JPWO2008136121A1 - Natural gas liquefaction equipment - Google Patents

Natural gas liquefaction equipment Download PDF

Info

Publication number
JPWO2008136121A1
JPWO2008136121A1 JP2009512852A JP2009512852A JPWO2008136121A1 JP WO2008136121 A1 JPWO2008136121 A1 JP WO2008136121A1 JP 2009512852 A JP2009512852 A JP 2009512852A JP 2009512852 A JP2009512852 A JP 2009512852A JP WO2008136121 A1 JPWO2008136121 A1 JP WO2008136121A1
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
natural gas
cycle system
cooling mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009512852A
Other languages
Japanese (ja)
Other versions
JP5048059B2 (en
Inventor
荒木 秀文
秀文 荒木
福島 康雄
康雄 福島
堀次 睦
睦 堀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Ltd
Publication of JPWO2008136121A1 publication Critical patent/JPWO2008136121A1/en
Application granted granted Critical
Publication of JP5048059B2 publication Critical patent/JP5048059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • F25J1/0297Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink using an externally chilled fluid, e.g. chilled water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

海水や河川水等が利用できない立地条件に対応するとともに、時刻や季節による大気温度の変化の影響を受けず、年間を通して液化天然ガスの生産量を一定に保つことができる液化天然ガス設備を提供する。例えば混合冷媒を圧縮する低圧段冷媒圧縮機23及び高圧段冷媒圧縮機24、圧縮した混合冷媒を冷却する中間冷却機構25及び後置冷却機構26、混合冷媒をさらに冷却する二次冷却機構19、冷却した混合冷媒を膨張させる膨張機構、膨張した混合冷媒との熱交換により天然ガスを冷却する主熱交換器を有する第一の冷凍サイクル系統50と、例えばプロパン冷媒を作動流体とし、二次冷却機構19に用いる冷熱源を生成する第二の冷凍サイクル系統51とを備えた天然ガス液化設備であって、例えばプロパン冷媒を作動流体とし、中間冷却機構25及び後置冷却機構26に用いる冷熱源の一部を生成する第三の冷凍サイクル系統52を備える。Providing liquefied natural gas equipment that can keep liquefied natural gas production constant throughout the year, in response to location conditions where seawater and river water cannot be used, and without being affected by changes in atmospheric temperature due to time or season To do. For example, a low-pressure stage refrigerant compressor 23 and a high-pressure stage refrigerant compressor 24 that compress the mixed refrigerant, an intermediate cooling mechanism 25 and a post-cooling mechanism 26 that cool the compressed mixed refrigerant, a secondary cooling mechanism 19 that further cools the mixed refrigerant, An expansion mechanism that expands the cooled mixed refrigerant, a first refrigeration cycle system 50 having a main heat exchanger that cools natural gas by heat exchange with the expanded mixed refrigerant, and secondary cooling using, for example, propane refrigerant as a working fluid A natural gas liquefaction facility provided with a second refrigeration cycle system 51 for generating a cold heat source used for the mechanism 19, for example, a cold heat source using a propane refrigerant as a working fluid and used for the intermediate cooling mechanism 25 and the rear cooling mechanism 26. A third refrigeration cycle system 52 that generates a part of

Description

本発明は、複数の冷凍サイクル系統を備えた天然ガス液化設備に関する。   The present invention relates to a natural gas liquefaction facility including a plurality of refrigeration cycle systems.

気体の天然ガスを輸送に適した液化天然ガスにするためには、天然ガスを加圧した状態で−150℃程度の低温まで冷却してから大気圧近傍まで膨張させることが必要である。この冷却は、複数の冷凍サイクルの組合せにより実現されている。例えば、多くの天然ガス液化設備で採用されているプロパン予冷式混合冷媒方式では、天然ガスを冷却する混合冷媒(第一冷媒)を作動流体とした第一の冷凍サイクルと、その混合冷媒を冷却するプロパン冷媒(第二冷媒)を作動流体とした第二の冷凍サイクルとが組み合わせられている。   In order to convert gaseous natural gas into liquefied natural gas suitable for transportation, it is necessary to cool the natural gas to a low temperature of about −150 ° C. in a pressurized state and then expand it to near atmospheric pressure. This cooling is realized by a combination of a plurality of refrigeration cycles. For example, in the propane precooled mixed refrigerant system adopted in many natural gas liquefaction facilities, a first refrigeration cycle using a mixed refrigerant (first refrigerant) for cooling natural gas as a working fluid and the mixed refrigerant are cooled. And a second refrigeration cycle using a propane refrigerant (second refrigerant) as a working fluid.

また、例えば特許文献1によると、第一の冷凍サイクルにおいて冷媒を冷却する空冷式又は水冷式の熱交換器(冷却器)を用いることが開示されている。空冷式の熱交換器は、冷媒を流入させた伝熱管及び伝熱フィンの外表面にファン等で外気を強制的に流通させ、間接熱交換により冷媒を冷却する。一方、水冷式の熱交換器は、例えば海水や河川水、又は海水や河川水と熱交換した冷却水を導入し、間接熱交換により冷媒を冷却する。また、特許文献1では、第一の冷凍サイクルの冷媒圧縮機を駆動する動力源がガスタービンであることを理由とし、周囲の大気温度を検知し、これに応じて冷凍サイクルの冷媒圧縮機の運転条件など、最適な操作条件を選定する方法が開示されている。   For example, according to Patent Document 1, it is disclosed to use an air-cooled or water-cooled heat exchanger (cooler) that cools the refrigerant in the first refrigeration cycle. The air-cooled heat exchanger forcibly flows outside air with a fan or the like on the outer surfaces of the heat transfer tubes and heat transfer fins into which the refrigerant is introduced, and cools the refrigerant by indirect heat exchange. On the other hand, a water-cooled heat exchanger introduces, for example, seawater, river water, or cooling water heat-exchanged with seawater or river water, and cools the refrigerant by indirect heat exchange. Moreover, in patent document 1, since the power source which drives the refrigerant compressor of a 1st refrigerating cycle is a gas turbine, ambient air temperature is detected and the refrigerant compressor of a refrigerating cycle according to this is detected. A method for selecting optimum operating conditions such as operating conditions is disclosed.

特開平5−196349号公報JP-A-5-196349

例えば水冷式の熱交換器により冷媒を冷却する場合は、時刻や季節による水温の変化が比較的少ないことから、冷凍サイクルで得られる冷熱が年間を通して安定し、液化天然ガスの生産量を年中一定に保つことが容易である。しかし、天然ガス液化設備の立地条件によっては海水や河川水等が利用できない場合があり、その場合には空冷式の熱交換器を採用する方法が考えられる。ところが、空冷式の熱交換器を採用する場合は、時刻や季節による大気温度の変化が比較的大きく、その影響を受けるという課題が生じる。詳しく説明すると、例えば気温が高い場合、熱交換器による外部への放熱量が減少して、冷凍サイクルの冷媒を望ましい低温まで冷却できず、天然ガスの液化に利用可能な冷熱量が減少する。また、例えば特許文献1のように、冷凍サイクルの冷媒圧縮機を駆動する動力源がガスタービンである場合、高気温条件におけるガスタービンの吸気流量が減少してガスタービンの発生動力が低下するため、冷媒圧縮機の駆動力が減少する。これらの相乗効果により、空冷式の熱交換器により冷凍サイクルの冷媒を冷却する方式では、液化天然ガスの生産量を年中一定に保つことが容易ではない。   For example, when cooling a refrigerant with a water-cooled heat exchanger, the temperature of the water in the refrigeration cycle is stable throughout the year because the change in water temperature with time and season is relatively small. It is easy to keep constant. However, depending on the location conditions of the natural gas liquefaction facility, seawater, river water, etc. may not be available. In that case, a method of adopting an air-cooled heat exchanger can be considered. However, when an air-cooled heat exchanger is employed, there is a problem that atmospheric temperature changes with time and season are relatively large and affected. More specifically, for example, when the temperature is high, the amount of heat released to the outside by the heat exchanger is reduced, the refrigerant of the refrigeration cycle cannot be cooled to a desired low temperature, and the amount of cold heat available for liquefaction of natural gas is reduced. Further, for example, as in Patent Document 1, when the power source that drives the refrigerant compressor of the refrigeration cycle is a gas turbine, the intake flow rate of the gas turbine in a high temperature condition decreases and the generated power of the gas turbine decreases. The driving force of the refrigerant compressor is reduced. Due to these synergistic effects, it is not easy to keep the production amount of liquefied natural gas constant throughout the year in the method of cooling the refrigerant of the refrigeration cycle by the air-cooled heat exchanger.

本発明の目的は、海水や河川水等が利用できない立地条件に対応するとともに、時刻や季節による大気温度の変化の影響を受けず、年間を通して液化天然ガスの生産量を一定に保つことができる液化天然ガス設備を提供することにある。   The object of the present invention is to cope with the location conditions where seawater, river water, etc. cannot be used, and is able to keep the production volume of liquefied natural gas constant throughout the year without being affected by changes in the atmospheric temperature due to time or season. It is to provide a liquefied natural gas facility.

上記目的を達成するために、第1の本発明は、第一冷媒を圧縮する冷媒圧縮機、前記冷媒圧縮機で圧縮した第一冷媒を冷却する一次冷却機構、前記一次冷却機構で冷却した第一冷媒をさらに冷却する二次冷却機構、前記二次冷却機構で冷却した第一冷媒を膨張させる膨張機構、及び前記膨張機構で膨張した第一冷媒との熱交換により天然ガスを冷却し、蒸発した第一冷媒を前記冷媒圧縮機に供給する主熱交換器を有する第一の冷凍サイクル系統と、第二冷媒を作動流体とし、前記二次冷却機構に用いる冷熱源を生成する第二の冷凍サイクル系統とを備えた天然ガス液化設備であって、第三冷媒を作動流体とし、前記一次冷却機構に用いる冷熱源の一部又は全部を生成する第三の冷凍サイクル系統を備える。   In order to achieve the above object, the first aspect of the present invention provides a refrigerant compressor that compresses a first refrigerant, a primary cooling mechanism that cools the first refrigerant compressed by the refrigerant compressor, and a first cooling mechanism that is cooled by the primary cooling mechanism. A secondary cooling mechanism that further cools one refrigerant, an expansion mechanism that expands the first refrigerant cooled by the secondary cooling mechanism, and natural gas is cooled and evaporated by heat exchange with the first refrigerant expanded by the expansion mechanism. A first refrigeration cycle system having a main heat exchanger that supplies the first refrigerant to the refrigerant compressor, and a second refrigeration that uses the second refrigerant as a working fluid and generates a cold heat source for use in the secondary cooling mechanism And a third refrigeration cycle system that uses a third refrigerant as a working fluid and generates part or all of a cold heat source used in the primary cooling mechanism.

上記目的を達成するために、第2の本発明は、天然ガスを冷却する第一冷媒を作動流体とした第一の冷凍サイクル系統と、第二冷媒を圧縮する冷媒圧縮機、前記冷媒圧縮機で圧縮した第二冷媒を冷却して凝縮させる凝縮機構、前記凝縮機構で凝縮した第二冷媒を膨張させる膨張機構、及び前記膨張機構で膨張した第二冷媒との熱交換により第一冷媒を冷却し、蒸発した第二冷媒を前記冷媒圧縮機に供給する蒸発機構を有する第二の冷凍サイクル系統とを備えた天然ガス液化設備であって、第三冷媒を作動流体とし、前記凝縮機構に用いる冷熱源の一部又は全部を生成する第三の冷凍サイクル系統を備える。   In order to achieve the above object, the second aspect of the present invention provides a first refrigeration cycle system using a first refrigerant for cooling natural gas as a working fluid, a refrigerant compressor for compressing a second refrigerant, and the refrigerant compressor. The first refrigerant is cooled by heat exchange with a condensing mechanism that cools and condenses the second refrigerant compressed in step 1, an expansion mechanism that expands the second refrigerant condensed by the condensing mechanism, and a second refrigerant that expands by the expansion mechanism. And a second refrigeration cycle system having an evaporation mechanism for supplying the evaporated second refrigerant to the refrigerant compressor, wherein the third refrigerant is used as the working fluid and used for the condensing mechanism. A third refrigeration cycle system that generates part or all of the cold heat source is provided.

本発明によれば、海水や河川水等が利用できない立地条件に対応するとともに、時刻や季節による大気温度の変化の影響を受けず、年間を通して液化天然ガスの生産量を一定に保つことができる。   According to the present invention, it is possible to keep the production amount of liquefied natural gas constant throughout the year without being affected by changes in the atmospheric temperature due to time or season, while responding to location conditions where seawater, river water, etc. cannot be used. .

本発明の天然ガス液化設備の第1の実施形態の要部構成を表す概略図である。It is the schematic showing the principal part structure of 1st Embodiment of the natural gas liquefying installation of this invention. 本発明の天然ガス液化設備の第2の実施形態の要部構成を表す概略図である。It is the schematic showing the principal part structure of 2nd Embodiment of the natural gas liquefying installation of this invention. 本発明の天然ガス液化設備の第3の実施形態の要部構成を表す概略図である。It is the schematic showing the principal part structure of 3rd Embodiment of the natural gas liquefying installation of this invention.

符号の説明Explanation of symbols

1 冷媒圧縮機
5 電動機(第二電動機)
10 凝縮器
18 膨張機構
19 二次冷却機構(蒸発機構)
23 低圧段冷媒圧縮機
24 高圧段冷媒圧縮機
25 中間冷却機構(一次冷却機構)
26 後置冷却機構(一次冷却機構)
31 第二凝縮器
31A 凝縮器
33 第二中間冷却器
33A 中間冷却器
35 第二後置冷却器
35A 後置冷却器
50 第一の冷凍サイクル系統
51 第二の冷凍サイクル系統
52 第三の冷凍サイクル系統
52A 第三の冷凍サイクル系統
64 開閉器(制御手段)
72 制御装置(制御手段)
80 熱交換器
81 冷媒圧縮機
84 電動機(第三電動機)
85 電動機(第一電動機)
1 Refrigerant compressor 5 Electric motor (second electric motor)
10 Condenser 18 Expansion mechanism 19 Secondary cooling mechanism (evaporation mechanism)
23 Low-pressure stage refrigerant compressor 24 High-pressure stage refrigerant compressor 25 Intermediate cooling mechanism (primary cooling mechanism)
26 Post cooling mechanism (primary cooling mechanism)
31 Second condenser 31A Condenser 33 Second intermediate cooler 33A Intermediate cooler 35 Second post cooler 35A Post cooler 50 First refrigeration cycle system 51 Second refrigeration cycle system 52 Third refrigeration cycle System 52A Third refrigeration cycle system 64 Switch (control means)
72 Control device (control means)
80 Heat exchanger 81 Refrigerant compressor 84 Electric motor (third electric motor)
85 Electric motor (first electric motor)

以下、本発明の実施形態を、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の第1の実施形態を図1により説明する。図1は、本実施形態による天然ガス液化設備の要部構成を表す概略図である。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing a main configuration of a natural gas liquefaction facility according to this embodiment.

この図1において、天然ガス液化設備は、主要な構成要素との一つとして、天然ガスを冷却する例えばメタン、エタン、及びプロパンからなる混合冷媒(第一冷媒)を作動流体とした第一の冷凍サイクル系統50を備えている。   In FIG. 1, the natural gas liquefaction facility is a first component that uses, as a working fluid, a mixed refrigerant (first refrigerant) composed of, for example, methane, ethane, and propane for cooling natural gas. A refrigeration cycle system 50 is provided.

第一の冷凍サイクル系統50は、混合冷媒を圧縮する低圧段冷媒圧縮機23と、この低圧段冷媒圧縮機23で圧縮した混合冷媒を冷却する中間冷却機構(一次冷却機構)25と、この中間冷却機構25で冷却した混合冷媒を圧縮する高圧段冷媒圧縮機24と、この高圧段冷媒圧縮機24で圧縮した混合冷媒を冷却する後置冷却機構(一次冷却機構)26と、この後置冷却機構26で冷却した混合冷媒をさらに冷却する二次冷却機構19と、この二次冷却機構19で冷却した混合冷媒が配管47を介し供給され、混合冷媒を断熱膨張させて温度を低下させる膨張機構(図示せず)と、この膨張機構からの混合冷媒との熱交換により天然ガス(気体状態)を冷却して液化する主熱交換器(図示せず)とで構成されている。そして、主熱交換器にて天然ガスから熱を奪い蒸発した混合冷媒は、配管48を介し低圧段冷媒圧縮機23に供給されるようになっている。低圧段冷媒圧縮機23及び高圧段冷媒圧縮機25は、その駆動装置である電動機85に同軸で連結されている。   The first refrigeration cycle system 50 includes a low-pressure refrigerant compressor 23 that compresses the mixed refrigerant, an intermediate cooling mechanism (primary cooling mechanism) 25 that cools the mixed refrigerant compressed by the low-pressure refrigerant compressor 23, A high-pressure refrigerant compressor 24 that compresses the mixed refrigerant cooled by the cooling mechanism 25, a post-cooling mechanism (primary cooling mechanism) 26 that cools the mixed refrigerant compressed by the high-pressure refrigerant refrigerant 24, and this post-cooling A secondary cooling mechanism 19 that further cools the mixed refrigerant cooled by the mechanism 26, and an expansion mechanism that supplies the mixed refrigerant cooled by the secondary cooling mechanism 19 via the pipe 47 and adiabatically expands the mixed refrigerant to lower the temperature. (Not shown) and a main heat exchanger (not shown) that cools and liquefies natural gas (gas state) by heat exchange with the mixed refrigerant from the expansion mechanism. The mixed refrigerant that has evaporated heat from the natural gas in the main heat exchanger is supplied to the low-pressure stage refrigerant compressor 23 via the pipe 48. The low-pressure stage refrigerant compressor 23 and the high-pressure stage refrigerant compressor 25 are coaxially connected to an electric motor 85 that is a driving device thereof.

中間冷却機構25は、大気に放熱する空冷式の第一中間冷却器32と、水冷式の第二中間冷却器33とで構成されている。また、後置冷却機構26は、大気に放熱する空冷式の第一後置冷却器34と、水冷式の第二後置冷却器35とで構成されている。   The intermediate cooling mechanism 25 includes an air-cooled first intermediate cooler 32 that radiates heat to the atmosphere and a water-cooled second intermediate cooler 33. The post-cooling mechanism 26 includes an air-cooled first post-cooler 34 that radiates heat to the atmosphere, and a water-cooled second post-cooler 35.

また天然ガス液化設備は、別の主要な構成要素として、例えばプロパン冷媒(第二冷媒)を作動流体とし、第一の冷凍サイクル系統50の二次冷却機構19に用いる冷熱源を生成する第二の冷凍サイクル系統51を備えている。   In addition, the natural gas liquefaction facility uses a propane refrigerant (second refrigerant) as a working fluid as another main component, for example, and generates a second heat source for use in the secondary cooling mechanism 19 of the first refrigeration cycle system 50. The refrigeration cycle system 51 is provided.

第二の冷凍サイクル系統51は、プロパン冷媒を圧縮する例えば3段式の(すなわち、低圧段、中圧段、高圧段からなる)冷媒圧縮機1と、この冷媒圧縮機1で圧縮したプロパン冷媒を冷却して凝縮させる凝縮機構10と、この凝縮機構10で凝縮したプロパン冷媒を受け入れる受液器11と、この受液器11からのプロパン冷媒を段階的に断熱膨張させて温度を低下させる膨張機構18と、この膨張機構18からのプロパン冷媒との熱交換により混合冷媒を段階的に冷却し、混合冷媒から熱を奪い蒸発したプロパン冷媒を冷媒圧縮機1に供給する上記二次冷却機構(蒸発機構)19とで構成されている。冷媒圧縮機1は、その駆動装置である電動機5に連結されている。   The second refrigeration cycle system 51 includes, for example, a three-stage refrigerant compressor 1 that compresses propane refrigerant (that is, a low-pressure stage, an intermediate-pressure stage, and a high-pressure stage), and a propane refrigerant compressed by the refrigerant compressor 1. A condensing mechanism 10 that cools and condenses, a receiver 11 that receives the propane refrigerant condensed by the condensing mechanism 10, and an expansion that lowers the temperature by adiabatically expanding the propane refrigerant from the receiver 11 in stages. The secondary cooling mechanism described above is configured to cool the mixed refrigerant in stages by exchanging heat between the mechanism 18 and the propane refrigerant from the expansion mechanism 18 and supply the evaporated propane refrigerant to the refrigerant compressor 1 by removing heat from the mixed refrigerant. (Evaporation mechanism) 19. The refrigerant compressor 1 is connected to an electric motor 5 that is a driving device thereof.

凝縮機構10は、大気に放熱する空冷式の第一凝縮器30と、水冷式の第二凝縮器31とで構成されている。   The condensation mechanism 10 includes an air-cooled first condenser 30 that radiates heat to the atmosphere and a water-cooled second condenser 31.

二次冷却機構(蒸発機構)19は、高圧蒸発器15、中圧蒸発器16、及び低圧蒸発器17で構成され、膨張機構18は、高圧膨張弁12、中圧膨張弁13、及び低圧膨張弁14で構成されている。高圧蒸発器15は配管41を介し受液器11に接続され、その配管41に高圧膨張弁12が設けられている。また、中圧蒸発器16は配管42を介し高圧蒸発器15の液体出口側に接続され、その配管42に中圧膨張弁13が設けられている。また、低圧蒸発器17は配管43を介し中圧蒸発器16の液体出口側に接続され、その配管43に低圧膨張弁14が設けられている。また、高圧蒸発器15の気体出口側は配管44を介し冷媒圧縮機1の高圧段吸込側に接続され、中圧蒸発器16の気体出口側は配管45を介し冷媒圧縮機1の中圧段吸込側に接続され、低圧蒸発器17の気体出口側は配管46を介し冷媒圧縮機1の低圧段吸込側に接続されている。   The secondary cooling mechanism (evaporation mechanism) 19 includes a high-pressure evaporator 15, an intermediate-pressure evaporator 16, and a low-pressure evaporator 17, and the expansion mechanism 18 includes a high-pressure expansion valve 12, an intermediate-pressure expansion valve 13, and a low-pressure expansion. It consists of a valve 14. The high-pressure evaporator 15 is connected to the liquid receiver 11 through a pipe 41, and the high-pressure expansion valve 12 is provided in the pipe 41. The intermediate pressure evaporator 16 is connected to the liquid outlet side of the high pressure evaporator 15 via a pipe 42, and the intermediate pressure expansion valve 13 is provided in the pipe 42. The low-pressure evaporator 17 is connected to the liquid outlet side of the intermediate-pressure evaporator 16 through a pipe 43, and the low-pressure expansion valve 14 is provided in the pipe 43. The gas outlet side of the high-pressure evaporator 15 is connected to the high-pressure stage suction side of the refrigerant compressor 1 via the pipe 44, and the gas outlet side of the medium-pressure evaporator 16 is connected to the medium-pressure stage of the refrigerant compressor 1 via the pipe 45. Connected to the suction side, the gas outlet side of the low-pressure evaporator 17 is connected to the low-pressure stage suction side of the refrigerant compressor 1 via a pipe 46.

そして、高圧蒸発器15は、高圧膨張弁12で断熱膨張されて温度が低下し気液混合状態となったプロパン冷媒が導入され、プロパン冷媒の液相の一部が蒸発して、その蒸発潜熱を奪うことにより後置冷却機構26からの混合冷媒を冷却するようになっている。また、高圧蒸発器15は、気相のプロパン冷媒を配管44を介し冷媒圧縮機1の高圧段吸込側に供給し、液相のプロパン冷媒を配管42及び中圧膨張弁13を介し中圧蒸発器16に供給するようになっている。中圧蒸発器16は、中圧膨張弁13で断熱膨張されて温度が低下し気液混合状態となったプロパン冷媒が導入され、プロパン冷媒の液相の一部が蒸発して、その蒸発潜熱を奪うことにより高圧蒸発器15からの混合冷媒をさらに冷却するようになっている。また、中圧蒸発器16は、気相のプロパン冷媒を配管45を介し冷媒圧縮機1の中圧段吸込側に供給し、液相のプロパン冷媒を配管43及び低圧膨張弁14を介し低圧蒸発器17に供給するようになっている。低圧蒸発器17は、低圧膨張弁14で断熱膨張されて温度が低下し気液混合状態となったプロパン冷媒が導入され、プロパン冷媒の液相の全部が蒸発し、その蒸発潜熱を奪うことにより中圧蒸発器16からの混合冷媒をさらに冷却するようになっている。また、低圧蒸発器17は、気相のプロパン冷媒を配管46を介し冷媒圧縮機1の低圧段吸込側に供給するようになっている。   The high-pressure evaporator 15 is introduced with propane refrigerant that has been adiabatically expanded by the high-pressure expansion valve 12 to lower its temperature and become a gas-liquid mixed state, and a part of the liquid phase of the propane refrigerant evaporates, and its latent heat of evaporation. The mixed refrigerant from the post-cooling mechanism 26 is cooled by depriving it. The high-pressure evaporator 15 supplies gas-phase propane refrigerant to the high-pressure stage suction side of the refrigerant compressor 1 via the pipe 44, and medium-pressure evaporation of the liquid-phase propane refrigerant via the pipe 42 and the intermediate-pressure expansion valve 13. The container 16 is supplied. The intermediate pressure evaporator 16 is introduced with propane refrigerant that has been adiabatically expanded by the intermediate pressure expansion valve 13 to lower its temperature and become a gas-liquid mixed state, and a part of the liquid phase of the propane refrigerant evaporates, and its latent heat of evaporation. The mixed refrigerant from the high-pressure evaporator 15 is further cooled. Further, the intermediate pressure evaporator 16 supplies the gas-phase propane refrigerant to the medium-pressure stage suction side of the refrigerant compressor 1 via the pipe 45, and the liquid-phase propane refrigerant is low-pressure evaporated via the pipe 43 and the low-pressure expansion valve 14. The container 17 is supplied. The low-pressure evaporator 17 is adiabatically expanded by the low-pressure expansion valve 14 to introduce the propane refrigerant that has fallen in temperature and is in a gas-liquid mixed state, evaporates all of the liquid phase of the propane refrigerant, and takes away the latent heat of evaporation. The mixed refrigerant from the intermediate pressure evaporator 16 is further cooled. The low-pressure evaporator 17 is adapted to supply a gas-phase propane refrigerant to the low-pressure stage suction side of the refrigerant compressor 1 via a pipe 46.

また天然ガス液化設備は、本実施形態の特徴的な構成要素として、例えばプロパン冷媒(第三冷媒)を作動流体とし、第一の冷凍サイクル系統50の中間冷却機構25及び後置冷却機構26にそれぞれ用いる冷熱源の一部(すなわち、第二中間冷却機構33及び第二後置冷却器35の冷熱源)、及び第二の冷凍サイクル系統51の凝縮機構10に用いる冷熱源の一部(すなわち、第二凝縮器31の冷熱源)としての冷水(冷却水)を生成する第三の冷凍サイクル系統52と、この第三の冷凍サイクル系統52で生成した冷水を循環させる循環水系統53とを備えている。   Further, the natural gas liquefaction facility uses, for example, propane refrigerant (third refrigerant) as a working fluid as a characteristic component of the present embodiment, and is provided in the intermediate cooling mechanism 25 and the rear cooling mechanism 26 of the first refrigeration cycle system 50. A part of the cooling heat source used (that is, the cooling heat source of the second intermediate cooling mechanism 33 and the second post-cooler 35) and a part of the cooling heat source used for the condensation mechanism 10 of the second refrigeration cycle system 51 (that is, A third refrigeration cycle system 52 that generates cold water (cooling water) as a cold heat source of the second condenser 31, and a circulating water system 53 that circulates the cold water generated by the third refrigeration cycle system 52. I have.

第三の冷凍サイクル系統52は、プロパン冷媒を圧縮する冷媒圧縮機81と、この冷媒圧縮機81で圧縮したプロパン冷媒を凝縮させる空冷式の凝縮器82と、この凝縮器82で凝縮したプロパン冷媒を断熱膨張させて温度を低下させる膨張弁83と、この膨張弁83からのプロパン冷媒との熱交換により水を冷却し、水から熱を奪い蒸発したプロパン冷媒を冷媒圧縮機81に供給する熱交換器(蒸発器)80とで構成されている。冷媒圧縮機81は、その駆動装置である電動機84に連結されている。   The third refrigeration cycle system 52 includes a refrigerant compressor 81 that compresses propane refrigerant, an air-cooled condenser 82 that condenses the propane refrigerant compressed by the refrigerant compressor 81, and a propane refrigerant that is condensed by the condenser 82. The heat is supplied to the refrigerant compressor 81 by cooling the water by heat exchange between the expansion valve 83 that adiabatically expands and lowers the temperature and heat exchange with the propane refrigerant from the expansion valve 83, removing heat from the water and evaporating the water. And an exchanger (evaporator) 80. The refrigerant compressor 81 is connected to an electric motor 84 that is a driving device thereof.

循環水系統53は、熱交換器80で生成した冷水を貯蔵する冷水貯蔵器75と、第二中間冷却器33、第二後置冷却器35、及び第二凝縮器31等に冷水を供給する供給ヘッダ77と、冷水貯蔵器75で貯蔵した冷水を供給ヘッダ77に供給するポンプ76と、第二中間冷却器33、第二後置冷却器35、及び第二凝縮器31等で熱を奪い温度が上昇した水(温水)を回収する回収ヘッダ78と、この回収ヘッダ78から供給された温水を貯蔵する温水貯蔵器79と、この温水貯蔵器79で貯蔵した温水を熱交換器80に供給するポンプ90と、このポンプ90の吐出流量を制御する弁91とで構成されている。なお、この循環水系統53で循環する水は、熱交換器80の内部で凍結することを防止するため、エチレングリコール混合水などの不凍液を用いることが好ましい。   The circulating water system 53 supplies cold water to the cold water storage 75 that stores the cold water generated by the heat exchanger 80, the second intermediate cooler 33, the second post-cooler 35, the second condenser 31, and the like. Heat is taken away by the supply header 77, the pump 76 that supplies the cold water stored in the cold water reservoir 75 to the supply header 77, the second intermediate cooler 33, the second post-cooler 35, and the second condenser 31. A recovery header 78 that recovers water (hot water) whose temperature has risen, a hot water reservoir 79 that stores hot water supplied from the recovery header 78, and hot water stored in the hot water reservoir 79 is supplied to the heat exchanger 80. And a valve 91 for controlling the discharge flow rate of the pump 90. In addition, in order to prevent the water circulated in this circulating water system 53 from freezing inside the heat exchanger 80, it is preferable to use an antifreeze such as ethylene glycol mixed water.

上述した第一の冷凍サイクル系統50の電動機85、第二の冷凍サイクル系統51の電動機5、及び第三の冷凍サイクル系統52の電動機84に必要な電力は、発電設備70によって発電されている。発電設備70は、例えば4つのガスタービン発電装置(発電ユニット)61a,61b,61c,61dを有し、通常、それらのうち3つを運転させて発電しており、残りの1つは定期点検等のメンテナンスや異常発生時に対応するための予備機である。   Electric power necessary for the electric motor 85 of the first refrigeration cycle system 50, the electric motor 5 of the second refrigeration cycle system 51, and the electric motor 84 of the third refrigeration cycle system 52 is generated by the power generation facility 70. The power generation facility 70 has, for example, four gas turbine power generation devices (power generation units) 61a, 61b, 61c, and 61d, and normally, three of them are operated to generate power, and the remaining one is periodically inspected. It is a spare machine to cope with maintenance and abnormalities such as.

ガスタービン発電装置61a,61b,61c,61dはそれぞれ、吸気ダクトから外気を吸入して圧縮する空気圧縮機と、圧縮した空気と燃料を混合して燃焼させ高温高圧の燃焼ガスを生成する燃焼器と、燃焼ガスを膨張させて運動エネルギーに変換するタービンと、このタービンの運動エネルギーを電力に変換する発電機とを備えている。ガスタービン発電装置61a,61b,61c,61dの発電機は、母線62に接続され、さらに電力経路63を介しプラント内の負荷に接続されている。電力経路63は、第一の冷凍サイクル系統50の電動機85に電力を供給する電力経路63aと、第二の冷凍サイクル系統51の電動機5に電力を供給する電力経路63bと、第三の冷凍サイクル系統52の電動機84に電力を供給する電力経路63cとを有している。   Each of the gas turbine power generators 61a, 61b, 61c, and 61d includes an air compressor that sucks and compresses outside air from an intake duct, and a combustor that mixes the compressed air and fuel and burns to generate high-temperature and high-pressure combustion gas. And a turbine that expands the combustion gas to convert it into kinetic energy, and a generator that converts the kinetic energy of the turbine into electric power. The generators of the gas turbine power generators 61 a, 61 b, 61 c, 61 d are connected to the bus 62 and further connected to a load in the plant via the power path 63. The power path 63 includes a power path 63a that supplies power to the motor 85 of the first refrigeration cycle system 50, a power path 63b that supplies power to the motor 5 of the second refrigeration cycle system 51, and a third refrigeration cycle. And an electric power path 63c for supplying electric power to the electric motor 84 of the system 52.

また、本実施形態の特徴として、電力経路63cには接続・遮断状態に切替え可能な開閉器64が設けられている。そして、制御装置72は、例えば発電設備70の供給電力が低下したことを検知したときに、信号経路71を介し開閉器64に信号を出力して電力経路63cを遮断可能としている。   Further, as a feature of the present embodiment, a switch 64 that can be switched between a connected state and a disconnected state is provided in the power path 63c. And the control apparatus 72 can output the signal to the switch 64 via the signal path | route 71, and can interrupt | block the electric power path | route 63c, for example, when detecting that the supply electric power of the power generation equipment 70 fell.

また、ガスタービン発電装置の吸気ダクトには、水冷式の吸気冷却器が設けられている。そして、吸気冷却器は、供給ヘッダ77から配管36を介し冷水が供給され、この冷水との熱交換により空気圧縮機の吸気を冷却するようになっている。また、吸気冷却器にて吸気から熱を奪い温度上昇した水(温水)は、配管37を介し回収ヘッダ78に回収されるようになっている。   Further, a water-cooled intake air cooler is provided in the intake duct of the gas turbine power generator. The intake air cooler is supplied with cold water from the supply header 77 through the pipe 36, and cools the intake air of the air compressor by heat exchange with the cold water. Further, the water (hot water) whose temperature has risen due to heat taken from the intake air by the intake air cooler is recovered by the recovery header 78 via the pipe 37.

次に、本実施形態の天然ガス液化設備の通常運転動作及び作用効果を説明する。   Next, normal operation operation and effects of the natural gas liquefaction facility of this embodiment will be described.

第三の冷凍サイクル系統52において、作動流体であるプロパン冷媒は、冷媒圧縮機81により圧縮されて高温高圧状態となり、空冷式の凝縮器82により大気に放熱して凝縮され、さらに膨張弁83により断熱膨張されて温度が低下する。熱交換器80では、プロパン冷媒が蒸発し、その蒸発潜熱を奪うことにより循環水系統53の水を5℃まで冷却する。   In the third refrigeration cycle system 52, the propane refrigerant, which is the working fluid, is compressed by the refrigerant compressor 81 to be in a high temperature and high pressure state, dissipated to the atmosphere by the air-cooled condenser 82, and is condensed by the expansion valve 83. Adiabatic expansion causes the temperature to drop. In the heat exchanger 80, the propane refrigerant evaporates and takes away the latent heat of evaporation, thereby cooling the water in the circulating water system 53 to 5 ° C.

循環水系統53において、熱交換器80で冷却された冷水は、冷水貯蔵器75に一旦貯蔵された後、ポンプ76で供給ヘッダ77に送られ、第一の冷凍サイクル系統50の第二中間冷却器33及び第二後置冷却器35、第二の冷凍サイクル系統51の第二凝縮器31、ガスタービン発電設備の吸気冷却器にそれぞれ供給される。その後、第二中間冷却器33、第二後置冷却器35、第二凝縮器31、及び吸気冷却器にて冷媒や吸気から熱を奪い40℃程度まで温度上昇した水(温水)は、回収ヘッダ78に回収され温水容器79に一旦貯蔵された後、ポンプ90で熱交換器80に供給され、再び5℃まで冷却される。   In the circulating water system 53, the cold water cooled by the heat exchanger 80 is temporarily stored in the cold water storage 75 and then sent to the supply header 77 by the pump 76, and the second intermediate cooling of the first refrigeration cycle system 50. And the second condenser 31 of the second refrigeration cycle system 51 and the intake air cooler of the gas turbine power generation facility. Thereafter, water (hot water) that has taken heat away from the refrigerant and the intake air at the second intermediate cooler 33, the second post-cooler 35, the second condenser 31, and the intake air cooler and has risen to about 40 ° C. is recovered. After being collected in the header 78 and once stored in the hot water container 79, it is supplied to the heat exchanger 80 by the pump 90 and cooled again to 5 ° C.

なお、熱交換器80で生成する冷水の温度を5℃とした第一の理由は、第二中間冷却器33、第二後置冷却器35、及び第二凝縮器31における端末温度差を10℃で計画し、それらの冷媒の冷却温度(出口温度)の目標値を15℃としたからである。また、第二の理由は、吸気冷却器における吸気の冷却温度を考慮したからである。すなわち、例えば冷水の温度が高すぎると、ガスタービン発電設備の吸気冷却に利用することができず、一方、例えば冷水の温度が低すぎると、吸気冷却器の表面に吸気中の湿分が凍結し、吸気ダクトを閉塞させる可能性があるためである。   The first reason why the temperature of the cold water generated in the heat exchanger 80 is 5 ° C. is that the terminal temperature difference in the second intermediate cooler 33, the second post-cooler 35, and the second condenser 31 is 10 This is because the target value of the cooling temperature (outlet temperature) of these refrigerants was set to 15 ° C. The second reason is that the cooling temperature of the intake air in the intake air cooler is taken into consideration. That is, for example, if the temperature of the cold water is too high, it cannot be used for intake air cooling of the gas turbine power generation facility. On the other hand, if the temperature of the cold water is too low, for example, moisture in the intake air freezes on the surface of the intake air cooler. This is because the intake duct may be blocked.

第二の冷凍サイクル系統51において、受液器11に貯蔵された15℃,1.2MPa程度のプロパン冷媒は、膨張機構18により段階的に断熱膨張されて温度が低下し、二次冷却機構(蒸発機構)19にて段階的に蒸発し、その蒸発潜熱を奪うことにより第一冷凍サイクル系統50の混合冷媒を冷却する。二次冷却機構19にて混合冷媒から熱を奪い蒸発したプロパン冷媒は、冷媒圧縮機1により1.2MPaまで圧縮される。圧縮されて高温となったプロパン冷媒は、空冷式の第一凝縮器30により60℃まで冷却され、さらに水冷式の第二凝縮器31により15℃まで冷却され、再び受液器11に送られる。   In the second refrigeration cycle system 51, the propane refrigerant of about 15 ° C. and about 1.2 MPa stored in the receiver 11 is adiabatically expanded stepwise by the expansion mechanism 18 and the temperature is lowered. Evaporation mechanism) evaporates stepwise, and the mixed refrigerant of the first refrigeration cycle system 50 is cooled by taking away the latent heat of evaporation. The propane refrigerant evaporated by removing heat from the mixed refrigerant in the secondary cooling mechanism 19 is compressed to 1.2 MPa by the refrigerant compressor 1. The compressed propane refrigerant is cooled to 60 ° C. by the air-cooled first condenser 30, further cooled to 15 ° C. by the water-cooled second condenser 31, and sent to the receiver 11 again. .

第一の冷凍サイクル系統50において、作動流体である混合冷媒は、低圧段冷媒圧縮機23により圧縮される。低圧段冷媒圧縮機23により圧縮されて高温となった混合冷媒は、空冷式の第一中間冷却器32により60℃まで冷却され、さらに水冷式の第二中間冷却器33により15℃まで冷却される。その後、高圧段冷媒圧縮機24により5MPaまで圧縮される。高圧段冷媒圧縮機24により圧縮されて高温となった混合冷媒は、空冷式の第一後置冷却器34により60℃まで冷却され、さらに水冷式の第二後置冷却器35により15℃まで冷却される。その後、5MPa,15℃程度の混合冷媒は、二次冷却機構19により−35℃程度まで冷却される。そして、膨張機構で断熱膨張して温度が低下され、主熱交換器に供給されて原料天然ガスの液化に利用される。   In the first refrigeration cycle system 50, the mixed refrigerant that is the working fluid is compressed by the low-pressure stage refrigerant compressor 23. The mixed refrigerant which has been compressed by the low-pressure stage refrigerant compressor 23 to a high temperature is cooled to 60 ° C. by the air-cooled first intermediate cooler 32 and further cooled to 15 ° C. by the water-cooled second intermediate cooler 33. The Then, it is compressed to 5 MPa by the high pressure refrigerant compressor 24. The mixed refrigerant that has been compressed by the high-pressure stage refrigerant compressor 24 to a high temperature is cooled to 60 ° C. by the air-cooled first post-cooler 34, and further to 15 ° C. by the water-cooled second post-cooler 35. To be cooled. Thereafter, the mixed refrigerant of about 5 MPa and about 15 ° C. is cooled to about −35 ° C. by the secondary cooling mechanism 19. Then, the temperature is lowered by adiabatic expansion by the expansion mechanism, supplied to the main heat exchanger, and used for liquefaction of the raw material natural gas.

なお、第二の冷凍サイクル系統51の空冷式の第一凝縮器30は、伝熱面積や大気を通風するファンの能力を大きくすれば、冷媒冷却温度を比較的低く設定することが可能であるが、本実施形態では、設備費の経済性を考慮し、冷媒冷却温度を比較的高い60℃に設定している。また、第一の冷凍サイクル系統50の空冷式の第一中間冷却器の及び第一後置冷却器も、同様の理由から、冷媒冷却温度を比較的高い60℃に設定している。   The air-cooled first condenser 30 of the second refrigeration cycle system 51 can set the coolant cooling temperature to be relatively low by increasing the heat transfer area and the ability of the fan to ventilate the atmosphere. However, in the present embodiment, the refrigerant cooling temperature is set to a relatively high 60 ° C. in consideration of the economics of facility costs. Moreover, the air-cooling type first intermediate cooler and the first rear cooler of the first refrigeration cycle system 50 also set the refrigerant cooling temperature to a relatively high 60 ° C. for the same reason.

このような本実施形態の天然ガス液化設備においては、プロパン冷媒を作動流体とし、このプロパン冷媒との熱交換により冷水を生成する第三の冷凍サイクル系統52と、この第三の冷凍サイクル系統52で生成した冷水を用いる水冷式の第二中間冷却器33、第二後置冷却器35、及び第二凝縮器31とを備えることにより、海水や河川水等が利用できない立地条件にも対応することができる。また、例えば中間冷却機構25を空冷式の第一中間冷却器32のみ、後置冷却機構26を空冷式の第一後置冷却器34のみ、凝縮機構10を空冷式の第一凝縮器30のみとした場合は、大気温度の変動によって冷媒冷却温度が変動する。これに対し本実施形態においては、水冷式の第二中間冷却器33、第二後置冷却器35、及び第二凝縮器31を設け、それらの冷媒冷却温度が目標値(詳しくは、例えば大気温度が低い条件で第二中間冷却器33、第二後置冷却器35、及び第二凝縮器31が無い場合の冷媒冷却温度よりも低い値)となるように冷水の供給量をそれぞれ制御することにより、年間を通して冷媒温度を一定に保つことができる。したがって本実施形態においては、年間、昼夜の大気温度の変動に関わらず、第一及び第二の冷凍サイクル系統50,51の冷媒温度を一定に制御することができ、液化天然ガスの生産量を年中一定に保つことができる。   In such a natural gas liquefaction facility of this embodiment, a third refrigeration cycle system 52 that uses propane refrigerant as a working fluid and generates cold water by heat exchange with the propane refrigerant, and this third refrigeration cycle system 52 By providing the water-cooled second intermediate cooler 33, the second post-cooler 35, and the second condenser 31 that use the cold water generated in the above, it corresponds to the location conditions where seawater, river water, etc. cannot be used. be able to. Further, for example, the intermediate cooling mechanism 25 is the air-cooled first intermediate cooler 32 only, the post-cooling mechanism 26 is the air-cooled first post-cooler 34 only, and the condensing mechanism 10 is the air-cooled first condenser 30 only. In such a case, the coolant cooling temperature varies due to variations in the atmospheric temperature. On the other hand, in the present embodiment, a water-cooled second intermediate cooler 33, a second post-cooler 35, and a second condenser 31 are provided, and their coolant cooling temperatures are set to target values (specifically, for example, atmospheric air The supply amount of cold water is controlled so that the second intermediate cooler 33, the second post-cooler 35, and the second condenser 31 are lower than the refrigerant cooling temperature when the temperature is low. Thus, the refrigerant temperature can be kept constant throughout the year. Therefore, in this embodiment, the refrigerant temperature of the first and second refrigeration cycle systems 50 and 51 can be controlled to be constant regardless of the fluctuation of the atmospheric temperature during the day and night, and the production amount of liquefied natural gas can be reduced. Can be kept constant throughout the year.

また、本実施形態においては、第三の冷凍サイクル系統52で生成した5℃の冷水をガスタービン発電設備の吸気冷却器に供給し、季節、昼夜を問わず、空気圧縮機の吸気温度を10℃程度に冷却する。この吸気冷却の作用により、ガスタービン発電設備の発電量を年間一定に保持することができ、高気温時でも冷媒圧縮機の駆動用電力を確保することができる。したがって、このような観点からも、液化天然ガスの生産量を年中一定に保つことができる。また、吸気冷却により、ガスタービン発電設備の負荷を年間一定とすることができる。そのため、冬季でもガスタービン発電設備の出力を絞る必要が無く、年間を通してガスタービン発電設備を最高効率点で運転できる。   Moreover, in this embodiment, 5 degreeC cold water produced | generated with the 3rd refrigerating cycle system | strain 52 is supplied to the intake air cooler of a gas turbine power generation equipment, and the intake temperature of an air compressor is set to 10 regardless of a season and day and night. Cool to about ℃. By this action of the intake air cooling, the power generation amount of the gas turbine power generation facility can be kept constant throughout the year, and the driving power for the refrigerant compressor can be secured even at high temperatures. Therefore, from this point of view, the production amount of liquefied natural gas can be kept constant throughout the year. Moreover, the load of the gas turbine power generation facility can be made constant throughout the year by intake air cooling. Therefore, it is not necessary to reduce the output of the gas turbine power generation facility even in winter, and the gas turbine power generation facility can be operated at the highest efficiency throughout the year.

なお、上記においては、第二中間冷却器33、第二後置冷却器35、及び第二凝縮器31の冷媒冷却温度の目標値を15℃に設定する場合を例にとって説明したが、その最適値は、液化天然ガス製造設備の立地条件によって異なる。すなわち、例えば冷媒冷却温度の目標値が高すぎる場合、年間を通して冷媒冷却温度を一定にすることが困難となり、一方、例えば冷媒冷却温度の目標値が低すぎる場合は、必要な冷水の流量が多くなり、第三の冷凍サイクル系統52の冷媒圧縮機81の負荷が増え、液化天然ガス製造設備の効率が低下するので、望ましくない。   In the above description, the case where the target value of the coolant cooling temperature of the second intermediate cooler 33, the second post-cooler 35, and the second condenser 31 is set to 15 ° C. has been described as an example. The value depends on the location of the liquefied natural gas production facility. That is, for example, when the target value of the coolant cooling temperature is too high, it becomes difficult to make the coolant cooling temperature constant throughout the year, while when the target value of the coolant cooling temperature is too low, for example, the required flow rate of cold water is large. This increases the load on the refrigerant compressor 81 of the third refrigeration cycle system 52 and reduces the efficiency of the liquefied natural gas production facility, which is not desirable.

次に、本実施形態の天然ガス液化設備において発電設備70の供給電力が低下した場合の動作及び作用効果を説明する。   Next, the operation and effects when the power supplied to the power generation facility 70 is reduced in the natural gas liquefaction facility of the present embodiment will be described.

例えばガスタービン発電装置61a,61b,61cの運転中に、ガスタービン発電装置61cが計画外停止した場合を想定する。発電設備70の制御装置72は、ガスタービン発電装置61cの出力低下を検知し、これに応じて予備機であるガスタービン発電装置61dを起動する指令を出力するとともに、開閉器64に信号を出力して電力経路63cを遮断する。これにより、第一の冷凍サイクル系統50の電動機85と第二の冷凍サイクル系統51の電動機5は、継続して駆動するものの、第三の冷凍サイクル系統52の電動機84は、電力が供給されず停止する。これにより、予備機の起動が完了するまでの出力低下の影響を補償することができる。また、予備機の起動が完了するまでの間は、循環水系統53の弁91を閉じ、冷水貯蔵器75に貯蔵した冷水(詳しくは、予備機の起動が完了するまでの間に必要な容量が貯蔵された水)を第二中間冷却器33、第二後置冷却器35、及び第二凝縮器31に供給することにより、第一の冷凍サイクル系統50及び第二の冷凍サイクル系統51は、通常通りの運転を継続することができる。   For example, it is assumed that the gas turbine power generation device 61c is stopped unplanned during the operation of the gas turbine power generation devices 61a, 61b, 61c. The control device 72 of the power generation facility 70 detects a decrease in the output of the gas turbine power generation device 61c, and outputs a command to start the gas turbine power generation device 61d, which is a spare machine, and outputs a signal to the switch 64. Then, the power path 63c is interrupted. Thereby, the electric motor 85 of the first refrigeration cycle system 50 and the electric motor 5 of the second refrigeration cycle system 51 are continuously driven, but the electric motor 84 of the third refrigeration cycle system 52 is not supplied with electric power. Stop. Thereby, it is possible to compensate the influence of the output decrease until the start-up of the spare machine is completed. Further, until the start of the spare machine is completed, the valve 91 of the circulating water system 53 is closed and the cold water stored in the cold water reservoir 75 (specifically, the capacity required until the start of the spare machine is completed). The first refrigeration cycle system 50 and the second refrigeration cycle system 51 are supplied to the second intermediate cooler 33, the second post-cooler 35, and the second condenser 31. The normal operation can be continued.

そして、予備機の起動が完了した後、制御装置72は、開閉器64を切替えて電気経路63cを接続させ、第三の冷凍サイクル系統52の電動機84に電力を供給して駆動させる。また、循環水系統53の弁91を開き、冷水貯蔵器75に再び冷水を貯蔵させる。このようにして、ガスタービン発電装置61cが停止する前の運転状態に復帰することができる。   Then, after the start-up of the spare machine is completed, the control device 72 switches the switch 64 to connect the electric path 63c, and supplies and drives the electric motor 84 of the third refrigeration cycle system 52. Moreover, the valve 91 of the circulating water system 53 is opened, and the cold water storage 75 stores the cold water again. In this way, it is possible to return to the operating state before the gas turbine power generation device 61c stops.

なお、上記実施形態においては、発電設備70は、予備機を有する場合を例にとって説明したが、これに限られず、予備機が無くてもよい。この場合は、冷水貯蔵器75に貯蔵した冷水が無くなるまでの間に、第一の冷凍サイクル系統50の冷媒圧縮機23,24と第二の冷凍サイクル系統51の冷媒圧縮機1の運転条件を変更し、液化天然ガスの生産量を調整してもよい。   In the above-described embodiment, the power generation facility 70 has been described by way of an example of having a spare machine. However, the present invention is not limited to this, and the spare machine may not be provided. In this case, the operating conditions of the refrigerant compressors 23 and 24 of the first refrigeration cycle system 50 and the refrigerant compressor 1 of the second refrigeration cycle system 51 until the chilled water stored in the chilled water reservoir 75 runs out are changed. It may be changed to adjust the production amount of liquefied natural gas.

本発明の第2の実施形態を図2により説明する。本実施形態は、上記循環水系統53を設けず、第三の冷凍サイクル系統52の作動流体であるプロパン冷媒を上記第二中間冷却器32、第二後置冷却器34、第二凝縮器31、及び吸気冷却器に供給するように構成した実施形態である。   A second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the circulating water system 53 is not provided, and the propane refrigerant that is the working fluid of the third refrigeration cycle system 52 is supplied with the second intermediate cooler 32, the second post-cooler 34, and the second condenser 31. And an embodiment configured to supply to an intake air cooler.

図2は、本実施形態による天然ガス液化設備の要部構成を表す概略図である。なお、この図2において、上記第1の実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。また、図2において、上記発電設備70、電力経路63、及び開閉器64等を便宜上図示していないが、本実施形態においても備えているものとする。   FIG. 2 is a schematic diagram showing a main configuration of the natural gas liquefaction facility according to the present embodiment. In FIG. 2, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate. Moreover, in FIG. 2, although the said power generation equipment 70, the electric power path | route 63, the switch 64, etc. are not illustrated for convenience, it shall be provided also in this embodiment.

本実施形態では、第三の冷凍サイクル系統52Aは、プロパン冷媒を圧縮する冷媒圧縮機81と、この冷媒圧縮機81で圧縮したプロパン冷媒を凝縮させる空冷式の凝縮器82と、この凝縮器82で凝縮したプロパン冷媒を断熱膨張させて温度を低下させる膨張弁83と、この膨張弁83からのプロパン冷媒を第二中間冷却器33、第二後置冷却器35、第二凝縮器31、及び吸気冷却器に供給する供給ヘッダ77と、第二中間冷却器33、第二後置冷却器35、第二凝縮器31、及び吸気冷却器で冷媒や吸気から熱を奪い温度が上昇した水(温水)を回収し、冷媒圧縮機81に供給する回収ヘッダ78とで構成されている。   In the present embodiment, the third refrigeration cycle system 52A includes a refrigerant compressor 81 that compresses propane refrigerant, an air-cooled condenser 82 that condenses the propane refrigerant compressed by the refrigerant compressor 81, and the condenser 82. An expansion valve 83 that adiabatically expands the propane refrigerant condensed in step 1 to lower the temperature, and the propane refrigerant from the expansion valve 83 is supplied to the second intermediate cooler 33, the second post-cooler 35, the second condenser 31, and Supply header 77 to be supplied to the intake air cooler, the second intermediate cooler 33, the second post-cooler 35, the second condenser 31, and the water whose temperature has risen due to heat taken from the refrigerant and the intake air cooler ( A recovery header 78 that recovers (warm water) and supplies it to the refrigerant compressor 81.

以上のように構成された本実施形態においても、上記第1の実施形態同様、海水や河川水等が利用できない立地条件に対応するとともに、時刻や季節による大気温度の変化の影響を受けず、年間を通して液化天然ガスの生産量を一定に保つことができる。また、上記第1の実施形態に比べ、中間媒体である冷水が無いため熱交換の温度差による損失を低減でき、ポンプ類の動力を節約することができる。また、冷水貯蔵器等の機器が不要になるため、機器点数を削減し、設備費を低減することができる。   Even in the present embodiment configured as described above, as in the first embodiment, it corresponds to the location conditions where seawater, river water, and the like cannot be used, and is not affected by changes in atmospheric temperature due to time or season, The production of liquefied natural gas can be kept constant throughout the year. Further, compared to the first embodiment, since there is no cold water as an intermediate medium, loss due to a temperature difference in heat exchange can be reduced, and power of pumps can be saved. In addition, since equipment such as a cold water reservoir is not necessary, the number of equipment can be reduced and the equipment cost can be reduced.

なお、上記第1及び第2の実施形態においては、第三の冷凍サイクル系統52,52Aの作動流体として、自然冷媒であって地球温暖化への影響が小さく入手性が良いプロパン冷媒を用いた場合を例にとって説明したが、これに限られず、第三の冷凍サイクル系統52,52Aの作動流体として動作する温度範囲の条件を満たすものであれば、他の冷媒物質を用いてもよい。また、上記第1及び第2の実施形態においては、第三の冷凍サイクル系統52,52Aは、冷媒圧縮機81を有する蒸気圧縮式冷凍サイクルとする場合を例にとって説明したが、これに限られない。すなわち、冷却水が必要となる制約があるものの、例えば吸収式冷凍サイクルや蒸気フラッシュ式冷凍サイクルとしてもよい。   In the first and second embodiments, a propane refrigerant that is a natural refrigerant and has a low influence on global warming and good availability is used as the working fluid of the third refrigeration cycle systems 52 and 52A. Although the case has been described as an example, the present invention is not limited to this, and other refrigerant substances may be used as long as they satisfy the conditions of the temperature range operating as the working fluid of the third refrigeration cycle systems 52 and 52A. In the first and second embodiments, the third refrigeration cycle system 52, 52A has been described as an example of a vapor compression refrigeration cycle having the refrigerant compressor 81, but the present invention is not limited thereto. Absent. That is, although there are restrictions that require cooling water, for example, an absorption refrigeration cycle or a vapor flash refrigeration cycle may be used.

また、上記第1及び第2の実施形態においては、第一の冷凍サイクル系統50の冷媒圧縮機23,24、第二の冷凍サイクル系統51の冷媒圧縮機1、及び第三の冷凍サイクル系統52又は52Aの冷媒圧縮機84を駆動する駆動装置として電動機85,5,84を用いた場合を例にとって説明したが、これに限られない。すなわち、例えば駆動装置としてガスタービンを用いてもよい。この場合も、上記実施形態同様、年間、昼夜の大気温度の変動に関わらず、液化天然ガスの生産量を年中一定に保つことができる。しかしながら、例えばガスタービンが故障した場合、冷媒圧縮機は継続運転が困難となる。   In the first and second embodiments, the refrigerant compressors 23 and 24 of the first refrigeration cycle system 50, the refrigerant compressor 1 of the second refrigeration cycle system 51, and the third refrigeration cycle system 52. Or although the case where the electric motors 85, 5, and 84 were used as a drive device which drives the refrigerant compressor 84 of 52A was demonstrated as an example, it is not restricted to this. That is, for example, a gas turbine may be used as the drive device. Also in this case, as in the above-described embodiment, the production amount of liquefied natural gas can be kept constant throughout the year regardless of the atmospheric temperature fluctuations during the day and night. However, for example, when the gas turbine fails, it is difficult to continuously operate the refrigerant compressor.

また、上記第1及び第2の実施形態においては、第三の冷凍サイクル系統52,52Aは、第一の冷凍サイクル系統50の中間冷却機構25及び後置冷却機構26にそれぞれ用いる冷熱源の一部(すなわち、第二中間冷却機構33及び第二後置冷却器35の冷熱源)、及び第二の冷凍サイクル系統51の凝縮機構10に用いる冷熱源の一部(すなわち、第二凝縮器31の冷熱源)を生成する場合を例にとって説明したが、これに限られない。すなわち、例えば第三の冷凍サイクル系統は、第一の冷凍サイクル系統50の中間冷却機構及び後置冷却機構に用いる冷熱源の全部、及び第二の冷凍サイクル系統51の凝縮機構に用いる冷熱源の全部を生成するようにしてもよい。このような変形例を第2の実施形態に適用した場合を、図3により説明する。   In the first and second embodiments, the third refrigeration cycle systems 52 and 52A are one of the cooling sources used for the intermediate cooling mechanism 25 and the rear cooling mechanism 26 of the first refrigeration cycle system 50, respectively. Part (that is, the cold heat source of the second intermediate cooling mechanism 33 and the second post-cooler 35) and a part of the cold heat source used for the condensation mechanism 10 of the second refrigeration cycle system 51 (that is, the second condenser 31). However, the present invention is not limited to this. That is, for example, the third refrigeration cycle system includes all of the cold heat sources used for the intermediate cooling mechanism and the post-cooling mechanism of the first refrigeration cycle system 50, and the cold heat source used for the condensation mechanism of the second refrigeration cycle system 51. You may make it produce | generate all. The case where such a modification is applied to the second embodiment will be described with reference to FIG.

図3は、本変形例による天然ガス液化設備の要部構成を表す概略図である。なお、この図3において、上記第2の実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。   FIG. 3 is a schematic diagram showing a main configuration of a natural gas liquefaction facility according to this modification. In FIG. 3, parts that are the same as in the second embodiment are given the same reference numerals, and descriptions thereof are omitted as appropriate.

本変形例では、第一の冷凍サイクル系統50の中間冷却機構は、水冷式の中間冷却器33Aのみで構成され、後置冷却機構は、水冷式の後置冷却器35Aのみで構成されている。また、第二の冷凍サイクル系統51の凝縮機構は、水冷式の凝縮器31Aのみで構成されている。   In this modification, the intermediate cooling mechanism of the first refrigeration cycle system 50 is configured only by the water-cooled intermediate cooler 33A, and the post-cooling mechanism is configured only by the water-cooled post-cooler 35A. . Further, the condensing mechanism of the second refrigeration cycle system 51 is composed of only a water-cooled condenser 31A.

以上のように構成された変形例においても、上記第2の実施形態同様、海水や河川水等が利用できない立地条件に対応するとともに、時刻や季節による大気温度の変化の影響を受けず、年間を通して液化天然ガスの生産量を一定に保つことができる。また、上記第2の実施形態に比べ、水冷式の中間冷却器35A、後置冷却器33A、及び凝縮器31Aにおける冷熱量が増加するため、第三の冷凍サイクル52の冷媒圧縮機81の消費動力が大きくなり、液化天然ガス製造設備の効率が低下するが、機器点数を削減することができ、設備費の低減が図れる可能性がある。   Even in the modified example configured as described above, as in the second embodiment, it corresponds to the location conditions where seawater, river water, etc. cannot be used, and is not affected by changes in the atmospheric temperature due to time or season, Through this, the production amount of liquefied natural gas can be kept constant. Further, since the amount of cold heat in the water-cooled intermediate cooler 35A, the post-cooler 33A, and the condenser 31A is increased as compared with the second embodiment, the consumption of the refrigerant compressor 81 of the third refrigeration cycle 52 is increased. Although the power is increased and the efficiency of the liquefied natural gas production facility is reduced, the number of equipment can be reduced and the facility cost can be reduced.

なお、上記変形例においては、第2の実施形態に適用した場合を例にとって説明したが、これに限られず、第1の実施形態に適用してもよいことは言うまでもない。   In addition, although the case where it applied to 2nd Embodiment was demonstrated as an example in the said modification, it cannot be overemphasized that it may apply to 1st Embodiment, without being restricted to this.

Claims (6)

第一冷媒を圧縮する冷媒圧縮機、前記冷媒圧縮機で圧縮した第一冷媒を冷却する一次冷却機構、前記一次冷却機構で冷却した第一冷媒をさらに冷却する二次冷却機構、前記二次冷却機構で冷却した第一冷媒を膨張させる膨張機構、及び前記膨張機構で膨張した第一冷媒との熱交換により天然ガスを冷却し、蒸発した第一冷媒を前記冷媒圧縮機に供給する主熱交換器を有する第一の冷凍サイクル系統と、第二冷媒を作動流体とし、前記二次冷却機構に用いる冷熱源を生成する第二の冷凍サイクル系統とを備えた天然ガス液化設備であって、
第三冷媒を作動流体とし、前記一次冷却機構に用いる冷熱源の一部又は全部を生成する第三の冷凍サイクル系統を備えることを特徴とする天然ガス液化設備。
A refrigerant compressor that compresses the first refrigerant, a primary cooling mechanism that cools the first refrigerant compressed by the refrigerant compressor, a secondary cooling mechanism that further cools the first refrigerant cooled by the primary cooling mechanism, and the secondary cooling An expansion mechanism for expanding the first refrigerant cooled by the mechanism, and main heat exchange for cooling the natural gas by heat exchange with the first refrigerant expanded by the expansion mechanism and supplying the evaporated first refrigerant to the refrigerant compressor A natural gas liquefaction facility comprising: a first refrigeration cycle system having a vessel; and a second refrigeration cycle system that uses a second refrigerant as a working fluid and generates a cold heat source for use in the secondary cooling mechanism,
A natural gas liquefaction facility comprising a third refrigeration cycle system that uses a third refrigerant as a working fluid and generates part or all of a cold heat source used in the primary cooling mechanism.
請求項1記載の天然ガス液化設備において、前記第三の冷凍サイクル系統は、第三冷媒との熱交換により前記一次冷却機構に用いる冷熱源の一部又は全部としての冷水を生成する熱交換器を有することを特徴とする天然ガス液化設備。   2. The natural gas liquefaction facility according to claim 1, wherein the third refrigeration cycle system generates cold water as part or all of a cold heat source used for the primary cooling mechanism by heat exchange with a third refrigerant. A natural gas liquefaction facility characterized by comprising: 天然ガスを冷却する第一冷媒を作動流体とした第一の冷凍サイクル系統と、第二冷媒を圧縮する冷媒圧縮機、前記冷媒圧縮機で圧縮した第二冷媒を冷却して凝縮させる凝縮機構、前記凝縮機構で凝縮した第二冷媒を膨張させる膨張機構、及び前記膨張機構で膨張した第二冷媒との熱交換により第一冷媒を冷却し、蒸発した第二冷媒を前記冷媒圧縮機に供給する蒸発機構を有する第二の冷凍サイクル系統とを備えた天然ガス液化設備であって、
第三冷媒を作動流体とし、前記凝縮機構に用いる冷熱源の一部又は全部を生成する第三の冷凍サイクル系統を備えることを特徴とする天然ガス液化設備。
A first refrigeration cycle system using a first refrigerant that cools natural gas as a working fluid, a refrigerant compressor that compresses the second refrigerant, a condensation mechanism that cools and condenses the second refrigerant compressed by the refrigerant compressor, The first refrigerant is cooled by heat exchange with an expansion mechanism for expanding the second refrigerant condensed by the condensation mechanism and the second refrigerant expanded by the expansion mechanism, and the evaporated second refrigerant is supplied to the refrigerant compressor. A natural gas liquefaction facility comprising a second refrigeration cycle system having an evaporation mechanism,
A natural gas liquefaction facility comprising a third refrigeration cycle system that uses a third refrigerant as a working fluid and generates part or all of a cold heat source used in the condensing mechanism.
請求項3記載の天然ガス液化設備において、前記第三の冷凍サイクル系統は、第三冷媒との熱交換により前記凝縮機構に用いる冷熱源の一部又は全部としての冷水を生成する熱交換器を有することを特徴とする天然ガス液化設備。   4. The natural gas liquefaction facility according to claim 3, wherein the third refrigeration cycle system includes a heat exchanger that generates cold water as part or all of a cold heat source used for the condensing mechanism by heat exchange with a third refrigerant. A natural gas liquefaction facility comprising: 請求項2又は4記載の天然ガス液化設備において、前記第三の冷凍サイクルの熱交換器で生成した冷水を貯蔵する冷水貯蔵器を備えることを特徴とする天然ガス液化設備。   The natural gas liquefaction facility according to claim 2 or 4, further comprising a cold water reservoir for storing cold water generated by a heat exchanger of the third refrigeration cycle. 請求項5記載の天然ガス液化設備において、前記第一の冷凍サイクルの冷媒圧縮機を駆動する第一電動機と、前記第二の冷凍サイクルの冷媒圧縮機を駆動する第二電動機と、前記第三の冷凍サイクルの冷媒圧縮機を駆動する第三電動機と、供給される電力が低下した場合、前記第一電動機及び第二電動機を駆動しつつ、前記第三電動機を停止させる制御手段とを備えることを特徴とする天然ガス液化設備。   6. The natural gas liquefaction facility according to claim 5, wherein the first electric motor that drives the refrigerant compressor of the first refrigeration cycle, the second electric motor that drives the refrigerant compressor of the second refrigeration cycle, and the third A third electric motor for driving the refrigerant compressor of the refrigeration cycle, and a control means for stopping the third electric motor while driving the first electric motor and the second electric motor when the supplied electric power decreases. Natural gas liquefaction equipment characterized by
JP2009512852A 2007-04-26 2007-04-26 Natural gas liquefaction equipment Expired - Fee Related JP5048059B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/059105 WO2008136121A1 (en) 2007-04-26 2007-04-26 Natural gas liquefaction equipment

Publications (2)

Publication Number Publication Date
JPWO2008136121A1 true JPWO2008136121A1 (en) 2010-07-29
JP5048059B2 JP5048059B2 (en) 2012-10-17

Family

ID=39943243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009512852A Expired - Fee Related JP5048059B2 (en) 2007-04-26 2007-04-26 Natural gas liquefaction equipment

Country Status (2)

Country Link
JP (1) JP5048059B2 (en)
WO (1) WO2008136121A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2499962C2 (en) * 2007-12-04 2013-11-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method and device to cool and/or liquefy hydrocarbon flow
KR101325586B1 (en) 2011-12-09 2013-11-06 고등기술연구원연구조합 Natural gas liquefaction system
CN103773529B (en) * 2012-10-24 2015-05-13 中国石油化工股份有限公司 Pry-mounted associated gas liquefaction system
US10781752B2 (en) 2016-03-23 2020-09-22 Chiyoda Corporation Inlet air cooling system and inlet air cooling method for gas turbine
GB201708515D0 (en) * 2017-05-26 2017-07-12 Bp Exploration Operating Systems and methods for liquefaction of a gas by hybrid heat exchange

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347531B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Single mixed refrigerant gas liquefaction process
US6691531B1 (en) * 2002-10-07 2004-02-17 Conocophillips Company Driver and compressor system for natural gas liquefaction
US7127914B2 (en) * 2003-09-17 2006-10-31 Air Products And Chemicals, Inc. Hybrid gas liquefaction cycle with multiple expanders

Also Published As

Publication number Publication date
JP5048059B2 (en) 2012-10-17
WO2008136121A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4521833B2 (en) Cryogenic refrigeration method and apparatus
CN102334001A (en) Liquefaction method and system
WO2000077466A1 (en) Process and system for liquefying natural gas
JP5023148B2 (en) Power supply facility for natural gas liquefaction plant, control device and control method thereof, and natural gas liquefaction plant
KR20150131255A (en) Apparatus, systems, and methods for low grade waste heat management
JP2009270745A (en) Refrigerating system
JP5048059B2 (en) Natural gas liquefaction equipment
CN116317177A (en) Carbon dioxide energy storage system capable of adapting to wide energy storage pressure range and control method thereof
JP4317793B2 (en) Cooling system
JPWO2008139528A1 (en) Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method
JP4879321B2 (en) Natural gas liquefaction plant and operation method thereof
EP2649387B1 (en) Refrigeration circuit
EP2921761B1 (en) Tank internal pressure suppression device
KR20150094647A (en) Improvements in refrigeration
US11530853B2 (en) Cooling system with work recovery
JPH10238367A (en) Energy storage type gas turbine power generating system
JPH08254368A (en) Method and apparatus for refrigerating article to be ground in freeze grinder
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JP2004020143A (en) Heat pump equipment using wind force
CN102997527A (en) Gas-liquid heat exchange type refrigeration device
JP3211942B2 (en) Method and apparatus for driving coal gasification combined cycle system
JP6926153B2 (en) Superconductor cooling device and superconductor cooling method
KR20140059008A (en) A combined refrigerating and air conditioning system
AU2013203082B2 (en) Method and system for utilising waste heat generated from the processing of natural gas to produce liquefied natural gas
JP4879606B2 (en) Cold supply system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees