JPWO2008132940A1 - Optical information recording medium and manufacturing method thereof - Google Patents

Optical information recording medium and manufacturing method thereof Download PDF

Info

Publication number
JPWO2008132940A1
JPWO2008132940A1 JP2009511729A JP2009511729A JPWO2008132940A1 JP WO2008132940 A1 JPWO2008132940 A1 JP WO2008132940A1 JP 2009511729 A JP2009511729 A JP 2009511729A JP 2009511729 A JP2009511729 A JP 2009511729A JP WO2008132940 A1 JPWO2008132940 A1 JP WO2008132940A1
Authority
JP
Japan
Prior art keywords
layer
recording
oxide
recording medium
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009511729A
Other languages
Japanese (ja)
Inventor
苅屋田 英嗣
英嗣 苅屋田
大久保 修一
修一 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2008132940A1 publication Critical patent/JPWO2008132940A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2578Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25708Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 13 elements (B, Al, Ga)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

【課題】特に情報層の記録層の膜厚が薄くなった場合でも、より高速に記録が可能な、量産性に優れた光学的情報記録媒体を提供する。【解決手段】レーザ光照射により記録層14の光学特性を変化させて情報の記録再生を行う光ディスク10において、酸化物LOxと酸化物MOxとの混合物から成る酸化物保護層LOx−MOxを、第1界面層13及び第2界面層15として記録層14の上下に隣接して積層されたことを特徴とする。ここで、酸化物LOxは、Ce、Nd、Eu、Gd、Dyなどからなるランタノイド系元素の中から選択された1つ以上の元素の酸化物である。酸化物MOxは、Si、Al、Taの中から選択された1つ以上の元素の酸化物である。【選択図】図1Disclosed is an optical information recording medium that is capable of recording at a higher speed and is excellent in mass productivity even when the recording layer of the information layer is thin. In an optical disc 10 that records and reproduces information by changing optical characteristics of a recording layer 14 by laser light irradiation, an oxide protective layer LOx-MOx made of a mixture of an oxide LOx and an oxide MOx is provided. The first interface layer 13 and the second interface layer 15 are stacked adjacent to each other above and below the recording layer 14. Here, the oxide LOx is an oxide of one or more elements selected from lanthanoid elements including Ce, Nd, Eu, Gd, Dy, and the like. The oxide MOx is an oxide of one or more elements selected from Si, Al, and Ta. [Selection] Figure 1

Description

本発明は、レーザ光が照射されて情報が光学的に記録される光学的情報記録媒体に関する。   The present invention relates to an optical information recording medium on which information is optically recorded by irradiation with a laser beam.

一般に、相変化光ディスクなどの書き換え可能な光ディスクでは、記録層にレーザ光を照射し、記録層の磁気光学特性や、反射率、光学的位相等の光学特性を変化させることにより、情報の記録・再生が行われる。このような光ディスクとしては、DVD−RW、DVD−RAMが一般的であり、更に大容量化が可能な光ディスクとして、HD DVD−RAMやHD DVD−RWなどが普及しつつある(特許文献1、非特許文献1等)。   In general, in a rewritable optical disk such as a phase change optical disk, the recording layer is irradiated with laser light, and the recording layer can be used for recording / recording information by changing the optical characteristics such as magneto-optical characteristics, reflectance, and optical phase of the recording layer. Playback is performed. As such an optical disc, DVD-RW and DVD-RAM are generally used, and HD DVD-RAM, HD DVD-RW, and the like are becoming widespread as optical discs capable of further increasing the capacity (Patent Document 1, Non-patent document 1).

上述した光ディスクの記録層にはGeSbTe系やAgInSbTe系の記録材料が用いられており、この記録層の結晶化促進や繰り返し記録再生特性向上のために記録層の上下に隣接して界面層を設ける構造が知られている。この界面層の材料としては、Ge−NやGe−Cr−N等が一般的に用いられる。   A recording layer of GeSbTe or AgInSbTe is used for the recording layer of the optical disc described above, and an interface layer is provided adjacent to the upper and lower sides of the recording layer in order to promote crystallization of the recording layer and improve repeated recording / reproducing characteristics. The structure is known. As the material for the interface layer, Ge—N, Ge—Cr—N, or the like is generally used.

また、近年では情報の更なる高速記録や更なる大容量化の要望が高まっている。その情報の高速記録のためには、光ディスクを今まで以上に高速で回転させる必要がある。例えば、HD DVD−RAMでは、従来の回転速度6.6m/sec(1X速度)に対して、2倍速度である13.2m/secでの動作が望まれている。   In recent years, there has been an increasing demand for further high-speed recording of information and a larger capacity. In order to record the information at high speed, it is necessary to rotate the optical disk at a higher speed than ever before. For example, HD DVD-RAM is desired to operate at 13.2 m / sec, which is twice as fast as the conventional rotational speed of 6.6 m / sec (1 × speed).

また、その更なる大容量化のために、例えば、第一の記録層を有する情報層L0と第二の記録層を有する情報層L1とを、一枚の基板上に順次積層した、二層式光学的情報記録媒体が知られている。ただし、レーザ光が情報層L0を透過して情報層L1に到達するので、情報層L0の光透過率を高めるため、情報層L0の記録層の膜厚を従来の光学的情報記録媒体に比べて約半分程度に薄くする必要がある。   In order to further increase the capacity, for example, an information layer L0 having a first recording layer and an information layer L1 having a second recording layer are sequentially laminated on a single substrate. An optical information recording medium is known. However, since the laser light passes through the information layer L0 and reaches the information layer L1, in order to increase the light transmittance of the information layer L0, the thickness of the recording layer of the information layer L0 is compared with that of a conventional optical information recording medium. It is necessary to make it about half as thin.

特開2004−213862号公報JP 2004-213862 A Japanese Journal of Applied Physics Vol.43, No.7B, 2004, pp.4859-4862 "Signal-to-Noise Ratio in a PRML Detection" S.OHKUBO et alJapanese Journal of Applied Physics Vol.43, No.7B, 2004, pp.4859-4862 "Signal-to-Noise Ratio in a PRML Detection" S.OHKUBO et al

しかしながら、上述の技術には以下の問題点がある。   However, the above technique has the following problems.

一つのみの情報層を有する光学的情報記録媒体は、次のような膜構成を一例として有する。すなわち、透明基板上に、第1誘電体層、下側界面層、記録層、上側界面層、第2誘電体層、反射層が順に積層された構成であり、各界面層にはGeN層が用いられている。このような構成の光学的情報記録媒体に、従来の2倍の線速度(13.2m/sec)で回転させて情報を記録した。その結果、通常の速度(1倍速:6.6m/sec)で情報を記録する場合に比べ、繰り返し記録再生回数の比較的少ない段階から、記録信号の劣化が起こるという問題点が確認された(図4[1]参照)。   An optical information recording medium having only one information layer has the following film configuration as an example. That is, a first dielectric layer, a lower interface layer, a recording layer, an upper interface layer, a second dielectric layer, and a reflective layer are sequentially laminated on a transparent substrate, and each interface layer has a GeN layer. It is used. Information was recorded on the optical information recording medium having the above configuration by rotating at a linear velocity (13.2 m / sec) twice that of the prior art. As a result, it was confirmed that the recording signal was deteriorated from a stage where the number of repeated recording / reproducing operations was relatively small as compared with the case of recording information at a normal speed (1 × speed: 6.6 m / sec) ( (See FIG. 4 [1]).

また、大容量化のために開発されている二層式光学的情報記録媒体は、次のような膜構成を一例として有する。すなわち、透明基板上に、第1誘電体層、下側界面層、記録層、上側界面層、第2誘電体層、金属半透過層、透過率調整層が順に積層されて成る第1情報層を有し、この上に光学分離層を介して第2情報層が設けられる。ここでも、記録層の上下に隣接した界面層としては、上述したGeN層が一般的に用いられている。また、第1誘電体層及び第2誘電体層にはZnS−SiOが用いられ、金属半透過層としてはAg系の金属半透過膜が用いられている。更に、透過率調整層としては、第1誘電体層及び第2誘電体層と同じZnS−SiO、又はTiOが用いられている。この場合の第1情報層の記録層の膜厚は、透過率を高めるため、一つのみの情報層を有する光学的情報記録媒体のそれの半分程度となっている。しかし、このように記録層の膜厚が薄くなると、記録層の結晶化速度が遅くなる。そのため、特に2倍速以上の高速記録を行う際には、記録層の結晶化速度が遅すぎることにより、正確な情報が記録できないという問題点が発生している。なお、記録層の膜厚が薄くなると記録層の結晶化速度が遅くなる理由は、記録層の膜厚が薄くなると記録層に結晶核が生じにくくなるためである。In addition, a two-layer optical information recording medium developed for increasing the capacity has the following film configuration as an example. That is, a first information layer formed by sequentially laminating a first dielectric layer, a lower interface layer, a recording layer, an upper interface layer, a second dielectric layer, a metal semi-transmissive layer, and a transmittance adjusting layer on a transparent substrate. And a second information layer is provided thereon via an optical separation layer. Also here, the above-described GeN layer is generally used as the interface layer adjacent to the top and bottom of the recording layer. In addition, ZnS—SiO 2 is used for the first dielectric layer and the second dielectric layer, and an Ag-based metal semi-transmissive film is used as the metal semi-transmissive layer. Further, as the transmittance adjusting layer, the same ZnS—SiO 2 or TiO 2 as that of the first dielectric layer and the second dielectric layer is used. In this case, the thickness of the recording layer of the first information layer is about half that of an optical information recording medium having only one information layer in order to increase the transmittance. However, when the thickness of the recording layer is reduced in this way, the crystallization speed of the recording layer is reduced. For this reason, particularly when performing high-speed recording at a double speed or higher, there is a problem that accurate information cannot be recorded because the crystallization speed of the recording layer is too slow. The reason why the crystallization speed of the recording layer decreases as the recording layer thickness decreases is that crystal nuclei are less likely to occur in the recording layer as the recording layer thickness decreases.

また、上述したGeN層を成膜するには、成膜ガス雰囲気中に窒素ガスを導入することが必須である。このとき、記録層上にGeN層を上側界面層として成膜する場合、チャンバー内に導入した窒素ガスによって記録層の表面が窒化されるおそれがある。このような記録層表面の窒化反応は一般的に不規則であり、このため光学的情報記録媒体の記録再生特性が一定でないという問題点もあった。   Further, in order to form the above-described GeN layer, it is essential to introduce nitrogen gas into the film forming gas atmosphere. At this time, when the GeN layer is formed on the recording layer as the upper interface layer, the surface of the recording layer may be nitrided by the nitrogen gas introduced into the chamber. Such a nitridation reaction on the surface of the recording layer is generally irregular, and thus there is a problem that the recording / reproducing characteristics of the optical information recording medium are not constant.

そこで、本発明の目的は、かかる問題点に鑑みてなされたものであって、特に膜厚の薄い記録層に対しても、より高速に記録が可能な、量産性に優れた光学的情報記録媒体を提供することにある。   Accordingly, an object of the present invention has been made in view of such problems, and optical information recording excellent in mass productivity, capable of recording at a higher speed, especially for a thin recording layer. To provide a medium.

本発明に係る光学的情報記録媒体は、レーザ光の照射によって光学特性が変化する記録層と、前記記録層に積層された保護層とを備えた光学的情報記録媒体であって、前記保護層は、ランタノイド系元素の中から選択された一つ以上の元素の酸化物LOxと、Si、Al及びTaの中から選択された一つ以上の元素の酸化物MOxとの混合物を含むことを特徴とするものである。   An optical information recording medium according to the present invention is an optical information recording medium comprising a recording layer whose optical characteristics change by irradiation with laser light, and a protective layer laminated on the recording layer, wherein the protective layer Includes a mixture of an oxide LOx of one or more elements selected from lanthanoid elements and an oxide MOx of one or more elements selected from Si, Al, and Ta It is what.

本発明に係る光学的情報記録媒体の製造方法は、記録層と保護層とからなる光学的情報記録媒体を製造する方法であって、前記記録層を成膜した後に、ランタノイド系元素の中から選択された一つ以上の元素の酸化物LOxと、Si、Al及びTaの中から選択された一つ以上の元素の酸化物MOxとの混合物を含むターゲットを用いて、酸素ガスを含まない希ガス雰囲気中でスパッタリングにより前記保護層を成膜することを特徴とするものである。   The method for producing an optical information recording medium according to the present invention is a method for producing an optical information recording medium comprising a recording layer and a protective layer, and after forming the recording layer, the lanthanoid element Using a target including a mixture of an oxide LOx of one or more selected elements and an oxide MOx of one or more selected from Si, Al, and Ta, a rare gas that does not contain oxygen gas is used. The protective layer is formed by sputtering in a gas atmosphere.

本発明によれば、ランタノイド系元素の中から選択された一つ以上の元素の酸化物LOxとSi、Al及びTaの中から選択された一つ以上の元素の酸化物MOxとの混合物を用いることにより、レーザ光の吸収が少なく、かつ、記録層に結晶核を生じさせやすい保護層を得ることができる。したがって、高線速下や薄い記録層に対しても記録再生信号の劣化が少ない光学的情報記録媒体を提供できる。   According to the present invention, a mixture of an oxide LOx of one or more elements selected from lanthanoid elements and an oxide MOx of one or more elements selected from Si, Al, and Ta is used. Thus, it is possible to obtain a protective layer that absorbs less laser light and easily generates crystal nuclei in the recording layer. Therefore, it is possible to provide an optical information recording medium in which the recording / reproduction signal is hardly deteriorated even at a high linear velocity or a thin recording layer.

以下、本発明の実施形態を図に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の実施形態1に係る光ディスク10は図1に示すように、書換型の相変化型光ディスクである。光ディスク10は、透明基板11上に、第1誘電体層12、第1界面層13、記録層14、第2界面層15、第2誘電体層16、金属反射層17がこの順に積層されている。前記界面層は、光デイスク(光学式情報記録媒体)における保護層をなすものである。   An optical disc 10 according to Embodiment 1 of the present invention is a rewritable phase change optical disc as shown in FIG. In the optical disk 10, a first dielectric layer 12, a first interface layer 13, a recording layer 14, a second interface layer 15, a second dielectric layer 16, and a metal reflective layer 17 are laminated on a transparent substrate 11 in this order. Yes. The interface layer forms a protective layer in an optical disk (optical information recording medium).

記録層14としては、GeSbTe、AgInSbTeなどの一般的な記録材料を用いることができる。第1情報層のみが基板上に設けられた構成では、記録層14の膜厚は繰り返し記録再生動作を考慮すると、13nm〜15nm程度が望ましい。金属反射層17としては、高熱伝導率と高透過率の両立の観点からAgを主成分とする材料が好適である。そのAgを主成分とする材料には、耐候性向上のために、Pd、Cu、Ge、In、Ndなどの元素を添加してもよい。   As the recording layer 14, a general recording material such as GeSbTe or AgInSbTe can be used. In the configuration in which only the first information layer is provided on the substrate, the thickness of the recording layer 14 is desirably about 13 nm to 15 nm in consideration of repeated recording and reproduction operations. The metal reflective layer 17 is preferably made of a material mainly composed of Ag from the viewpoint of achieving both high thermal conductivity and high transmittance. In order to improve weather resistance, an element such as Pd, Cu, Ge, In, or Nd may be added to the material containing Ag as a main component.

第1誘電体層12としては、ZnS−SiOが一般的に用いられる。その組成は、(ZnS)(SiO1−xの組成表現において、0.5≦x≦0.9の範囲が屈折率及び生産性の観点から好適である。The first dielectric layer 12, ZnS-SiO 2 is generally used. In the composition expression of (ZnS) x (SiO 2 ) 1-x , the composition is preferably in the range of 0.5 ≦ x ≦ 0.9 from the viewpoint of refractive index and productivity.

第1界面層13及び第2界面層15として、GeN層などが用いられてきた。これに対し、本実施形態では、第1界面層13及び第2界面層15として、GeN層の代わりに、酸化物LOxと酸化物MOxとの混合物から成る酸化物保護層LOx−MOxを用いている。ここで、酸化物LOxとは、Ce、Nd、Eu、Gd、Dyなどのランタノイド系元素の中から選択された1つ以上の元素の酸化物である。酸化物MOxとは、Si、Al、Taの中から選択された1つ以上の元素の酸化物である。その結果、記録層14の結晶化速度を速くできるので、高線速下や薄い記録層14に対しても記録再生信号の劣化が少ない光学的情報記録媒体を提供できる。   A GeN layer or the like has been used as the first interface layer 13 and the second interface layer 15. In contrast, in the present embodiment, as the first interface layer 13 and the second interface layer 15, an oxide protective layer LOx-MOx made of a mixture of oxide LOx and oxide MOx is used instead of the GeN layer. Yes. Here, the oxide LOx is an oxide of one or more elements selected from lanthanoid elements such as Ce, Nd, Eu, Gd, and Dy. The oxide MOx is an oxide of one or more elements selected from Si, Al, and Ta. As a result, since the crystallization speed of the recording layer 14 can be increased, it is possible to provide an optical information recording medium with little deterioration of the recording / reproducing signal even at a high linear velocity or even with respect to the thin recording layer 14.

ランタノイド系元素は、酸素と比較的結合しやすく、一旦、酸化物LOxを形成すると非常に安定である。かつ、その酸化物LOxは、高密度記録用のレーザ光の波長380nm〜430nmの範囲に対して、消衰係数が非常に小さく吸収が少ない。一方、Si、Al、Taなどの酸化物MOxは、記録層14との密着性に優れている。このような性質を有する酸化物LOxと酸化物MOxとを混合すると、何らかの相乗作用が働くことにより、レーザ光の吸収が少なく、かつ、記録層14に結晶核を生じさせやすい界面層材料が得られる。   Lanthanoid elements are relatively easy to bond with oxygen and are very stable once oxide LOx is formed. In addition, the oxide LOx has a very small extinction coefficient and little absorption with respect to a wavelength range of 380 nm to 430 nm of laser light for high density recording. On the other hand, the oxide MOx such as Si, Al, and Ta has excellent adhesion to the recording layer 14. When the oxide LOx and the oxide MOx having such properties are mixed, some kind of synergistic action acts to obtain an interface layer material that absorbs less laser light and easily generates crystal nuclei in the recording layer 14. It is done.

図2は、本発明の実施形態2に係る光学式情報記録媒体である光ディスク(タイプA)を示す断面図である。以下、この図面に基づき説明する。なお、図1と基本的に同じ部分は同じ符号を付す。   FIG. 2 is a cross-sectional view showing an optical disc (type A) which is an optical information recording medium according to Embodiment 2 of the present invention. Hereinafter, description will be given based on this drawing. Note that basically the same parts as those in FIG.

本実施形態の光ディスク40は、透明基板11上に、第1誘電体層12、第1界面層13、記録層14、第2界面層15、第2誘電体層16、金属半透過層37、第3誘電体層18がこの順に積層されている。この積層体を、以下第1情報層41という。そして、第1情報層41の上に光学分離層31が形成され、更にその上に第2情報層42が配置される。第2情報層42は、第1情報層41と同様に透明基板21上に、金属反射層22、第3誘電体層23、第3界面層24、記録層25、第4界面層26、第4誘電体層27がこの順に積層されている。前記界面層は、光デイスク(光学式情報記録媒体)における保護層をなすものである。   The optical disk 40 of the present embodiment includes a first dielectric layer 12, a first interface layer 13, a recording layer 14, a second interface layer 15, a second dielectric layer 16, a metal semi-transmissive layer 37, on a transparent substrate 11. The third dielectric layer 18 is laminated in this order. Hereinafter, this laminate is referred to as a first information layer 41. Then, the optical separation layer 31 is formed on the first information layer 41, and the second information layer 42 is further disposed thereon. Similar to the first information layer 41, the second information layer 42 is formed on the transparent substrate 21 with the metal reflective layer 22, the third dielectric layer 23, the third interface layer 24, the recording layer 25, the fourth interface layer 26, Four dielectric layers 27 are laminated in this order. The interface layer forms a protective layer in an optical disk (optical information recording medium).

第1情報層50と第2情報層51は、別の透明基板11,21上に各構成要素が積層され、最後に紫外線硬化樹脂から成る光学分離層31を介して、貼り合わされて二層の情報層を有する光ディスク40となる。光ディスク40では、情報の記録再生に用いられるレーザ光が第1情報層41側から入射される。ここでは、このような構成の光ディスク40をタイプAの光学的情報記録媒体と称する。   The first information layer 50 and the second information layer 51 are each laminated on another transparent substrate 11, 21, and finally bonded together via an optical separation layer 31 made of an ultraviolet curable resin. An optical disc 40 having an information layer is obtained. In the optical disc 40, a laser beam used for recording / reproducing information is incident from the first information layer 41 side. Here, the optical disc 40 having such a configuration is referred to as a type A optical information recording medium.

図3は、本発明の実施形態2に係る光学式情報記録媒体である光ディスク(タイプB)を示す断面図である。以下、この図面に基づき説明する。なお、図2と基本的に同じ部分は同じ符号を付す。   FIG. 3 is a cross-sectional view showing an optical disc (type B) which is an optical information recording medium according to Embodiment 2 of the present invention. Hereinafter, description will be given based on this drawing. Note that basically the same parts as those in FIG.

本実施形態では、光ディスク60のような構成にしてもよい。光ディスク60では、透明基板21上に、第2情報層42として、金属反射層22、第3誘電体層23、第3界面層24、記録層25、第4界面層26、第4誘電体層27がこの順に積層され、その上に紫外線硬化樹脂から成る光学分離層31が形成される。このとき、光学分離層31上に同時にランドとグルーブからなる案内溝(図示せず)を形成し、その上に、第1情報層61として、第3誘電体層18、金属半透過層37、第2誘電体層16、第2界面層15、記録層14、第1界面層13、第1誘電体層12がこの順に積層され、最後に紫外線硬化樹脂を用いて、厚さが100μm程度の透明シート51が接着される。前記界面層は、光デイスク(光学式情報記録媒体)における保護層をなすものである。   In the present embodiment, a configuration like the optical disc 60 may be used. In the optical disc 60, the metal reflective layer 22, the third dielectric layer 23, the third interface layer 24, the recording layer 25, the fourth interface layer 26, and the fourth dielectric layer are formed on the transparent substrate 21 as the second information layer 42. 27 are laminated in this order, and an optical separation layer 31 made of an ultraviolet curable resin is formed thereon. At this time, a guide groove (not shown) made of lands and grooves is formed on the optical separation layer 31 at the same time, and a third dielectric layer 18, a metal semi-transmissive layer 37, and the like are formed thereon as the first information layer 61. The second dielectric layer 16, the second interface layer 15, the recording layer 14, the first interface layer 13, and the first dielectric layer 12 are laminated in this order, and finally the thickness is about 100 μm using an ultraviolet curable resin. The transparent sheet 51 is adhered. The interface layer forms a protective layer in an optical disk (optical information recording medium).

このタイプの光学的情報記録媒体では、情報の記録再生に用いられるレーザ光は、透明シート51を介して第1情報層61側から入射される。以下、このような構成の光ディスク60をタイプBの光学的情報記録媒体と称する。   In this type of optical information recording medium, laser light used for recording / reproducing information is incident from the first information layer 61 side through the transparent sheet 51. Hereinafter, the optical disc 60 having such a configuration is referred to as a type B optical information recording medium.

上述したタイプAとタイプBの光学的情報記録媒体において、レーザ光はいずれも第1情報層側から入射されるため、各々のタイプの媒体の作製手順は異なってもレーザ光からみた第1情報層の積層順序は変わらない。したがって、ここでは、主にタイプAの光学的情報記録媒体の第1情報層について説明する。   In the type A and type B optical information recording media described above, since the laser light is incident from the first information layer side, the first information viewed from the laser light is different even if the production procedure of each type of medium is different. The stacking order of the layers does not change. Therefore, here, the first information layer of the type A optical information recording medium will be mainly described.

図2に示した記録層14としては、GeSbTe、AgInSbTeなどの一般的な記録材料を用いることができる。金属半透過層37としては、高熱伝導率と高透過率の両立の観点からAgを主成分とする材料が好適である。金属半透過層37には、耐候性向上のために、Pd、Cu、Ge、In、Ndなどの元素を適宜添加してもよい。   As the recording layer 14 shown in FIG. 2, a general recording material such as GeSbTe or AgInSbTe can be used. As the metal semi-transmissive layer 37, a material mainly composed of Ag is suitable from the viewpoint of achieving both high thermal conductivity and high transmittance. Elements such as Pd, Cu, Ge, In, and Nd may be appropriately added to the metal semi-transmissive layer 37 in order to improve weather resistance.

第1誘電体層12としては、ZnS−SiOが一般的に用いられる。その組成は、屈折率及び生産性の観点から、(ZnS)(SiO1−xの組成表現において、0.5≦x≦0.9の範囲が好適である。The first dielectric layer 12, ZnS-SiO 2 is generally used. The composition is preferably in the range of 0.5 ≦ x ≦ 0.9 in the composition expression of (ZnS) x (SiO 2 ) 1-x from the viewpoint of refractive index and productivity.

第1界面層13及び第2界面層15としては、GeN層などが用いられていた。これに対し、本実施形態では、第1界面層13及び第2界面層15として、そのGeN層に代えて、酸化物LOxと酸化物MOxとの混合物から成る酸化物保護層LOx−MOxを用いた。ここで、酸化物LOxとは、Ce、Nd、Eu、Gd、Dyなどのランタノイド系元素(以下「A群」という。)の中から選択された少なくとも1つ以上の元素の酸化物である。酸化物MOxとは、Si、Al、Ta(以下「B群」という。)の中から選択された少なくとも1つ以上の元素の酸化物である。これにより、記録層14の結晶化速度を速くできるので、高線速下や薄い記録層14に対しても記録再生信号の劣化が少ない光学的情報記録媒体を提供できる。   As the first interface layer 13 and the second interface layer 15, a GeN layer or the like has been used. In contrast, in this embodiment, as the first interface layer 13 and the second interface layer 15, an oxide protective layer LOx-MOx made of a mixture of oxide LOx and oxide MOx is used instead of the GeN layer. It was. Here, the oxide LOx is an oxide of at least one element selected from lanthanoid elements (hereinafter referred to as “Group A”) such as Ce, Nd, Eu, Gd, and Dy. The oxide MOx is an oxide of at least one element selected from Si, Al, and Ta (hereinafter referred to as “B group”). Thereby, since the crystallization speed of the recording layer 14 can be increased, it is possible to provide an optical information recording medium in which the recording / reproducing signal is hardly deteriorated even at a high linear velocity or even for the thin recording layer 14.

また、酸化物保護層LOx−MOxにおいて、A群から選択された酸化物LOxの含有量は35mol%〜85mol%の範囲にあることが望ましい。また、酸化物保護層LOx−MOxは、A群から選択された酸化物LOxをPmol%かつB群から選択された酸化物MOxをQmol%含み、35≦P≦85、かつP+Q≧99を満たす組成の酸化物ターゲットを用いて、酸素ガスを含まない雰囲気中でスパッタリングにより成膜することが望ましい。ここで、P+Q≧99とした理由は、ターゲット作製時にルツボ等の材料成分が1mol%未満混入してしまうからである。この「1mol%未満」は、過去のターゲット作製の実績によって得られた数値である。   In the oxide protective layer LOx-MOx, the content of the oxide LOx selected from Group A is desirably in the range of 35 mol% to 85 mol%. The oxide protective layer LOx-MOx contains Pmol% of the oxide LOx selected from the A group and Q mol% of the oxide MOx selected from the B group, and satisfies 35 ≦ P ≦ 85 and P + Q ≧ 99. It is desirable to form a film by sputtering using an oxide target having a composition in an atmosphere not containing oxygen gas. Here, the reason for setting P + Q ≧ 99 is that less than 1 mol% of a material component such as a crucible is mixed during target fabrication. This “less than 1 mol%” is a numerical value obtained based on past results of target production.

なお、上記実施形態1及び2では、最も好ましい形態として、記録層の上下に隣接して酸化物保護層LOx−MOxを積層している。しかし、本発明はこれに限定されるものではなく、例えば、記録層の上下の一方に隣接して酸化物保護層LOx−MOxを積層してもよく、記録層に他の層を挟んで酸化物保護層LOx−MOxを積層してもよい。   In the first and second embodiments, the oxide protective layers LOx-MOx are stacked adjacent to the upper and lower sides of the recording layer as the most preferable mode. However, the present invention is not limited to this. For example, the oxide protective layer LOx-MOx may be stacked adjacent to one of the upper and lower sides of the recording layer, and the recording layer may be oxidized with another layer interposed therebetween. An object protective layer LOx-MOx may be stacked.

次に、実施形態1を更に具体化した実施例1について説明する。図1において、透明基板11上に、第1誘電体層12、第1界面層13、記録層14、第2界面層15、第2誘電体層16、金属反射層17をこの順に積層し、第1界面層13及び第2界面層15の材料と組成を種々に変化させて光ディスク10を作製した。第1誘電体層12としてZnS−SiOを50nm、記録層14としてGeSbTeを14nm、第2誘電体層16としてZnS−SiOを25nm、金属反射層17としてAgPdCuを、それぞれ成膜した。Next, Example 1 that further embodies Embodiment 1 will be described. In FIG. 1, on a transparent substrate 11, a first dielectric layer 12, a first interface layer 13, a recording layer 14, a second interface layer 15, a second dielectric layer 16, and a metal reflective layer 17 are laminated in this order. The optical disk 10 was manufactured by changing the materials and compositions of the first interface layer 13 and the second interface layer 15 in various ways. ZnS—SiO 2 was deposited to 50 nm as the first dielectric layer 12, GeSbTe was deposited to 14 nm as the recording layer 14, ZnS—SiO 2 was deposited to 25 nm as the second dielectric layer 16, and AgPdCu was deposited as the metal reflective layer 17.

ここで、第1界面層13及び第2界面層15に、Gd(80mol%)−SiO(20mol%)を用いた媒体及び従来のGeN層を用いた媒体を作製し、各々の媒体をHD DVD−RWの2倍線速相当(CLV=13.2m/sec)で回転させ、性能指標であるPRSNRの繰り返し記録再生特性を測定した。Here, a medium using Gd 2 O 3 (80 mol%)-SiO 2 (20 mol%) and a medium using a conventional GeN layer were prepared for the first interface layer 13 and the second interface layer 15, respectively. The medium was rotated at twice the linear velocity of HD DVD-RW (CLV = 13.2 m / sec), and the repeated recording / reproduction characteristics of PRSNR as a performance index were measured.

なお、PRSNR(Partial Response Signal to Noise Ratio)とは、光ディスクの信号品質を示す性能指数であり、詳しくは、再生信号のS/N(信号対雑音比)、及び、実際の再生波形と理論的なPR波形線形性を同時に表現できる指標であり、光ディスクのビット誤り率の推定などに用いられる。更に詳しいことは、例えば特許文献1、非特許文献1などに記載されている。   The PRSNR (Partial Response Signal to Noise Ratio) is a figure of merit that indicates the signal quality of the optical disk. Specifically, the S / N (signal to noise ratio) of the reproduction signal, the actual reproduction waveform, and the theoretical It is an index that can simultaneously express the linearity of PR waveform, and is used for estimating the bit error rate of an optical disc. Further details are described in, for example, Patent Document 1 and Non-Patent Document 1.

図4[1]に比較評価結果を示す。図4[1]より、Gd−SiO膜を界面層として用いた場合は、GeN層を用いた媒体に比べ、繰り返し記録再生時のPRSNRの低下度合いが少ないことがわかる。GeN層を用いた場合は、10000回の繰り返し記録再生後のPRSNRが15.4であり、規格値「PRSNR>15」をかろうじて満たしている。これらの特性の違いは、図4[2]に示すように、Gd−SiO膜を界面層として用いた媒体のDC消去率がより高いことから、記録層の結晶化速度が速いことによるものである。FIG. 4 [1] shows the comparative evaluation results. From FIG. 4 [1], it can be seen that when the Gd 2 O 3 —SiO 2 film is used as the interface layer, the degree of decrease in PRSNR during repeated recording and reproduction is less than that of the medium using the GeN layer. When the GeN layer is used, the PRSNR after repeated recording and reproduction of 10,000 times is 15.4, which barely satisfies the standard value “PRSNR> 15”. As shown in FIG. 4 [2], the difference in these characteristics is that the medium using the Gd 2 O 3 —SiO 2 film as the interface layer has a higher DC erasure rate, so that the crystallization speed of the recording layer is faster. It is because.

次に、LOx及びMOxの材料及び組成と繰り返し記録再生特性及び保存安定性との関係について説明する。ここで、繰り返し記録再生特性は、ディスク回転線速が13.2m/secの場合において、10000回記録再生後のPRSNRの測定値(DOW10K)を示す。一般的に、PRSNRが15以上であれば通常の記録再生動作に影響はない。保存安定性については、10回繰り返し記録再生を行ったデータについて、温度80℃かつ湿度85%かつ500時間の環境試験を行い、同一箇所を測定した場合のPRSNRの測定値を示す。それらの結果を図5に示す。   Next, the relationship between the material and composition of LOx and MOx, repeated recording / reproduction characteristics, and storage stability will be described. Here, the repetitive recording / reproducing characteristics indicate a measured value (DOW10K) of PRSNR after 10,000 times of recording / reproducing in the case where the linear velocity of the disk rotation is 13.2 m / sec. Generally, if the PRSNR is 15 or more, the normal recording / reproducing operation is not affected. With respect to storage stability, PRSNR measured values are shown when the same place is measured by conducting an environmental test at a temperature of 80 ° C. and a humidity of 85% for 500 hours with respect to data obtained by repeated recording and reproduction 10 times. The results are shown in FIG.

図5より、10000回記録再生後のPRSNR(DOW10K)は、LOxの材料の含有量が少なくなるに従い、低下している。これは、LOxの含有量の低下に伴い、結晶化速度が遅くなっていることに起因するものである。また、環境試験後のPRSNRは、LOxの材料の含有量が35mol%〜85mol%の範囲では良好な値を示すが、この範囲外では劣化している。35mol%未満では、上述したようにLOxの含有量の低下に伴い、結晶化速度が遅くなっていることに起因すると思われる。一方、85mol%を超えてLOxの材料が含有されると、MOxの材料の含有量が相対的に少なくなるため、記録層に対する親和性が低下し、剥離しやすくなると思われる。   From FIG. 5, the PRSNR (DOW10K) after 10,000 recording / reproducing operations decreases as the LOx material content decreases. This is due to the fact that the crystallization rate is slowed with the decrease in the LOx content. Further, the PRSNR after the environmental test shows a good value when the content of the LOx material is in the range of 35 mol% to 85 mol%, but is deteriorated outside this range. If it is less than 35 mol%, it is considered that the crystallization rate is slowed as the LOx content is reduced as described above. On the other hand, when the LOx material exceeds 85 mol%, the content of the MOx material is relatively reduced, so that the affinity for the recording layer is lowered and it is likely that the material is easily peeled off.

次に、第二実施形態を更に具体化した実施例2について説明する。図2において光ディスク40では、透明基板11が設けられており、透明基板11上には、第1誘電体層12、第1界面層13、記録層14、第2界面層15、第2誘電体層16、金属半透過層37、第3誘電体層18がこの順に積層されている。この積層体が第1情報層41である。そして、第1情報層41の上に光学分離層31が形成され、更にその上に第2情報層42が配置される。第2情報層42は、第1情報層41と同様に、透明基板21上に、金属反射層22、第3誘電体層23、第3界面層24、記録層25、第4界面層26、第4誘電体層27がこの順に積層される。第1情報層41と第2情報層42は、それぞれ別の透明基板11,21上に積層され、最後に紫外線硬化樹脂から成る光学分離層31を介して、互いに貼り合わされ、二層の情報層41,42を有する光ディスク40となる。光ディスク40では、情報の記録再生に用いられるレーザ光が第1情報層41側から入射される。したがって、これはタイプAの光学的情報記録媒体である。   Next, Example 2 that further embodies the second embodiment will be described. In FIG. 2, the optical disc 40 is provided with a transparent substrate 11 on which a first dielectric layer 12, a first interface layer 13, a recording layer 14, a second interface layer 15, and a second dielectric material are provided. The layer 16, the metal semi-transmissive layer 37, and the third dielectric layer 18 are laminated in this order. This stacked body is the first information layer 41. Then, the optical separation layer 31 is formed on the first information layer 41, and the second information layer 42 is further disposed thereon. Similar to the first information layer 41, the second information layer 42 is formed on the transparent substrate 21 with the metal reflective layer 22, the third dielectric layer 23, the third interface layer 24, the recording layer 25, the fourth interface layer 26, The fourth dielectric layer 27 is laminated in this order. The first information layer 41 and the second information layer 42 are laminated on different transparent substrates 11 and 21, respectively, and finally bonded to each other via an optical separation layer 31 made of an ultraviolet curable resin. The optical disc 40 having 41 and 42 is obtained. In the optical disc 40, a laser beam used for recording / reproducing information is incident from the first information layer 41 side. Therefore, this is a type A optical information recording medium.

本実施例では、第1情報層41のみを作製し、これにダミー基板を貼り合わせて検討を行った結果について述べる。第2情報層42に関しては、実施例1で述べた媒体構成を単に逆に積層しただけであるから、実施例1に基づいた材料選定を行えばよい。   In the present embodiment, only the first information layer 41 is manufactured and a dummy substrate is bonded to the first information layer 41, and the results of examination are described. Regarding the second information layer 42, the medium configuration described in the first embodiment is simply laminated in reverse, and therefore material selection based on the first embodiment may be performed.

第1情報層41は、第1誘電体層12、第2誘電体層16及び第3誘電体層18としてZnS−SiOをそれぞれ50nm、17nm及び110nm、記録層14としてGeSbTeを7nm、金属半透過層層37としてAgPdCuを10nm、それぞれ成膜した。The first information layer 41 includes ZnS-SiO 2 of 50 nm, 17 nm, and 110 nm as the first dielectric layer 12, the second dielectric layer 16, and the third dielectric layer 18, and 7 nm of GeSbTe as the recording layer 14. As the transmissive layer layer 37, AgPdCu was formed to a thickness of 10 nm.

ここで、第1界面層13及び第2界面層15として、LOxの中からGd及びEuを選択し、MOxの中からSiOを選択したGd(40mol%)−Eu(40mol%)−SiO(20mol%)層を用いた媒体、及び従来のGeN層を用いた媒体を作製した。そして、各々の媒体をHD DVD−RWの2倍線速相当(CLV=13.2m/sec)で回転させ、性能指標であるPRSNRの繰り返し記録再生特性を測定した。界面層の膜厚は各々5nmである。Here, as the first interface layer 13 and the second interface layer 15, and select the Gd 2 O 3 and Eu 2 O 3 from the LOx, Gd 2 O 3, which selects the SiO 2 from the MOx (40 mol%) -Eu 2 O 3 (40mol%) - were prepared SiO 2 (20mol%) layer medium was used, and a medium using a conventional GeN layer. Each medium was rotated at a double linear velocity equivalent to HD DVD-RW (CLV = 13.2 m / sec), and repeated recording / reproduction characteristics of PRSNR as a performance index were measured. The thickness of each interface layer is 5 nm.

図6[1]に比較評価結果を示す。図6[1]より、Gd−Eu−SiO層を用いた場合は、GeN層を用いた媒体に比べ、格段に繰り返し記録再生時のPRSNRの低下度合いが少ないことがわかる。一方、GeN層を用いた場合は、10000回の繰り返し記録再生後のPRSNRが7、初期の11回の繰り返し記録再生時のPRSNRが12.8、というように規格値を外れた低い値になっている。これは、図7[2]に示すように、記録層の膜厚が7nmと薄い場合には、GeN層を用いても高線速下では結晶化速度が遅いことによるものである。一方、Gd−Eu−SiO層を用いた場合は、記録層が厚いとき(図4[2])に比べるとDC消去率が低いことから、結晶化速度がやや低下していると思われるが、PRSNRが15を下回ることはなく、問題なく記録再生動作を行うことができるレベルにある。FIG. 6 [1] shows the comparative evaluation results. As shown in FIG. 6 [1], when the Gd 2 O 3 —Eu 2 O 3 —SiO 2 layer is used, the degree of decrease in PRSNR during repetitive recording / reproduction is much smaller than that of a medium using a GeN layer. Recognize. On the other hand, when the GeN layer is used, the PRSNR after 10,000 repetitive recording / reproducing operations is 7 and the PRSNR at the first 11 repetitive recording / reproducing operations is 12.8, which is a low value outside the standard value. ing. This is because, as shown in FIG. 7 [2], when the film thickness of the recording layer is as thin as 7 nm, the crystallization speed is low under a high linear velocity even when the GeN layer is used. On the other hand, when the Gd 2 O 3 —Eu 2 O 3 —SiO 2 layer is used, since the DC erasure rate is lower than when the recording layer is thick (FIG. 4 [2]), the crystallization speed is slightly reduced. However, the PRSNR never falls below 15, and the recording / reproducing operation can be performed without any problem.

次に、LOx及びMOxの材料及び組成と繰り返し記録再生特性及び保存安定性との関係について説明する。ここで繰り返し記録再生特性は、ディスク回転線速が13.2m/secの場合において、10000回記録再生後のPRSNR(DOW10K)を示す。一般的に、PRSNRが15以上であれば、通常の記録再生動作に影響はない。保存安定性については、10回繰り返し記録再生を行ったデータについて、温度80℃かつ湿度85%かつ500時間の環境試験を行い、同一箇所を測定した場合のPRSNRを示す。図7及び図8に結果を示す。   Next, the relationship between the material and composition of LOx and MOx, repeated recording / reproduction characteristics, and storage stability will be described. Here, the repetitive recording / reproducing characteristics indicate PRSNR (DOW10K) after 10,000 times of recording / reproducing when the linear velocity of the disk rotation is 13.2 m / sec. Generally, if the PRSNR is 15 or more, the normal recording / reproducing operation is not affected. With respect to storage stability, PRSNR is shown when data obtained after repeated recording and reproduction 10 times are subjected to an environmental test at a temperature of 80 ° C., a humidity of 85%, and 500 hours, and the same location is measured. The results are shown in FIGS.

図7及び図8より、(1)LOxとしてGdとEuを選択し、MOxとしてSiOを選択したGd−Eu−SiO層、(2)LOxとしてCeOとNdを選択し、MOxとしてTaを選択したCeO−Nd−Ta層、(3)LOxとしてGdとDyを選択し、MOxとしてAlを選択したGd−Dy−Al層のいずれかを、記録層の上下に隣接して配置して界面層として用いた場合、10000回記録再生後のPRSNRの測定値(DOW10K)はLOxの材料の含有量が少なくなるに従い、低下している。これは、LOxの含有量の低下に伴い、結晶化速度が遅くなることに起因するものである。7 and 8, (1) Gd 2 O 3 -Eu 2 O 3 —SiO 2 layer in which Gd 2 O 3 and Eu 2 O 3 are selected as LOx and SiO 2 is selected as MOx, (2) LOx CeO 2 and Nd 2 O 3 are selected as the CeO 2 -Nd 2 O 3 -Ta 2 O 5 layer selected as the MOx and Ta 2 O 5 is selected as the MOx, and (3) Gd 2 O 3 and Dy 2 O 3 are selected as the LOx. If the selected, one of Gd 2 O 3 -Dy 2 O 3 -Al 2 O 3 layers was chosen for Al 2 O 3 MOx, was used as the interface layer positioned adjacent to and below the recording layer, The measured value (DOW10K) of PRSNR after 10,000 times of recording / reproducing decreases as the content of the LOx material decreases. This is due to the fact that the crystallization speed becomes slower as the LOx content decreases.

また、環境試験後のPRSNRは、LOxの材料の含有量が35mol%〜85mol%の範囲では良好な値を示すが、この範囲外では劣化している。35mol%未満では、上述したようにLOxの含有量の低下に伴い、結晶化速度が遅くなることに起因すると思われる。一方、85mol%を超えてLOxの材料が含有されると、MOxの材料の含有量が相対的に少なくなるため、記録層に対する親和性が低下し、剥離しやすくなると思われる。   Further, the PRSNR after the environmental test shows a good value when the content of the LOx material is in the range of 35 mol% to 85 mol%, but is deteriorated outside this range. If it is less than 35 mol%, it is thought that as described above, the crystallization rate becomes slower as the content of LOx decreases. On the other hand, when the LOx material exceeds 85 mol%, the content of the MOx material is relatively reduced, so that the affinity for the recording layer is lowered and it is likely that the material is easily peeled off.

なお、図7及び図8に示した実験結果より、媒体の特性を決めるパラメータはLOxとMOxの材料の混合比率であり、LOxの中で複数の材料が混在しても、LOxから選択された材料の割合が35mol%〜85mol%の範囲内であれば良好な特性が得られることを実験的に確認できた。また、LOxの材料の組み合わせの中でGd−Eu及びGd−Dyの組み合わせでは、Eu及びDyの割合が増加するに従い、記録感度が高くなる傾向も同時に確認された。From the experimental results shown in FIG. 7 and FIG. 8, the parameter that determines the characteristics of the medium is the mixing ratio of the LOx and MOx materials, and is selected from the LOx even if a plurality of materials are mixed in the LOx. It was experimentally confirmed that good characteristics can be obtained when the ratio of the material is in the range of 35 mol% to 85 mol%. In the combination of Gd 2 O 3 -Eu 2 O 3 and Gd 2 O 3 -Dy 2 O 3 among the combinations of LOx materials, recording is performed as the ratio of Eu 2 O 3 and Dy 2 O 3 increases. A tendency to increase sensitivity was also confirmed at the same time.

次に、第一実施形態を更に具体化した実施例3について説明する。図1において、透明基板11上に、第1誘電体層12、第1界面層13、記録層14、第2界面層15、第2誘電体層16、金属反射層17をこの順に積層し、第1界面層13及び第2界面層15の材料と組成を種々変化させて光ディスク10を作製した。第1誘電体層12としてZnS−SiOを50nm、記録層14としてGeSbTeを14nm、第2誘電体層16としてZnS−SiOを25nm、金属反射層17としてAgPdCuを、それぞれ成膜した。Next, Example 3 that further embodies the first embodiment will be described. In FIG. 1, on a transparent substrate 11, a first dielectric layer 12, a first interface layer 13, a recording layer 14, a second interface layer 15, a second dielectric layer 16, and a metal reflective layer 17 are laminated in this order. The optical disk 10 was manufactured by changing the materials and compositions of the first interface layer 13 and the second interface layer 15 in various ways. ZnS—SiO 2 was deposited to 50 nm as the first dielectric layer 12, GeSbTe was deposited to 14 nm as the recording layer 14, ZnS—SiO 2 was deposited to 25 nm as the second dielectric layer 16, and AgPdCu was deposited as the metal reflective layer 17.

ここで、第1界面層13及び第2界面層15に、Gd(80mol%)−SiO(20mol%)層を用いた媒体及びGeN層を用いた媒体を、各々500枚ずつ作製した。次に、これらの媒体をHD DVD−RWの2倍線速相当(CLV=13.2m/sec)で回転させ、性能指標であるPRSNRを測定し、PRSNRの変動幅を比較した。Here, 500 media each using a Gd 2 O 3 (80 mol%)-SiO 2 (20 mol%) layer and a GeN layer for the first interface layer 13 and the second interface layer 15 were prepared. did. Next, these media were rotated at a double linear velocity of HD DVD-RW (CLV = 13.2 m / sec), PRSNR as a performance index was measured, and the fluctuation range of PRSNR was compared.

図9に、各々の界面層を用いた場合のPRSNRの測定結果を示す。図9より、PRSNRの測定値のばらつきは、GeN層の方が大きいことがわかる。これは、GeN層を成膜する場合、Arガスと窒素ガスの混合ガス雰囲気で反応性成膜を行うため、第2界面層15成膜時にArと窒素ガスをスパッタチャンバ内に導入することにより、その前に成膜されていた記録層14表面が窒化されるので、PRSNRの変動が大きくなると思われる。したがって、窒素ガスや酸素ガスの導入を必要とせず、Arガスのみで成膜が可能なGd−SiO層等であれば、記録層表面の窒化の心配もなく、PRSNRが変動することもない。FIG. 9 shows the measurement results of PRSNR when each interface layer is used. From FIG. 9, it can be seen that the variation in the measured value of PRSNR is larger in the GeN layer. This is because when a GeN layer is formed, reactive film formation is performed in a mixed gas atmosphere of Ar gas and nitrogen gas, so that Ar and nitrogen gas are introduced into the sputtering chamber when the second interface layer 15 is formed. Since the surface of the recording layer 14 previously formed is nitrided, it seems that the fluctuation of PRSNR becomes large. Therefore, if a Gd 2 O 3 —SiO 2 layer or the like that does not require introduction of nitrogen gas or oxygen gas and can be formed only with Ar gas, the PRSNR fluctuates without worrying about nitridation on the surface of the recording layer. There is nothing.

なお、上述した実施例1〜3以外に、第1界面層13及び第2界面層15として、前述のA群及びB群から選択された材料を組み合わせた膜を用いた場合も、同様の効果が得られることは確認済みである。また、上述した実施例1〜3の記録再生特性の測定結果は380nmから430nmのレーザ波長域におけるものである。   In addition to Examples 1 to 3 described above, the same effect can be obtained when the first interface layer 13 and the second interface layer 15 are made of a combination of materials selected from the aforementioned group A and group B. Has been confirmed to be obtained. The measurement results of the recording / reproducing characteristics of Examples 1 to 3 described above are in the laser wavelength range of 380 nm to 430 nm.

本発明の実施形態は、レーザ光の照射によって光学特性が変化する記録層と、前記記録層に積層された保護層とを備えた光学的情報記録媒体であって、前記保護層は、ランタノイド系元素の中から選択された一つ以上の元素の酸化物LOxと、Si、Al及びTaの中から選択された一つ以上の元素の酸化物MOxとの混合物を含むようにしている。   An embodiment of the present invention is an optical information recording medium comprising a recording layer whose optical characteristics are changed by laser light irradiation, and a protective layer laminated on the recording layer, the protective layer comprising a lanthanoid-based recording medium A mixture of an oxide LOx of one or more elements selected from elements and an oxide MOx of one or more elements selected from Si, Al, and Ta is included.

ランタノイド系元素は、それぞれ互いに似た性質をもち、酸素と比較的結合しやすく、一旦、酸化物LOxを形成すると非常に安定となる。また、その酸化物LOxは、高密度記録用のレーザ光の波長において消衰係数が非常に小さく吸収が少ない。一方、Si、Al、Taなどの酸化物MOxは、記録層との密着性に優れている。このような性質を有する酸化物LOxと酸化物MOxとを混合すると、何らかの相乗作用が働くことにより、光学的な吸収が少なく、かつ、記録層に結晶核を生じさせやすい界面層材料になると考えられる。したがって、本発明の実施形態に係る光学的情報記録媒体は、高線速下や薄い記録層に対しても記録再生信号の劣化が少ないという効果を奏する。   The lanthanoid elements have properties similar to each other, are relatively easily bonded to oxygen, and become very stable once the oxide LOx is formed. Further, the oxide LOx has a very small extinction coefficient at the wavelength of the laser beam for high-density recording and little absorption. On the other hand, oxides MOx such as Si, Al, and Ta have excellent adhesion to the recording layer. When the oxide LOx and the oxide MOx having such properties are mixed, it is considered that some kind of synergistic action acts to form an interface layer material that has little optical absorption and easily generates crystal nuclei in the recording layer. It is done. Therefore, the optical information recording medium according to the embodiment of the present invention has an effect that the deterioration of the recording / reproducing signal is small even at a high linear velocity or a thin recording layer.

また、前記保護層における前記酸化物LOxの含有量が35[mol%]〜85[mol%]の範囲にある、としてもよい。前記ランタノイド系元素がCe、Nd、Eu、Gd及びDyである、としてもよい。前記保護層は、好ましくは前記記録層の上下の少なくとも一方に隣接して積層され、より好ましくは前記記録層の上下に隣接して積層される。これらの場合は、前述の効果がより顕著に現れる。   Moreover, it is good also as content of the said oxide LOx in the said protective layer being in the range of 35 [mol%]-85 [mol%]. The lanthanoid element may be Ce, Nd, Eu, Gd, and Dy. The protective layer is preferably stacked adjacent to at least one of the upper and lower sides of the recording layer, and more preferably stacked adjacent to the upper and lower sides of the recording layer. In these cases, the above-mentioned effect appears more remarkably.

更に、前記レーザ光の波長が380[nm]〜430[nm]である、としてもよい。このとき、レーザ光に対する酸化物LOxの消衰係数が極めて小さくなる。   Furthermore, the wavelength of the laser light may be 380 [nm] to 430 [nm]. At this time, the extinction coefficient of the oxide LOx with respect to the laser light becomes extremely small.

更にまた、前記記録層は第1記録層と第2記録層との二層から成り、この第2記録層には前記第1記録層を透過した前記レーザ光が照射され、少なくとも前記第1記録層の上下に隣接して前記保護層が積層された、としてもよい。このとき、第1記録層は、光透過率を高めるために薄くしなければならないので、前述の効果がより顕著に現れる。   Furthermore, the recording layer is composed of two layers, a first recording layer and a second recording layer, and the second recording layer is irradiated with the laser light transmitted through the first recording layer, and at least the first recording layer The protective layer may be stacked adjacent to the upper and lower layers. At this time, since the first recording layer has to be thinned in order to increase the light transmittance, the above-described effect appears more remarkably.

本発明の実施形態に係る光学的情報記録媒体を製造する方法は、前記保護層は、前記記録層を成膜した後に、前記混合物から成るターゲットを用いて、酸素ガスを含まない希ガス雰囲気中でスパッタリングにより成膜する。この場合は、記録層上に保護層を成膜するときに、記録層表面に酸化反応や窒化反応を生じさせない。また、前記ターゲットは、前記酸化物LOxをP[mol%]、前記酸化物MOxをQ[mol%]含み、35≦P≦85、かつP+Q≧99を満たす組成である、としてもよい。この場合は、前述の効果がより顕著に現れる。   In the method for manufacturing an optical information recording medium according to an embodiment of the present invention, the protective layer is formed in the rare gas atmosphere containing no oxygen gas using the target composed of the mixture after forming the recording layer. The film is formed by sputtering. In this case, when a protective layer is formed on the recording layer, no oxidation reaction or nitridation reaction occurs on the recording layer surface. The target may include P [mol%] of the oxide LOx and Q [mol%] of the oxide MOx and have a composition satisfying 35 ≦ P ≦ 85 and P + Q ≧ 99. In this case, the above-mentioned effect appears more remarkably.

換言すると、本発明の実施形態に係る光学的情報記録媒体は、レーザ光照射により記録層の光学特性を変化させて情報の記録再生を行う記録層と保護層を備えた光学的情報記録媒体において、酸化物LOxと酸化物MOxとの混合物からなる酸化物保護層LOx−MOxが、前記記録層の上下に隣接して積層されたことを特徴とする。ここで、酸化物LOxは、Ce、Nd、Eu、Gd、Dyなどのランタノイド系元素の中から選択された少なくとも1つの元素の酸化物である。酸化物MOxは、Si、Al、Taなどの元素の中から選択された少なくとも1つの元素の酸化物である。また、本発明に係る光学的情報記録媒体は、前記酸化物保護層において、酸化物LOxの含有量が35mol%〜85mol%の範囲にあることを特徴とする。また、本発明の実施形態に係る製造方法は、レーザ光照射により記録層の光学特性を変化させて情報の記録再生を行う光学的情報記録媒体に含まれる前記酸化物保護層を、酸化物LOxをPmol%、及び酸化物MOxをQmol%含み、35≦P≦85、P+Q≧99を満たす組成の酸化物ターゲットを用いて、酸素ガスを含まない希ガス雰囲気中でスパッタリングにより成膜することを特徴とする。また、本発明の実施形態に係る光学的情報記録媒体は、波長が380nmから430nmまでの半導体レーザを用いて情報の記録再生が行われる。   In other words, the optical information recording medium according to the embodiment of the present invention is an optical information recording medium having a recording layer and a protective layer for recording and reproducing information by changing optical characteristics of the recording layer by laser light irradiation. The oxide protective layer LOx-MOx made of a mixture of the oxide LOx and the oxide MOx is laminated adjacent to the upper and lower sides of the recording layer. Here, the oxide LOx is an oxide of at least one element selected from lanthanoid elements such as Ce, Nd, Eu, Gd, and Dy. The oxide MOx is an oxide of at least one element selected from elements such as Si, Al, and Ta. The optical information recording medium according to the present invention is characterized in that the oxide protective layer has a content of oxide LOx in the range of 35 mol% to 85 mol%. In addition, the manufacturing method according to the embodiment of the present invention includes the oxide protective layer included in the optical information recording medium that records and reproduces information by changing the optical characteristics of the recording layer by laser light irradiation. Is formed by sputtering in a rare gas atmosphere not containing oxygen gas, using an oxide target having a composition satisfying 35 ≦ P ≦ 85 and P + Q ≧ 99, including Pmol% and oxide MOx Qmol%. Features. In the optical information recording medium according to the embodiment of the present invention, information is recorded / reproduced using a semiconductor laser having a wavelength of 380 nm to 430 nm.

以上のように本発明の実施形態では、記録層の上下に隣接して配置された界面層として、上述したGeN層などの代わりに、酸化物LOxと酸化物MOxとの混合物から成る酸化物保護層LOx−MOxを用いる。ここで、酸化物LOxは、Ce、Nd、Eu、Gd、Dyなどのランタノイド系元素の中から選択された少なくとも1つの元素の酸化物である。酸化物MOxは、Si、Al、Taの中から選択された少なくとも1つの元素の酸化物である。これにより、記録層の結晶化速度を速くすることができるので、高線速下や薄い記録層に対しても記録再生信号の劣化が少ない、光学的情報記録媒体を提供することが可能となる。   As described above, in the embodiment of the present invention, as the interface layer arranged adjacent to the upper and lower sides of the recording layer, the oxide protection composed of the mixture of the oxide LOx and the oxide MOx is used instead of the above-described GeN layer. Layers LOx-MOx are used. Here, the oxide LOx is an oxide of at least one element selected from lanthanoid elements such as Ce, Nd, Eu, Gd, and Dy. The oxide MOx is an oxide of at least one element selected from Si, Al, and Ta. Thereby, since the crystallization speed of the recording layer can be increased, it is possible to provide an optical information recording medium in which the recording / reproducing signal is hardly deteriorated even at a high linear velocity or for a thin recording layer. .

以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 While the present invention has been described with reference to the embodiments (and examples), the present invention is not limited to the above embodiments (and examples). Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

この出願は2007年4月18日に出願された日本出願特願2007−109040を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2007-109040 for which it applied on April 18, 2007, and takes in those the indications of all here.

本発明に係る光学式情報記録媒体の第一実施形態としての光ディスクを示す断面図である。1 is a cross-sectional view showing an optical disc as a first embodiment of an optical information recording medium according to the present invention. 本発明に係る光学式情報記録媒体の第二実施形態としての光ディスク(タイプA)を示す断面図である。It is sectional drawing which shows the optical disk (type A) as 2nd embodiment of the optical information recording medium based on this invention. 本発明に係る光学式情報記録媒体の第二実施形態としての光ディスク(タイプB)を示す断面図である。It is sectional drawing which shows the optical disk (type B) as 2nd embodiment of the optical information recording medium based on this invention. 図4[1]は実施例1における各々の媒体の繰り返しO/W耐性を比較したグラフであり、図4[2]は実施例1における各々の媒体のDC消去率の線速依存性を比較したグラフである。FIG. 4 [1] is a graph comparing the repeated O / W resistance of each medium in Example 1, and FIG. 4 [2] compares the linear speed dependence of the DC erasure rate of each medium in Example 1. It is a graph. 実施例1における各種界面層を用いた媒体の評価結果を示す図表である。6 is a chart showing evaluation results of media using various interface layers in Example 1. 図6[1]は実施例2における各々の媒体の繰り返しO/W耐性を比較したグラフであり、図6[2]は実施例2における各々の媒体のDC消去率の線速依存性を比較したグラフである。FIG. 6 [1] is a graph comparing the repeated O / W resistance of each medium in Example 2, and FIG. 6 [2] compares the linear velocity dependence of the DC erasure rate of each medium in Example 2. It is a graph. 実施例2における各種界面層を用いた媒体の評価結果(その1)を示す図表である。6 is a chart showing evaluation results (part 1) of a medium using various interface layers in Example 2. 実施例2における各種界面層を用いた媒体の評価結果(その2)を示す図表である。It is a chart which shows the evaluation result (the 2) of the medium using the various interface layers in Example 2. 実施例3における界面層成膜時のガス雰囲気とPRSNRの関係を示す図表である。10 is a chart showing a relationship between a gas atmosphere and PRSNR at the time of forming an interface layer in Example 3.

符号の説明Explanation of symbols

10 光ディスク(光学的情報記録媒体)
11 透明基板
12 第1誘電体層
13 第1界面層(保護層)
14 記録層(第1記録層)
15 第2界面層(保護層)
16 第2誘電体層
17 金属反射層
18 第3誘電体層
21 透明基板
22 金属反射層
23 第3誘電体層
24 第3界面層(保護層)
25 記録層(第2記録層)
26 第4界面層(保護層)
27 第4誘電体層
31 光学分離層
37 金属半透過層
40 光ディスク(光学的情報記録媒体)
41 第1情報層
42 第2情報層
51 透明シート
60 光ディスク(光学的情報記録媒体)
61 第1情報層
10 Optical disc (optical information recording medium)
11 Transparent substrate 12 First dielectric layer 13 First interface layer (protective layer)
14 Recording layer (first recording layer)
15 Second interface layer (protective layer)
16 Second dielectric layer 17 Metal reflective layer 18 Third dielectric layer 21 Transparent substrate 22 Metal reflective layer 23 Third dielectric layer 24 Third interface layer (protective layer)
25 Recording layer (second recording layer)
26 Fourth interface layer (protective layer)
27 Fourth dielectric layer 31 Optical separation layer 37 Metal semi-transmissive layer 40 Optical disc (optical information recording medium)
41 First Information Layer 42 Second Information Layer 51 Transparent Sheet 60 Optical Disc (Optical Information Recording Medium)
61 First information layer

Claims (9)

レーザ光の照射によって光学特性が変化する記録層と、この記録層に積層された保護層とを備えた光学的情報記録媒体において、
前記保護層は、ランタノイド系元素の中から選択された一つ以上の元素の酸化物LOxと、Si、Al及びTaの中から選択された一つ以上の元素の酸化物MOxとの混合物を含むことを特徴とする光学的情報記録媒体。
In an optical information recording medium comprising a recording layer whose optical characteristics are changed by laser light irradiation, and a protective layer laminated on the recording layer,
The protective layer includes a mixture of an oxide LOx of one or more elements selected from lanthanoid elements and an oxide MOx of one or more elements selected from Si, Al, and Ta. An optical information recording medium.
前記保護層における前記酸化物LOxの含有量が35[mol%]〜85[mol%]の範囲にある請求項1に記載の光学的情報記録媒体。   2. The optical information recording medium according to claim 1, wherein the content of the oxide LOx in the protective layer is in a range of 35 [mol%] to 85 [mol%]. 前記ランタノイド系元素がCe、Nd、Eu、Gd及びDyである請求項1に記載の光学的情報記録媒体。   The optical information recording medium according to claim 1, wherein the lanthanoid element is Ce, Nd, Eu, Gd, and Dy. 前記保護層が前記記録層の上下の少なくとも一方に隣接して積層された請求項1又は2に記載の光学的情報記録媒体。   The optical information recording medium according to claim 1, wherein the protective layer is laminated adjacent to at least one of upper and lower sides of the recording layer. 前記保護層が前記記録層の上下に隣接して積層された請求項1又は2に記載の光学的情報記録媒体。   The optical information recording medium according to claim 1, wherein the protective layer is laminated adjacent to the top and bottom of the recording layer. 前記レーザ光の波長が380[nm]〜430[nm]である請求項1に記載の光学的情報記録媒体。   The optical information recording medium according to claim 1, wherein a wavelength of the laser light is 380 [nm] to 430 [nm]. 前記記録層は第1記録層と第2記録層との二層からなり、前記第2記録層には前記第1記録層を透過した前記レーザ光が照射され、少なくとも前記第1記録層の上下に隣接して前記保護層が積層された請求項1に記載の光学的情報記録媒体。   The recording layer is composed of two layers, a first recording layer and a second recording layer, and the second recording layer is irradiated with the laser light transmitted through the first recording layer, and at least above and below the first recording layer. The optical information recording medium according to claim 1, wherein the protective layer is laminated adjacent to the optical information recording medium. 記録層と保護層とからなる光学的情報記録媒体を製造する方法であって、
前記記録層を成膜した後に、ランタノイド系元素の中から選択された一つ以上の元素の酸化物LOxと、Si、Al及びTaの中から選択された一つ以上の元素の酸化物MOxとの混合物を含むターゲットを用いて、酸素ガスを含まない希ガス雰囲気中でスパッタリングにより前記保護層を成膜することを特徴とする光学的情報記録媒体の製造方法。
A method for producing an optical information recording medium comprising a recording layer and a protective layer,
After forming the recording layer, an oxide LOx of one or more elements selected from lanthanoid elements, and an oxide MOx of one or more elements selected from Si, Al, and Ta A method for producing an optical information recording medium, wherein the protective layer is formed by sputtering in a rare gas atmosphere not containing oxygen gas, using a target containing a mixture of the above.
前記ターゲットとして、前記酸化物LOxをP[mol%]、前記酸化物MOxをQ[mol%]含み、35≦P≦85、かつP+Q≧99を満たす組成であるターゲットを用いる請求項8に記載の光学的情報記録媒体の製造方法。   9. The target according to claim 8, wherein the target includes a composition that includes P [mol%] of the oxide LOx and Q [mol%] of the oxide MOx, and satisfies 35 ≦ P ≦ 85 and P + Q ≧ 99. Manufacturing method of optical information recording medium.
JP2009511729A 2007-04-18 2008-04-02 Optical information recording medium and manufacturing method thereof Withdrawn JPWO2008132940A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007109040 2007-04-18
JP2007109040 2007-04-18
PCT/JP2008/056552 WO2008132940A1 (en) 2007-04-18 2008-04-02 Optical information recording medium, and method for production thereof

Publications (1)

Publication Number Publication Date
JPWO2008132940A1 true JPWO2008132940A1 (en) 2010-07-22

Family

ID=39925400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009511729A Withdrawn JPWO2008132940A1 (en) 2007-04-18 2008-04-02 Optical information recording medium and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JPWO2008132940A1 (en)
TW (1) TW200842845A (en)
WO (1) WO2008132940A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321175B2 (en) * 2009-03-18 2013-10-23 日本電気株式会社 Optical information recording medium and manufacturing method thereof
WO2010150755A1 (en) * 2009-06-24 2010-12-29 三菱化学メディア株式会社 Optical recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044215A (en) * 2003-11-10 2006-02-16 Ricoh Co Ltd Optical recording medium and its manufacturing method, sputtering target, usage for optical recording medium, and optical recording apparatus
JP2007062319A (en) * 2005-09-02 2007-03-15 Ricoh Co Ltd Optical recording medium

Also Published As

Publication number Publication date
WO2008132940A1 (en) 2008-11-06
TW200842845A (en) 2008-11-01

Similar Documents

Publication Publication Date Title
TWI304585B (en) Optical recording medium
JP2004158145A (en) Optical recording medium
JP2005044450A (en) Optical recording medium and method for manufacturing same, and data recording method and data reproducing method for optical recording medium
WO2007052614A1 (en) Optical information recording medium and method for manufacture thereof
JP2005071450A (en) Optical recording medium and its manufacturing method, and data recording method for optical recording medium and data reproducing method
JP2005025910A (en) Optical information recording medium and method for manufacturing same
JP2007066361A (en) Optical recording medium
US8426003B2 (en) Information recording medium, method for manufacturing the same, and recording/reproducing apparatus
JP4892562B2 (en) Information recording medium, manufacturing method thereof, and sputtering target for forming information recording medium
JP4403414B2 (en) Write-once optical recording medium
JP4251142B2 (en) Write-once optical recording medium
JPWO2008132940A1 (en) Optical information recording medium and manufacturing method thereof
JP5870318B2 (en) Information recording medium and manufacturing method thereof
JP2005022409A (en) Optical information recording medium and method for manufacturing the same
JP5437793B2 (en) Information recording medium and manufacturing method thereof
WO2011048751A1 (en) Optical information recording medium and method for producing same
JP5485091B2 (en) Optical recording medium
JP2005251279A (en) Optical information recording medium and its manufacturing method
JP5510638B2 (en) Optical information recording medium and manufacturing method thereof
JP2002260283A (en) Phase change optical recording medium
WO2012120816A1 (en) Information recording medium and method for producing same
WO2010095466A1 (en) Information recording medium
JP3830045B2 (en) Optical information recording medium and optical information recording / reproducing apparatus
JP2008123592A (en) Write once type optical recording medium
JP2009301623A (en) Write-once type optical recording medium

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607