JP4756853B2 - Electro-optic crystal element - Google Patents

Electro-optic crystal element Download PDF

Info

Publication number
JP4756853B2
JP4756853B2 JP2004345255A JP2004345255A JP4756853B2 JP 4756853 B2 JP4756853 B2 JP 4756853B2 JP 2004345255 A JP2004345255 A JP 2004345255A JP 2004345255 A JP2004345255 A JP 2004345255A JP 4756853 B2 JP4756853 B2 JP 4756853B2
Authority
JP
Japan
Prior art keywords
crystal
electro
terahertz electromagnetic
crystal substrate
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004345255A
Other languages
Japanese (ja)
Other versions
JP2006154336A (en
Inventor
聰明 朝日
賢次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2004345255A priority Critical patent/JP4756853B2/en
Publication of JP2006154336A publication Critical patent/JP2006154336A/en
Application granted granted Critical
Publication of JP4756853B2 publication Critical patent/JP4756853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、テラヘルツ電磁波検出器に利用して有効な電気光学結晶素子(EO結晶素子)に関し、特に、ZnTe系化合物半導体単結晶の2層構造を有する電気光学結晶素子に適用して有効な技術に関する。   The present invention relates to an electro-optic crystal element (EO crystal element) that is effective for use in a terahertz electromagnetic wave detector, and in particular, a technique that is effective when applied to an electro-optic crystal element having a two-layer structure of a ZnTe-based compound semiconductor single crystal. About.

一般に、サブミリ波から遠赤外域を含む周波数領域(0.1〜100THz)はテラヘルツ電磁波領域と総称され、光波と電波の境界に位置する。近年では、酸化物単結晶や化合物半導体単結晶からなる電気光学結晶(Electro-Optic Crystal;EO結晶)や半導体の光伝導スイッチ素子をフェムト秒レーザで励起することによりテラヘルツ電磁波を発生する技術や、EO結晶の複屈折の特性を利用してテラヘルツ電磁波を検出する技術が開発される等、テラヘルツ電磁波に関する技術は著しく進歩している。   In general, a frequency region (0.1 to 100 THz) including a submillimeter wave to a far infrared region is collectively referred to as a terahertz electromagnetic wave region, and is located at a boundary between a light wave and a radio wave. In recent years, a technology for generating terahertz electromagnetic waves by exciting electro-optic crystals (EO crystals) made of oxide single crystals or compound semiconductor single crystals and semiconductor photoconductive switch elements with femtosecond lasers, Technologies for detecting terahertz electromagnetic waves by utilizing the birefringence characteristics of EO crystals have been developed, and techniques related to terahertz electromagnetic waves have been remarkably advanced.

前記EO結晶として利用される酸化物単結晶は、電気光学係数(EO係数)が大きくテラヘルツ電磁波を効率よく検出できる特性をもつ反面、テラヘルツ電磁波の屈折率が可視光の屈折率に比較して非常に大きいため、可視光との組み合わせによるテラヘルツ電磁波の検出は難しいという欠点がある。一方、化合物半導体単結晶は、EO係数は酸化物単結晶に比較して小さいが、テラヘルツ電磁波の屈折率と可視光の屈折率との差は小さいため、可視光との組み合わせによるテラヘルツ電磁波の検出に適しているという利点がある。   The oxide single crystal used as the EO crystal has a large electro-optic coefficient (EO coefficient) and can detect terahertz electromagnetic waves efficiently. However, the refractive index of terahertz electromagnetic waves is much higher than that of visible light. Therefore, it is difficult to detect terahertz electromagnetic waves in combination with visible light. On the other hand, the compound semiconductor single crystal has a smaller EO coefficient than that of the oxide single crystal, but the difference between the refractive index of terahertz electromagnetic waves and the refractive index of visible light is small, so detection of terahertz electromagnetic waves by combination with visible light is possible. There is an advantage that it is suitable for.

特に、化合物半導体の中でもII−VI族化合物半導体の一つであるZnTe単結晶は、比較的大きなEO係数を持ちバンドギャップが室温において2.26eVであることから、可視光帯域のレーザを用いたテラヘルツ電磁波検出器用のEO素子用基板として最も有望な材料といえる。   In particular, a ZnTe single crystal, which is one of II-VI group compound semiconductors among compound semiconductors, has a relatively large EO coefficient and a band gap of 2.26 eV at room temperature. Therefore, a laser in the visible light band was used. It can be said that this is the most promising material for an EO element substrate for a terahertz electromagnetic wave detector.

図2は、ZnTe単結晶を電気光学素子用基板として用いたテラヘルツ電磁波検出器の概略構成図である。
図2に示すテラヘルツ電磁波検出器100は、例えばレーザ光を発振するレーザ光源101と、光学遅延(時間遅延)手段102と、テラヘルツ電磁波を放射するエミッタ103と、ZnTe単結晶からなるEO素子106と、EO素子を通過して入射したプローブ光の強度を測定する、例えばフォトダイオードからなる光検出器105と、励起光またはプローブ光を反射して所要の光路を決定する反射鏡(リフレクタ)R1〜R6と、光を分岐または結合するビームスプリッタS1,S2と、光の振動方向を一方向に制限する偏光子104,107とで構成される。
FIG. 2 is a schematic configuration diagram of a terahertz electromagnetic wave detector using a ZnTe single crystal as a substrate for an electro-optic element.
A terahertz electromagnetic wave detector 100 shown in FIG. 2 includes, for example, a laser light source 101 that oscillates laser light, optical delay (time delay) means 102, an emitter 103 that emits terahertz electromagnetic waves, and an EO element 106 made of a ZnTe single crystal. , Measuring the intensity of the probe light that has passed through the EO element, for example, a photodetector 105 made of a photodiode, and reflecting mirrors (reflectors) R1 to R1 that reflect excitation light or probe light to determine a required optical path. R6, beam splitters S1 and S2 that branch or combine light, and polarizers 104 and 107 that limit the vibration direction of light to one direction.

なお、図2のテラヘルツ電磁波検出器は、励起光源およびプローブ光源として同一のレーザ光源101を用い、レーザ光源101から発振されたレーザ光をビームスプリッタS1によって分岐させ、光学遅延手段102等によってそれぞれの光路長を調整できるようにして、テラヘルツ電磁波およびプローブ光がEO結晶106に入射するタイミングを調整できる装置構成としている。   The terahertz electromagnetic wave detector of FIG. 2 uses the same laser light source 101 as the excitation light source and the probe light source, branches the laser light oscillated from the laser light source 101 by the beam splitter S1, and each optical delay means 102 etc. The device configuration is such that the optical path length can be adjusted, and the timing at which the terahertz electromagnetic wave and the probe light enter the EO crystal 106 can be adjusted.

まず、励起光源101から発振されたレーザ光は、ビームスプリッタS1で励起光とプローブ光に分岐される。そして、励起光は光学遅延手段102を通過したのち光伝導素子としてのGaAs基板108に入射する。このときに、例えば約5kVのバイアス電圧を印加することによりテラヘルツ電磁波が発生し、発生したテラヘルツ電子波はビームスプリッタS2に入射する。   First, the laser light oscillated from the excitation light source 101 is branched into excitation light and probe light by the beam splitter S1. The excitation light passes through the optical delay means 102 and then enters the GaAs substrate 108 as a photoconductive element. At this time, for example, a terahertz electromagnetic wave is generated by applying a bias voltage of about 5 kV, and the generated terahertz electron wave enters the beam splitter S2.

一方、プローブ光は、リフレクタR5,R6を介して偏光子107に入射して直線偏光に調えられた後、ビームスプリッタS2に入射する。次いで、ビームスプリッタS2でテラヘルツ電磁波とプローブ光は結合され、EO素子(ZnTe単結晶)106に入射する。このとき、ZnTe単結晶内部にはテラヘルツ電磁波により電界が生じているため、結晶に複屈折が誘起され、プローブ光は僅かに楕円偏光に変化される。   On the other hand, the probe light enters the polarizer 107 through the reflectors R5 and R6 and is adjusted to linearly polarized light, and then enters the beam splitter S2. Next, the terahertz electromagnetic wave and the probe light are combined by the beam splitter S <b> 2 and enter the EO element (ZnTe single crystal) 106. At this time, since an electric field is generated in the ZnTe single crystal by the terahertz electromagnetic wave, birefringence is induced in the crystal, and the probe light is slightly changed to elliptically polarized light.

EO素子106を透過したプローブ光は、偏光子107の偏光方向から90°回転させた偏光方向を有する偏光子104に入射し、この偏光子104を通過して漏れ出してくるプローブ光の強度を光検出器105で検出する。   The probe light transmitted through the EO element 106 is incident on the polarizer 104 having a polarization direction rotated by 90 ° from the polarization direction of the polarizer 107, and the intensity of the probe light leaking through the polarizer 104 is determined. Detection is performed by the photodetector 105.

つまり、テラヘルツ電磁波による電界の大きさが大きいほどZnTe単結晶106の複屈折率の変化が大きくなるために、楕円偏光となる割合が大きくなる。したがって、漏れ出してくるプローブ光の強度が大きいほど、テラヘルツ電磁波による電界の大きさが大きいということになる。   That is, since the change in the birefringence of the ZnTe single crystal 106 increases as the electric field generated by the terahertz electromagnetic wave increases, the ratio of elliptically polarized light increases. Therefore, the greater the intensity of the leaked probe light, the greater the electric field due to the terahertz electromagnetic wave.

このように、電界によりZnTe単結晶106の複屈折率が変化することを利用し、テラヘルツ電磁波による電界の大きさをプローブ光の強度に変換して測定することにより、テラヘルツ電磁波を検出することができる。また、可視光とCCDカメラを組み合わせてイメージングする技術も提案されている(非特許文献1)。   Thus, by utilizing the change in the birefringence of the ZnTe single crystal 106 due to the electric field, the terahertz electromagnetic wave can be detected by converting the magnitude of the electric field due to the terahertz electromagnetic wave into the intensity of the probe light and measuring it. it can. Further, a technique for imaging by combining visible light and a CCD camera has been proposed (Non-patent Document 1).

ところで、一般に、電界により結晶の複屈折率が変化する割合(電気光学係数,EO係数)は、ZnTe単結晶などの閃亜鉛構造結晶では面方位が(100)以外の面方位で有限の値を持っており、面方位が(100)のときに0になる(複屈折率は変化しない)ことが知られている。また、面方位が(110)、(111)、またはそれらの近傍である結晶が大きな電気光学係数を有する。そのため、従来は、テラヘルツ電磁波検出器のEO素子用基板として、面方位が(110)または(111)のZnTe単結晶が用いられている。   By the way, in general, the ratio (electro-optic coefficient, EO coefficient) at which the birefringence of a crystal changes due to an electric field has a finite value in a plane orientation other than (100) in a zinc flash structure crystal such as a ZnTe single crystal. It is known that when the plane orientation is (100), it becomes 0 (birefringence does not change). A crystal whose plane orientation is (110), (111), or the vicinity thereof has a large electro-optic coefficient. Therefore, conventionally, a ZnTe single crystal having a plane orientation of (110) or (111) has been used as an EO element substrate of a terahertz electromagnetic wave detector.

このような、電気光学効果を有する結晶基板を用いたテラヘルツ電磁波検出器では、結晶基板へ入射したテラヘルツ電磁波が反対側の面(バックサイド)で反射して、テラヘルツ電磁波の検出効率が低下してしまうという問題がある。そこで、テラヘルツ電磁波の入射側の単結晶基板(第1結晶基板)と、該第1結晶基板と同じ成分組成を有し、電気光学効果の小さい面方位(閃亜鉛鉱構造を持つ化合物半導体の場合は(100)面)をもつ単結晶基板(第2結晶基板)とを接合することで、電気光学結晶素子(検出素子)を構成している(例えば特許文献1)。すなわち、2つの結晶基板の屈折率は等しいので、第1結晶基板ではバックサイドからのテラヘルツ電磁波の反射による影響がなくなり、かつ第2結晶基板ではテラヘルツ電磁波による電気光学効果が生じないため、効率よくテラヘルツ電磁波を検出することが可能となる。
特開2003−270598号公報 Applied Physics Letter 69(8)p.1996
In such a terahertz electromagnetic wave detector using a crystal substrate having an electro-optic effect, the terahertz electromagnetic wave incident on the crystal substrate is reflected on the opposite side (back side), and the detection efficiency of the terahertz electromagnetic wave is reduced. There is a problem of end. Therefore, in the case of a compound semiconductor having a single crystal substrate (first crystal substrate) on the incident side of the terahertz electromagnetic wave and a plane orientation with the same component composition as the first crystal substrate and a small electro-optic effect (zincblende structure) (100) plane) is joined to a single crystal substrate (second crystal substrate) to constitute an electro-optic crystal element (detection element) (for example, Patent Document 1). That is, since the refractive indexes of the two crystal substrates are equal, the first crystal substrate is not affected by the reflection of the terahertz electromagnetic wave from the back side, and the second crystal substrate is not efficiently affected by the electro-optic effect due to the terahertz electromagnetic wave. It becomes possible to detect terahertz electromagnetic waves.
JP 2003-270598 A Applied Physics Letter 69 (8) p.1996

しかしながら、上述した二層構造の電気光学結晶素子を用いても、第2結晶基板の屈折率と空気の屈折率には差があるため、テラヘルツ電磁波が第2結晶基板のバックサイドで反射するのを回避することはできない。そこで、第2結晶基板の厚みを数mmと比較的厚くすることでバックサイドにおけるテラヘルツ電磁波の反射の影響を軽減しているのが現状である。   However, even if the above-described electro-optic crystal element having the two-layer structure is used, the terahertz electromagnetic wave is reflected on the back side of the second crystal substrate because there is a difference between the refractive index of the second crystal substrate and the refractive index of air. Cannot be avoided. Therefore, the present situation is that the influence of the reflection of the terahertz electromagnetic wave on the back side is reduced by making the thickness of the second crystal substrate relatively thick as several mm.

このように、第2結晶基板の厚さを数mmにするというのは、第1結晶基板の厚さが0.01〜1mm程度で非常に薄いことを考慮すると、電気光学結晶素子が大きくなり検出部の小型化の妨げになる上、結晶基板自体が大きくコストが増大するという問題がある。   Thus, when the thickness of the second crystal substrate is set to several mm, the electro-optic crystal element becomes large considering that the thickness of the first crystal substrate is about 0.01 to 1 mm and is very thin. In addition to hindering downsizing of the detection unit, there is a problem that the crystal substrate itself is large and the cost is increased.

本発明は、テラヘルツ電磁波検出器に用いられ、第1結晶基板(入射側)と第2結晶基板(出射側)を接合してなる電気光学結晶素子であって、第2結晶基板の厚さを厚くすることなく該第2結晶基板のバックサイドにおけるテラヘルツ電磁波の反射の影響を低減できる電気光学結晶素子を提供することを目的とする。   The present invention is an electro-optic crystal element that is used in a terahertz electromagnetic wave detector and is formed by joining a first crystal substrate (incident side) and a second crystal substrate (exit side), and the thickness of the second crystal substrate is reduced. An object of the present invention is to provide an electro-optic crystal element capable of reducing the influence of reflection of terahertz electromagnetic waves on the back side of the second crystal substrate without increasing the thickness.

本発明は、前記課題を解決するためになされたものであり、電気光学効果を有するZnTe系化合物半導体単結晶からなる第1結晶基板(テラヘルツ電磁波入射側)と、前記第1結晶基板よりも低抵抗でかつ電気光学効果が小さく、前記第1結晶基板と同じ成分組成を有する第2結晶基板と、が接合されてなり、
前記第2結晶基板は、前記第1結晶基板を透過したテラヘルツ電磁波を当該第2結晶基板中の自由キャリアにより吸収して、当該第2結晶基板のバックサイド面に到達するテラヘルツ電磁波を減衰させるとともに、前記テラヘルツ電磁波により電気光学効果が生じないことを特徴とする電気光学結晶素子である。
The present invention has been made to solve the above-described problems, and includes a first crystal substrate (a terahertz electromagnetic wave incident side) made of a ZnTe-based compound semiconductor single crystal having an electro-optic effect, and lower than the first crystal substrate. resistance is and electro-optic effect is small, and a second crystal substrate having the same chemical composition as the first crystal substrate, Ri is Na are joined,
The second crystal substrate absorbs the terahertz electromagnetic wave transmitted through the first crystal substrate by free carriers in the second crystal substrate, and attenuates the terahertz electromagnetic wave reaching the back side surface of the second crystal substrate. The electro-optic crystal element is characterized in that no electro-optic effect is generated by the terahertz electromagnetic wave .

具体的には、前記第2結晶基板のキャリア濃度を1×1017〜5×1018cm-3とするようにした。また、前記第1の結晶を面方位が(100)以外のZnTe単結晶で構成し、前記第2の結晶を面方位が(100)又はその近傍のZnTe単結晶で構成するようにした。これにより、第2結晶基板において、可視光の透過率を低下させることなく、効率よくテラヘルツ電磁波を吸収させることができる。 Specifically, the carrier concentration of the second crystal substrate was set to 1 × 10 17 to 5 × 10 18 cm −3 . Further, the first crystal is composed of a ZnTe single crystal whose plane orientation is other than (100), and the second crystal is composed of a ZnTe single crystal whose plane orientation is (100) or its vicinity. Thereby, in the 2nd crystal substrate, a terahertz electromagnetic wave can be absorbed efficiently, without reducing the transmittance | permeability of visible light.

すなわち、本発明者等は、電気光学効果を有する第1結晶基板に貼り付ける第2結晶基板について検討を重ねた結果、第1結晶基板と同じ成分組成でキャリア濃度が所定濃度以上の単結晶基板がテラヘルツ帯の吸光率が大きくて可視光帯の吸光率が小さいことを見出し、この性質を利用して第1結晶基板と第2結晶基板とを接合して電気光学結晶素子を構成することで、第2結晶基板のバックサイドからの反射の影響がなく、第2結晶基板の厚みを第1結晶基板並に薄くできることを発案した。   That is, the inventors have studied the second crystal substrate to be attached to the first crystal substrate having the electro-optic effect, and as a result, the single crystal substrate has the same component composition as the first crystal substrate and the carrier concentration is a predetermined concentration or more. Has found that the absorption coefficient in the terahertz band is large and the absorption coefficient in the visible light band is small, and by using this property, the first crystal substrate and the second crystal substrate are joined to form an electro-optic crystal element. The inventors have proposed that the second crystal substrate can be made as thin as the first crystal substrate without being affected by reflection from the back side of the second crystal substrate.

表1は、厚さ1mmのZnTe単結晶に所定波長(周波数)のテラヘルツ電磁波、遠赤外光、及び可視光を入射したときの透過率の測定結果である。表1に示すとおり、第2結晶基板のキャリア濃度が高くなると、自由キャリアによるテラヘルツ電磁波の吸収が大きくなって、そのバックサイド面に到達するテラヘルツ電磁波を充分に減衰させることができるので、反射による影響を少なくすることができる。   Table 1 shows the measurement results of transmittance when a terahertz electromagnetic wave having a predetermined wavelength (frequency), far-infrared light, and visible light are incident on a ZnTe single crystal having a thickness of 1 mm. As shown in Table 1, when the carrier concentration of the second crystal substrate is increased, the absorption of terahertz electromagnetic waves by free carriers increases, and the terahertz electromagnetic waves reaching the backside surface can be sufficiently attenuated. The influence can be reduced.

一方、自由キャリアが増加しても検出に必要な可視光の透過率は半分程度になるに過ぎず、テラヘルツ波の透過率の低下に比べれば小さいことが分かる。したがって、EO結晶により楕円偏光されて偏光子を通過してきた可視光の検出強度は十分に大きいので、可視光の検出強度に基づいて効率よくテラヘルツ電磁波を検出することができる。   On the other hand, even if the free carriers increase, the visible light transmittance required for detection is only about half, which is smaller than the decrease in the transmittance of the terahertz wave. Therefore, since the detection intensity of the visible light that has been elliptically polarized by the EO crystal and passed through the polarizer is sufficiently high, it is possible to detect the terahertz electromagnetic wave efficiently based on the detection intensity of the visible light.

Figure 0004756853
Figure 0004756853

本発明によれば、第1結晶基板を透過して第2結晶基板に入射したテラヘルツ電磁波は第2結晶基板中の自由キャリアによって吸収されるので、第2結晶基板を薄くしても第2結晶基板のバックサイドでのテラヘルツ電磁波の反射による影響は少なく、一方、可視光は吸収されずに透過されるので、効率よくテラヘルツ電磁波の検出をすることができる。   According to the present invention, since the terahertz electromagnetic wave transmitted through the first crystal substrate and incident on the second crystal substrate is absorbed by the free carriers in the second crystal substrate, the second crystal is reduced even if the second crystal substrate is thinned. The influence of the reflection of the terahertz electromagnetic wave on the back side of the substrate is small. On the other hand, visible light is transmitted without being absorbed, so that the terahertz electromagnetic wave can be detected efficiently.

また、第2結晶基板を薄くできるので、第1結晶基板と第2結晶基板からなる電気光学結晶素子(検出部)の小型化を図ることができる上、電気光学結晶のコストを低減することができる。   Further, since the second crystal substrate can be made thin, it is possible to reduce the size of the electro-optic crystal element (detection unit) composed of the first crystal substrate and the second crystal substrate, and to reduce the cost of the electro-optic crystal. it can.

以下、本発明の好適な実施の形態について、図面を参照して詳細に説明する。
図1は、本発明に係るZnTe単結晶を利用した電気光学結晶素子の構成を表す説明図である。
まず、高抵抗(1×10Ω・cm)で、面方位が(110)のZnTe単結晶(第1のZnTe単結晶)と、低抵抗で、面方位が(100)のZnTe単結晶(第2のZnTe単結晶)をVGF法により作製した。このとき第2のZnTe単結晶のキャリア濃度は1×1017cm-3とした。これにより、第1のZnTe単結晶は電気光学効果が大きく、第2のZnTe単結晶は電気光学効果が極めて小さいものとなる。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram showing the configuration of an electro-optic crystal element using a ZnTe single crystal according to the present invention.
First, a ZnTe single crystal (first ZnTe single crystal) having a high resistance (1 × 10 6 Ω · cm) and a plane orientation of (110) and a ZnTe single crystal having a low resistance and a plane orientation of (100) ( A second ZnTe single crystal) was produced by the VGF method. At this time, the carrier concentration of the second ZnTe single crystal was 1 × 10 17 cm −3 . Thus, the first ZnTe single crystal has a large electro-optic effect, and the second ZnTe single crystal has a very small electro-optic effect.

これらの結晶を1mmの厚さに切削加工した後、厚さがそれぞれ 0.6mm、0.6mmとなるように鏡面研磨してZnTe単結晶基板10,20を作製した。ここで、第2のZnTe単結晶基板におけるテラヘルツ電磁波(波長20μm,周波数15THz)及び可視光(波長0.7μm,周波数430THz)の透過率は表2に示すとおりとなった。   These crystals were cut to a thickness of 1 mm, and then mirror-polished so that the thicknesses were 0.6 mm and 0.6 mm, respectively, to produce ZnTe single crystal substrates 10 and 20. Here, the transmittance of the terahertz electromagnetic wave (wavelength 20 μm, frequency 15 THz) and visible light (wavelength 0.7 μm, frequency 430 THz) in the second ZnTe single crystal substrate was as shown in Table 2.

Figure 0004756853
Figure 0004756853

次に、ZnTe単結晶基板10,20の貼り合わせ面を、表面の凹凸が1μm以下となるように研磨した。このとき、研磨面(貼り合わせ面)は加工変質層が形成されていない状態とした。   Next, the bonded surfaces of the ZnTe single crystal substrates 10 and 20 were polished so that the surface irregularities were 1 μm or less. At this time, the polished surface (bonding surface) was in a state in which a work-affected layer was not formed.

次に、前記ZnTe単結晶基板10,20の研磨面同士を貼り合わせ、これをZnTe単結晶基板10,20とほぼ同じ大きさのグラファイト部品で挟持して固定し、さらに、これらを一体成型された石英容器内に配置した。このとき、ZnTe単結晶基板10,20には500g重/cm〜1000g重/cmの圧力がかかるようにした。そして、ZnTe単結晶基板の配置された石英容器を高温炉内に配置し、不活性ガス雰囲気中で、450℃,2時間の熱処理を行った。 Next, the polished surfaces of the ZnTe single crystal substrates 10 and 20 are bonded to each other, and are sandwiched and fixed by graphite parts having substantially the same size as the ZnTe single crystal substrates 10 and 20, and these are integrally molded. Placed in a quartz container. At this time, the ZnTe single crystal substrate 10, 20 was set to take the pressure of 500g heavy / cm 2 to 1000 g heavy / cm 2. And the quartz container in which the ZnTe single crystal substrate was arrange | positioned was arrange | positioned in a high temperature furnace, and heat processing was performed at 450 degreeC for 2 hours in inert gas atmosphere.

その後、1〜10℃/分の降温速度で冷却し、取り出したZnTe電気光学結晶の表面Sを研磨した。このとき、面方位が(110)のZnTe単結晶の厚さが0.5mmとなるように研磨加工した。   Then, it cooled at the temperature decreasing rate of 1-10 degreeC / min, and grind | polished the surface S of the taken out ZnTe electro-optic crystal. At this time, polishing was performed so that the thickness of the ZnTe single crystal having a plane orientation of (110) was 0.5 mm.

上述した方法で作成されたZnTe電気光学結晶は、第2のZnTe単結晶基板20のキャリア濃度が高いので、自由キャリアによるテラヘルツ電磁波の吸収が大きくなる。これにより、そのバックサイド面に到達するテラヘルツ電磁波を充分に減衰させることができるので、バックサイド面でのテラヘルツ電磁波の反射による影響を少なくすることができる。一方、第2のZnTe単結晶基板20において可視光の透過率はほとんど変わらないので、可視光の検出強度が低下することはない。   Since the ZnTe electro-optic crystal produced by the above-described method has a high carrier concentration in the second ZnTe single crystal substrate 20, absorption of terahertz electromagnetic waves by free carriers is increased. Thereby, the terahertz electromagnetic wave that reaches the back side surface can be sufficiently attenuated, so that the influence of the reflection of the terahertz electromagnetic wave on the back side surface can be reduced. On the other hand, since the visible light transmittance hardly changes in the second ZnTe single crystal substrate 20, the detection intensity of visible light does not decrease.

したがって、上述したZnTe単結晶を電気光学素子用基板として用いたテラヘルツ電磁波検出器は、可視光の検出強度に基づいて効率よくテラヘルツ電磁波を検出することができる。また、第2のZnTe単結晶基板を薄くできるので、第1のZnTe単結晶基板10と第2のZnTe単結晶基板20からなる電気光学結晶素子(検出部)の小型化を図ることができる上、電気光学結晶のコストを低減することができる。   Therefore, the terahertz electromagnetic wave detector using the above-described ZnTe single crystal as the electro-optic element substrate can efficiently detect the terahertz electromagnetic wave based on the detection intensity of visible light. In addition, since the second ZnTe single crystal substrate can be thinned, the electro-optic crystal element (detection unit) composed of the first ZnTe single crystal substrate 10 and the second ZnTe single crystal substrate 20 can be reduced in size. The cost of the electro-optic crystal can be reduced.

以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではない。
例えば、第2のZnTe単結晶基板20のキャリア濃度は前記実施形態の数値に限定されず、キャリア濃度は1×1017〜5×1018cm-3の範囲内で有れば同様の効果を得ることができる。
As mentioned above, although the invention made | formed by this inventor was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment.
For example, the carrier concentration of the second ZnTe single crystal substrate 20 is not limited to the numerical value of the above embodiment, and the same effect can be obtained if the carrier concentration is in the range of 1 × 10 17 to 5 × 10 18 cm −3. Obtainable.

また、前記実施形態では、(110)面のZnTe単結晶と、(100)面のZnTe単結晶と貼り合わせる場合について説明したが、(110)面の代わりに(111)面のZnTe単結晶を用いても同様の効果を得ることができる。   In the above embodiment, the case where the (110) plane ZnTe single crystal and the (100) plane ZnTe single crystal are bonded to each other has been described. However, the (111) plane ZnTe single crystal is used instead of the (110) plane. Even if it is used, the same effect can be obtained.

また、前記実施形態では、単結晶基板の張り合わせ方法を加熱圧着として説明したが、圧着方法に透明の接着剤を用いた場合でも同様の効果を得ることができる。   In the above embodiment, the method for laminating single crystal substrates has been described as thermocompression bonding. However, the same effect can be obtained even when a transparent adhesive is used for the pressure bonding method.

また、前記実施形態では、検出光に可視光を用いる場合について説明したが、可視光に近い波長を持つ近赤外光を検出光として使う場合でも同様の構成で同じ効果が期待できる。   Moreover, although the case where visible light was used for detection light was demonstrated in the said embodiment, the same effect can be anticipated with the same structure even when near infrared light having a wavelength close to visible light is used as detection light.

本発明に係るZnTe電気光学結晶の構成を表す説明図である。It is explanatory drawing showing the structure of the ZnTe electro-optic crystal which concerns on this invention. ZnTe電気光学結晶を用いたテラヘルツ電磁波検出器の概略構成図である。It is a schematic block diagram of the terahertz electromagnetic wave detector using a ZnTe electro-optic crystal.

符号の説明Explanation of symbols

10 (110)面のZnTe単結晶(第1のZnTe単結晶)
20 (100)面のZnTe単結晶(第2のZnTe単結晶)
10 (110) plane ZnTe single crystal (first ZnTe single crystal)
20 (100) plane ZnTe single crystal (second ZnTe single crystal)

Claims (3)

電気光学効果を有するZnTe系化合物半導体単結晶からなる第1結晶基板と、前記第1結晶基板よりも低抵抗でかつ電気光学効果が小さく、前記第1結晶基板と同じ成分組成を有する第2結晶基板と、が接合されてなり、
前記第2結晶基板は、前記第1結晶基板を透過したテラヘルツ電磁波を当該第2結晶基板中の自由キャリアにより吸収して、当該第2結晶基板のバックサイド面に到達するテラヘルツ電磁波を減衰させるとともに、前記テラヘルツ電磁波により電気光学効果が生じないことを特徴とする電気光学結晶素子。
A first crystal substrate made of a ZnTe-based compound semiconductor single crystal having an electro-optic effect, and a second crystal having a resistance lower than that of the first crystal substrate and a smaller electro-optic effect, and having the same component composition as the first crystal substrate and the substrate, Ri is Na are joined,
The second crystal substrate absorbs the terahertz electromagnetic wave transmitted through the first crystal substrate by free carriers in the second crystal substrate, and attenuates the terahertz electromagnetic wave reaching the back side surface of the second crystal substrate. An electro-optic crystal element characterized in that no electro-optic effect is produced by the terahertz electromagnetic wave .
前記第2結晶基板は、キャリア濃度が1×1017〜5×1018cm-3であることを特徴とする請求項1に記載の電気光学結晶素子。 2. The electro-optic crystal element according to claim 1, wherein the second crystal substrate has a carrier concentration of 1 × 10 17 to 5 × 10 18 cm −3 . 前記第1の結晶は面方位が(100)以外のZnTe単結晶で、前記第2の結晶は面方位が(100)又はその近傍のZnTe単結晶であることを特徴とする請求項1または2に記載の電気光学結晶素子。   The first crystal is a ZnTe single crystal having a plane orientation other than (100), and the second crystal is a ZnTe single crystal having a plane orientation of (100) or its vicinity. The electro-optic crystal element described in 1.
JP2004345255A 2004-11-30 2004-11-30 Electro-optic crystal element Expired - Fee Related JP4756853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345255A JP4756853B2 (en) 2004-11-30 2004-11-30 Electro-optic crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345255A JP4756853B2 (en) 2004-11-30 2004-11-30 Electro-optic crystal element

Publications (2)

Publication Number Publication Date
JP2006154336A JP2006154336A (en) 2006-06-15
JP4756853B2 true JP4756853B2 (en) 2011-08-24

Family

ID=36632730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345255A Expired - Fee Related JP4756853B2 (en) 2004-11-30 2004-11-30 Electro-optic crystal element

Country Status (1)

Country Link
JP (1) JP4756853B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5090449B2 (en) * 2007-06-25 2012-12-05 Jx日鉱日石金属株式会社 Terahertz band device element and method for manufacturing terahertz band device element
CN112558334A (en) * 2020-12-01 2021-03-26 中国科学院上海光学精密机械研究所 Ultrafast optical switch and optical modulation structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479205B2 (en) * 1997-07-16 2003-12-15 日本電気株式会社 Laser light wavelength conversion method and wavelength conversion element
JP2003270598A (en) * 2002-03-15 2003-09-25 Nikko Materials Co Ltd ELECTRO-OPTIC CRYSTAL AND METHOD FOR MAKING ZnTe ELECTRO- OPTIC CRYSTAL

Also Published As

Publication number Publication date
JP2006154336A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US8415625B2 (en) Total reflection terahertz wave measurement device
US8384989B2 (en) Electromagnetic wave oscillating devices
TWI665840B (en) Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
JP2008224449A (en) Device for measuring totally reflected terahertz wave
EP2434301B1 (en) Electric current measuring apparatus
JP2004219967A (en) Terahertz wave generator and measuring apparatus thereof
US20190099993A1 (en) Apparatus and method for cutting multilayer material
US8445875B2 (en) Optical crystal and terahertz wave generation device and method
WO2013175528A1 (en) Photoconductive substrate and photoconductive element
WO2020137136A1 (en) Laser device
JP4756853B2 (en) Electro-optic crystal element
JP2007256616A (en) Polarization-independent optical isolator for high output laser
JP6291917B2 (en) Polarization combiner and optical modulator
JP2003270598A (en) ELECTRO-OPTIC CRYSTAL AND METHOD FOR MAKING ZnTe ELECTRO- OPTIC CRYSTAL
Schunemann et al. CdSiP2: a new nonlinear optical crystal for 1-and 1.5-micron-pumped mid-IR generation
CN112803224A (en) Mid-infrared band difference frequency laser based on gallium-lanthanum niobate crystal
JP2017122582A (en) Spectroscopic instrument and spectroscopy
JP4454523B2 (en) Electromagnetic wave generating element
JP2010133704A (en) Terahertz electromagnetic wave detection device
CN103427329B (en) Based on the optical parameter oscillating laser of wide bandgap semiconductor carborundum crystals
JP2000305119A (en) Optical device for wavelength conversion
JP5090449B2 (en) Terahertz band device element and method for manufacturing terahertz band device element
JPH1098222A (en) Wavelength converting solid-state laser
US20230130965A1 (en) Optical element
JPH09297213A (en) Polarizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4756853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees