz glass substrate 1 side are directly incident on the ZnTe substrate 2 through the opening 12, so The probe light (elliptical polarized light) reflected accurately reflects the signal intensity of the incident terahertz wave.
Further, as shown in FIG. 4B, in the terahertz wave generating element, the excitation light (for example, a hemtosecond laser) incident from the quartz glass substrate 1 side is directly incident on the ZnTe substrate 2, so that it is necessary in the ZnTe substrate 2. A terahertz wave having a frequency can be reliably generated.

また、テラヘルツ帯デバイス用素子10の全体としての厚さが薄くなるわけではなく、石英ガラス基板1によっても適度の機械的強度を確保されているので、取り扱いが容易となる。   In addition, the thickness of the terahertz band device element 10 as a whole is not reduced, and the quartz glass substrate 1 also has an appropriate mechanical strength, so that it can be handled easily.

(第2実施例)
第2実施例では、板状保持部材としての石英ガラス基板1を用いずにテラヘルツ帯デバイス用素子の製造方法について示す。
図5Aはレジスト膜を形成されたZnTe基板の上面図、図5Bはレジスト膜を形成されたZnTe基板のB−B断面図、図6は完成したテラヘルツ帯デバイス用素子の断面図である。
(Second embodiment)
In the second embodiment, a method for manufacturing an element for a terahertz band device without using the quartz glass substrate 1 as a plate-like holding member will be described.
5A is a top view of a ZnTe substrate on which a resist film is formed, FIG. 5B is a BB cross-sectional view of the ZnTe substrate on which a resist film is formed, and FIG. 6 is a cross-sectional view of a completed terahertz device element.

まず、インゴットから、例えば、厚さt=100μm、(110)面で切断された10.2mm四方の正方形状のZnTe基板2(アズカット・ウェハ)を用意し、このZnTe基板2の表裏面を鏡面研磨し、表面粗さを1μm以下とする。   First, for example, a 10.2 mm square ZnTe substrate 2 (as-cut wafer) having a thickness t = 100 μm and a (110) plane is prepared from an ingot, and the front and back surfaces of the ZnTe substrate 2 are mirror-finished. Polishing to make the surface roughness 1 μm or less.

次いで、フォトリソグラフィ技術を利用して、図5A、図5Bに示すように、このZnTe基板2の中心部(直径6mm)以外にレジスト3を形成する。
次いで、ZnTe基板2の中心部2aをブロムメタノール或いは重クロム酸カリウム溶液などでエッチングし、基板中心部2aの厚さを所望の厚さ(例えば、10μm)とする。
そして、ZnTe基板2を洗浄して、図6に示すテラヘルツ帯デバイス用素子20が完成する。
Next, using a photolithography technique, as shown in FIGS. 5A and 5B, a resist 3 is formed in a region other than the central portion (diameter 6 mm) of the ZnTe substrate 2.
Next, the central portion 2a of the ZnTe substrate 2 is etched with bromomethanol or a potassium dichromate solution, so that the thickness of the central portion 2a of the substrate is set to a desired thickness (for example, 10 μm).
Then, the ZnTe substrate 2 is cleaned, and the terahertz band device element 20 shown in FIG. 6 is completed.

第2実施例に係る製造方法によれば、ZnTe基板2の厚さをエッチングにより制御するので、破損することなく容易に所望の厚さとすることができ、テラヘルツ帯デバイス用素子10を歩留まりよく製造することができる。   According to the manufacturing method according to the second embodiment, since the thickness of the ZnTe substrate 2 is controlled by etching, the desired thickness can be easily obtained without damage, and the terahertz band device element 10 can be manufactured with high yield. can do.

また、このようにして製造されたテラヘルツ帯デバイス用素子10は、結晶方位が(110)、表面粗さが1μm以下であり、一部(基板中心部)の厚みが5〜100μmで、それ以外の厚みは100μmを超えるZnTe基板2を備え、基板中心部がテラヘルツ波発生素子やテラヘルツ波検出素子として用いられるので、テラヘルツ帯デバイスにおいて優れた特性を発揮する。   The terahertz band device element 10 manufactured in this way has a crystal orientation of (110), a surface roughness of 1 μm or less, and a part (substrate center) thickness of 5 to 100 μm. Since the ZnTe substrate 2 having a thickness of more than 100 μm is provided and the central portion of the substrate is used as a terahertz wave generating element or a terahertz wave detecting element, it exhibits excellent characteristics in a terahertz band device.

また、テラヘルツ帯デバイス用素子10において、ZnTe基板2の表裏面は外部に露呈されているので、テラヘルツ波や励起光の入射時に、石英ガラス基板1や接着剤などが悪影響を及ぼすのを防止できる。したがって、優れた特性を有するテラヘルツ帯デバイスを実現することができる。   Further, in the terahertz band device element 10, since the front and back surfaces of the ZnTe substrate 2 are exposed to the outside, it is possible to prevent the quartz glass substrate 1 and the adhesive from adversely affecting the incidence of terahertz waves or excitation light. . Therefore, a terahertz band device having excellent characteristics can be realized.

さらに、テラヘルツ帯デバイス用素子20の全体としての厚さが薄くなるわけではないので、適度の機械的強度を有することとなり、取り扱いが容易となる。   Further, since the thickness of the terahertz band device element 20 as a whole is not reduced, it has an appropriate mechanical strength and is easy to handle.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

例えば、第1実施例では、石英ガラス基板1の凹状溝部11に円形の開口部12を1つ形成した板状保持部材について示しているが、板状保持部材の形状はこれに制限されない。すなわち、石英ガラス基板1に、貼着されるZnTe基板2と平面視で同じ形状に窪んだ凹状収容部を形成するようにしてもよいし、或いは凹状収容部を形成しないようにしてもよい。また、開口部12の形状を矩形状にしてもよいし、複数形成するようにしてもよい。   For example, in the first embodiment, a plate-like holding member in which one circular opening 12 is formed in the concave groove portion 11 of the quartz glass substrate 1 is shown, but the shape of the plate-like holding member is not limited to this. In other words, the quartz glass substrate 1 may be formed with a concave housing portion that is recessed in the same shape as the ZnTe substrate 2 to be bonded, or may not be formed with a concave housing portion. Further, the shape of the opening 12 may be rectangular or a plurality of openings 12 may be formed.

また、第1実施例において、ZnTe基板2を所定の厚さまで研磨した後、さらに、開口部12側からZnTe基板2をエッチングするようにしてもよい。例えば、ZnTe基板2の厚さを極めて薄くする場合(例えば、10μm以下)等、研磨処理ではZnTe基板2が破損する虞があるときに有効である。
また、第1,第2実施例において、ZnTe基板2の結晶方位を(111)或いは電気光学効果を有した方位としても同様の効果を得ることができる。
In the first embodiment, after the ZnTe substrate 2 is polished to a predetermined thickness, the ZnTe substrate 2 may be further etched from the opening 12 side. For example, when the thickness of the ZnTe substrate 2 is extremely thin (for example, 10 μm or less), the polishing is effective when the ZnTe substrate 2 may be damaged.
In the first and second embodiments, the same effect can be obtained even when the crystal orientation of the ZnTe substrate 2 is (111) or an orientation having an electro-optic effect.

【0003】
精度よく検出することが困難となる。
[0009]
また、図7Bに示すテラヘルツ波発生素子においては、照射した励起光(例えば、ヘムト秒レーザ)のパルス幅が、石英ガラス基板1や接着剤を透過する際に広がってしまうため、ZnTe基板2において必要な周波数を有するテラヘルツ波が発生されない虞がある。例えば、当初のパルス幅で数THzまで発生するものが、パルス幅の広がりにより1THz程度にしかならない場合がある。
[0010]
また、ZnTe基板2を所望の厚さまで研磨した後、石英ガラス基板1に貼着する場合、薄く研磨する際にZnTe基板の周辺部などが破損することが多々ある。
[0011]
本発明は、テラヘルツ波発生器やテラヘルツ波検出器等のテラヘルツ帯デバイスにおいて優れた特性を発揮できるとともに、取り扱いが容易なテラヘルツ帯デバイス用素子及びその製造方法を提供することを目的とする。
課題を解決するための手段
[0012]
請求項1に記載の発明は、上記目的を達成するためになされたもので、テラヘルツ波を発生又は検出するためのテラヘルツ帯デバイス用素子であって、結晶方位が(110)、(111)、或いは電気光学効果を有した方位、厚みが5〜100μm、表面粗さが1μm以下であるZnTe単結晶基板が、1又は複数の開口部を有する板状保持部材に、前記開口部を覆うように貼着されてなることを特徴とする。
[0013]
つまり、テラヘルツ波発生素子に用いられるZnTe単結晶基板において、厚みが薄い方が発生するテラヘルツ波は広帯域となるので、所定の帯域を確保するために、ZnTe単結晶基板のレーザ光が入射する領域の厚みを100μm以下とするのが望ましい。一方、テラヘルツ波の発生強度としてはある程度の厚みのZnTe単結晶基板をレーザ光が通過する必要があり、それがZnTe単結晶基板の厚み下限となる。例えば、テラヘルツ波の発生強度の観点から、ZnTe単結晶基板の厚みは5μm以上であることが好ましい。
[0014]
[0015]
請求項3に記載の発明は、請求項1に記載のテラヘルツ帯デバイス用素子において、前記板状保持部材は、前記ZnTe単結晶基板を貼着する凹状収容部を有し、前
[0003]
It becomes difficult to detect with high accuracy.
[0009]
Further, in the terahertz wave generating element shown in FIG. 7B, the pulse width of the irradiated excitation light (for example, hemtosecond laser) spreads when passing through the quartz glass substrate 1 or the adhesive, and therefore in the ZnTe substrate 2 There is a possibility that a terahertz wave having a necessary frequency is not generated. For example, what is generated up to several THz in the initial pulse width may be only about 1 THz due to the spread of the pulse width.
[0010]
Further, when the ZnTe substrate 2 is polished to a desired thickness and then adhered to the quartz glass substrate 1, the periphery of the ZnTe substrate is often damaged when thinly polished.
[0011]
An object of the present invention is to provide an element for a terahertz band device that can exhibit excellent characteristics in a terahertz band device such as a terahertz wave generator or a terahertz wave detector and that can be easily handled, and a method for manufacturing the element.
Means for Solving the Problems [0012]
Invention of Claim 1 was made | formed in order to achieve the said objective, Comprising: The element for terahertz band devices for generating or detecting a terahertz wave, Comprising: (110), (111), Alternatively, a ZnTe single crystal substrate having an electro-optic effect orientation, thickness of 5 to 100 μm, and surface roughness of 1 μm or less covers the opening on a plate-like holding member having one or more openings. It is characterized by being affixed.
[0013]
That is, in the ZnTe single crystal substrate used for the terahertz wave generating element, the terahertz wave generated by the thinner one has a wide band. Therefore, in order to secure a predetermined band, the region where the laser beam of the ZnTe single crystal substrate is incident It is desirable that the thickness of the film be 100 μm or less. On the other hand, as the generation intensity of the terahertz wave, the laser light needs to pass through a ZnTe single crystal substrate having a certain thickness, which is the lower limit of the thickness of the ZnTe single crystal substrate. For example, from the viewpoint of the generation intensity of terahertz waves, the thickness of the ZnTe single crystal substrate is preferably 5 μm or more.
[0014]
[0015]
According to a third aspect of the present invention, in the element for a terahertz band device according to the first aspect, the plate-like holding member has a concave accommodating portion for attaching the ZnTe single crystal substrate,

請求項1に記載の発明は、上記目的を達成するためになされたもので、テラヘルツ波を発生又は検出するためのテラヘルツ帯デバイス用素子であって、結晶方位が(110)、(111)、或いは電気光学効果を有した方位であるZnTe単結晶基板を前記素子として備えており、その表裏面が外部に露呈されていることを特徴とする。 Invention of Claim 1 was made | formed in order to achieve the said objective, Comprising: The element for terahertz band devices for generating or detecting a terahertz wave, Comprising: (110), (111), or comprises a ZnTe single crystal substrate is a better position having an electro-optical effect as the device, its front and rear surfaces is characterized that you have been exposed to the outside.

請求項2に記載の発明は、請求項1に記載のテラヘルツ帯デバイス用素子において、1又は複数の開口部を有する板状保持部材に、前記ZnTe単結晶基板が前記開口部を覆うように貼着されてなることを特徴とする。According to a second aspect of the present invention, in the element for a terahertz band device according to the first aspect, the ZnTe single crystal substrate is attached to a plate-shaped holding member having one or a plurality of openings so as to cover the openings. It is characterized by being worn.

請求項3に記載の発明は、請求項2に記載のテラヘルツ帯デバイス用素子において、前記板状保持部材は、前記ZnTe単結晶基板を貼着する凹状収容部を有し、前記凹状収容部の底面の一部に前記開口部が形成され、前記凹状収容部は、前記ZnTe単結晶基板を嵌合可能な形状を有することを特徴とする。 According to a third aspect of the present invention, in the element for a terahertz band device according to the second aspect, the plate-like holding member has a concave accommodating portion to which the ZnTe single crystal substrate is attached, and the concave accommodating portion The opening is formed in a part of the bottom surface, and the concave accommodating portion has a shape capable of fitting the ZnTe single crystal substrate .

請求項4に記載の発明は、請求項3に記載のテラヘルツ帯デバイス用素子において、前記凹状収容部に嵌合されたZnTe単結晶基板と前記板状保持部材は、その裏面が同じ高さになるように研磨加工されていることを特徴とする。 According to a fourth aspect of the present invention, in the element for a terahertz band device according to the third aspect , the back surface of the ZnTe single crystal substrate and the plate-shaped holding member fitted in the concave accommodating portion are at the same height. It is characterized by being polished .

請求項に記載の発明は、結晶方位が(110)、(111)、或いは電気光学効果を有した方位であるZnTe単結晶基板を、1又は複数の開口部を有する板状保持部材に、前記開口部を覆うように貼着する工程と、前記貼着工程後に前記ZnTe単結晶基板を裏面研磨する工程を有することを特徴とする。 Invention of claim 5, the crystal orientation (110), (111), or a ZnTe single crystal substrate which is the orientation having an electro-optical effect, the plate-shaped holding member having one or more openings characterized by having the steps of attaching to cover the opening, the pre-Symbol step of backside polishing the ZnTe single crystal substrate after the attaching step.

請求項に記載の発明は、1又は複数の開口部が形成された凹状収容部を有する板状保持部材を用い、結晶方位が(110)、(111)、或いは電気光学効果を有した方位であるZnTe単結晶基板を、前記凹状収容部に前記開口部を覆うように貼着する工程と、前記貼着工程後に前記ZnTe単結晶基板を裏面研磨する工程を有することを特徴とする。 The invention according to claim 6 uses a plate-like holding member having a concave housing portion in which one or a plurality of openings are formed, and has a crystal orientation of (110), (111), or an orientation having an electro-optic effect. the ZnTe single crystal substrate is characterized by having the a step of attaching to the recessed accommodating portion covering the opening portion, the step of back side grinding of the ZnTe single crystal substrate after the prior SL attaching step.

Claims (9)

テラヘルツ波を発生又は検出するためのテラヘルツ帯デバイス用素子であって、
結晶方位が(110)、(111)、或いは電気光学効果を有した方位、
厚みが5〜100μm、
表面粗さが1μm以下であるZnTe単結晶基板を備えることを特徴とするテラヘルツ帯デバイス用素子。
An element for a terahertz band device for generating or detecting a terahertz wave,
The crystal orientation is (110), (111), or an orientation having an electro-optic effect,
A thickness of 5 to 100 μm,
An element for a terahertz band device, comprising a ZnTe single crystal substrate having a surface roughness of 1 μm or less.
1又は複数の開口部を有する板状保持部材に、前記ZnTe単結晶基板が前記開口部を覆うように貼着されてなることを特徴とする請求項1に記載のテラヘルツ帯デバイス用素子。   2. The element for a terahertz band device according to claim 1, wherein the ZnTe single crystal substrate is attached to a plate-shaped holding member having one or a plurality of openings so as to cover the openings. 前記板状保持部材は、前記ZnTe単結晶基板を貼着する凹状収容部を有し、前記凹状収容部の底面の一部に前記開口部が形成されていることを特徴とする請求項2に記載のテラヘルツ帯デバイス用素子。   The said plate-shaped holding member has a concave accommodating part which affixes the said ZnTe single crystal substrate, The said opening part is formed in a part of bottom face of the said concave accommodating part. The element for a terahertz band device described. 前記凹状収容部は、前記ZnTe単結晶基板を嵌合可能な形状を有することを特徴とする請求項3に記載のテラヘルツ帯デバイス用素子。   4. The element for a terahertz band device according to claim 3, wherein the concave housing portion has a shape capable of fitting the ZnTe single crystal substrate. テラヘルツ波を発生又は検出するためのテラヘルツ帯デバイス用素子であって、
結晶方位が(110)、(111)、或いは電気光学効果を有した方位、
表面粗さが1μm以下であり、
一部の厚みが5〜100μmで、それ以外の厚みは100μmを超えるZnTe単結晶基板を備えることを特徴とするテラヘルツ帯デバイス用素子。
An element for a terahertz band device for generating or detecting a terahertz wave,
The crystal orientation is (110), (111), or an orientation having an electro-optic effect,
The surface roughness is 1 μm or less,
An element for a terahertz band device, comprising a ZnTe single crystal substrate having a thickness of 5 to 100 μm and a thickness of other than 100 μm.
結晶方位が(110)、(111)、或いは電気光学効果を有した方位であるZnTe単結晶基板を、1又は複数の開口部を有する板状保持部材に、前記開口部を覆うように貼着する工程と、
ZnTe単結晶基板の厚みが5〜100μm、表面粗さが1μm以下となるように前記貼着工程後に前記ZnTe単結晶基板表面を研磨する工程と、
を有することを特徴とするテラヘルツ帯デバイス用素子の製造方法。
A ZnTe single crystal substrate having a crystal orientation of (110), (111), or an orientation having an electro-optic effect is attached to a plate-like holding member having one or more openings so as to cover the openings. And a process of
Polishing the ZnTe single crystal substrate surface after the attaching step so that the thickness of the ZnTe single crystal substrate is 5 to 100 μm and the surface roughness is 1 μm or less;
A method for producing an element for a terahertz band device.
1又は複数の開口部が形成された凹状収容部を有する板状保持部材を用い、
結晶方位が(110)、(111)、或いは電気光学効果を有した方位であるZnTe単結晶基板を、前記凹状収容部に、前記開口部を覆うように貼着する工程と、
ZnTe単結晶基板の厚みが5〜100μm、表面粗さが1μm以下となるように前記貼着工程後に前記ZnTe単結晶基板表面を研磨する工程と、
を有することを特徴とするテラヘルツ帯デバイス用素子の製造方法。
Using a plate-like holding member having a concave accommodating portion in which one or a plurality of openings are formed,
A step of attaching a ZnTe single crystal substrate having a crystal orientation of (110), (111), or an orientation having an electro-optic effect to the concave housing portion so as to cover the opening;
Polishing the ZnTe single crystal substrate surface after the attaching step so that the thickness of the ZnTe single crystal substrate is 5 to 100 μm and the surface roughness is 1 μm or less;
A method for producing an element for a terahertz band device.
前記凹状収容部の深さは、5〜100μmであることを特徴とする請求項7に記載のテラヘルツ帯デバイス用素子の製造方法。   8. The method for manufacturing a device for a terahertz band device according to claim 7, wherein a depth of the concave accommodating portion is 5 to 100 [mu] m. 前記開口部から前記ZnTe単結晶基板の表面をエッチングする工程を有することを特徴とする請求項6から8の何れか一項に記載のテラヘルツ帯デバイス用素子の製造方法。   The method for manufacturing an element for a terahertz band device according to any one of claims 6 to 8, further comprising a step of etching a surface of the ZnTe single crystal substrate from the opening.
JP2009520577A 2007-06-25 2008-06-23 Terahertz band device element and method for manufacturing terahertz band device element Active JP5090449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009520577A JP5090449B2 (en) 2007-06-25 2008-06-23 Terahertz band device element and method for manufacturing terahertz band device element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007166715 2007-06-25
JP2007166715 2007-06-25
PCT/JP2008/061417 WO2009001796A1 (en) 2007-06-25 2008-06-23 Terahertz band device element and method for manufacturing terahertz band device element
JP2009520577A JP5090449B2 (en) 2007-06-25 2008-06-23 Terahertz band device element and method for manufacturing terahertz band device element

Publications (2)

Publication Number Publication Date
JPWO2009001796A1 true JPWO2009001796A1 (en) 2010-08-26
JP5090449B2 JP5090449B2 (en) 2012-12-05

Family

ID=40185610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009520577A Active JP5090449B2 (en) 2007-06-25 2008-06-23 Terahertz band device element and method for manufacturing terahertz band device element

Country Status (2)

Country Link
JP (1) JP5090449B2 (en)
WO (1) WO2009001796A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102647571B1 (en) * 2020-07-24 2024-03-14 한국전력공사 Terahertz wave generator and terahertz wave alignment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4091214B2 (en) * 1999-06-10 2008-05-28 浜松ホトニクス株式会社 Terahertz wave spectrometer
JP2003270598A (en) * 2002-03-15 2003-09-25 Nikko Materials Co Ltd ELECTRO-OPTIC CRYSTAL AND METHOD FOR MAKING ZnTe ELECTRO- OPTIC CRYSTAL
JP4393147B2 (en) * 2003-09-25 2010-01-06 関西電力株式会社 Terahertz electromagnetic wave generating element
JP4756853B2 (en) * 2004-11-30 2011-08-24 Jx日鉱日石金属株式会社 Electro-optic crystal element

Also Published As

Publication number Publication date
JP5090449B2 (en) 2012-12-05
WO2009001796A1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP5623250B2 (en) Design and method for stabilizing a VCSEL of a chip scale atomic clock
US9410885B2 (en) Atomic sensor physics package having optically transparent panes and external wedges
TW201245067A (en) Cutting method for bonded glass, manufacturing method for package, package, piezoelectric vibrator, oscillator, electronic machine and radio clock
EP3715931B1 (en) Method of removing foreign matter in the manufacture of an optical detection device
JP2008051533A (en) Sample holding container and terahertz measurement system
JP2009217085A (en) Optical component
JP4782213B2 (en) Optical waveguide device
US11624902B2 (en) Wafer inspection method and wafer
JP5090449B2 (en) Terahertz band device element and method for manufacturing terahertz band device element
CN103477204A (en) Measurement structure, method for producing same, and measurement method using same
US8829423B2 (en) Folded optics for batch fabricated atomic sensor
KR101191385B1 (en) The THz Tx/Rx Module has Silicon Ball Lens is bonded to Antenna Device and Manufacturing Method thereof
EP4198499A1 (en) Surface-enhanced raman scattering unit
US7764851B2 (en) Optical modulators
JP5428932B2 (en) Optical waveguide device and manufacturing method thereof
JP2003270598A (en) ELECTRO-OPTIC CRYSTAL AND METHOD FOR MAKING ZnTe ELECTRO- OPTIC CRYSTAL
JP4291615B2 (en) Optical element wafer, manufacturing method thereof, and manufacturing method of optical element
JPH09210885A (en) Sample forming method of component analysis from rear surface
US9733546B2 (en) Optical component
JP4756853B2 (en) Electro-optic crystal element
JP2006251086A (en) Electromagnetic wave generating element
JP5926906B2 (en) Manufacturing method of ZnTe thin film for terahertz band device
JP3321614B2 (en) Manufacturing method of electric field measurement probe
JP3174768U (en) Total reflection absorption measuring device
JP2005064986A (en) Quasi-optical coupling type module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5090449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250