JP5926906B2 - Manufacturing method of ZnTe thin film for terahertz band device - Google Patents

Manufacturing method of ZnTe thin film for terahertz band device Download PDF

Info

Publication number
JP5926906B2
JP5926906B2 JP2011188098A JP2011188098A JP5926906B2 JP 5926906 B2 JP5926906 B2 JP 5926906B2 JP 2011188098 A JP2011188098 A JP 2011188098A JP 2011188098 A JP2011188098 A JP 2011188098A JP 5926906 B2 JP5926906 B2 JP 5926906B2
Authority
JP
Japan
Prior art keywords
znte
thin film
substrate
thickness
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011188098A
Other languages
Japanese (ja)
Other versions
JP2013050561A (en
Inventor
朝日 聰明
聰明 朝日
小林 正和
正和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
JX Nippon Mining and Metals Corp
Original Assignee
Waseda University
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, JX Nippon Mining and Metals Corp filed Critical Waseda University
Priority to JP2011188098A priority Critical patent/JP5926906B2/en
Publication of JP2013050561A publication Critical patent/JP2013050561A/en
Application granted granted Critical
Publication of JP5926906B2 publication Critical patent/JP5926906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、テラヘルツ波発生器やテラヘルツ波検出器等に用いられるテラヘルツ帯デバイス用素子の製造方法に関し、特に、ZnTe気相成長膜を利用したテラヘルツ帯デバイス用薄膜の製造方法に関する。 The present invention relates to a method of manufacturing a terahertz device for element used in the terahertz wave generator and the terahertz wave detector and the like, more particularly to a method of manufacturing a terahertz device for thin film using ZnTe vapor deposition film.

一般に、サブミリ波から遠赤外域を含む周波数領域(0.1〜10THz)はテラヘルツ電磁波領域と総称され、光波と電波の境界に位置する。近年では、酸化物単結晶や化合物半導体単結晶からなる電気光学結晶(Electro-Optic Crystal)や半導体の光伝導スイッチ素子をフェムト秒レーザで励起することによりテラヘルツ波を発生する技術や、電気光学結晶の複屈折の特性を利用してテラヘルツ波を検出する技術が開発される等、テラヘルツ波に関する技術は著しく進歩している。   In general, a frequency region (0.1 to 10 THz) including a submillimeter wave to a far infrared region is collectively referred to as a terahertz electromagnetic wave region, and is located at a boundary between a light wave and a radio wave. In recent years, technologies that generate terahertz waves by exciting femtosecond lasers with electro-optic crystals (electro-optic crystals) composed of oxide single crystals or compound semiconductor single crystals, and semiconductor photoconductive switch elements, and electro-optic crystals The technology related to terahertz waves has been remarkably advanced, such as the development of technology for detecting terahertz waves using the characteristics of birefringence.

例えば、非特許文献1には、広帯域のテラヘルツ超短パルスのサンプリング技術である電気光学サンプリング(EOS)について記載されている。また、ZnTe単結晶をテラヘルツ検出器として用いる場合、入射するレーザ(光パルス)とテラヘルツ波(テラヘルツパルス)間での完全な位相整合は不可能であるため、薄い結晶の方が分散が小さくなって、検出される帯域幅が広くなることが記載されている。つまり、入射するレーザとテラヘルツ波の位相整合はZnTe単結晶基板の厚さに依存するので、基板厚さを薄くして整合性をよくすれば、テラヘルツ波の検出帯域を広くすることができる。   For example, Non-Patent Document 1 describes electro-optic sampling (EOS), which is a broadband terahertz ultrashort pulse sampling technique. In addition, when a ZnTe single crystal is used as a terahertz detector, perfect phase matching between the incident laser (light pulse) and the terahertz wave (terahertz pulse) is impossible, so the dispersion of the thin crystal is smaller. Thus, it is described that the detected bandwidth becomes wider. That is, the phase matching between the incident laser and the terahertz wave depends on the thickness of the ZnTe single crystal substrate. Therefore, if the substrate thickness is reduced to improve the matching, the terahertz wave detection band can be widened.

また、非特許文献2には、非線形光学効果を用いたテラヘルツ波発生に関する技術が記載されている。例えば、GaSeを用いた場合の差周波発生に関する技術として、GaSeは負の一軸性結晶のため、入射した励起光の垂直方向成分は常光、水平方向成分は異常光となり、常光と異常光は屈折率が異なるために同じパルス内の異なる周波数成分間の差周波が発生することが記載されている。
一方、ZnTeは等軸結晶のため、通常、常光と異常光に屈折率差はないが、結晶中に「ひずみ」があると常光と異常光に屈折率差が生じるので、上述したGaSeと同様にテラヘルツ波が差周波として発生することとなる。例えば、ヘムト秒レーザをZnTe単結晶基板に照射することによりテラヘルツ波を発生させることができる。
Non-Patent Document 2 describes a technique related to terahertz wave generation using a nonlinear optical effect. For example, as a technology related to difference frequency generation when using GaSe, GaSe is a negative uniaxial crystal, so the vertical component of incident excitation light is ordinary light, the horizontal component is abnormal light, and ordinary light and abnormal light are refracted. It is described that a difference frequency between different frequency components in the same pulse is generated due to different rates.
On the other hand, since ZnTe is an equiaxed crystal, there is usually no difference in refractive index between ordinary light and extraordinary light. However, if there is “strain” in the crystal, a difference in refractive index occurs between ordinary light and extraordinary light. Then, terahertz waves are generated as difference frequencies. For example, a terahertz wave can be generated by irradiating a ZnTe single crystal substrate with a hemtosecond laser.

このように、ZnTe単結晶はテラヘルツ波検出器及びテラヘルツ波発生器等に用いられるテラヘルツ帯デバイス用素子として利用されている。特に、広帯域のテラヘルツ波の発生及び検出には、厚さ50μm以下の極薄ZnTe基板が使用されている。
この厚さ50μm以下の極薄ZnTe基板は取り扱いが困難であることから、従来は、例えば接着剤等で石英ガラス基板上に貼り付けて機械的強度を補強した状態で使用されている。
このような極薄ZnTe基板は、例えば、石英ガラス基板上に鏡面研磨したZnTe基板の片面を接着剤等で貼り付けた後、所望の厚さとなるまでさらに他方の表面を鏡面研磨することによって製造されている。
Thus, the ZnTe single crystal is used as an element for a terahertz band device used for a terahertz wave detector, a terahertz wave generator, or the like. In particular, an ultrathin ZnTe substrate having a thickness of 50 μm or less is used for generation and detection of a broadband terahertz wave.
Since this ultra-thin ZnTe substrate having a thickness of 50 μm or less is difficult to handle, it is conventionally used in a state in which the mechanical strength is reinforced by being attached to a quartz glass substrate with, for example, an adhesive.
Such an ultra-thin ZnTe substrate is manufactured by, for example, attaching one surface of a mirror-polished ZnTe substrate on a quartz glass substrate with an adhesive or the like, and further mirror-polishing the other surface until a desired thickness is obtained. Has been.

テラヘルツセンシングテクノロジー 第8章(2006)、監修:大森豊昭、発行所:株式会社エヌ・ティー・エスTerahertz Sensing Technology Chapter 8 (2006), Supervision: Toyoaki Omori, Publisher: NTS Corporation テラヘルツテクノロジー 第II章1(2005)、監訳:大森豊昭、発行所:株式会社エヌ・ティー・エスTerahertz Technology Chapter II 1 (2005), supervisor: Toyoaki Omori, publisher: NTS Corporation

しかしながら、薄く研磨する際にZnTe基板の周辺部等が破損してしまうことが多々あった。また、技術的には最薄で5μmまで研磨することが可能であるが、薄いほどZnTe基板内での厚さのばらつきが大きくなり易く、研磨後のZnTe基板の厚さのばらつきの範囲が当該研磨後のZnTe基板の厚さに等しいくらい大きくなってしまう場合もあった。また、極薄ZnTe基板は薄いため、使用時に破損してしまう場合もあった。
さらに、接着剤や石英ガラス基板によって、発生したテラヘルツ波が吸収され、信号強度が低下する虞があった。
However, the periphery of the ZnTe substrate is often damaged when thinly polished. Further, although it is technically possible to polish the thinnest to 5 μm, the thinner the thickness becomes, the more easily the variation in the thickness of the ZnTe substrate. In some cases, the thickness becomes as large as the thickness of the polished ZnTe substrate. In addition, since the ultrathin ZnTe substrate is thin, it may be damaged during use.
Furthermore, the generated terahertz wave is absorbed by the adhesive or the quartz glass substrate, and the signal intensity may be reduced.

テラヘルツ波検出器及びテラヘルツ波発生器等に用いられるテラヘルツ帯デバイス用素子として最も望ましいのは、電気光学効果による屈折率の変化が小さい(100)面のZnTe基板上に(110)面のZnTeを成長させることによって得られた薄膜であるが、厚いZnTe基板を研磨して薄くしていく従来の方法では、このような薄膜(極薄基板)を得ることは現実的には実現不可能である。
また、一般に、サファイア基板等の異種基板にZnTeを成長させても、通常は単結晶が得られ難いことが知られている。
The most desirable element for a terahertz band device used in a terahertz wave detector, a terahertz wave generator, or the like is a (110) plane ZnTe layer on a (100) plane ZnTe substrate having a small refractive index change due to the electro-optic effect. Although it is a thin film obtained by growing, it is practically impossible to obtain such a thin film (ultra-thin substrate) by a conventional method in which a thick ZnTe substrate is polished and thinned. .
In general, it is known that even when ZnTe is grown on a heterogeneous substrate such as a sapphire substrate, it is usually difficult to obtain a single crystal.

本発明は、テラヘルツ波発生器やテラヘルツ波検出器等のテラヘルツ帯デバイスにおいて優れた特性を発揮できるテラヘルツ帯デバイス用ZnTe薄膜の製造方法を提供することを目的とする。 The present invention aims to provide a manufacturing method of the terahertz band device for ZnTe thin film excellent properties can be exhibited in the terahertz band device, such as a terahertz wave generator and the terahertz wave detector.

求項に記載の発明は、上記目的を達成するためになされたもので、厚さのばらつきの範囲が厚さの10%以内となるテラヘルツ帯デバイス用ZnTe薄膜の製造方法であって、基板上にZnTe下地層を10〜100オングストロームの厚さで形成する工程と、気相成長法によって前記ZnTe下地層上にZnTe層を5〜10μmの厚さで気相成長させる工程と、を有することを特徴とする。 The invention described in Motomeko 1 has been made in order to achieve the above object, a manufacturing method of the ZnTe thin film terahertz devices range variation in the thickness is within 10% of the thickness, Forming a ZnTe underlayer with a thickness of 10 to 100 Å on the substrate; and vapor-phase-growing the ZnTe layer with a thickness of 5 to 10 μm on the ZnTe underlayer by vapor deposition. It is characterized by that.

請求項に記載の発明は、請求項に記載のテラヘルツ帯デバイス用ZnTe薄膜の製造方法において、前記ZnTe下地層を、前記ZnTe層の成長温度よりも低い温度で形成することを特徴とする。
請求項に記載の発明は、請求項またはに記載のテラヘルツ帯デバイス用ZnTe薄膜の製造方法において、前記ZnTe層の成長温度は、350℃であり、前記ZnTe下地層を、100℃で形成することを特徴とする。
請求項に記載の発明は、請求項からの何れか一項に記載のテラヘルツ帯デバイス用ZnTe薄膜の製造方法において、前記基板がサファイア基板であることを特徴とする。
The invention according to claim 2 is the method for producing a ZnTe thin film for a terahertz band device according to claim 1 , wherein the ZnTe underlayer is formed at a temperature lower than a growth temperature of the ZnTe layer. .
The invention according to claim 3, in the manufacturing method of the ZnTe thin film terahertz band device according to claim 1 or 2, the growth temperature of the ZnTe layers is 350 ° C., the ZnTe underlayer, at 100 ° C. It is characterized by forming.
The invention of claim 4 is a method of manufacturing a ZnTe thin film terahertz band device according to any one of claims 1 to 3, wherein the substrate is a sapphire substrate.

請求項に記載の発明は、請求項からの何れか一項に記載のテラヘルツ帯デバイス用ZnTe薄膜の製造方法において、前記気相成長法が分子線エピタキシー法であることを特徴とする。 The invention according to claim 5 is the method for producing a ZnTe thin film for a terahertz band device according to any one of claims 1 to 4 , wherein the vapor phase growth method is a molecular beam epitaxy method. .

発明に係るテラヘルツ帯デバイス用ZnTe薄膜の製造方法によれば、基板を破損することなく、厚さが5〜10μmであり、厚さのばらつきの範囲が厚さの10%以内であるテラヘルツ帯デバイス用ZnTe薄膜を製造することができる。
また、本発明に係る製造方法によって得られたテラヘルツ帯デバイス用ZnTe薄膜によれば、気相成長法によって基板上に気相成長され、厚さが5〜10μmであり、厚さのばらつきの範囲が厚さの10%以内であるので、テラヘルツ波発生器やテラヘルツ波検出器等のテラヘルツ帯デバイスにおいて優れた特性を発揮することができる。
According to the method for manufacturing a ZnTe thin film for a terahertz band device according to the present invention, the thickness is 5 to 10 μm without damaging the substrate, and the thickness variation range is within 10% of the thickness. A ZnTe thin film for devices can be manufactured.
Further, according to the ZnTe thin film for a terahertz band device obtained by the manufacturing method according to the present invention, the thickness is 5 to 10 μm on the substrate by the vapor phase growth method, and the thickness variation range is Is within 10% of the thickness, it is possible to exhibit excellent characteristics in terahertz band devices such as terahertz wave generators and terahertz wave detectors.

以下、本発明の実施の形態を説明する。
本実施形態のテラヘルツ帯デバイス用ZnTe薄膜は、気相成長法によって基板上にZnTeを気相成長させることによって製造された薄膜であり、厚さが5〜10μmであり、厚さのばらつきの範囲が厚さの10%以内である。
Embodiments of the present invention will be described below.
The ZnTe thin film for a terahertz band device according to this embodiment is a thin film manufactured by vapor phase growth of ZnTe on a substrate by a vapor phase growth method, has a thickness of 5 to 10 μm, and a range of variation in thickness. Is within 10% of the thickness.

具体的には、本実施形態のテラヘルツ帯デバイス用ZnTe薄膜は、基板上に形成されたZnTe下地層と、当該ZnTe下地層上に形成されたZnTe層と、からなる。このテラヘルツ帯デバイス用ZnTe薄膜は、ZnTe層の成長温度(例えば、350℃)よりも低い温度(例えば、100℃)で基板上にZnTe下地層を10〜200オングストロームの厚さで形成する工程と、所定の成長温度(例えば、350℃)で当該ZnTe下地層上にZnTe層を5〜10μmの厚さで気相成長させる工程と、を有する製造方法によって製造することができる。   Specifically, the ZnTe thin film for a terahertz band device according to this embodiment includes a ZnTe underlayer formed on a substrate and a ZnTe layer formed on the ZnTe underlayer. The ZnTe thin film for a terahertz band device includes a step of forming a ZnTe underlayer with a thickness of 10 to 200 Å on a substrate at a temperature (for example, 100 ° C.) lower than a growth temperature (for example, 350 ° C.) of the ZnTe layer. And a vapor phase growth of a ZnTe layer with a thickness of 5 to 10 μm on the ZnTe underlayer at a predetermined growth temperature (for example, 350 ° C.).

なお、本実施形態では、基板としてサファイア基板を用いるが、基板はサファイア基板に限ることはなく、適宜任意に変更可能である。具体的には、サファイア基板以外の基板としては、例えば、サファイア基板よりも電気光学係数の小さな透明基板が望ましい。
また、本実施形態では、気相成長法として分子線エピタキシー法(MBE法)を用いるが、気相成長法はMBE法に限ることはなく、適宜任意に変更可能である。
In this embodiment, a sapphire substrate is used as a substrate, but the substrate is not limited to a sapphire substrate, and can be arbitrarily changed as appropriate. Specifically, as the substrate other than the sapphire substrate, for example, a transparent substrate having a smaller electro-optic coefficient than the sapphire substrate is desirable.
In this embodiment, a molecular beam epitaxy method (MBE method) is used as the vapor phase growth method, but the vapor phase growth method is not limited to the MBE method, and can be arbitrarily changed as appropriate.

本実施形態に係るテラヘルツ帯デバイス用ZnTe薄膜によれば、気相成長法によって基板上に気相成長され、厚さが5〜10μmであり、厚さのばらつきの範囲が厚さの10%以内であるので、テラヘルツ波発生器やテラヘルツ波検出器等のテラヘルツ帯デバイスにおいて優れた特性を発揮することができる。   According to the ZnTe thin film for a terahertz band device according to this embodiment, the vapor phase growth method is performed on the substrate, the thickness is 5 to 10 μm, and the thickness variation range is within 10% of the thickness. Therefore, excellent characteristics can be exhibited in terahertz band devices such as a terahertz wave generator and a terahertz wave detector.

また、本実施形態に係るテラヘルツ帯デバイス用ZnTe薄膜の製造方法によれば、基板上にZnTe下地層を10〜200オングストロームの厚さで形成する工程と、当該ZnTe下地層上にZnTe層を5〜10μmの厚さで気相成長させる工程と、を有している。したがって、基板を破損することなく、厚さが5〜10μmであり、厚さのばらつきの範囲が厚さの10%以内であるテラヘルツ帯デバイス用ZnTe薄膜を製造することができる。   In addition, according to the method for manufacturing a ZnTe thin film for a terahertz band device according to this embodiment, a step of forming a ZnTe underlayer with a thickness of 10 to 200 angstroms on the substrate, and a ZnTe layer on the ZnTe underlayer 5 And vapor phase growth with a thickness of 10 μm. Therefore, a ZnTe thin film for a terahertz band device having a thickness of 5 to 10 μm and a thickness variation within 10% of the thickness can be produced without damaging the substrate.

また、本実施形態に係るテラヘルツ帯デバイス用ZnTe薄膜及びその製造方法によれば、基板がサファイア基板である。すなわち、テラヘルツ帯デバイス用ZnTe薄膜は、サファイア基板上に積層されているので、破損してしまう虞がほとんどない。また、サファイア基板は、テラヘルツ波を吸収するものの、接着剤や石英ガラス基板ほどは吸収しない。したがって、接着剤や石英ガラス基板よりもサファイア基板の方がテラヘルツ波の吸収が少ないので、ZnTe基板を接着剤等によって石英ガラス基板上に貼り付けて補強する場合と比較して、良好な信号強度を得ることができる。   Moreover, according to the ZnTe thin film for terahertz band devices and the manufacturing method thereof according to the present embodiment, the substrate is a sapphire substrate. That is, since the ZnTe thin film for terahertz band devices is laminated on the sapphire substrate, there is almost no possibility of being damaged. A sapphire substrate absorbs terahertz waves but does not absorb as much as an adhesive or a quartz glass substrate. Therefore, the sapphire substrate absorbs less terahertz waves than the adhesive or the quartz glass substrate, so that the signal strength is better than when the ZnTe substrate is reinforced by attaching it to the quartz glass substrate with an adhesive or the like. Can be obtained.

また、本実施形態に係るテラヘルツ帯デバイス用ZnTe薄膜及びその製造方法によれば、気相成長法が分子線エピタキシー法である。したがって、厚さのばらつきの範囲が厚さの10%以内であるテラヘルツ帯デバイス用ZnTe薄膜を確実に得ることができる。   Moreover, according to the ZnTe thin film for terahertz band devices and the manufacturing method thereof according to the present embodiment, the vapor phase growth method is a molecular beam epitaxy method. Therefore, a ZnTe thin film for a terahertz band device having a thickness variation range within 10% of the thickness can be obtained with certainty.

[実施例]
以下、具体的な実施例によって本発明を説明するが、発明はこれらに限定されるものではない。
[Example]
Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited thereto.

まず、直径2インチのサファイアC面基板を有機溶剤で脱脂した後、MBE装置のチャンバーに入れた。
次いで、ZnTe層の成長温度(本実施例の場合、350℃)よりも低い温度(本実施例の場合、100℃程度)で、Zn及びTeの原料セル温度を調整しながら分子ビームをサファイアC面基板に照射して、サファイアC面基板上に数十オングストロームの厚さのZnTe下地層を堆積させた。この際、膜厚(ZnTe下地層の厚さ)の制御を的確に行うことができるよう、成長速度を毎秒1オングストローム未満とした。
First, a 2 inch diameter sapphire C-plane substrate was degreased with an organic solvent and then placed in a chamber of an MBE apparatus.
Next, the molecular beam is changed to sapphire C while adjusting the source cell temperature of Zn and Te at a temperature (about 100 ° C. in this example) lower than the growth temperature of the ZnTe layer (350 ° C. in this example). The surface substrate was irradiated to deposit a ZnTe underlayer having a thickness of several tens of angstroms on the sapphire C-surface substrate. At this time, the growth rate was set to less than 1 angstrom per second so that the film thickness (the thickness of the ZnTe underlayer) can be accurately controlled.

次いで、350℃にサファイアC面基板を昇温した後、Zn及びTeの原料セル温度を調整しながら分子ビームをサファイアC面基板に照射して、ZnTe下地層上にZnTe層を成長させた。
なお、ZnTe層の厚さは、“成長速度×成長時間”で規定することができる。具体的には、例えば、成長速度を毎時0.5μmとし、成長時間を10時間とすれば、5μmのZnTe層を再現性よく得ることができる。
また、MBE法では、ビームの照射面積が、基板(本実施例の場合、サファイアC面基板)の面積よりも十分に大きければ、製造したZnTe薄膜の厚さのばらつきの範囲を、当該製造したZnTe薄膜の厚さの10%以内にすることができる。
Next, after heating the sapphire C-plane substrate to 350 ° C., a ZnTe layer was grown on the ZnTe underlayer by irradiating the sapphire C-plane substrate with adjusting the source cell temperature of Zn and Te.
The thickness of the ZnTe layer can be defined by “growth rate × growth time”. Specifically, for example, if the growth rate is 0.5 μm / hour and the growth time is 10 hours, a 5 μm ZnTe layer can be obtained with good reproducibility.
Further, in the MBE method, if the irradiation area of the beam is sufficiently larger than the area of the substrate (in the present embodiment, the sapphire C-plane substrate), the range of variation in the thickness of the manufactured ZnTe thin film is manufactured. It can be within 10% of the thickness of the ZnTe thin film.

このようにして製造することによって、サファイアC面基板上に、(111)のZnTe単結晶薄膜を5μmの厚さで成長させることができた。
また、ZnTe層の成長温度(350℃)におけるサファイアC面基板とZnTe(111)との格子不整合度は25%程度であるが、初期の成長温度をZnTe層の成長温度(350℃)よりも低い温度(100℃程度)として数層のZnTeを堆積させ、その後、サファイアC面基板の温度をZnTe層の成長温度(350℃)まで上げて、当該数層のZnTe上にZnTe層を成長させることによって、単一ドメインの(111)ZnTe薄膜を得ることができた。
なお、実施例では、サファイア基板のC面上に単一ドメインの(111)ZnTe薄膜を形成することとしたが、面方位や基板面はこれに限定されるものではない。
By manufacturing in this way, a (111) ZnTe single crystal thin film could be grown to a thickness of 5 μm on a sapphire C-plane substrate.
The lattice mismatch between the sapphire C-plane substrate and ZnTe (111) at the growth temperature of the ZnTe layer (350 ° C.) is about 25%, but the initial growth temperature is higher than the growth temperature of the ZnTe layer (350 ° C.). Then, several layers of ZnTe are deposited at a lower temperature (about 100 ° C.), and then the temperature of the sapphire C-plane substrate is raised to the growth temperature of the ZnTe layer (350 ° C.) to grow a ZnTe layer on the several layers of ZnTe. By doing so, a single-domain (111) ZnTe thin film could be obtained.
In the embodiment, the single-domain (111) ZnTe thin film is formed on the C surface of the sapphire substrate, but the plane orientation and the substrate surface are not limited to this.

さらに、X線回折やエリプソメトリー等の光学的手法、或いは段差計等の探針を用いた手法によって、製造したZnTe薄膜の中心部及びその周辺4点の合計5点の厚さを測定した。そして、相加平均値を求め、5点の厚さと相加平均値との差の絶対値を5点の厚さのばらつきとして求めた。その結果、厚さのばらつきは最大でも0.5μmであり、製造したZnTe薄膜の厚さのばらつきの範囲が、当該製造したZnTe薄膜の厚さの10%以内に収まっていることを確認した。   Furthermore, the thickness of a total of five points including the central portion of the manufactured ZnTe thin film and its four peripheral points was measured by an optical method such as X-ray diffraction and ellipsometry, or a method using a probe such as a step meter. Then, an arithmetic average value was obtained, and an absolute value of a difference between the thickness at the five points and the arithmetic average value was obtained as a variation in the thickness at the five points. As a result, the thickness variation was 0.5 μm at the maximum, and it was confirmed that the thickness variation range of the manufactured ZnTe thin film was within 10% of the thickness of the manufactured ZnTe thin film.

以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。   As mentioned above, although the invention made by this inventor was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (5)

厚さのばらつきの範囲が厚さの10%以内となるテラヘルツ帯デバイス用ZnTe薄膜の製造方法であって、
基板上にZnTe下地層を10〜100オングストロームの厚さで形成する工程と、
気相成長法によって前記ZnTe下地層上にZnTe層を5〜10μmの厚さで気相成長させる工程と、
を有することを特徴とするテラヘルツ帯デバイス用ZnTe薄膜の製造方法。
A method of manufacturing a ZnTe thin film for a terahertz band device in which the thickness variation range is within 10% of the thickness,
Forming a ZnTe underlayer with a thickness of 10 to 100 Å on the substrate;
Vapor-phase-growing a ZnTe layer with a thickness of 5 to 10 μm on the ZnTe underlayer by vapor deposition;
A method for producing a ZnTe thin film for a terahertz band device, comprising:
前記ZnTe下地層を、前記ZnTe層の成長温度よりも低い温度で形成することを特徴とする請求項に記載のテラヘルツ帯デバイス用ZnTe薄膜の製造方法。 The method for producing a ZnTe thin film for a terahertz device according to claim 1 , wherein the ZnTe underlayer is formed at a temperature lower than a growth temperature of the ZnTe layer. 前記ZnTe層の成長温度は、350℃であり、
前記ZnTe下地層を、100℃で形成することを特徴とする請求項またはに記載のテラヘルツ帯デバイス用ZnTe薄膜の製造方法。
The growth temperature of the ZnTe layer is 350 ° C.
The method for producing a ZnTe thin film for a terahertz band device according to claim 1 or 2 , wherein the ZnTe underlayer is formed at 100 ° C.
前記基板がサファイア基板であることを特徴とする請求項からの何れか一項に記載のテラヘルツ帯デバイス用ZnTe薄膜の製造方法。 The method for producing a ZnTe thin film for a terahertz band device according to any one of claims 1 to 3 , wherein the substrate is a sapphire substrate. 前記気相成長法が分子線エピタキシー法であることを特徴とする請求項からの何れか一項に記載のテラヘルツ帯デバイス用ZnTe薄膜の製造方法。 The method for producing a ZnTe thin film for a terahertz band device according to any one of claims 1 to 4 , wherein the vapor phase growth method is a molecular beam epitaxy method.
JP2011188098A 2011-08-31 2011-08-31 Manufacturing method of ZnTe thin film for terahertz band device Active JP5926906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188098A JP5926906B2 (en) 2011-08-31 2011-08-31 Manufacturing method of ZnTe thin film for terahertz band device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188098A JP5926906B2 (en) 2011-08-31 2011-08-31 Manufacturing method of ZnTe thin film for terahertz band device

Publications (2)

Publication Number Publication Date
JP2013050561A JP2013050561A (en) 2013-03-14
JP5926906B2 true JP5926906B2 (en) 2016-05-25

Family

ID=48012637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188098A Active JP5926906B2 (en) 2011-08-31 2011-08-31 Manufacturing method of ZnTe thin film for terahertz band device

Country Status (1)

Country Link
JP (1) JP5926906B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752737B2 (en) * 1987-02-09 1995-06-05 富士通株式会社 Method for producing compound semiconductor crystal
JP2717786B2 (en) * 1987-07-07 1998-02-25 財団法人 半導体研究振興会 Semiconductor crystal epitaxial growth method and molecular layer epitaxy apparatus used in the method
JP2002305326A (en) * 2001-04-04 2002-10-18 Nikko Materials Co Ltd ZnTe-BASED COMPOUND SEMICONDUCTOR AND ITS MANUFACTURING METHOD AND SEMICONDUCTOR DEVICE
JP2003270598A (en) * 2002-03-15 2003-09-25 Nikko Materials Co Ltd ELECTRO-OPTIC CRYSTAL AND METHOD FOR MAKING ZnTe ELECTRO- OPTIC CRYSTAL
GB0307096D0 (en) * 2003-03-27 2003-04-30 Univ Cambridge Tech Terahertz radiation sources and methods

Also Published As

Publication number Publication date
JP2013050561A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
US20190227404A1 (en) Terahertz Radiation Emitters
JP6457803B2 (en) Photoconductive element, terahertz wave generating device, terahertz wave detecting device, terahertz wave generating method, and terahertz wave detecting method
JP2011119642A (en) Photoconductor element containing polycrystalline gallium arsenide thin film, and method of manufacturing the same
GB2482596A (en) A diamond optical element
US20140252379A1 (en) Photoconductive antennas, method for producing photoconductive antennas, and terahertz time domain spectroscopy system
JPWO2015181971A1 (en) Evaluation method of bulk silicon carbide single crystal and silicon carbide single crystal for reference used in the method
Redkin et al. GaSe crystals with antireflection coatings for terahertz generation
Baklanova et al. Pyroelectric properties and local piezoelectric response of lithium niobate thin films
JP5926906B2 (en) Manufacturing method of ZnTe thin film for terahertz band device
US11365492B2 (en) Substrate-transferred stacked optical coatings
JPWO2014046171A1 (en) Terahertz wave detecting element, manufacturing method thereof, joined body, and observation apparatus
US20180329273A1 (en) Frequency conversion of electromagnetic radiation
Bouizem et al. Optical and structural properties of hydrogenated silicon films prepared by rf-magnetron sputtering at low growth temperatures: Study as function of argon gas dilution
Lastras-Martínez et al. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth
Azrak et al. Aluminium-nitride thin-films on polymer substrates obtained by adhesive bonding
US9863927B2 (en) Method of inspecting sapphire structures and method of forming the same
Ghosh et al. Stress and grain boundary properties of GaN films prepared by pulsed laser deposition technique
Calandrini et al. Determination of the free carrier concentration in atomic-layer doped germanium thin films by infrared spectroscopy
JP2003270598A (en) ELECTRO-OPTIC CRYSTAL AND METHOD FOR MAKING ZnTe ELECTRO- OPTIC CRYSTAL
JP5090449B2 (en) Terahertz band device element and method for manufacturing terahertz band device element
Shuhong et al. Effect of oxygen pressure on second harmonic generation in zinc oxide thin films deposited by PLD
Flynn et al. Effects of phosphoric acid on the surface morphology and reflectance of AlN grown by MBE under Al-rich conditions
Memchout et al. Effects of ion bombardment on the structural and optical properties in hydrogenated silicon thin films
Lee et al. Polarized infrared reflectance study of free standing cubic GaN grown by molecular beam epitaxy
RU193143U1 (en) Non-linear optical element based on a GaSe single crystal with a double-sided antireflection coating to generate terahertz radiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5926906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250