JPWO2008105295A1 - Fluid purification device - Google Patents

Fluid purification device Download PDF

Info

Publication number
JPWO2008105295A1
JPWO2008105295A1 JP2009501200A JP2009501200A JPWO2008105295A1 JP WO2008105295 A1 JPWO2008105295 A1 JP WO2008105295A1 JP 2009501200 A JP2009501200 A JP 2009501200A JP 2009501200 A JP2009501200 A JP 2009501200A JP WO2008105295 A1 JPWO2008105295 A1 JP WO2008105295A1
Authority
JP
Japan
Prior art keywords
light source
photocatalyst
porous body
fluid purification
purification device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009501200A
Other languages
Japanese (ja)
Inventor
勇仁 藤田
勇仁 藤田
▲吉▼美 田口
▲吉▼美 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAMUNE INDUSTRIAL CO., LTD.
Original Assignee
NAGAMUNE INDUSTRIAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAMUNE INDUSTRIAL CO., LTD. filed Critical NAGAMUNE INDUSTRIAL CO., LTD.
Publication of JPWO2008105295A1 publication Critical patent/JPWO2008105295A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Public Health (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

本流体浄化装置は、多孔質状の光触媒物質が多孔質体の少なくとも孔の入口部分に担持されている1つ以上の光触媒担持多孔質体(1)と、光触媒物質を活性化させる光を発する1つ以上の光源(5)を含む。かかる流体浄化装置によれば、流体に含まれる有害物質および汚濁物質を効率的に除去できる。This fluid purification device emits light for activating a photocatalytic substance, and one or more photocatalyst-carrying porous bodies (1) in which a porous photocatalytic substance is carried at least at an inlet portion of the porous body. One or more light sources (5) are included. According to such a fluid purification device, harmful substances and pollutants contained in the fluid can be efficiently removed.

Description

本発明は、空気または水などの流体に含まれる有害物質、汚濁物質などを除去する流体浄化装置に関する。   The present invention relates to a fluid purification device that removes harmful substances, contaminants, and the like contained in a fluid such as air or water.

近年、環境に対する意識の高まりとともに、空気または水などの流体に含まれる有害物質、汚濁物質などを除去する流体浄化装置が開発され市場に提供されている。かかる流体浄化装置において、流体中の有害物質、汚濁物質などを除去するための材料としては、活性炭、シリガゲルなどの多孔質材料、酸化チタン、酸化亜鉛などの光触媒材料などが用いられる。ここで、有害物質とは、トルエンなどの発癌性物質、ホルムアルデヒド、アンモニアなどの刺激性物質などをいう。また、汚濁物質とは、汗などの生物からの排泄物、各種有機物などをいう。   In recent years, with increasing awareness of the environment, fluid purification devices that remove harmful substances, contaminants, and the like contained in fluids such as air or water have been developed and provided to the market. In such a fluid purification apparatus, as a material for removing harmful substances and pollutants in the fluid, porous materials such as activated carbon and silica gel, and photocatalytic materials such as titanium oxide and zinc oxide are used. Here, the harmful substance refers to a carcinogenic substance such as toluene, and an irritating substance such as formaldehyde and ammonia. Further, the pollutant refers to excrement from living organisms such as sweat, various organic substances, and the like.

多孔質材料は、空気または水などに含まれる有害物質および汚濁物質を吸着することにより除去するものであり、これらの物質がその吸着限界まで吸着されると、その吸着性能が失われ、それらの物質を除去することができなくなる。これに対し、光触媒材料は、その光触媒能力により空気または水に含まれる有害物質および汚濁物質を分解して除去するものであり、光が照射される限り、それらの物質を除去することができるが、吸着能力がない。   Porous materials are removed by adsorbing harmful substances and pollutants contained in air or water. When these substances are adsorbed to their adsorption limit, their adsorption performance is lost. The substance cannot be removed. On the other hand, the photocatalytic material decomposes and removes harmful substances and pollutants contained in air or water due to its photocatalytic ability, and these substances can be removed as long as light is irradiated. There is no adsorption capacity.

したがって、多孔質材料と光触媒材料とを複合化させて、有害物質および汚濁物質を吸着して分解することができる複合材料が提案されている。たとえば、特開2003−226512号公報(以下、特許文献1という)は、蒸着により活性炭の表面に光触媒の薄膜を形成、担持させた光触媒活性炭を開示する。また、特開2005−263610号公報(以下、特許文献2という)は、高分子エマルジョンまたは高分子エマルジョンと無機質バインダーを使用して活性炭表面に酸化チタンを被覆させた酸化チタン被膜活性炭を開示する。   Therefore, a composite material has been proposed in which a porous material and a photocatalytic material are combined to adsorb and decompose harmful substances and pollutants. For example, Japanese Unexamined Patent Publication No. 2003-226512 (hereinafter referred to as Patent Document 1) discloses a photocatalytic activated carbon in which a thin film of a photocatalyst is formed and supported on the surface of the activated carbon by vapor deposition. Japanese Patent Application Laid-Open No. 2005-263610 (hereinafter referred to as Patent Document 2) discloses a titanium oxide-coated activated carbon in which titanium oxide is coated on the surface of activated carbon using a polymer emulsion or a polymer emulsion and an inorganic binder.

しかし、特許文献1の光触媒活性炭は、蒸着により得られるものであり高価であり、また、その表面に光触媒の被膜が形成されているためその吸着性能が低下する。また、特許文献2の酸化チタン被膜活性炭は、その表面に酸化チタンの被覆が形成されているためその吸着性能が低下し、表面の酸化チタンの被膜の形成に高分子エマルジョンまたは高分子エマルジョンと無機質バインダーが使用されているため酸化チタンの光触媒能力が低下する。すなわち、特許文献1および2の光触媒担持多孔質体は、吸着能力および光触媒能力を有するものの、それらの能力は高くはない。そこで、高い吸着能力および光触媒能力を有する光触媒担持多孔質体の開発が望まれていた。   However, the photocatalytic activated carbon of Patent Document 1 is obtained by vapor deposition, is expensive, and has a photocatalytic film formed on the surface thereof, so that its adsorption performance is lowered. In addition, since the titanium oxide-coated activated carbon of Patent Document 2 has a titanium oxide coating formed on its surface, its adsorption performance is reduced, and a polymer emulsion or a polymer emulsion and an inorganic material are used to form a titanium oxide coating on the surface. Since a binder is used, the photocatalytic ability of titanium oxide is reduced. That is, the photocatalyst-supporting porous bodies of Patent Documents 1 and 2 have adsorption ability and photocatalytic ability, but their ability is not high. Therefore, development of a photocatalyst-supporting porous body having high adsorption ability and photocatalytic ability has been desired.

また、光触媒材料の光触媒能力を高めるために、太陽光に替えてその光触媒材料を活性化するのに適した波長領域にピーク波長を有する光源を用いることが提案されている。たとえば、特開平11−309202号公報(以下、特許文献3という)は、光触媒である酸化チタンを効率的に活性化させる光源としてLEDを開示する。さらに、特開2005−230760号公報(以下、特許文献4)は、光触媒(酸化チタン)を担持した透光性の多孔質吸着材を用い、その光触媒を活性化させる光源として紫外線を放射する放電管またはLEDを用いた空気浄化装置を開示する。しかしながら、特許文献4の空気浄化装置は、その構造により、多孔質吸着材は透光性のものに限定される。また、光触媒が担持された多孔質吸着材(光触媒担持体)は無機系接着剤で所定の位置に固定されているため、光触媒担持体においてその接着剤に接触している部分は空気との接触が阻害されるため、光触媒能力が低下する。
特開2003−226512号公報 特開2005−263610号公報 特開平11−309202号公報 特開2005−230760号公報
In addition, in order to increase the photocatalytic ability of the photocatalytic material, it has been proposed to use a light source having a peak wavelength in a wavelength region suitable for activating the photocatalytic material instead of sunlight. For example, Japanese Patent Laid-Open No. 11-309202 (hereinafter referred to as Patent Document 3) discloses an LED as a light source that efficiently activates titanium oxide as a photocatalyst. Furthermore, Japanese Patent Laying-Open No. 2005-230760 (hereinafter referred to as Patent Document 4) uses a light-transmitting porous adsorbent carrying a photocatalyst (titanium oxide) and discharges ultraviolet rays as a light source for activating the photocatalyst. An air purifier using a tube or LED is disclosed. However, the air purification device of Patent Document 4 is limited to a light-transmitting porous adsorbent due to its structure. Moreover, since the porous adsorbent (photocatalyst carrier) carrying the photocatalyst is fixed at a predetermined position with an inorganic adhesive, the portion of the photocatalyst carrier that is in contact with the adhesive is in contact with air. Is inhibited, and the photocatalytic ability is reduced.
JP 2003-226512 A JP 2005-263610 A JP-A-11-309202 JP-A-2005-230760

本発明は、流体に含まれる有害物質および汚濁物質を効率的に除去できる流体浄化装置を提供することを目的とする。   An object of the present invention is to provide a fluid purification device capable of efficiently removing harmful substances and pollutants contained in a fluid.

本発明は、多孔質状の光触媒物質が多孔質体の少なくとも孔の入口部分に担持されている1つ以上の光触媒担持多孔質体と、前記光触媒物質を活性化させる光を発する1つ以上の光源を含む流体浄化装置である。   The present invention includes one or more photocatalyst-supporting porous bodies in which a porous photocatalyst substance is supported at least at the entrance of the pores of the porous body, and one or more light emitting light that activates the photocatalyst substance. A fluid purification device including a light source.

本発明にかかる流体浄化装置において、光触媒担持多孔質体は、粉末状、粒状、ハニカム状およびブラシ状のいずれかの形状を有することができる。また、光触媒物質は酸化チタンとすることができる。ここで、光源は発光ピーク波長が700nm以下の発光素子とすることができる。   In the fluid purification device according to the present invention, the photocatalyst-supporting porous body can have any shape of powder, granule, honeycomb, and brush. The photocatalytic material can be titanium oxide. Here, the light source can be a light emitting element having an emission peak wavelength of 700 nm or less.

また、本発明にかかる流体浄化装置において、光源は、光透過性材料により流体から隔離され得る。また、光源は、点光源、線光源および面光源のいずれかを含むことができる。ここで、面光源は、元光源と、導光板および光拡散材のいずれかとを含み、かかる元光源は、点光源および線光源のいずれかを含むことができる。   Moreover, in the fluid purification apparatus according to the present invention, the light source can be isolated from the fluid by the light transmissive material. The light source can include any of a point light source, a line light source, and a surface light source. Here, the surface light source includes an original light source and one of a light guide plate and a light diffusing material, and the original light source can include either a point light source or a line light source.

本発明にかかる流体浄化装置は、光触媒担持多孔質体を点着するためのシートをさらに含み、光源が前記シート上に点着された前記光触媒担持多孔質体に対向して配置されることができる。   The fluid purification device according to the present invention further includes a sheet for spotting the photocatalyst-supporting porous body, and a light source is disposed to face the photocatalyst-supporting porous body spotted on the sheet. it can.

また、本発明にかかる流体浄化装置、光源が面光源を含み、光触媒多孔質体が点着されたシートが面光源の主面上に配置され得る。   Moreover, the fluid purification apparatus concerning this invention, the light source contains a surface light source, and the sheet | seat on which the photocatalyst porous body was spotted can be arrange | positioned on the main surface of a surface light source.

また、本発明にかかる流体浄化装置は、光触媒担持多孔質体がハニカム状の形状を有し、光源が光触媒担持多孔質体のハニカム開口面に対向して配置されることができる。また、本発明にかかる流体浄化装置は、光触媒担持多孔質体がブラシ状の形状を有し、光源が光触媒担持多孔質体のブラシ毛部の側面に対向して配置され得る。   In the fluid purification device according to the present invention, the photocatalyst-supporting porous body has a honeycomb shape, and the light source can be disposed to face the honeycomb opening surface of the photocatalyst-supporting porous body. In the fluid purification device according to the present invention, the photocatalyst-supporting porous body has a brush-like shape, and the light source can be disposed to face the side surface of the brush bristle portion of the photocatalyst-supporting porous body.

また、本発明にかかる流体浄化装置において、光源は複数の光触媒担持多孔質体間に配置され得る。   In the fluid purification device according to the present invention, the light source can be disposed between the plurality of photocatalyst-supporting porous bodies.

また、本発明にかかる流体浄化装置は、光源が面光源を含み、流体が面光源の主面を貫通するように、面光源および光触媒担持多孔質体が配置され得る。   In the fluid purification device according to the present invention, the light source may include a surface light source, and the surface light source and the photocatalyst-supporting porous body may be disposed so that the fluid penetrates the main surface of the surface light source.

また、本発明にかかる流体浄化装置において、流体は空気または水とすることができる。   In the fluid purification device according to the present invention, the fluid may be air or water.

本発明よれば、流体に含まれる有害物質および汚濁物質を効率的に除去できる流体浄化装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fluid purification apparatus which can remove efficiently the harmful | toxic substance and contaminant contained in a fluid can be provided.

本発明にかかる流体浄化装置の一例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のIBにおける概略断面図を示す。It is the schematic which shows an example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view at IB of (a). 本発明にかかる流体浄化装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す概略断面拡大図である。It is a schematic sectional enlarged view which shows the other example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のIVBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view at IVB of (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略断面図である。It is a schematic sectional drawing which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のVIBにおける概略断面図を示し、(c)は(a)のVICにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, (b) shows a schematic cross-sectional view at VIB of (a), and (c) shows a schematic cross-sectional view at VIC of (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のVIIBにおける概略断面図を示し、(c)は(a)のVIICにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, (b) shows a schematic cross-sectional view at VIIB of (a), and (c) shows a schematic cross-sectional view at VIIC of (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略断面図である。It is a schematic sectional drawing which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す概略斜視図である。It is a schematic perspective view which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す概略斜視図である。It is a schematic perspective view which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のXIBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view in XIB of (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のXIIBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view of XIIB in (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のXIIIBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view of XaIB of (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略斜視図である。It is a schematic perspective view which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す概略斜視図である。It is a schematic perspective view which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のXVIBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view of (a) in XVIB. 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のXVIIBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view of (a) at XVIIB. 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のXVIIIBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view of XVIIIB in (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のXIXBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view at XIXB of (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のXXBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view at XXB of (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略図である。ここで、(a)は流体浄化装置の概略斜視図を示し、(b)は(a)のXXIBにおける概略断面図を示す。It is the schematic which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a schematic perspective view of the fluid purification device, and (b) shows a schematic cross-sectional view of XXIB in (a). 本発明にかかる流体浄化装置のさらに他の例を示す概略斜視図である。It is a schematic perspective view which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す部分断面図である。It is a fragmentary sectional view which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す部分断面図である。It is a fragmentary sectional view which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す部分断面図である。It is a fragmentary sectional view which shows the further another example of the fluid purification apparatus concerning this invention. 本発明にかかる流体浄化装置のさらに他の例を示す部分断面図である。ここで、(a)は点光源または線光源の断面図を示し、(b)は面光源の断面図を示す。It is a fragmentary sectional view which shows the further another example of the fluid purification apparatus concerning this invention. Here, (a) shows a sectional view of a point light source or a line light source, and (b) shows a sectional view of a surface light source. 本発明に用いられる光触媒担持多孔質体の部分拡大断面図である。It is a partial expanded sectional view of the photocatalyst carrying porous body used for the present invention. 実施例1における流体浄化装置の浄化性能を示すグラフである。3 is a graph showing the purification performance of the fluid purification device in Example 1. 実施例3における流体浄化装置の浄化性能を示すグラフである。6 is a graph showing the purification performance of the fluid purification device in Example 3. 実施例5〜12における流体浄化装置の浄化性能を示すグラフである。It is a graph which shows the purification performance of the fluid purification apparatus in Examples 5-12. 実施例13〜20における流体浄化装置の浄化性能を示すグラフである。It is a graph which shows the purification performance of the fluid purification apparatus in Examples 13-20. 実施例21〜26における流体浄化装置の浄化性能を示すグラフである。ここで、(a)は第1段の流体浄化装置の出口における浄化性能を示し、(b)は第2段の流体浄化装置の出口における浄化性能を示す。It is a graph which shows the purification performance of the fluid purification apparatus in Examples 21-26. Here, (a) shows the purification performance at the outlet of the first-stage fluid purification device, and (b) shows the purification performance at the outlet of the second-stage fluid purification device. 実施例27および28における流体浄化装置の浄化性能を示すグラフである。ここで、(a)は第1段の流体浄化装置の出口における浄化性能を示し、(b)は第2段の流体浄化装置の出口における浄化性能を示し、(c)は第3段の流体浄化装置の出口における浄化性能を示す。It is a graph which shows the purification performance of the fluid purification apparatus in Examples 27 and 28. Here, (a) shows the purification performance at the outlet of the first-stage fluid purification device, (b) shows the purification performance at the outlet of the second-stage fluid purification device, and (c) shows the third-stage fluid. The purification performance at the outlet of the purification device is shown.

符号の説明Explanation of symbols

1 光触媒担持多孔質体、1a ブラシ毛部、1b ブラシ台部、1d 下面、1h ハニカム面、1k,1k’ハニカム開口面、1u 上面、4 元光源、4m,7m,7n,8m,8n 主面、5 光源、6 光透過性材料、6c 光透過性コーティング材、6p 光透過性シート、7 導光板、7s 端面、8 光拡散材、9 反射板、10 多孔質体、10e 入口部分、10f 中間孔、10g ミクロ孔、10h 孔、10s 表面、11 光触媒物質、50 容器、52 配線、54d,73 下板、54u,75 上板、71 シート、74 固定枠、76 光源固定板、77 支柱、79 乱流発生器。   1 photocatalyst-supporting porous body, 1a brush bristle portion, 1b brush base portion, 1d lower surface, 1h honeycomb surface, 1k, 1k ′ honeycomb opening surface, 1u upper surface, four source light source, 4m, 7m, 7n, 8m, 8n main surface 5 light source, 6 light transmissive material, 6c light transmissive coating material, 6p light transmissive sheet, 7 light guide plate, 7s end face, 8 light diffusing material, 9 reflector, 10 porous body, 10e inlet portion, 10f intermediate Hole, 10 g micro hole, 10 h hole, 10 s surface, 11 photocatalytic substance, 50 container, 52 wiring, 54 d, 73 lower plate, 54 u, 75 upper plate, 71 sheet, 74 fixing frame, 76 light source fixing plate, 77 column, 79 Turbulence generator.

本発明にかかる流体浄化装置は、図1〜図22および図27を参照して、多孔質状の光触媒物質11が多孔質体10の少なくとも孔10hの入口部分10eに担持されている1つ以上の光触媒担持多孔質体1と、光触媒物質を活性化させる光を発する1つ以上の光源5を含む。本流体浄化装置に用いられる光触媒担持多孔質体1は、多孔質体10の少なくとも孔の入口部分10eに多孔質状の光触媒物質11が担持されているため、高い吸着能力および光触媒能力を有する。したがって、かかる光触媒担持多孔質体1と光触媒物質11を活性化させるための光源5とを含む流体浄化装置は、流体に含まれる有害物質および汚濁物質を効率的に除去することができる。ここで、本発明にかかる流体浄化装置が適用される流体は、特に制限はないが、浄化効率が高い観点から、空気または水であることが好ましい。   1 to FIG. 22 and FIG. 27, the fluid purification apparatus according to the present invention has at least one porous photocatalytic substance 11 carried on the inlet portion 10e of at least the hole 10h of the porous body 10. The photocatalyst-supporting porous body 1 and one or more light sources 5 that emit light that activates the photocatalytic substance. The photocatalyst-supporting porous body 1 used in the fluid purification apparatus has high adsorption ability and photocatalytic ability because the porous photocatalyst substance 11 is supported at least at the entrance 10e of the pores of the porous body 10. Therefore, the fluid purification device including the photocatalyst-supporting porous body 1 and the light source 5 for activating the photocatalytic substance 11 can efficiently remove harmful substances and contaminants contained in the fluid. Here, the fluid to which the fluid purification device according to the present invention is applied is not particularly limited, but is preferably air or water from the viewpoint of high purification efficiency.

[光触媒担持多孔質体]
ここで、図27を参照して、本流体浄化装置に用いられる光触媒担持多孔質体1は、多孔質体10の少なくとも孔10hの入口部分10eに多孔質状の光触媒物質11が担持されている。
[Photocatalyst-supported porous body]
Here, with reference to FIG. 27, in the photocatalyst-supporting porous body 1 used in the fluid purification apparatus, the porous photocatalytic substance 11 is supported at least at the inlet portion 10e of the hole 10h of the porous body 10. .

多孔質体10は、複数の孔を備え吸着能力を有する物体であれば特に制限はないが、吸着能力が高い観点から、活性炭、シリカゲル、ゼオライト、ベントナイトなどが好ましく挙げられる。ここで、2種類以上の多孔質体10の少なくとも孔10hの入口部分10eに光触媒物質を担持することもできる。通常、多孔質体中に含まれる孔には、その直径が大きなものから小さなものまで種々の大きさの孔がある。たとえば、図27に示すように、一般に、活性炭の孔10hには、孔径が50nm以上のマクロ孔(これが孔の入口部分10eに相当する)、孔径が2nm〜50nmの中間孔10f、孔径が2nm以下のミクロ孔10gが存在するとされる。ここで、気体吸着用の活性炭としてはミクロ孔10gの孔径が1.4nm〜1.8nmのものが、液体吸着用の活性炭としてはミクロ孔10gの孔径が1.8nm〜3.2nmのものが好ましく用いられる。なお、多孔質体の孔径は、SEM(走査型電子顕微鏡)またはTEM(透過型電子顕微鏡)などを用いて測定することができる。   The porous body 10 is not particularly limited as long as it is an object having a plurality of pores and adsorbing ability, and from the viewpoint of high adsorbing ability, activated carbon, silica gel, zeolite, bentonite and the like are preferable. Here, a photocatalytic substance can be supported on at least the inlet portion 10e of the hole 10h of the two or more kinds of porous bodies 10. Usually, the pores contained in the porous body include pores of various sizes from those having a large diameter to those having a small diameter. For example, as shown in FIG. 27, generally, the activated carbon hole 10h has macropores having a pore diameter of 50 nm or more (this corresponds to the inlet portion 10e of the hole), intermediate holes 10f having a pore diameter of 2 nm to 50 nm, and a pore diameter of 2 nm. It is assumed that the following micropores 10g exist. Here, the activated carbon for gas adsorption has a pore size of 10 g of micropores of 1.4 nm to 1.8 nm, and the activated carbon for liquid adsorption has a pore size of 10 g of micropores of 1.8 nm to 3.2 nm. Preferably used. The pore diameter of the porous body can be measured using SEM (scanning electron microscope) or TEM (transmission electron microscope).

すなわち、光触媒担持多孔質体1において、多孔質体10の少なくとも孔10hの入口部分10eに相当するマクロ孔に多孔質状の光触媒物質11が担持されている。また、光触媒物質11は、孔10hの入口部分10eの他、多孔質体10の表面10sの少なくとも一部にも担持され得る。このように、光触媒物質11が多孔質体10の少なくとも孔10hの入口部分10eに担持されていることは、光触媒担持多孔質体1をSEMまたはTEMなどで観察することにより確認できる。なお、光触媒物質11が孔10hの中間孔10fおよびミクロ孔10gにおいても担持されているか否かについては明らかではないが、以下に述べる光触媒担持多孔質体の製造方法を考慮すると、中間孔10fおよびミクロ孔10gにおいては担持されていないものと思われる。   That is, in the photocatalyst-supporting porous body 1, the porous photocatalytic substance 11 is supported in macropores corresponding to at least the inlet portion 10 e of the hole 10 h of the porous body 10. Further, the photocatalytic substance 11 can be supported on at least a part of the surface 10s of the porous body 10 in addition to the inlet portion 10e of the hole 10h. Thus, it can be confirmed that the photocatalyst substance 11 is supported on at least the inlet portion 10e of the hole 10h of the porous body 10 by observing the photocatalyst-supporting porous body 1 with SEM or TEM. It is not clear whether or not the photocatalytic substance 11 is supported also in the intermediate hole 10f and the micropore 10g of the hole 10h, but considering the method for producing the photocatalyst-supporting porous body described below, the intermediate hole 10f and It seems that the micropores 10g are not supported.

[光触媒担持多孔質体の形状]
光触媒担持多孔質体1の形状は、特に制限はないが、吸着能力および光触媒能力を高める観点から表面積が大きくなる形状、たとえば、粉末状、粒状、ハニカム状およびブラシ状のいずれかを含むことが好ましい。ここで、粉末状と粒状との明確な区別は困難であるが、たとえば、粉末状の多孔質体を集合させて粒状の多孔質体が得られる。また、粉末状または粒状の多孔質体を集合させてハニカム状またはブラシ状の多孔質体が得られる。
[Shape of photocatalyst-supported porous body]
The shape of the photocatalyst-supporting porous body 1 is not particularly limited, but may include any shape that increases the surface area from the viewpoint of increasing adsorption capacity and photocatalytic capacity, for example, any of powder, granular, honeycomb, and brush. preferable. Here, although it is difficult to clearly distinguish the powder form from the granular form, for example, a granular porous body can be obtained by aggregating the powdered porous bodies. Also, a honeycomb or brush-like porous body can be obtained by collecting powdery or granular porous bodies.

図1〜10を参照して、粉末状の光触媒担持多孔質体1は、サイズが小さく表面積が大きいため、高い光触媒性能を有する。粉末状の光触媒担持多孔質体のサイズは、吸着能力および光触媒能力を高める観点からは小さい方が好ましく、作業性を高める観点からは大きいほうがよい。具体的には、粉末の径が10μm〜0.15mm程度が好ましい。かかる粉末状の光触媒担持多孔質体1は、特に制限はなく、粉末の径よりも小さな目の網などに包んで用いられ得るが、装置内に固定しやすく流体の圧損を調整しやすい観点から好ましくはシート71などに点着させて用いられる。   1-10, since the powdery photocatalyst carrying porous body 1 has a small size and a large surface area, it has high photocatalytic performance. The size of the powdery photocatalyst-supporting porous body is preferably small from the viewpoint of enhancing the adsorption ability and the photocatalytic ability, and is preferably large from the viewpoint of enhancing workability. Specifically, the diameter of the powder is preferably about 10 μm to 0.15 mm. Such a powdery photocatalyst-supporting porous body 1 is not particularly limited and can be used by being wrapped in a mesh or the like smaller than the diameter of the powder. However, from the viewpoint of being easily fixed in the apparatus and adjusting the fluid pressure loss. Preferably, it is used by being spotted on the sheet 71 or the like.

図18〜図22を参照して、粒状の光触媒担持多孔質体1は、粉末状の光触媒担持多孔質体に次いでサイズが小さく表面積が大きい、また、作業性が高く流体の種類による制約が少ない。このため、粒状の光触媒担持多孔質体は、同じ質量の粉末状の光触媒担持多孔質体に比べて流体の浄化能力が劣るが、浄化装置の設計の自由度が高く、大容量の流体の浄化に対応しやすい。粒状の光触媒担持多孔質体の形状は、特に制限はなく、たとえば、円柱状、球状、破砕粒状などが挙げられる。また、粒状の光触媒担持多孔質体のサイズは、特に制限はないが、吸着能力および光触媒能力を高める観点から小さい方がよく、作業性を高める観点から大きい方がよい。具体的には、粒状の光触媒担持多孔質体1の大きさは、円柱状の場合は口径が1mm〜20mmで高さが1mm〜30mmが好ましく、球状の場合は直径が0.5mm〜20mmが好ましく、破砕粒状の場合は粒径が0.15mm〜1mmが好ましい。   Referring to FIGS. 18 to 22, the granular photocatalyst-supporting porous body 1 has the second smallest size and the largest surface area after the powdery photocatalyst-supporting porous body, and has high workability and few restrictions due to the type of fluid. . For this reason, the granular photocatalyst-supported porous body is inferior in fluid purification capacity compared to the powdery photocatalyst-supported porous body having the same mass, but the degree of freedom in designing the purification device is high, and purification of a large volume of fluid It is easy to cope with. The shape of the granular photocatalyst-supporting porous body is not particularly limited, and examples thereof include a cylindrical shape, a spherical shape, and a crushed granular shape. The size of the granular photocatalyst-supporting porous body is not particularly limited, but is preferably smaller from the viewpoint of improving the adsorption capacity and photocatalytic capacity, and larger from the viewpoint of improving workability. Specifically, the size of the granular photocatalyst-supporting porous body 1 is 1 mm to 20 mm in diameter and preferably 1 mm to 30 mm in the case of a cylindrical shape, and 0.5 mm to 20 mm in the case of a spherical shape. In the case of crushed particles, the particle size is preferably 0.15 mm to 1 mm.

なお、本願においては、特に断りがない限り、粒子の粒径、口径および直径とは、いずれもその粒子についておよび複数の粒子についての平均値を示す。ここで、粒子の粒径、口径および直径は、その大きさに応じて、SEM、TEM、光学顕微鏡、目視で測定することができる。また、スラリー状態の粒子の粒径、口径および直径ならびにその分布は、レーザ回折方式またはレーザ散乱方式の粒度分布測定装置などで測定ができる。   In the present application, unless otherwise specified, the particle diameter, the diameter, and the diameter of the particle are average values of the particle and a plurality of particles. Here, the particle diameter, the diameter, and the diameter of the particles can be measured by SEM, TEM, optical microscope, or visual observation according to the size. In addition, the particle diameter, diameter, diameter, and distribution of the particles in a slurry state can be measured with a particle size distribution measuring apparatus using a laser diffraction method or a laser scattering method.

図11〜図15を参照して、ハニカム状の光触媒担持多孔質体1は、粉末状および粒状の光触媒担持多孔質体に比べて流体の種類による制約が少なく、光源の設計によりハニカム開口面1k,1k’からハニカム面1hの全面に光を当てることが可能となる。   Referring to FIGS. 11 to 15, the honeycomb-shaped photocatalyst-supporting porous body 1 is less restricted by the type of fluid than the powdered and granular photocatalyst-supporting porous body, and the honeycomb opening surface 1k is determined by the design of the light source. , 1k ′, light can be applied to the entire surface of the honeycomb surface 1h.

図16および図17を参照して、ブラシ状の光触媒担持多孔質体1は、ハニカム状の光触媒担持多孔質体に比べて流体の種類による制約がさらに少なく、光源の設計により光触媒担持多孔質体のブラシの毛部の側面の全面に光を当てることが可能になる。   Referring to FIGS. 16 and 17, the brush-like photocatalyst-supporting porous body 1 is less restricted by the type of fluid than the honeycomb-like photocatalyst-supporting porous body, and the photocatalyst-supporting porous body is designed by the design of the light source. It becomes possible to shine light on the entire side of the brush hair.

[光触媒物質]
光触媒物質11は、光触媒能力を有する物質であれば特に制限はないが、光触媒能力が高い観点から、酸化チタン、酸化亜鉛などが好ましく挙げられ、中でも酸化チタンが特に好ましく挙げられる。多孔質体10の少なくとも孔10hの入口部分10eに担持されている光触媒物質11が多孔質状であることは、その孔径が極めて小さいことから、直接観察することは困難であるが、後述するように光触媒担持多孔質体1が有害物質および汚濁物質に対して極めて高い吸着能力および分解能力を有することから支持される。
[Photocatalytic substance]
The photocatalytic substance 11 is not particularly limited as long as it is a substance having a photocatalytic ability, but from the viewpoint of high photocatalytic ability, preferred are titanium oxide, zinc oxide and the like, and particularly preferred is titanium oxide. The fact that the photocatalytic substance 11 supported on at least the inlet portion 10e of the pore 10h of the porous body 10 is porous is difficult to observe directly because its pore diameter is extremely small, but will be described later. Further, the photocatalyst-supporting porous body 1 is supported because it has an extremely high adsorption ability and decomposition ability for harmful substances and pollutants.

光触媒物質としての酸化チタンは、そのバンドギャップのエネルギーは3.2eVであるため、波長が400nm以下(理論上は390nm以下)の光を吸収することにより、光触媒能力を得る。400nm〜700nmの可視光をも吸収して光触媒能力を得させる観点から、酸化チタンに、ドーパントとして炭素、窒素、硫黄、鉄、銅、バナジウム、ルテニウム、モリブデン、ニオブ、タンタル、白金などの原子を添加することが好ましい。   Titanium oxide as a photocatalytic substance has a band gap energy of 3.2 eV. Therefore, it absorbs light having a wavelength of 400 nm or less (theoretically 390 nm or less) to obtain photocatalytic ability. From the viewpoint of absorbing visible light of 400 nm to 700 nm to obtain photocatalytic ability, titanium, atoms such as carbon, nitrogen, sulfur, iron, copper, vanadium, ruthenium, molybdenum, niobium, tantalum, and platinum are used as dopants. It is preferable to add.

[光触媒担持多孔質の製造方法]
光触媒担持多孔質体1の製造方法は、特に制限はないが、たとえば、以下の方法が挙げられる。すなわち、まず、光触媒物質である金属酸化物に対応する金属水酸化物をアルコール類または水に懸濁させた金属水酸化物含有スラリーを多孔質体10に含浸させ、その後過酸化水素水を加えて金属水酸化物と過酸化水素水と反応させて金属酸化物を生成させ、その後スラリー中のアルコール類または水を乾燥させる。かかる方法により、多孔質体10の少なくとも孔10hの入口部分10eに多孔質状の光触媒物質11が担持された光触媒担持多孔質体1が得られる。なお、過酸化水素水は、それが金属水酸化物と自己発熱により反応(かかる反応を、以後自己発熱反応という)が進む温度(かかる温度を、以後自己発熱反応温度という)において添加される。かかる方法により製造される光触媒担持多孔質体1は、バインダーを用いることなく光触媒物質11が担持され、また、担持されている光触媒物質11は多孔質状であるため、きわめて高い吸着能力および光触媒能力を有する。
[Method for producing photocatalyst-supported porous material]
The production method of the photocatalyst-supporting porous body 1 is not particularly limited, and examples thereof include the following methods. That is, first, the porous body 10 is impregnated with a metal hydroxide-containing slurry in which a metal hydroxide corresponding to a metal oxide that is a photocatalytic substance is suspended in alcohols or water, and then hydrogen peroxide water is added. The metal hydroxide and hydrogen peroxide solution are reacted to form a metal oxide, and then the alcohol or water in the slurry is dried. By this method, the photocatalyst-supporting porous body 1 in which the porous photocatalytic substance 11 is supported on at least the inlet portion 10e of the hole 10h of the porous body 10 is obtained. The hydrogen peroxide solution is added at a temperature at which it reacts with the metal hydroxide by self-heating (this reaction is hereinafter referred to as self-heating reaction) (this temperature is hereinafter referred to as self-heating temperature). In the photocatalyst-supporting porous body 1 produced by such a method, the photocatalyst material 11 is supported without using a binder, and the supported photocatalyst material 11 is porous. Have

より具体的には、光触媒担持多孔質1は、以下のようにして製造される。まず、金属水酸化物をアルコール類または水に懸濁させて金属水酸化物スラリーを作製する。ここで、懸濁媒体としては、担持させる多孔質体10との濡れ性を高める観点から、活性炭の場合にはアルコール類を、シリカゲルまたはゼオライトの場合には水が好ましく用いられる。金属水酸化物と懸濁媒体(アルコール類または水)とのモル比は、金属水酸化物1モルに対して懸濁媒体1〜10モルが好ましい。   More specifically, the photocatalyst-supporting porous material 1 is manufactured as follows. First, a metal hydroxide slurry is prepared by suspending a metal hydroxide in alcohols or water. Here, as the suspending medium, alcohol is preferably used in the case of activated carbon, and water is preferably used in the case of silica gel or zeolite, from the viewpoint of enhancing the wettability with the porous body 10 to be supported. The molar ratio of the metal hydroxide to the suspending medium (alcohol or water) is preferably 1 to 10 mol of the suspending medium with respect to 1 mol of the metal hydroxide.

次に、多孔質体10に金属水酸化物スラリーを含浸させる。多孔質体10の吸着力によって、金属水酸化物スラリーが、多孔質体10の少なくとも孔10hの入口部分10eまで浸入する。ここで、金属水酸化物スラリーは、それに含まれる金属水酸化物の凝集粒子(2次粒子)の粒径(2次粒子径)が20nm〜20μm程度であるため、孔10hの中間孔10fおよびミクロ孔10gまで入り込むのは困難と考えられる。多孔質体10に対する金属水酸化物の含浸量は、多孔質体100gに対して金属水酸化物中の金属量が1〜50gとすることが好ましい。   Next, the porous body 10 is impregnated with a metal hydroxide slurry. Due to the adsorptive power of the porous body 10, the metal hydroxide slurry enters at least the inlet portion 10 e of the pore 10 h of the porous body 10. Here, in the metal hydroxide slurry, since the particle size (secondary particle size) of the aggregated particles (secondary particles) of the metal hydroxide contained therein is about 20 nm to 20 μm, the intermediate hole 10f of the hole 10h and It is considered difficult to enter up to 10 g of micropores. The amount of metal hydroxide impregnated into the porous body 10 is preferably 1 to 50 g of metal in the metal hydroxide with respect to 100 g of the porous body.

次に、金属水酸化物が含浸した多孔質体10に過酸化水素水に接触させることにより、金属水酸化物と過酸化水素とを自己発熱により反応して金属酸化物が生成する。ここで、過酸化水素水を接触させる際の自己発熱開始温度は、金属水酸化物の種類と過酸化水素水の濃度により決まる。すなわち、特定の多孔質内に含浸した金属水酸化物1gに対して35質量%の過酸化水素水5gを接触させて、徐々に温度を上げていくと自発的に反応を開始する自己発熱反応開始温度を見出すことができる。たとえば、光触媒物質として酸化チタンを担持させる場合において、35質量%の過酸化水素水を用いるときには、自己発熱反応温度は27℃〜42℃程度となり、かかる温度範囲内で水酸化チタンと過酸化水素水を接触させることが好ましい。   Next, the porous body 10 impregnated with the metal hydroxide is brought into contact with the hydrogen peroxide solution, whereby the metal hydroxide and hydrogen peroxide react with each other by self-heating to generate a metal oxide. Here, the self-heating start temperature when contacting the hydrogen peroxide solution is determined by the type of metal hydroxide and the concentration of the hydrogen peroxide solution. That is, a self-exothermic reaction that spontaneously starts the reaction when 5 g of hydrogen peroxide solution of 35% by mass is brought into contact with 1 g of metal hydroxide impregnated in a specific porous body and the temperature is gradually raised. The starting temperature can be found. For example, in the case of supporting titanium oxide as a photocatalytic substance, when 35% by mass of hydrogen peroxide water is used, the self-exothermic reaction temperature is about 27 ° C. to 42 ° C., and titanium hydroxide and hydrogen peroxide are within this temperature range. It is preferable to contact water.

次に、金属酸化物が含浸されている多孔質体10に含まれている懸濁媒体であるアルコール類または水を乾燥させることにより、多孔質体10の少なくとも孔10hの入口部分10eに多孔質状の光触媒物質である金属酸化物を担持することができる。ここで、アルコール類または水の乾燥温度は、特に制限はなく、室温(たとえば25℃)でも可能であるが、乾燥時間を短縮するため、100℃〜500℃で行なうことが好ましい。   Next, the alcohol or water, which is the suspending medium contained in the porous body 10 impregnated with the metal oxide, is dried to make the porous body 10 porous at least in the inlet portion 10e of the hole 10h. It is possible to carry a metal oxide which is a photocatalytic substance. Here, the drying temperature of the alcohol or water is not particularly limited and can be room temperature (for example, 25 ° C.), but is preferably 100 ° C. to 500 ° C. in order to shorten the drying time.

上記製造方法において、多孔質体に担持される金属酸化物(光触媒物質)を多孔質状とするためには、金属水酸化物と過酸化水素との反応後に残存する懸濁媒体が少なくなるように、懸濁媒体の量、過酸化水素水の量および濃度を調整することが好ましい。光触媒物質を微細孔の多孔質状とするには、懸濁媒体であるアルコール類または水の液量を、金属水酸化物中の金属1モルに対して、1〜5モルになるように調整するのが好ましい。   In the above production method, in order to make the metal oxide (photocatalytic substance) supported on the porous body porous, the suspension medium remaining after the reaction between the metal hydroxide and hydrogen peroxide is reduced. In addition, it is preferable to adjust the amount of the suspension medium, the amount and concentration of the hydrogen peroxide solution. To make the photocatalytic substance porous, the amount of alcohol or water as the suspension medium is adjusted to 1 to 5 moles per mole of metal in the metal hydroxide. It is preferable to do this.

なお、懸濁媒体であるアルコール類は、金属の種類により自己発熱反応温度が違うため、自己発熱反応温度が低い金属では沸点の低いメタノール、エタノール、プロパノール、ブタノールなどが好ましく、自己発熱反応温度が高い金属は沸点の高いアルコールが好ましい。なお、懸濁媒体としては、水、アルコール類の他、グリコール類なども使用できる。   In addition, since alcohols that are suspending media have different self-exothermic reaction temperatures depending on the type of metal, methanol, ethanol, propanol, butanol, etc. having a low boiling point are preferable for metals with low self-exothermic reaction temperatures. The high metal is preferably an alcohol having a high boiling point. As the suspending medium, water, alcohols, glycols and the like can be used.

また、金属水酸化物スラリーに替えて、金属水酸化物とそれに対応する金属酸化物の混合物をアルコール類または水に懸濁させた金属酸化物−金属酸化物混合スラリーを用いることもできる。金属酸化物を混合させることにより、担持される金属酸化物の多孔質の空孔率、孔径などを調製することができる。また、金属水酸化物スラリーとして水酸化チタンのスラリーを用いる場合は、アナターゼ型の酸化チタンが得られることから、ルチル型および/またはブルッカイト型の酸化チタンを予めスラリーに添加しておくことで、アナターゼ型に加えてルチル型および/またはブルッカイト型を含む酸化チタンが得られる。   Moreover, it can replace with a metal hydroxide slurry, and can also use the metal oxide-metal oxide mixed slurry which suspended the mixture of the metal hydroxide and the metal oxide corresponding to it in alcohols or water. By mixing the metal oxide, the porous porosity, pore diameter, etc. of the supported metal oxide can be prepared. Further, when a titanium hydroxide slurry is used as the metal hydroxide slurry, anatase-type titanium oxide can be obtained. By adding rutile-type and / or brookite-type titanium oxide to the slurry in advance, Titanium oxide containing a rutile type and / or a brookite type in addition to the anatase type is obtained.

また、ドーパントが添加された酸化チタンが担持された多孔質体は、特に制限はないが、たとえば水酸化チタンスラリー(金属水酸化物スラリー)に添加するドーパントを含む化合物を添加して、上記と同様の手法により多孔質体に担持することにより得られる。   Further, the porous body on which the titanium oxide to which the dopant is added is supported is not particularly limited. For example, a compound containing a dopant added to a titanium hydroxide slurry (metal hydroxide slurry) is added, and It is obtained by carrying on a porous body by the same method.

[光源]
光源は、光触媒物質を活性化させる光を発するものであれば特に制限はない。かかる観点から、光触媒物質が酸化チタンの場合は、発光ピーク波長が400nm以下の発光素子を光源として用いることが好ましい。また、光触媒物質を炭素、窒素、硫黄、鉄、銅、バナジウム、ルテニウム、モリブデン、ニオブ、タンタル、白金など原子がドーパントとして添加された酸化チタンとすることにより、発光ピーク波長が700nm以下の発光素子を光源として用いることができる。
[light source]
The light source is not particularly limited as long as it emits light that activates the photocatalytic substance. From this viewpoint, when the photocatalytic substance is titanium oxide, it is preferable to use a light emitting element having an emission peak wavelength of 400 nm or less as a light source. In addition, by using titanium oxide to which atoms such as carbon, nitrogen, sulfur, iron, copper, vanadium, ruthenium, molybdenum, niobium, tantalum, and platinum are added as dopants, a light emitting element having an emission peak wavelength of 700 nm or less Can be used as a light source.

光源は、点光源、線光源および面光源のいずれかを含む。図1〜図3、図11、図18、図19、図23〜図25および図26(a)に光源5として示される点光源には、たとえば、LED(発光ダイオード)、SMD(発光ベアチップ)、LD(レーザダイオード)、電球などが挙げられる。LED、SMDおよびLDは、小型で光変換効率が高く発熱量が小さく長寿命である。電球は安価である。   The light source includes any of a point light source, a line light source, and a surface light source. The point light source shown as the light source 5 in FIGS. 1 to 3, 11, 18, 19, 23 to 25, and 26 (a) includes, for example, an LED (light emitting diode) and an SMD (light emitting bare chip). LD (laser diode), light bulb, and the like. LEDs, SMDs, and LDs are small, have high light conversion efficiency, low heat generation, and long life. Light bulbs are cheap.

また、図4、図5、図12および図20に光源5として示される線光源には、たとえば、ブラックライト、ケミカルライト、蛍光灯などが挙げられる。これらの線光源は、光強度が高い。   In addition, examples of the linear light source shown as the light source 5 in FIGS. 4, 5, 12, and 20 include black light, chemical light, and fluorescent lamp. These line light sources have high light intensity.

また、図6〜図10、図13〜図15、図16、図17、図21、図22および図26(b)に光源5として示されている面光源は、元光源4と導光板7および光拡散材8のいずれかとを含む。ここで、図6〜図8、図13、図16、図17、図21および図26(b)に示される導光板7とは、端面7sより取り入れた光を一方の主面7mから均一に面発光させる板をいい、たとえば、他方の主面7nが特殊加工(たとえば、エンボス加工、テクスチャ加工などの凹凸加工)されたアクリル板などが挙げられる。導光板7においては、端面7sから入射した光は特殊加工された他方の主面7nにより散乱され、拡散光となって一方の主面7mから面発光する。また、図9、図10、図14、図15、図17および図22に示される光拡散材8とは、元光源4側の主面8nから取り入れた光を反対側の主面8mから均一に面発光させる材料をいい、金属材料または非金属材料の織布、不織布または多孔質体、光拡散板などが挙げられる。ここで、金属材料は光反射率の高いものが好ましく、非金属材料は光を吸収しないものが好ましい。特に、入射した光を散乱させる材料として、アルミニウム繊維、ステンレス繊維、発泡アルミニウムなどが好ましく挙げられる。光拡散材8においては、元光源4側の主面8nより入射した光は、光拡散材により散乱され、拡散光となって反対側の主面8mから面発光する。したがって、元光源4と導光板7および光拡散材8とのいずれかを含む面光源から出射される拡散光は、散乱光であるため、光の方向は一方向ではなく、光が出射する主面7m,8mを貫通する任意の方向である。このため、上記面光源からの光は、光触媒担持多孔質体の外面(外側の表面)のみではなく内面(内側の表面)にまで届く。   Further, the surface light source shown as the light source 5 in FIGS. 6 to 10, 13 to 15, 16, 17, 21, 22, and 26 (b) is the original light source 4 and the light guide plate 7. And the light diffusing material 8. Here, the light guide plate 7 shown in FIGS. 6 to 8, 13, 16, 17, 21, and 26 (b) is uniform from the main surface 7 m with light taken from the end surface 7 s. It refers to a plate that emits light, and includes, for example, an acrylic plate in which the other main surface 7n is specially processed (for example, uneven processing such as embossing and texture processing). In the light guide plate 7, the light incident from the end surface 7 s is scattered by the other specially processed main surface 7 n and becomes diffused light and emits light from the one main surface 7 m. Further, the light diffusing material 8 shown in FIGS. 9, 10, 14, 15, 17, and 22 is uniform in the light taken from the main surface 8n on the original light source 4 side from the main surface 8m on the opposite side. A material that emits surface light, and includes a woven fabric, a non-woven fabric or a porous body of a metal material or a non-metal material, a light diffusion plate, and the like. Here, the metal material preferably has a high light reflectance, and the non-metal material preferably does not absorb light. In particular, preferred examples of the material that scatters incident light include aluminum fibers, stainless fibers, and foamed aluminum. In the light diffusing material 8, light incident from the main surface 8 n on the original light source 4 side is scattered by the light diffusing material and becomes diffused light and emits surface light from the main surface 8 m on the opposite side. Accordingly, since the diffused light emitted from the surface light source including any one of the original light source 4 and the light guide plate 7 and the light diffusing material 8 is scattered light, the direction of the light is not one direction but the light is mainly emitted. It is an arbitrary direction penetrating the surfaces 7m and 8m. For this reason, the light from the surface light source reaches not only the outer surface (outer surface) but also the inner surface (inner surface) of the photocatalyst-supporting porous body.

また、光源は、連続発光であってもパルス発光であっても、光触媒物質を活性化させて、光触媒作用を発揮させることができる。一度の受光により光触媒物質中の多くの分子が活性化されるからである。   In addition, the light source can activate the photocatalytic substance to exhibit a photocatalytic action regardless of whether it is continuous light emission or pulse light emission. This is because many molecules in the photocatalytic substance are activated by receiving light once.

なお、図26を参照して、光源から出る光の方向を制限するために、反射板9が好適に用いられる。図26(a)に示すように、点光源または線光源などの光源5に反射板9を配置することにより、光源5の光を一定範囲の方向(出光する主面5mを貫通する方向)に制限することができる。また、光源5が面光源の場合、図26(b)に示すように、元光源4に含まれる点光源または線光源に反射板9を配置し、導光板7の特殊加工された主面7n上に反射板9を配置することにより、より効果的に一定範囲の面方向に出光することができる。ここで、図26(a)および(b)を参照して、光源5または元光源4が点光源または線光源の場合において、光源の光を一定範囲の方向に効果的に限定する観点から、反射板9の端部内面と出光する主面5m,4mとのなす角度θは、35°〜55°が好ましく、40°〜50°がより好ましく、45°が最も好ましい。   In addition, with reference to FIG. 26, in order to restrict | limit the direction of the light emitted from a light source, the reflecting plate 9 is used suitably. As shown in FIG. 26 (a), by disposing the reflector 9 on the light source 5 such as a point light source or a line light source, the light of the light source 5 is directed in a certain range direction (direction penetrating the main surface 5m that emits light). Can be limited. When the light source 5 is a surface light source, as shown in FIG. 26B, a reflecting plate 9 is disposed on a point light source or a line light source included in the original light source 4, and the specially processed main surface 7n of the light guide plate 7 is provided. By disposing the reflecting plate 9 on the top, it is possible to emit light more effectively in a plane direction within a certain range. Here, with reference to FIGS. 26A and 26B, in the case where the light source 5 or the original light source 4 is a point light source or a line light source, from the viewpoint of effectively limiting the light of the light source to a certain range direction, The angle θ between the inner surface of the end portion of the reflecting plate 9 and the main surfaces 5m and 4m that emit light is preferably 35 ° to 55 °, more preferably 40 ° to 50 °, and most preferably 45 °.

[光源の保護]
流体浄化装置において用いられる光源は、流体中に含まれる有害物質または汚濁物質による汚染を防止し、また、流体の熱による劣化を防止するため、光透過性材料により流体から隔離されて保護されることが好ましい。図23〜図25を参照して、たとえば矢印Fの方向に流れる流体から光源5を隔離するための光透過性材料6としては、光透過性コーティング材6cおよび光透過性シート6pとが挙げられる。すなわち、光源5は、光透過性材料である光透過性コーティング材6cおよび光透過性シート6pの少なくともいずれかにより流体から隔離されていることが好ましい。
[Light source protection]
The light source used in the fluid purification apparatus is isolated and protected from the fluid by a light transmissive material in order to prevent contamination by harmful substances or pollutants contained in the fluid and to prevent deterioration of the fluid due to heat. It is preferable. Referring to FIGS. 23 to 25, for example, light transmissive material 6 for isolating light source 5 from the fluid flowing in the direction of arrow F includes light transmissive coating material 6 c and light transmissive sheet 6 p. . That is, the light source 5 is preferably isolated from the fluid by at least one of the light transmissive coating material 6c and the light transmissive sheet 6p, which are light transmissive materials.

図23を参照して、下板73上に固定された光源5は、光透過性コーティング材6cにより被覆されることにより、流体から隔離される。かかる光透過性コーティング材を形成する材料は、特に制限はないが、光透過性が高く流体に含まれる有害物資または汚濁物質に対する耐久性が高い観点から、ポリウレタン系樹脂、アクリル系樹脂(特にPMMA(ポリメチルメタアクリレート)樹脂)、シリコーン系樹脂、フッ素系樹脂、フッ素系グラフト樹脂などが挙げられる。   Referring to FIG. 23, light source 5 fixed on lower plate 73 is isolated from a fluid by being covered with light-transmitting coating material 6c. The material for forming such a light-transmitting coating material is not particularly limited. However, polyurethane resin, acrylic resin (especially PMMA) is preferred from the viewpoint of high light transmittance and high durability against harmful substances or pollutants contained in the fluid. (Polymethyl methacrylate resin), silicone resin, fluorine resin, fluorine graft resin and the like.

また、図24を参照して、下板73上に固定された光源5は、光透過性シート6pに覆われることにより、流体から隔離される。かかる光透過性シートを形成する材料は、特に制限はないが、光透過性が高く流体に含まれる有害物資または汚濁物質に対する耐久性が高い観点から、PMMA樹脂、PC(ポリカーボネート)樹脂、ポリエチレングルコールビスカーボネート樹脂、脂環式ポリオレフィン樹脂、脂環式アクリル樹脂、フッ素系非晶質樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂などが挙げられる。さらには、光透過性ポリアミド樹脂、脂環式ポリアミド樹脂、フッ素ポリイミド樹脂なども使用できる。ここで、一般的に、非晶性樹脂は結晶性樹脂に比べて、耐薬品性および耐擦過性が低いため、光透過性シートとして非晶性樹脂シートを用いる場合は、図25に示すように、光透過性シート6pを上記光透過性コーティング材6cで被覆することが好ましい。   Referring to FIG. 24, the light source 5 fixed on the lower plate 73 is isolated from the fluid by being covered with the light transmissive sheet 6p. The material for forming such a light transmissive sheet is not particularly limited, but PMMA resin, PC (polycarbonate) resin, polyethylene glucone are used from the viewpoint of high light transmittance and high durability against harmful substances or pollutants contained in the fluid. Examples thereof include a rubiscarbonate resin, an alicyclic polyolefin resin, an alicyclic acrylic resin, a fluorine-based amorphous resin, a polyethersulfone resin, and a polyarylate resin. Furthermore, a light transmissive polyamide resin, an alicyclic polyamide resin, a fluorine polyimide resin, or the like can also be used. Here, since the amorphous resin generally has lower chemical resistance and scratch resistance than the crystalline resin, when an amorphous resin sheet is used as the light transmissive sheet, as shown in FIG. Further, it is preferable to coat the light transmissive sheet 6p with the light transmissive coating material 6c.

また、図25を参照して、下板73上に固定された光源5は、光透過性コーティング材6cにより被覆され、さらに光透過性シート6pにより覆われることにより、流体Fから隔離される。なお、図25には、光透過性シート6pが光透過性コーティング材6cに被覆されている実施形態が示されているが、光透過性シート6pは光透過性コーティング材6cで被覆せずに用いることもできる。   Referring to FIG. 25, the light source 5 fixed on the lower plate 73 is covered with the light transmissive coating material 6c and further covered with the light transmissive sheet 6p, thereby being isolated from the fluid F. FIG. 25 shows an embodiment in which the light transmissive sheet 6p is coated with the light transmissive coating material 6c. However, the light transmissive sheet 6p is not coated with the light transmissive coating material 6c. It can also be used.

本発明にかかる流体浄化装置の実施形態について、その構造をさらに具体的に以下に説明する。   The structure of the embodiment of the fluid purification apparatus according to the present invention will be described more specifically below.

(実施形態1)
本発明にかかる流体浄化装置の一実施形態は、図1および図27を参照して、多孔質状の光触媒物質11が多孔質体10の少なくとも孔10hの入口部分10eに担持されている1つ以上の光触媒担持多孔質体1と、光触媒物質11を活性化させる光を発する1つ以上の光源5を含む。ここで、1つ以上の好ましくは複数の光触媒担持多孔質体1を点着するためのシート71をさらに含み、光源5は点光源でありシート71上に点着された光触媒担持多孔質体1に対向して配置されている。このため、光触媒担持多孔質1への光の照射効率が高い。また、流体は光源5とシート71上に点着された光触媒担持多孔質体1との間の空間を流れる。このため、流体抵抗は低いが、流速を大きくすると有害物質および汚濁物質の除去効率が低下する。すなわち、本実施形態の流体浄化装置の構造は小型の流体浄化装置に適している。かかる構造を有する本実施形態の流体浄化装置を、本願においてシート型流体浄化装置とも呼ぶ。
(Embodiment 1)
In one embodiment of the fluid purification apparatus according to the present invention, referring to FIGS. 1 and 27, a porous photocatalytic substance 11 is supported on at least an inlet portion 10e of a hole 10h of a porous body 10. The photocatalyst-supporting porous body 1 and one or more light sources 5 that emit light that activates the photocatalytic substance 11 are included. Here, it further includes a sheet 71 for spotting one or more, preferably a plurality of photocatalyst-supporting porous bodies 1, and the light source 5 is a point light source, and the photocatalyst-supporting porous body 1 spotted on the sheet 71. It is arranged to face. For this reason, the light irradiation efficiency to the photocatalyst carrying porous 1 is high. Further, the fluid flows in a space between the light source 5 and the photocatalyst-supporting porous body 1 spotted on the sheet 71. For this reason, although fluid resistance is low, if the flow rate is increased, the removal efficiency of harmful substances and pollutants decreases. That is, the structure of the fluid purification device of this embodiment is suitable for a small fluid purification device. The fluid purification device of this embodiment having such a structure is also referred to as a sheet-type fluid purification device in the present application.

本実施形態のシート型流体浄化装置は、具体的には、図1を参照して、長さLで幅Wの下板73の上に長さLSで幅WSのシート71が配置され、シート71上に複数の光触媒担持多孔質体1が点着されている。ここで、シート71上の光触媒担持多孔質体1は接着剤によって行なわれる。具体的には、光触媒担持多孔質体1の点着は、シート71に接着剤を塗布し、半分乾燥させたシート上に、光触媒担持多孔質体1を載せることにより行なわれる。シート71は、その上に光触媒担持多孔質体1を点着させることができるものであれば特に制限はないが、表面積が大きく多くの光触媒担持多孔質体1を点着できる観点から、織布、不織布などが好ましく用いられる。シート71が織布、不織布などの場合は、図1に示すように、光触媒担持多孔質体1は、シート71の外側の表面上だけでなく、シート71の内側の表面上にも点着される。Specifically, referring to FIG. 1, in the sheet type fluid purification device of the present embodiment, a sheet 71 having a length L S and a width W S is disposed on a lower plate 73 having a length L and a width W. A plurality of photocatalyst-supporting porous bodies 1 are spotted on the sheet 71. Here, the photocatalyst-supporting porous body 1 on the sheet 71 is performed with an adhesive. Specifically, the photocatalyst-supporting porous body 1 is spotted by applying the adhesive to the sheet 71 and placing the photocatalyst-supporting porous body 1 on the half-dried sheet. The sheet 71 is not particularly limited as long as the photocatalyst-supporting porous body 1 can be spotted on the sheet 71. However, from the viewpoint of being able to spot a large amount of the photocatalyst-supporting porous body 1 with a large surface area, Nonwoven fabrics are preferably used. When the sheet 71 is a woven fabric or a non-woven fabric, the photocatalyst-supporting porous body 1 is spotted not only on the outer surface of the sheet 71 but also on the inner surface of the sheet 71 as shown in FIG. The

シート71上に点着される光触媒担持多孔質体1は、粉末状、破砕粒状または球状の形状のものが好ましく、粉末状がより好ましい。光触媒担持多孔質体1の粉末または粒の径は、10μm〜5mmが好ましく、10μm〜0.15mmがより好ましい。光触媒担持多孔質体1の径が小さいほど吸着能力および光触媒能力が向上し、径が大きいほど吸着能力および光触媒能力が低下する。   The photocatalyst-supporting porous body 1 spotted on the sheet 71 is preferably in the form of powder, crushed particles or spheres, and more preferably in the form of powder. The diameter of the powder or particles of the photocatalyst-supporting porous body 1 is preferably 10 μm to 5 mm, and more preferably 10 μm to 0.15 mm. The smaller the diameter of the photocatalyst-supporting porous body 1, the better the adsorption capacity and the photocatalytic capacity, and the larger the diameter, the lower the adsorption capacity and the photocatalytic capacity.

また、長さLで幅Wの上板75上に複数の点光源(光源5)が長さL方向にピッチPLで幅W方向にピッチPWで配置されている。下板73と上板75は、シート71上に点着された複数の光触媒担持多孔質体1により形成される面と複数の点光源(光源5)により形成される面とが距離Hだけ離れて対向するように、支柱77によって平行に固定されている。図1(a)に示す流体浄化装置においては、4つの側面が開放されており、それらの側面から流体が自由に出入りできる。Moreover, are arranged at a pitch P W in the width W direction length L a plurality of points on the upper plate 75 of the width W at the light source pitch (light source 5) is a length L direction P L. In the lower plate 73 and the upper plate 75, the surface formed by the plurality of photocatalyst-supporting porous bodies 1 spotted on the sheet 71 and the surface formed by the plurality of point light sources (light sources 5) are separated by a distance H. Are fixed in parallel by a support 77 so as to face each other. In the fluid purification device shown in FIG. 1 (a), four side surfaces are open, and fluid can freely enter and exit from these side surfaces.

図1(a)に示す流体浄化装置の長さL方向に平行な2つの側面Sを側板で覆うと、開放面は長さL方向に垂直な2つの側面となり、それらの一方の側面から他方の側面(図2(a)において矢印Fの方向)に流体を流すことができる。   When two side surfaces S parallel to the length L direction of the fluid purification device shown in FIG. 1A are covered with side plates, the open surface becomes two side surfaces perpendicular to the length L direction, and from one side surface to the other side. The fluid can be allowed to flow on the side surface (in the direction of arrow F in FIG. 2A).

本実施形態のシート型流体浄化装置においては、図2を参照して、光触媒担持多孔質体1を点着したシート71および光源5を固定する固定枠74を組み合わせることにより、シート上に点着された複数の光触媒担持多孔質体1とそれに対向して配置されている複数の点光源(光源5)とを有する空間領域を複数形成することができる。かかる複数の空間領域を流体が流れることにより、流体中の有害物質および汚濁物質の除去効率が高くなる。かかる流体浄化装置を、本願において複数シート型流体浄化装置とも呼ぶ。   In the sheet type fluid purification device of the present embodiment, referring to FIG. 2, the sheet 71 on which the photocatalyst-supporting porous body 1 is spotted and the fixing frame 74 for fixing the light source 5 are combined to spot on the sheet. A plurality of spatial regions having the plurality of photocatalyst-supporting porous bodies 1 and the plurality of point light sources (light sources 5) arranged to face the photocatalyst-supporting porous body 1 can be formed. When the fluid flows through the plurality of spatial regions, the removal efficiency of harmful substances and pollutants in the fluid is increased. Such a fluid purification device is also referred to as a multi-sheet type fluid purification device in the present application.

また、本実施形態のシート型流体浄化装置においては、図3を参照して、流体の流入入口に乱流発生器79を配置することにより、乱流F1,F2,F3を発生させるため、流量抵抗が高くなるが、光触媒担持多孔質体1に接触する流体量を増大させて、流体中の有害物質および汚濁物質の除去効率を高めることができる。かかる流体浄化装置を、本願において乱流シート型流体浄化装置とも呼ぶ。In the sheet-type fluid purification apparatus of this embodiment, referring to FIG. 3, a turbulent flow generator 79 is disposed at the fluid inlet, thereby generating turbulent flows F 1 , F 2 , and F 3 . Therefore, the flow resistance is increased, but the amount of fluid contacting the photocatalyst-supporting porous body 1 can be increased to increase the removal efficiency of harmful substances and pollutants in the fluid. Such a fluid purification device is also referred to as a turbulent sheet type fluid purification device in the present application.

(実施形態2)
本発明にかかる流体浄化装置の他の実施形態は、図4を参照して、光源5を線光源としたこと以外は、実施形態1と同様の構造を有する。
(Embodiment 2)
Another embodiment of the fluid purifying apparatus according to the present invention has the same structure as that of the first embodiment except that the light source 5 is a line light source with reference to FIG.

すなわち、本実施形態のシート型流体浄化装置は、具体的には、図4を参照して、固定枠74の長さLで幅Wの下板の上に長さLで幅Wのシート71が配置され、シート71上に1つ以上の好ましくは複数の光触媒担持多孔質体1が点着されている。シート71上への光触媒担持多孔質体1の点着方法は実施形態1と同様である。シート71上に点着される光触媒担持多孔質体1は、実施形態1と同様に、粉末状、破砕粒状または球状の形状のものが好ましく、粉末状がより好ましい。光触媒担持多孔質体1の粉末または粒の径は、10μm〜5mmが好ましく、10μm〜0.15mmがより好ましい。光触媒担持多孔質体1の径が小さいほど吸着能力および光触媒能力が向上し、径が大きいほど吸着能力および光触媒能力が低下する。   That is, the sheet type fluid purification apparatus of the present embodiment, specifically, with reference to FIG. 4, a sheet 71 having a length L and a width W on a lower plate having a length L and a width W of the fixed frame 74. Are arranged, and one or more, preferably a plurality of photocatalyst-supporting porous bodies 1 are spotted on the sheet 71. The method for spotting the photocatalyst-supporting porous body 1 on the sheet 71 is the same as in the first embodiment. As in the first embodiment, the photocatalyst-supporting porous body 1 spotted on the sheet 71 is preferably in the form of powder, crushed particles or spheres, and more preferably in the form of powder. The diameter of the powder or particles of the photocatalyst-supporting porous body 1 is preferably 10 μm to 5 mm, and more preferably 10 μm to 0.15 mm. The smaller the diameter of the photocatalyst-supporting porous body 1, the better the adsorption capacity and the photocatalytic capacity, and the larger the diameter, the lower the adsorption capacity and the photocatalytic capacity.

また、固定枠74の長さLで幅Wの上板上に、複数の線光源(光源5)を、線光源の長手方向を上板の長さL方向に一致させて、上板の幅W方向にピッチPWで配置されている。ここで、シート71上に点着された光触媒担持多孔質体1により形成される面と複数の線光源(光源5)により形成される面とが距離Hだけ離れて対向している。本実施形態の流体浄化装置においては、流体は固定枠74の長さL方向に流される(図4において矢印Fの方向)。In addition, a plurality of line light sources (light sources 5) are arranged on the upper plate having the length L of the fixed frame 74 and the width of the upper plate by matching the longitudinal direction of the line light source with the length L direction of the upper plate. They are arranged at a pitch P W in the W direction. Here, a surface formed by the photocatalyst-supporting porous body 1 spotted on the sheet 71 and a surface formed by a plurality of line light sources (light sources 5) are opposed to each other by a distance H. In the fluid purification device of the present embodiment, the fluid flows in the direction of the length L of the fixed frame 74 (the direction of arrow F in FIG. 4).

本実施形態のシート型流体浄化装置においては、図5を参照して、光触媒担持多孔質体1を点着したシート71を固定する固定枠74と線光源(光源5)とを組み合わせることにより、シート71上に点着された複数の光触媒担持多孔質体1とそれに対向して配置されている複数の線光源(光源5)とを有する空間領域を複数形成することができる。かかる複数の空間領域を流体が流れることにより、流体中の有害物質および汚濁物質の除去効率が高くなる。また、本実施形態のシート型流体浄化装置においても、実施形態1のシート型流体浄化装置と同様に、流体の流入入口に乱流発生器を配置することにより、乱流を発生させて、流体中の有害物質および汚濁物質の除去効率を高めることができる。   In the sheet type fluid purification device of the present embodiment, referring to FIG. 5, by combining a fixed frame 74 and a linear light source (light source 5) for fixing the sheet 71 on which the photocatalyst-supporting porous body 1 is spotted, A plurality of spatial regions having a plurality of photocatalyst-carrying porous bodies 1 spotted on the sheet 71 and a plurality of line light sources (light sources 5) arranged opposite to the porous bodies 1 can be formed. When the fluid flows through the plurality of spatial regions, the removal efficiency of harmful substances and pollutants in the fluid is increased. Also in the sheet type fluid purification device of this embodiment, similarly to the sheet type fluid purification device of Embodiment 1, a turbulent flow generator is provided at the fluid inflow inlet to generate turbulent flow. The removal efficiency of harmful substances and pollutants can be increased.

(実施形態3)
本発明にかかる流体浄化装置のさらに他の実施形態は、図6を参照して、光源5を面光源としたこと、および光触媒担持多孔質体を点着したシートと光源とについての上下の位置関係を反対にしたこと以外は、実施形態1と同様の構造を有する。
(Embodiment 3)
Still another embodiment of the fluid purification apparatus according to the present invention is described with reference to FIG. 6 in which the light source 5 is a surface light source, and the upper and lower positions of the sheet and the light source on which the photocatalyst-carrying porous body is spotted. The structure is the same as that of the first embodiment except that the relationship is reversed.

すなわち、本実施形態のシート型流体浄化装置は、具体的には、図6を参照して、固定枠74の長さLで幅Wの上板上に長さLで幅Wのシート71が配置され、シート71上に1つ以上好ましくは複数の光触媒担持多孔質体1が点着されている。シート71上への光触媒担持多孔質体1の点着方法は実施形態1と同様である。シート71上に点着される光触媒担持多孔質体1は、実施形態1と同様に、粉末状、破砕粒状または球状の形状のものが好ましく、粉末状がより好ましい。光触媒担持多孔質体1の粉末または粒の径は、10μm〜5mmが好ましく、10μm〜0.15mmがより好ましい。光触媒担持多孔質体1の径が小さいほど吸着能力および光触媒能力が向上し、径が大きいほど吸着能力および光触媒能力が低下する。   That is, in the sheet type fluid purification device of the present embodiment, specifically, referring to FIG. 6, a sheet 71 having a length L and a width W is formed on an upper plate having a length L and a width W of the fixed frame 74. One or more, preferably a plurality of photocatalyst-supporting porous bodies 1 are spotted on the sheet 71. The method for spotting the photocatalyst-supporting porous body 1 on the sheet 71 is the same as in the first embodiment. As in the first embodiment, the photocatalyst-supporting porous body 1 spotted on the sheet 71 is preferably in the form of powder, crushed particles or spheres, and more preferably in the form of powder. The diameter of the powder or particles of the photocatalyst-supporting porous body 1 is preferably 10 μm to 5 mm, and more preferably 10 μm to 0.15 mm. The smaller the diameter of the photocatalyst-supporting porous body 1, the better the adsorption capacity and the photocatalytic capacity, and the larger the diameter, the lower the adsorption capacity and the photocatalytic capacity.

また、固定枠74の下板上に、面光源(光源5)が配置されている。本実施形態の面光源(光源5)は、元光源4と長さLで幅Wの主面7mを有する導光板7とを含み、元光源4の出光面4mから導光板7に入った光は導光板7において散乱してその主面7mから拡散光が出る。ここで、シート71上に点着された複数の光触媒担持多孔質体1により形成される面と面光源(光源5)の主面7m(出光面)とが距離Hだけ離れて対向している。本実施形態の流体浄化装置においては、流体は固定枠74の長さL方向に流される(図6において矢印Fの方向)。   A surface light source (light source 5) is disposed on the lower plate of the fixed frame 74. The surface light source (light source 5) of the present embodiment includes the original light source 4 and a light guide plate 7 having a main surface 7m having a length L and a width W, and light that enters the light guide plate 7 from the light exit surface 4m of the original light source 4. Is scattered in the light guide plate 7 and diffused light is emitted from its main surface 7m. Here, the surface formed by the plurality of photocatalyst-supporting porous bodies 1 spotted on the sheet 71 and the main surface 7m (light-emitting surface) of the surface light source (light source 5) face each other at a distance H. . In the fluid purification device of the present embodiment, the fluid flows in the length L direction of the fixed frame 74 (the direction of arrow F in FIG. 6).

本実施形態のシート型流体浄化装置においては、実施形態1のシート型流体浄化装置と同様に、光触媒担持多孔質体を点着したシートを固定する固定枠と面光源とを組み合わせることにより、シート上に点着された複数の光触媒担持多孔質体1とそれに対向して配置されている面光源とを有する空間領域を複数形成することができる。かかる複数の空間領域を流体が流れることにより、流体中の有害物質および汚濁物質の除去効率が高くなる。また、本実施形態のシート型流体浄化装置においても、実施形態1のシート型流体浄化装置と同様に、流体の流入入口に乱流発生器を配置することにより、乱流を発生させて、流体中の有害物質および汚濁物質の除去効率を高めることができる。   In the sheet-type fluid purification device of the present embodiment, as in the sheet-type fluid purification device of Embodiment 1, a sheet is obtained by combining a fixed frame for fixing a sheet on which a photocatalyst-carrying porous body is spotted and a surface light source. A plurality of spatial regions having a plurality of photocatalyst-supporting porous bodies 1 spotted on the surface and a surface light source disposed facing the photocatalyst-supporting porous body 1 can be formed. When the fluid flows through the plurality of spatial regions, the removal efficiency of harmful substances and pollutants in the fluid is increased. Also in the sheet type fluid purification device of this embodiment, similarly to the sheet type fluid purification device of Embodiment 1, a turbulent flow generator is provided at the fluid inflow inlet to generate turbulent flow. The removal efficiency of harmful substances and pollutants can be increased.

(実施形態4)
本発明にかかる流体浄化装置のさらに他の実施形態は、図7を参照して、光触媒多孔質体1が点着されたシート71が面光源の主面7m上に配置されていること以外は、実施形態3と同様の構造を有する。
(Embodiment 4)
Still another embodiment of the fluid purification apparatus according to the present invention is described with reference to FIG. 7, except that the sheet 71 on which the photocatalytic porous body 1 is spotted is disposed on the main surface 7m of the surface light source. The structure is the same as that of the third embodiment.

すなわち、本実施形態のシート型流体浄化装置は、具体的には、図7を参照して、固定枠74の下板上に面光源(光源5)が配置されている。かかる面光源(光源5)は、元光源4と長さLで幅Wの主面7mを有する導光板7とを含み、元光源4の出光面4mから導光板7に入った光は導光板7において散乱してその主面7mから拡散光が出る。   That is, in the sheet type fluid purification device of the present embodiment, specifically, referring to FIG. 7, the surface light source (light source 5) is disposed on the lower plate of the fixed frame 74. The surface light source (light source 5) includes an original light source 4 and a light guide plate 7 having a main surface 7m having a length L and a width W, and light entering the light guide plate 7 from the light exit surface 4m of the original light source 4 is guided by the light guide plate. 7 is scattered and diffused light is emitted from the main surface 7m.

面光源(光源5)の主面7m上に長さLで幅Wのシート71が配置され、シート71上に1つ以上好ましくは複数の光触媒担持多孔質体1が点着されている。また、固定枠74の上板とシート71上への光触媒担持多孔質体1の点着方法は実施形態1と同様である。シート71上に点着される光触媒担持多孔質体1は、実施形態1と同様に、粉末状、破砕粒状または球状の形状のものが好ましく、粉末状がより好ましい。光触媒担持多孔質体1の粉末または粒の径は、10μm〜5mmが好ましく、10μm〜0.15mmがより好ましい。光触媒担持多孔質体1の径が小さいほど吸着能力および光触媒能力が向上し、径が大きいほど吸着能力および光触媒能力が低下する。   A sheet 71 having a length L and a width W is disposed on a main surface 7m of a surface light source (light source 5), and one or more, preferably a plurality of photocatalyst-supporting porous bodies 1 are spotted on the sheet 71. The method for spotting the photocatalyst-supporting porous body 1 on the upper plate of the fixed frame 74 and the sheet 71 is the same as in the first embodiment. As in the first embodiment, the photocatalyst-supporting porous body 1 spotted on the sheet 71 is preferably in the form of powder, crushed particles or spheres, and more preferably in the form of powder. The diameter of the powder or particles of the photocatalyst-supporting porous body 1 is preferably 10 μm to 5 mm, and more preferably 10 μm to 0.15 mm. The smaller the diameter of the photocatalyst-supporting porous body 1, the better the adsorption capacity and the photocatalytic capacity, and the larger the diameter, the lower the adsorption capacity and the photocatalytic capacity.

面光源5の主面7mから出た拡散光は、シート71を通って、シート71上に点着された光触媒担持多孔質体1に当たり、光触媒能力が発現する。本実施形態のシート型流体浄化装置が十分な光触媒能力を有するためには、シート71に担持された光触媒担持多孔質体1に光が十分に当たることが必要である。すなわち、シートは光が通過しやすい材料および形態を有していることが必要である。かかる観点から、シートは透明または多孔質の材料であり、厚さが小さいことが好ましい。シート71は、たとえばポリエチレン不織布、ポリウレタン不織布などが好ましく、空隙率(シート全体に対する空隙の体積百分率をいう、以下同じ)は50体積%〜99体積%が好ましく70体積%〜99体積%がより好ましく90体積%〜99体積%がさらに好ましく、厚さTSは200mm以下が好ましく、50mm以下がより好ましい。The diffused light emitted from the main surface 7m of the surface light source 5 passes through the sheet 71, hits the photocatalyst-supporting porous body 1 spotted on the sheet 71, and exhibits photocatalytic ability. In order for the sheet type fluid purification device of the present embodiment to have a sufficient photocatalytic capability, it is necessary that the photocatalyst-carrying porous body 1 carried on the sheet 71 is sufficiently exposed to light. That is, the sheet needs to have a material and a shape that allow light to easily pass through. From such a viewpoint, the sheet is preferably a transparent or porous material and has a small thickness. For example, the sheet 71 is preferably a polyethylene non-woven fabric, a polyurethane non-woven fabric, etc., and the void ratio (referring to the volume percentage of the void relative to the whole sheet, hereinafter the same) is preferably 50% to 99% by volume, more preferably 70% to 99% by volume. 90% by volume to 99% by volume is more preferable, and the thickness T S is preferably 200 mm or less, and more preferably 50 mm or less.

また、シート71上に点着された複数の光触媒担持多孔質体1により形成される面と固定枠74の上板とは、距離Hだけ離れている。本実施形態の流体浄化装置においては、流体は固定枠74の長さL方向に流される(図7において矢印Fの方向)。   Further, the surface formed by the plurality of photocatalyst-supporting porous bodies 1 spotted on the sheet 71 and the upper plate of the fixed frame 74 are separated by a distance H. In the fluid purification device of the present embodiment, the fluid flows in the direction of the length L of the fixed frame 74 (the direction of arrow F in FIG. 7).

本実施形態のシート型流体浄化装置においては、図8を参照して、複数の導光板7を含む面光源、複数の光触媒担持多孔質体1を点着したシート71、および固定枠74を組み合わせることにより、面光源上に配置されたシート上に点着された複数の光触媒担持多孔質体1を有する空間領域を複数形成することができる。かかる複数の空間領域を流体が流れることにより、流体中の有害物質および汚濁物質の除去効率が高くなる。また、本実施形態のシート型流体浄化装置においても、実施形態1のシート型流体浄化装置と同様に、流体の流入入口に乱流発生器を配置することにより、乱流を発生させて、流体中の有害物質および汚濁物質の除去効率を高めることができる。なお、図8においては、2つの導光板7の間には反射板9が配置されているため、各導光板7の主面7mから効率的に拡散光が出る。   In the sheet type fluid purification device of the present embodiment, referring to FIG. 8, a surface light source including a plurality of light guide plates 7, a sheet 71 on which a plurality of photocatalyst-supporting porous bodies 1 are spotted, and a fixed frame 74 are combined. Thus, a plurality of spatial regions having a plurality of photocatalyst-supporting porous bodies 1 spotted on a sheet disposed on a surface light source can be formed. When the fluid flows through the plurality of spatial regions, the removal efficiency of harmful substances and pollutants in the fluid is increased. Also in the sheet type fluid purification device of this embodiment, similarly to the sheet type fluid purification device of Embodiment 1, a turbulent flow generator is provided at the fluid inflow inlet to generate turbulent flow. The removal efficiency of harmful substances and pollutants can be increased. In FIG. 8, since the reflection plate 9 is disposed between the two light guide plates 7, diffused light is efficiently emitted from the main surface 7 m of each light guide plate 7.

(実施形態5)
本発明にかかる流体浄化装置のさらに他の実施形態は、図9および図27を参照して、多孔質状の光触媒物質11が多孔質体10の少なくとも孔の入口部分10eに担持されている1つ以上の光触媒担持多孔質体1と、光触媒物質11を活性化させる光を発する1つ以上の光源5を含む。ここで、光触媒担持多孔質体1を点着するためのシート71をさらに含み、光源5は面光源を含み、光触媒多孔質体1が点着されたシート71は、面光源の主面8m上に配置されている。また、流体が面光源(光源5)の主面8mを貫通するように、面光源(光源5)および光触媒担持多孔質体1が点着されたシート71が配置されている。
(Embodiment 5)
Still another embodiment of the fluid purification apparatus according to the present invention is described with reference to FIGS. 9 and 27. A porous photocatalytic substance 11 is supported on at least an inlet portion 10e of a porous body 10. It includes one or more photocatalyst-supporting porous bodies 1 and one or more light sources 5 that emit light that activates the photocatalytic substance 11. Here, the sheet 71 for spotting the photocatalyst-supporting porous body 1 is further included, the light source 5 includes a surface light source, and the sheet 71 on which the photocatalyst porous body 1 is spotted is on the main surface 8m of the surface light source. Is arranged. Further, a sheet 71 on which the surface light source (light source 5) and the photocatalyst-supporting porous body 1 are spotted is disposed so that the fluid penetrates the main surface 8m of the surface light source (light source 5).

すなわち、本実施形態のシート型流体浄化装置は、具体的には、図9を参照して、面光源(光源5)の主面8m上に光触媒担持多孔質1が点着されたシート71が配置されている。かかる面光源(光源5)は、元光源4と光拡散材8とを含み、元光源4は光拡散材8の一方の主面8n上に配置されている。ここで、元光源4には1つ以上の点光源を含んでいる。元光源4の出光面4mから光拡散材8の一方の主面8nを通って光拡散材8に入った光は、光拡散材8により散乱されて、光拡散材8の他方の主面8mから拡散光として出る。面光源(光源5)において、元光源4の光を十分に散乱させて十分な拡散光を得る観点から、光拡散材8は、空隙率は50体積%〜90体積%が好ましく65体積%〜75体積%がより好ましく、厚さTLは10mm以上が好ましく25mm以上がより好ましい。That is, in the sheet type fluid purification apparatus of the present embodiment, specifically, referring to FIG. 9, the sheet 71 in which the photocatalyst-supporting porous material 1 is spotted on the main surface 8m of the surface light source (light source 5) is provided. Has been placed. Such a surface light source (light source 5) includes an original light source 4 and a light diffusing material 8, and the original light source 4 is disposed on one main surface 8 n of the light diffusing material 8. Here, the original light source 4 includes one or more point light sources. The light that has entered the light diffusing material 8 from the light exit surface 4 m of the original light source 4 through one main surface 8 n of the light diffusing material 8 is scattered by the light diffusing material 8, and the other main surface 8 m of the light diffusing material 8. As diffuse light. In the surface light source (light source 5), from the viewpoint of obtaining sufficient diffused light by sufficiently scattering the light of the original light source 4, the light diffusing material 8 has a porosity of preferably 50% by volume to 90% by volume, and more preferably 65% by volume. 75 volume% is more preferable, and the thickness T L is preferably 10 mm or more, and more preferably 25 mm or more.

面光源5の主面8mから出た拡散光は、シート71を通って、シート71上に点着された光触媒担持多孔質体1に当たり、光触媒能力が発現する。本実施形態のシート型流体浄化装置が十分な光触媒能力を有するためには、シート71に担持された光触媒担持多孔質体1に光が十分に当たることが必要である。すなわち、シートは光が通過しやすい材料および形態を有していることが必要である。また、光触媒担持多孔質体1が点着されるシート71は、流体が通過可能な形態を有することが必要である。これらの観点から、シートは通気性のある多孔質の材料であり、さらに透明であり厚さが小さいことが好ましい。シート71は、たとえば、ポリエチレン不織布、ポリウレタン不織布などが好ましく、空隙率は50体積%〜99体積%が好ましく70体積%〜99体積%がより好ましく、厚さTSは200mm以下が好ましく50mm以下がより好ましい。The diffused light emitted from the main surface 8 m of the surface light source 5 passes through the sheet 71, hits the photocatalyst-supporting porous body 1 spotted on the sheet 71, and exhibits photocatalytic ability. In order for the sheet type fluid purification device of the present embodiment to have a sufficient photocatalytic capability, it is necessary that the photocatalyst-carrying porous body 1 carried on the sheet 71 is sufficiently exposed to light. That is, the sheet needs to have a material and a shape that allow light to easily pass through. In addition, the sheet 71 on which the photocatalyst-supporting porous body 1 is spotted needs to have a form that allows fluid to pass through. From these viewpoints, the sheet is a porous material having air permeability, and is preferably transparent and has a small thickness. For example, the sheet 71 is preferably a polyethylene non-woven fabric or a polyurethane non-woven fabric, and the porosity is preferably 50% by volume to 99% by volume, more preferably 70% by volume to 99% by volume, and the thickness T S is preferably 200 mm or less and preferably 50 mm or less. More preferred.

すなわち、本実施形態のシート型流体多孔質体は、面光源(光源5)および光触媒担持多孔質体1は、いずれも光および流体が通過可能であるため、出光方向と流体の流れる方向とが反対になる(図9において矢印Fの方向に流体が流れる)ように設計すること、および出光方向と流体の流れる方向とが同じになる(図9において矢印F’の方向に流体が流れる)ように設計することが可能であり、設計の自由度が高くなる。   That is, in the sheet-type fluid porous body of the present embodiment, both the surface light source (light source 5) and the photocatalyst-supporting porous body 1 allow light and fluid to pass through. It is designed to be opposite (fluid flows in the direction of arrow F in FIG. 9), and the light emission direction and the fluid flowing direction are the same (fluid flows in the direction of arrow F ′ in FIG. 9). The degree of freedom of design is increased.

(実施形態6)
本発明にかかる流体浄化装置のさらに他の実施形態は、図10を参照して、面光源(光源5)に含まれる元光源4が線光源を含むこと以外は、実施形態5(図9)と同様の構造を有する。したがって、本実施形態のシート型流体浄化装置は、実施形態5のシート型流体浄化装置と同様の特徴を有し、面光源(光源5)および光触媒担持多孔質体1は、いずれも光および流体が通過可能であるため、出光方向と流体の流れる方向とが反対になる(図10において矢印Fの方向に流体が流れる)ように設計すること、および出光方向と流体の流れる方向とが同じになる(図10において矢印F’の方向に流体が流れる)ように設計することが可能であり、設計の自由度が高くなる。
(Embodiment 6)
Still another embodiment of the fluid purification apparatus according to the present invention is described in Embodiment 5 (FIG. 9) with reference to FIG. 10, except that the original light source 4 included in the surface light source (light source 5) includes a linear light source. Has the same structure. Therefore, the sheet-type fluid purification device of this embodiment has the same characteristics as the sheet-type fluid purification device of Embodiment 5, and both the surface light source (light source 5) and the photocatalyst-supporting porous body 1 are light and fluid. Since the light exit direction and the fluid flow direction are opposite (fluid flows in the direction of arrow F in FIG. 10), the light exit direction and the fluid flow direction are the same. (Fluid flows in the direction of arrow F ′ in FIG. 10), and the degree of freedom in design is increased.

なお、実施形態1〜6のシート型流体浄化装置において、シート上に点着された光触媒担持多孔質体によりよく光を当てる観点から、光源は、面光源が最も好ましく、次いで、複数の点光源、複数の線光源が好ましい。   In addition, in the sheet-type fluid purification apparatuses of Embodiments 1 to 6, the surface light source is most preferable from the viewpoint of better illuminating the photocatalyst-carrying porous body spotted on the sheet, and then a plurality of point light sources A plurality of line light sources are preferred.

(実施形態7)
本発明にかかる流体浄化装置のさらに他の実施形態は、図11および図27を参照して、多孔質状の光触媒物質11が多孔質体10の少なくとも孔の入口部分10eに担持されている1つ以上の光触媒担持多孔質体1と、光触媒物質11を活性化させる光を発する1つ以上の光源5を含む。ここで、光触媒担持多孔質体1はハニカム状の形状を有し、光源5は光触媒担持多孔質体1のハニカム開口面1k,1k’に対向して配置されている。かかる構造を有する流体浄化装置を、本願においてハニカム型流体浄化装置とも呼ぶ。
(Embodiment 7)
Still another embodiment of the fluid purifying apparatus according to the present invention is described with reference to FIGS. 11 and 27 in which a porous photocatalytic substance 11 is supported on at least an inlet portion 10e of a porous body 10. It includes one or more photocatalyst-supporting porous bodies 1 and one or more light sources 5 that emit light that activates the photocatalytic substance 11. Here, the photocatalyst-supporting porous body 1 has a honeycomb shape, and the light source 5 is disposed so as to face the honeycomb opening surfaces 1k and 1k ′ of the photocatalyst-supporting porous body 1. The fluid purification device having such a structure is also referred to as a honeycomb type fluid purification device in the present application.

すなわち、本実施形態のハニカム型流体浄化装置は、具体的には、図11を参照して、ハニカム状の光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’のそれぞれに対向して1以上の点光源(光源5)が配置されている。流体は、一方のハニカム開口面1kから他方のハニカム開口面1k’への方向(図11において矢印Fの方向)に流れる。点光源(光源5)からの光が光触媒担持多孔質体1のハニカム開口面1k,1k’を通ってハニカム面1hの全面に当たるようにする観点から、ハニカム開口面1k,1k’におけるハニカム目粗さは、4メッシュ〜1000メッシュが好ましく、実用的には100メッシュ〜400メッシュが好ましい。ここで、メッシュとは、1インチ当たりのハニカム目の本数をいう。また、ハニカム面1hの長さLHは500mm以下が好ましく100mm以下がより好ましく、点光源は複数あることが好ましく、点光源(光源5)のピッチPW1,PW2はハニカム目粗さに応じたものとすることが好ましく、複数の点光源により形成される面とハニカム開口面1k,1k’との距離HHは30mm〜120mmが好ましく40mm〜80mmがより好ましい。That is, the honeycomb type fluid purification device of the present embodiment is specifically opposed to each of the honeycomb opening surfaces 1k and 1k ′ on both sides of the honeycomb-like photocatalyst-supporting porous body 1 with reference to FIG. One or more point light sources (light sources 5) are arranged. The fluid flows in the direction from the one honeycomb opening surface 1k to the other honeycomb opening surface 1k ′ (the direction of arrow F in FIG. 11). From the viewpoint of allowing the light from the point light source (light source 5) to strike the entire surface of the honeycomb surface 1h through the honeycomb opening surfaces 1k and 1k 'of the photocatalyst-supporting porous body 1, the honeycomb mesh on the honeycomb opening surfaces 1k and 1k' The mesh size is preferably 4 mesh to 1000 mesh, and practically 100 mesh to 400 mesh is preferable. Here, the mesh refers to the number of honeycombs per inch. Further, the length L H of the honeycomb surface 1h is preferably 500 mm or less, more preferably 100 mm or less, and preferably a plurality of point light sources, and the pitches P W1 and P W2 of the point light sources (light sources 5) depend on the honeycomb grain roughness. The distance H H between the surface formed by a plurality of point light sources and the honeycomb opening surfaces 1k, 1k ′ is preferably 30 mm to 120 mm, and more preferably 40 mm to 80 mm.

なお、本実施形態においては、ハニカム状の光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’に対向して点光源(光源5)を配置したが、いずれか一方のハニカム開口面1kまたは1k’に対向して点光源を配置することも可能である(図示せず)。しかし、光触媒担持多孔質体1のハニカム面1hの全面に光を当てる観点から、光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’に対向して点光源(光源5)を配置することが好ましい。   In the present embodiment, the point light source (light source 5) is disposed opposite to the honeycomb opening surfaces 1k and 1k ′ on both sides of the honeycomb-like photocatalyst-supporting porous body 1, but either one of the honeycomb opening surfaces 1k is disposed. Alternatively, a point light source can be arranged to face 1k ′ (not shown). However, from the viewpoint of applying light to the entire surface of the honeycomb surface 1h of the photocatalyst-supporting porous body 1, point light sources (light sources 5) are arranged facing the honeycomb opening surfaces 1k and 1k ′ on both sides of the photocatalyst-supporting porous body 1. It is preferable.

(実施形態8)
本発明にかかる流体浄化装置のさらに他の実施形態は、図12を参照して、光源5を線光源としたこと以外は、実施形態7(図11)と同様の構造を有する。
(Embodiment 8)
Still another embodiment of the fluid purification apparatus according to the present invention has the same structure as that of the seventh embodiment (FIG. 11) except that the light source 5 is a line light source with reference to FIG.

すなわち、本実施形態のハニカム型流体浄化装置は、具体的には、図12を参照して、ハニカム状の光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’のそれぞれに対向して1以上の線光源(光源5)が配置されている。流体は、一方のハニカム開口面1kから他方のハニカム開口面1k’への方向(図12において矢印Fの方向)に流れる。線光源からの光が光触媒担持多孔質体1のハニカム開口面1k,1k’を通ってハニカム面1hの全面に当たるようにする観点から、ハニカム目粗さは4メッシュ〜1000メッシュが好ましく実用的には100メッシュ〜400メッシュが好ましく、ハニカム面1hの長さLHは500mm以下が好ましく100mm以下がより好ましく、線光源は複数あることが好ましく、線光源(光源5)のピッチはハニカム目粗さに応じたものでかつ20mm〜110mmが好ましく30mm〜70mm以下が好ましく、1つ以上の線光源により形成される面とハニカム開口面1k,1k’との距離HHは20mm〜110mmが好ましく30mm〜70mm以上がより好ましい。That is, the honeycomb type fluid purification device of the present embodiment is specifically opposed to each of the honeycomb opening surfaces 1k and 1k ′ on both sides of the honeycomb-like photocatalyst-supporting porous body 1 with reference to FIG. One or more line light sources (light source 5) are arranged. The fluid flows in the direction from one honeycomb opening surface 1k to the other honeycomb opening surface 1k ′ (the direction of arrow F in FIG. 12). From the viewpoint of allowing the light from the line light source to strike the entire surface of the honeycomb surface 1h through the honeycomb opening surfaces 1k and 1k ′ of the photocatalyst-supporting porous body 1, the honeycomb mesh roughness is preferably 4 mesh to 1000 mesh and is practical. Is preferably 100 mesh to 400 mesh, the length L H of the honeycomb surface 1h is preferably 500 mm or less, more preferably 100 mm or less, and preferably a plurality of line light sources, and the pitch of the line light sources (light source 5) is honeycomb coarseness 20 mm to 110 mm, preferably 30 mm to 70 mm or less, and the distance H H between the surface formed by one or more line light sources and the honeycomb opening surfaces 1k and 1k ′ is preferably 20 mm to 110 mm. 70 mm or more is more preferable.

なお、本実施形態において、ハニカム状の光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’に対向して線光源(光源5)を配置したが、いずれか一方のハニカム開口面1kまたは1k’に対向して線光源を配置することも可能である(図示せず)。しかし、光触媒担持多孔質体1のハニカム面1hの全面に光を当てる観点から、光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’に対向して線光源(光源5)を配置することが好ましい。   In the present embodiment, the linear light source (light source 5) is disposed opposite to the honeycomb opening surfaces 1k and 1k ′ on both sides of the honeycomb-like photocatalyst-supporting porous body 1, but either one of the honeycomb opening surfaces 1k or 1k or It is also possible to arrange a line light source facing 1k ′ (not shown). However, from the viewpoint of applying light to the entire surface of the honeycomb surface 1 h of the photocatalyst-supporting porous body 1, a linear light source (light source 5) is disposed facing the honeycomb opening surfaces 1 k and 1 k ′ on both sides of the photocatalyst-supporting porous body 1. It is preferable.

(実施形態9)
本発明にかかる流体浄化装置のさらに他の実施形態は、図13を参照して、光源5を面光源としたこと以外は、実施形態7(図11)と同様の構造を有する。本実施形態における面光源は、元光源4と導光板7とを含む。
(Embodiment 9)
Still another embodiment of the fluid purification apparatus according to the present invention has the same structure as that of the seventh embodiment (FIG. 11) except that the light source 5 is a surface light source with reference to FIG. The surface light source in the present embodiment includes the original light source 4 and the light guide plate 7.

すなわち、本実施形態のハニカム型流体浄化装置は、具体的には、図12を参照して、ハニカム状の光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’のそれぞれに対向して面光源(光源5)が配置されている。流体は、一方のハニカム開口面1kから他方のハニカム開口面1k’への方向(図12において矢印Fの方向)に流れる。面光源からの光が光触媒担持多孔質体1のハニカム開口面1k,1k’を通ってハニカム面1hの全面に当たるようにする観点から、ハニカム目粗さは4メッシュ〜1000メッシュが好ましく実用的には100メッシュ〜400メッシュが好ましく、ハニカム面1hの長さLHは500mm以下が好ましく100mm以下がより好ましく、面光源(光源5)における導光板7の主面7m(出光面)とハニカム開口面1k,1k’との距離HHはハニカム開口面の全面積の値(単位はmm2)の1/400以下の値(単位はmm)が好ましい。That is, the honeycomb type fluid purification device of the present embodiment is specifically opposed to each of the honeycomb opening surfaces 1k and 1k ′ on both sides of the honeycomb-like photocatalyst-supporting porous body 1 with reference to FIG. A surface light source (light source 5) is arranged. The fluid flows in the direction from one honeycomb opening surface 1k to the other honeycomb opening surface 1k ′ (the direction of arrow F in FIG. 12). From the viewpoint of allowing the light from the surface light source to strike the entire surface of the honeycomb surface 1h through the honeycomb opening surfaces 1k and 1k ′ of the photocatalyst-supporting porous body 1, the honeycomb mesh roughness is preferably 4 mesh to 1000 mesh and is practical. Is preferably 100 mesh to 400 mesh, and the length L H of the honeycomb surface 1h is preferably 500 mm or less, more preferably 100 mm or less, the main surface 7m (light exit surface) of the light guide plate 7 in the surface light source (light source 5) and the honeycomb opening surface. The distance H H between 1k and 1k ′ is preferably a value (unit: mm) that is 1/400 or less of the value of the total area of the honeycomb opening surface (unit: mm 2 ).

なお、本実施形態において、ハニカム状の光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’に対向して面光源(光源5)を配置したが、いずれか一方のハニカム開口面1kまたは1k’に対向して面光源を配置することも可能である(図示せず)。しかし、光触媒担持多孔質体1のハニカム面1hの全面に光を当てる観点から、光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’に対向して面光源(光源5)を配置することが好ましい。   In the present embodiment, the surface light source (light source 5) is disposed opposite to the honeycomb opening surfaces 1k and 1k ′ on both sides of the honeycomb-shaped photocatalyst-supporting porous body 1, but either one of the honeycomb opening surfaces 1k or 1k or It is also possible to arrange a surface light source facing 1k ′ (not shown). However, from the viewpoint of applying light to the entire honeycomb surface 1 h of the photocatalyst-supporting porous body 1, surface light sources (light sources 5) are arranged facing the honeycomb opening surfaces 1 k and 1 k ′ on both sides of the photocatalyst-supporting porous body 1. It is preferable.

(実施形態10)
本発明にかかる流体浄化装置のさらに他の実施形態は、図14および図27を参照して、多孔質状の光触媒物質11が多孔質体10の少なくとも孔の入口部分10eに担持されている1つ以上の光触媒担持多孔質体1と、光触媒物質11を活性化させる光を発する1つ以上の光源5を含む。ここで、光触媒担持多孔質体1はハニカム状の形状を有し、光源5は、面光源を含む。面光源(光源5)は、光触媒担持多孔質体1のハニカム開口面1k’上に、面光源(光源5)の主面8mと光触媒担持多孔質体1のハニカム開口面1k’とを対向して、配置されている。すなわち、流体が面光源(光源5)の主面8m,8nを貫通するように、面光源(光源5)および光触媒担持多孔質体1が配置されている。
(Embodiment 10)
Still another embodiment of the fluid purification apparatus according to the present invention is described with reference to FIGS. 14 and 27. A porous photocatalytic substance 11 is supported on at least an inlet portion 10e of a porous body 10. It includes one or more photocatalyst-supporting porous bodies 1 and one or more light sources 5 that emit light that activates the photocatalytic substance 11. Here, the photocatalyst-supporting porous body 1 has a honeycomb shape, and the light source 5 includes a surface light source. The surface light source (light source 5) faces the main surface 8m of the surface light source (light source 5) and the honeycomb opening surface 1k 'of the photocatalyst-supporting porous body 1 on the honeycomb opening surface 1k' of the photocatalyst-supporting porous body 1. Arranged. That is, the surface light source (light source 5) and the photocatalyst-supporting porous body 1 are arranged so that the fluid penetrates the main surfaces 8m and 8n of the surface light source (light source 5).

すなわち、本実施形態のハニカム型流体浄化装置は、具体的には、図14を参照して、面光源(光源5)の主面8m上にハニカム状の光触媒担持多孔質1が配置されている。かかる面光源(光源5)は、元光源4と光拡散材8とを含み、元光源4は光拡散材8の一方の主面8n上に配置されている。ここで、元光源4は1つ以上の点光源を含んでいる。元光源4の出光面4mから光拡散材8の一方の主面8nを通って光拡散材8に入った光は、光拡散材8により散乱されて、光拡散材8の他方の主面8mから拡散光として出る。面光源(光源5)において、元光源4の光を十分に散乱させて十分な拡散光を得る観点から、光拡散材8について、その空隙率は50体積%〜90体積%が好ましく65体積%〜75体積%がより好ましく、その厚さTLは10mm以上が好ましく25mm以上がより好ましい。That is, in the honeycomb type fluid purification device of the present embodiment, specifically, referring to FIG. 14, the honeycomb-like photocatalyst-supporting porous material 1 is disposed on the main surface 8m of the surface light source (light source 5). . Such a surface light source (light source 5) includes an original light source 4 and a light diffusing material 8, and the original light source 4 is disposed on one main surface 8 n of the light diffusing material 8. Here, the original light source 4 includes one or more point light sources. The light that has entered the light diffusing material 8 from the light exit surface 4 m of the original light source 4 through one main surface 8 n of the light diffusing material 8 is scattered by the light diffusing material 8, and the other main surface 8 m of the light diffusing material 8. As diffuse light. In the surface light source (light source 5), from the viewpoint of obtaining sufficient diffused light by sufficiently scattering the light of the original light source 4, the porosity of the light diffusing material 8 is preferably 50% by volume to 90% by volume, and 65% by volume. -75 volume% is more preferable, and the thickness TL is preferably 10 mm or more, and more preferably 25 mm or more.

面光源(光源5)の主面8mから出た拡散光は、光触媒担持多孔質体1のハニカム開口面1k’を通ってハニカム面1hに当たる。流体は、光触媒担持多孔質体1の一方のハニカム開口面1kから他方のハニカム開口面1k’、面光源(光源5)の主面8mおよび8nへの方向(図14において矢印Fの方向)、または、面光源(光源5)の主面8nから主面8m、光触媒担持多孔質体1のハニカム開口面1k’および1kへの方向(図14において矢印F’の方向)に流れる。面光源からの光が光触媒担持多孔質体1のハニカム開口面1k,1k’を通ってハニカム面1hの全面に当たるようにする観点から、ハニカム目粗さは4メッシュ〜1000メッシュが好ましく実用的には100メッシュ〜400メッシュが好ましく、ハニカム面1hの長さLHは500mm以下が好ましく100mm以下がより好ましい。The diffused light emitted from the main surface 8 m of the surface light source (light source 5) strikes the honeycomb surface 1 h through the honeycomb opening surface 1 k ′ of the photocatalyst-supporting porous body 1. The fluid flows in the direction from one honeycomb opening surface 1k of the photocatalyst-supporting porous body 1 to the other honeycomb opening surface 1k ′, the main surfaces 8m and 8n of the surface light source (light source 5) (the direction of arrow F in FIG. 14), Or, it flows in the direction from the main surface 8n of the surface light source (light source 5) to the main surface 8m and the honeycomb opening surfaces 1k ′ and 1k of the photocatalyst-supporting porous body 1 (direction of arrow F ′ in FIG. 14). From the viewpoint of allowing the light from the surface light source to strike the entire surface of the honeycomb surface 1h through the honeycomb opening surfaces 1k and 1k ′ of the photocatalyst-supporting porous body 1, the honeycomb mesh roughness is preferably 4 mesh to 1000 mesh and is practical. Is preferably 100 mesh to 400 mesh, and the length L H of the honeycomb surface 1h is preferably 500 mm or less, and more preferably 100 mm or less.

なお、本実施形態において、ハニカム状の光触媒担持多孔質体1のハニカム開口面1k’上に面光源(光源5)を配置したが、ハニカム状の光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’に上に面光源(光源5)を配置することも可能である(図示せず)。光触媒担持多孔質体1のハニカム面1hの全面に光を当てる観点から、光触媒担持多孔質体1の両側のハニカム開口面1kおよび1k’上に面光源(光源5)を配置することが好ましい。   In this embodiment, the surface light source (light source 5) is arranged on the honeycomb opening surface 1k ′ of the honeycomb-shaped photocatalyst-supporting porous body 1, but the honeycomb opening surfaces on both sides of the honeycomb-shaped photocatalyst-supporting porous body 1 are arranged. It is also possible to arrange a surface light source (light source 5) on 1k and 1k ′ (not shown). From the viewpoint of applying light to the entire honeycomb surface 1 h of the photocatalyst-supporting porous body 1, it is preferable to dispose surface light sources (light sources 5) on the honeycomb opening surfaces 1 k and 1 k ′ on both sides of the photocatalyst-supporting porous body 1.

すなわち、本実施形態のハニカム型流体多孔質体は、面光源(光源5)および光触媒担持多孔質体1は、いずれも光および流体が通過可能であるため、出光方向と流体の流れる方向とが反対になる(図14において矢印Fの方向に流体が流れる)ように設計すること、および出光方向と流体の流れる方向とが同じになる(図14において矢印F’の方向に流体が流れる)ように設計することが可能であり、設計の自由度が高くなる。   That is, in the honeycomb type fluid porous body of the present embodiment, both the surface light source (light source 5) and the photocatalyst-supporting porous body 1 allow light and fluid to pass through, so the light exit direction and the fluid flow direction are different. It is designed to be opposite (fluid flows in the direction of arrow F in FIG. 14), and the light emission direction is the same as the flow direction of fluid (fluid flows in the direction of arrow F ′ in FIG. 14). The degree of freedom of design is increased.

(実施形態11)
本発明にかかる流体浄化装置のさらに他の実施形態は、図15を参照して、面光源(光源5)に含まれる元光源4が線光源を含むこと以外は、実施形態10(図14)と同様の構造を有する。したがって、本実施形態のハニカム型流体浄化装置は、実施形態10のハニカム型流体浄化装置と同様の特徴を有し、面光源(光源5)および光触媒担持多孔質体1は、いずれも光および流体が通過可能であるため、出光方向と流体の流れる方向とが反対になる(図15において矢印Fの方向に流体が流れる)ように設計すること、および出光方向と流体の流れる方向とが同じになる(図15において矢印F’の方向に流体が流れる)ように設計することが可能であり、設計の自由度が高くなる。
(Embodiment 11)
Still another embodiment of the fluid purification apparatus according to the present invention is described with reference to FIG. 15 in Embodiment 10 (FIG. 14) except that the original light source 4 included in the surface light source (light source 5) includes a linear light source. Has the same structure. Therefore, the honeycomb type fluid purification device of this embodiment has the same characteristics as the honeycomb type fluid purification device of Embodiment 10, and both the surface light source (light source 5) and the photocatalyst-supporting porous body 1 are light and fluid. Since the light exit direction and the fluid flow direction are opposite (fluid flows in the direction of arrow F in FIG. 15), the light exit direction and the fluid flow direction are the same. (Fluid flows in the direction of arrow F ′ in FIG. 15), and the degree of freedom in design is increased.

なお、実施形態7〜11のハニカム型浄化装置において、ハニカム状の光触媒担持多孔質体のハニカム面によりよく光を当てる観点から、光源は面光源が最も好ましく、次いで複数の点光源、複数の線光源が好ましい。   In the honeycomb type purification apparatuses of Embodiments 7 to 11, the light source is most preferably a surface light source from the viewpoint of better illuminating the honeycomb surface of the honeycomb-shaped photocatalyst-supporting porous body, and then a plurality of point light sources and a plurality of lines. A light source is preferred.

(実施形態12)
本発明にかかる流体浄化装置のさらに他の実施形態は、図16および図27を参照して、多孔質状の光触媒物質11が多孔質体10の少なくとも孔の入口部分10eに担持されている1つ以上の光触媒担持多孔質体1と、光触媒物質11を活性化させる光を発する1つ以上の光源5を含む。ここで、光触媒担持多孔質体1はブラシ状の形状を有し、光源5は、光触媒担持多孔質体1のブラシ毛部1aの側面に対向して配置されている。かかる構造を有する流体浄化装置を、本願においてブラシ型流体浄化装置とも呼ぶ。
Embodiment 12
Still another embodiment of the fluid purifying apparatus according to the present invention is described with reference to FIGS. 16 and 27 in which a porous photocatalytic substance 11 is supported on at least an inlet portion 10e of a porous body 10. It includes one or more photocatalyst-supporting porous bodies 1 and one or more light sources 5 that emit light that activates the photocatalytic substance 11. Here, the photocatalyst-supporting porous body 1 has a brush-like shape, and the light source 5 is disposed to face the side surface of the brush bristle portion 1 a of the photocatalyst-supporting porous body 1. The fluid purification device having such a structure is also referred to as a brush-type fluid purification device in the present application.

すなわち、本実施形態のブラシ型流体浄化装置は、具体的には、図16を参照して、光触媒担持多孔質体1のブラシ毛部1aの側面に対向する2つの面に光源5が配置されている。光触媒担持多孔質体1は、幅W1×幅W2のブラシ台部1bの主面上に複数の径D×長さLのブラシ毛部1aが植えられたブラシ形状を有する。ここで、光源5は、特に制限はなく、点光源、線光源および面光源を用いることができるが、ブラシ毛部1aの側面の全面に光を当てる観点から、面光源が好ましい。また、図16においては、光源5が面光源であり元光源4と導光板7とを含む場合が図示されている。かかる面光源は、実施形態3、4および9で述べた面光源と同様の構造を有する。元光源4は、特に制限はなく、点光源および線光源のいずれを含んでいてもよい。流体は、一方のブラシ毛部1aの側面の一方側から反対側への方向(図16において矢印Fの方向)に流れる。That is, in the brush type fluid purification device of the present embodiment, specifically, referring to FIG. 16, the light source 5 is arranged on two surfaces facing the side surface of the brush bristle portion 1 a of the photocatalyst-supporting porous body 1. ing. The photocatalyst-supporting porous body 1 has a brush shape in which a plurality of brush bristle portions 1a having a diameter D and a length L are planted on the main surface of a brush base portion 1b having a width W 1 × width W 2 . Here, the light source 5 is not particularly limited, and a point light source, a line light source, and a surface light source can be used, but a surface light source is preferable from the viewpoint of applying light to the entire side surface of the brush bristle portion 1a. FIG. 16 shows a case where the light source 5 is a surface light source and includes the original light source 4 and the light guide plate 7. Such a surface light source has the same structure as the surface light source described in the third, fourth, and ninth embodiments. The original light source 4 is not particularly limited, and may include either a point light source or a line light source. The fluid flows in the direction from one side of the side surface of one brush bristle part 1a to the opposite side (the direction of arrow F in FIG. 16).

(実施形態13)
本発明にかかる流体浄化装置のさらに他の実施形態は、図17を参照して、実施形態12のブラシ型流体浄化装置(図16)の流体が通過する2面にさらに面光源(光源5)が配置されている。かかる面光源は、元光源4と光拡散材8とを含む。かかる面光源は、実施形態5および10で述べた面光源と同様の構造を有する。また、元光源14は、特に制限はなく、点光源および線光源のいずれを含んでいてもよい。
(Embodiment 13)
Still another embodiment of the fluid purification device according to the present invention is further described with reference to FIG. 17 in that a surface light source (light source 5) is further provided on two surfaces through which the fluid of the brush type fluid purification device (FIG. 16) of Embodiment 12 passes. Is arranged. Such a surface light source includes an original light source 4 and a light diffusing material 8. Such a surface light source has the same structure as the surface light source described in the fifth and tenth embodiments. The original light source 14 is not particularly limited, and may include either a point light source or a line light source.

本実施形態のブラシ型流体浄化装置は、光触媒担持多孔質体1のブラシ毛部1aの側面に対向する4つの面に光源を配置されているため、光触媒性能が高く、流体の浄化性能が高い。   The brush type fluid purification device of this embodiment has a high photocatalytic performance and a high fluid purification performance because the light sources are arranged on the four surfaces facing the side surfaces of the brush bristle portion 1a of the photocatalyst-supporting porous body 1. .

(実施形態14)
本発明にかかる流体浄化装置のさらに他の実施形態は、図18および図27を参照して、多孔質状の光触媒物質11が多孔質体10の少なくとも孔10hの入口部分10eに担持されている複数の光触媒担持多孔質体1と、光触媒物質を活性化させる光を発する1つ以上の光源5を含む。ここで、光源5は複数の光触媒担持多孔質体1間に配置されている。また、流体は複数の光触媒担持多孔質体1間を流れる。このため、光触媒担持多孔質体1において光源からの光を受ける面積および流体と光触媒担持多孔質体1との接触面積を大きくすることができ、流体中の有害物質および汚濁物質の除去能力が高い。すなわち、本実施形態の流体浄化装置の構造は大型の流体浄化装置に適している。かかる構造を有する本実施形態の流体浄化装置を、本願において粒状型流体浄化装置とも呼ぶ。
(Embodiment 14)
In still another embodiment of the fluid purification device according to the present invention, referring to FIGS. 18 and 27, a porous photocatalytic substance 11 is supported on at least the inlet portion 10e of the hole 10h of the porous body 10. It includes a plurality of photocatalyst-supporting porous bodies 1 and one or more light sources 5 that emit light that activates the photocatalytic substance. Here, the light source 5 is disposed between the plurality of photocatalyst-supporting porous bodies 1. The fluid flows between the plurality of photocatalyst-supporting porous bodies 1. For this reason, in the photocatalyst-supporting porous body 1, the area for receiving light from the light source and the contact area between the fluid and the photocatalyst-supporting porous body 1 can be increased, and the ability to remove harmful substances and pollutants in the fluid is high. . That is, the structure of the fluid purification device of this embodiment is suitable for a large fluid purification device. The fluid purification device of this embodiment having such a structure is also referred to as a granular fluid purification device in the present application.

本実施形態の粒状型流体浄化装置は、具体的には、図18を参照して、四角筒状の容器50と上板54uと下板54dにより形成されている第1の幅W1、第1の幅W2および長さLの六面体中に、配線52によって複数の点光源(光源5)が、第1の幅W1方向にピッチPW1で、第2の幅W2方向にピッチPW2で、長さL方向にピッチPLで配置されている。このように六面体中に配置された複数の点光源(光源5)を埋め込むように、六面体内に光触媒担持多孔質体1が充填されている。このようにして、各光源5が、複数の光触媒担持多孔質体1の間に埋め込まれている。上板54uおよび下板54dはいずれも開口部を有し、流体は下板54dから上板54uへの方向(図18において矢印Fの方向、以後上方向という)または上板54uから下板54dへの方向(図18において矢印F’の方向、以後下方向という)に流れる。Specifically, with reference to FIG. 18, the granular fluid purification apparatus of the present embodiment has a first width W 1 formed by a rectangular tubular container 50, an upper plate 54u, and a lower plate 54d, In a hexahedron having one width W 2 and length L, a plurality of point light sources (light sources 5) are arranged with a pitch P W1 in the first width W 1 direction and a pitch P in the second width W 2 direction by the wiring 52. W2 is arranged at a pitch P L in the length L direction. Thus, the photocatalyst-supporting porous body 1 is filled in the hexahedron so as to embed a plurality of point light sources (light sources 5) arranged in the hexahedron. In this way, each light source 5 is embedded between the plurality of photocatalyst-supporting porous bodies 1. Both the upper plate 54u and the lower plate 54d have openings, and the fluid flows in the direction from the lower plate 54d to the upper plate 54u (in the direction of arrow F in FIG. 18, hereinafter referred to as the upward direction) or from the upper plate 54u to the lower plate 54d. (In the direction of arrow F ′ in FIG. 18, hereinafter referred to as “downward direction”).

六面体に充填される光触媒担持多孔質体1の粒径が小さくなるほど、流体と光触媒担持多孔質体1の接触面積が大きくなり、有害物質および汚濁物質の除去効率が高くなり、流体抵抗が高くなる。また、六面体に充填される光触媒担持多孔質体1の粒径が大きくなるほど、流体と光触媒担持多孔質体1の接触面積が小さくなり、有害物質および汚濁物質の除去効率が低くなり、流体抵抗が低くなる。かかる観点から、六面体に充填される光触媒担持多孔質体1の大きさは、円柱状の場合は口径が1mm〜20mmで高さが1mm〜30mmが好ましく、球状の場合は直径が0.5mm〜20mmが好ましく、破砕粒状の場合は粒径が0.15mm〜1mmが好ましい。   The smaller the particle size of the photocatalyst-supporting porous body 1 filled in the hexahedron, the larger the contact area between the fluid and the photocatalyst-supporting porous body 1, the higher the removal efficiency of harmful substances and pollutants, and the higher the fluid resistance. . Further, the larger the particle size of the photocatalyst-supporting porous body 1 filled in the hexahedron, the smaller the contact area between the fluid and the photocatalyst-supporting porous body 1, the lower the removal efficiency of harmful substances and pollutants, and the lower the fluid resistance. Lower. From such a viewpoint, the size of the photocatalyst-supporting porous body 1 filled in the hexahedron is preferably 1 mm to 20 mm in diameter and 1 mm to 30 mm in height in the case of a cylinder, and 0.5 mm to 6 mm in the case of a sphere. 20 mm is preferable, and in the case of crushed particles, the particle size is preferably 0.15 mm to 1 mm.

光源5のピッチPW1,PW2,PLは、六面体の形状および体積、流体の流量、光源の強度、光触媒担持多孔質体1の粒径、光触媒担持多孔質体1に担持されている光触媒物質の量などによって、好適に設定される。たとえば、第1の幅W1が45cm、第2の幅W2が35cmの六面体中に、ピッチPW1,PW2,PLがいずれも5cmで光源であるLEDを配置して、この六面体を口径5mm〜20mmで高さ5mm〜30mmの円柱状または直径5mm〜20mmの球状の光触媒担持多孔質体1で充填した流体浄化装置が設計される。The pitches P W1 , P W2 , and P L of the light source 5 are the shape and volume of the hexahedron, the flow rate of the fluid, the intensity of the light source, the particle size of the photocatalyst-supporting porous body 1, and the photocatalyst supported on the photocatalyst-supporting porous body 1. It is suitably set depending on the amount of the substance. For example, in a hexahedron having a first width W 1 of 45 cm and a second width W 2 of 35 cm, an LED which is a light source with pitches P W1 , P W2 and P L are all 5 cm, and the hexahedron is arranged. A fluid purification device filled with a photocatalyst-supporting porous body 1 having a diameter of 5 mm to 20 mm and a height of 5 mm to 30 mm or a spherical shape of 5 mm to 20 mm is designed.

なお、図18においては、光触媒担持多孔質体1が六面体中に充填される例を示したが、光触媒担持多孔質体1が充填される立体の形状は、上板54uおよび下板54dが円形状または多角形状の柱形体であってもよい。   FIG. 18 shows an example in which the photocatalyst-supporting porous body 1 is filled in a hexahedron. However, the three-dimensional shape in which the photocatalyst-supporting porous body 1 is filled is such that the upper plate 54u and the lower plate 54d are circular. It may be a columnar body having a shape or a polygonal shape.

点光源(光源5)からの光を光触媒担持多孔質体1に照射することにより、光触媒担持多孔質体1に担持させた光触媒物質を活性化させて、流体を上方向(図18において矢印Fの方向)または下方向(図18において矢印F’の方向)に流すことにより、流体中の有害物質および汚濁物質を除去することができる。ここで、除去を目的とする有害物質および汚濁物質が流体(たとえば、空気または水)より比重が大きい場合は、有害物質および汚濁物質の滞留時間を長くして光触媒担持多孔質体1との接触時間を長くする観点から、流体を上方向(図18において矢印Fの方向)に流すことが好ましい。また、除去を目的とする有害物質および汚濁物質が流体(たとえば、空気または水)より比重が小さい場合は、有害物質および汚濁物質の滞留時間を長くして光触媒担持多孔質体1との接触時間を長くする観点から、流体を下方向(図18において矢印F’の方向)に流すことが好ましい。   By irradiating the photocatalyst-supporting porous body 1 with light from a point light source (light source 5), the photocatalyst substance supported on the photocatalyst-supporting porous body 1 is activated, and the fluid is moved upward (in FIG. 18, the arrow F ) Or downward (direction of arrow F ′ in FIG. 18), harmful substances and pollutants in the fluid can be removed. Here, when the harmful substance and pollutant for the purpose of removal have a higher specific gravity than the fluid (for example, air or water), the residence time of the harmful substance and the pollutant is increased and the contact with the photocatalyst-supporting porous body 1 is increased. From the viewpoint of increasing the time, it is preferable to flow the fluid upward (in the direction of arrow F in FIG. 18). Further, when the harmful substance and pollutant for the purpose of removal have a specific gravity smaller than that of the fluid (for example, air or water), the residence time of the harmful substance and the pollutant is increased and the contact time with the photocatalyst-supporting porous body 1 is increased. From the viewpoint of increasing the length, it is preferable to flow the fluid downward (in the direction of arrow F ′ in FIG. 18).

(実施形態15)
本発明にかかる流体浄化装置のさらに他の実施形態は、図19を参照して、光源固定板76を用いて複数の点光源(光源5)が複数の光触媒担持多孔質体1間に配置されていること以外は、実施形態14(図18)と同様の構造を有する。すなわち、本実施形態の粒状型流体浄化装置においては、複数の光触媒担持多孔質体1間に複数の点光源(光源5)を固定した複数の光源固定板76がピッチPW1で配置されている。ここで、光源固定板76の両主面上に、複数の点光源(光源5)が長さL方向にピッチPLで幅W2方向にピッチPW2(図示せず)で配置されている。
(Embodiment 15)
In still another embodiment of the fluid purification apparatus according to the present invention, referring to FIG. 19, a plurality of point light sources (light sources 5) are arranged between a plurality of photocatalyst-supporting porous bodies 1 using a light source fixing plate 76. Except for this, it has the same structure as that of the fourteenth embodiment (FIG. 18). That is, in the granular fluid purification device of the present embodiment, a plurality of light source fixing plates 76 in which a plurality of point light sources (light sources 5) are fixed between a plurality of photocatalyst-supporting porous bodies 1 are arranged at a pitch P W1 . . Here, on both main surfaces of the light source fixing plate 76, a plurality of point light sources (light sources 5) are arranged with a pitch P L in the length L direction and a pitch P W2 (not shown) in the width W 2 direction. .

(実施形態16)
本発明にかかる流体浄化装置のさらに他の実施形態は、図20を参照して、光源5として線光源を用いたこと以外は、実施形態14(図18)と同様の構造を有する。すなわち、本実施形態の粒状型流体浄化装置においては、複数の光触媒担持多孔質体1間に複数の線光源(光源5)が、線光源の長手方向を容器50の長さL方向に一致させて、容器50の幅W1方向にピッチPW1で容器50の幅W2方向にピッチPW2で配置されている。
(Embodiment 16)
Still another embodiment of the fluid purification apparatus according to the present invention has the same structure as that of the fourteenth embodiment (FIG. 18) except that a linear light source is used as the light source 5 with reference to FIG. That is, in the granular fluid purification device of the present embodiment, a plurality of line light sources (light sources 5) are arranged between the plurality of photocatalyst-supporting porous bodies 1 so that the longitudinal direction of the line light source coincides with the length L direction of the container 50. The container 50 is arranged at a pitch P W1 in the width W 1 direction and at a pitch P W2 in the width W 2 direction of the container 50.

(実施形態17)
本発明にかかる流体浄化装置のさらに他の実施形態は、図21を参照して、光源5として元光源4と導光板7とを含む面光源を用いたこと以外は、実施形態14(図18)と同様の構造を有する。すなわち、本実施形態の粒状型流体浄化装置においては、複数の光触媒担持多孔質体1間に複数の1対の面光源(光源5)が容器50の幅W1方向にピッチPW1で配置されている。ここで、1対の面光源(光源5)は、反射板9の両主面に配置された1対の導光板7と元光源4とを含む。ここで、元光源4は、特に制限はなく、点光源および線光源のいずれを含んでいてもよい。1対の面光源(光源5)は、その両側の主面7m(出光面)から拡散光が出る。
(Embodiment 17)
Still another embodiment of the fluid purification apparatus according to the present invention is described in Embodiment 14 (FIG. 18) except that a surface light source including the original light source 4 and the light guide plate 7 is used as the light source 5 with reference to FIG. ). That is, in the granular fluid purification apparatus of this embodiment, a plurality of pairs of surface light sources (light sources 5) are arranged at a pitch P W1 in the width W 1 direction of the container 50 between the plurality of photocatalyst-supporting porous bodies 1. ing. Here, the pair of surface light sources (light source 5) includes a pair of light guide plates 7 and the original light source 4 disposed on both main surfaces of the reflection plate 9. Here, the original light source 4 is not particularly limited, and may include either a point light source or a line light source. The pair of surface light sources (light sources 5) emit diffuse light from the main surfaces 7m (light exit surfaces) on both sides thereof.

(実施形態18)
本発明にかかる流体浄化装置のさらに他の実施形態は、図22および図27を参照して、多孔質状の光触媒物質11が多孔質体10の少なくとも孔の入口部分10eに担持されている1つ以上の光触媒担持多孔質体1と、光触媒物質11を活性化させる光を発する1つ以上の光源5を含む。ここで、光源5は、面光源を含む。また、流体が面光源(光源5)の主面8m,8nを貫通するように、面光源(光源5)および光触媒担持多孔質体1が配置されている。
(Embodiment 18)
Still another embodiment of the fluid purifying apparatus according to the present invention is described with reference to FIGS. 22 and 27, in which a porous photocatalytic substance 11 is supported on at least an inlet portion 10e of a porous body 10. It includes one or more photocatalyst-supporting porous bodies 1 and one or more light sources 5 that emit light that activates the photocatalytic substance 11. Here, the light source 5 includes a surface light source. Further, the surface light source (light source 5) and the photocatalyst-supporting porous body 1 are arranged so that the fluid penetrates the main surfaces 8m and 8n of the surface light source (light source 5).

すなわち、本実施形態の粒状型流体浄化装置は、具体的には、面光源(光源5)が、容器50に充填された複数の光触媒担持多孔質体1の上面1uおよび下面1d上に配置されている。かかる面光源(光源5)は、元光源4と光拡散材8とを含み、元光源4は光拡散材8の一方の主面8n上に配置されている。ここで、元光源4は1つ以上の線光源および点光源のいずれかを含んでいる。元光源4の出光面4mから光拡散材8の一方の主面8nを通って光拡散材8に入った光は、光拡散材8により散乱されて、光拡散材8の他方の主面8mから拡散光として出る。面光源(光源5)において、元光源4の光を十分に散乱させて十分な拡散光を得る観点から、光拡散材8の厚さTLは10mm以上が好ましく、25mm以上がより好ましい。Specifically, in the granular fluid purification device of the present embodiment, specifically, the surface light source (light source 5) is disposed on the upper surface 1u and the lower surface 1d of the plurality of photocatalyst-supporting porous bodies 1 filled in the container 50. ing. Such a surface light source (light source 5) includes an original light source 4 and a light diffusing material 8, and the original light source 4 is disposed on one main surface 8 n of the light diffusing material 8. Here, the original light source 4 includes one or more of a line light source and a point light source. The light that has entered the light diffusing material 8 from the light exit surface 4 m of the original light source 4 through one main surface 8 n of the light diffusing material 8 is scattered by the light diffusing material 8, and the other main surface 8 m of the light diffusing material 8. As diffuse light. In the surface light source (light source 5), the thickness T L of the light diffusing material 8 is preferably 10 mm or more, and more preferably 25 mm or more from the viewpoint of obtaining sufficient diffused light by sufficiently scattering the light of the original light source 4.

こうして、面光源(光源5)の主面8mから出た拡散光は、複数の光触媒担持多孔質体1の上面1uおよび下面1dを通って複数の光触媒担持多孔質体1に当たる。ここで、面光源(光源5)からの拡散光を複数の光触媒担持多孔質体1に当てる観点から、複数の光触媒担持多孔質体1の粒径は、光触媒担持多孔質体が円柱状の場合は口径が1mm〜20mmで高さが1mm〜30mmが好ましく、球状の場合は直径が0.5mm〜20mmが好ましく、破砕粒状の場合は粒径が0.15mm〜1mmが好ましい。また、複数の光触媒担持多孔質体1の光の方向(各拡散光の方向を平均した方向)への長さLは100mm以下が好ましく70mm以下がより好ましい。   Thus, the diffused light emitted from the main surface 8m of the surface light source (light source 5) strikes the plurality of photocatalyst-supporting porous bodies 1 through the upper surface 1u and the lower surface 1d of the plurality of photocatalyst-supporting porous bodies 1. Here, from the viewpoint of applying the diffused light from the surface light source (light source 5) to the plurality of photocatalyst-supporting porous bodies 1, the particle diameters of the plurality of photocatalyst-supporting porous bodies 1 are as follows. The diameter is preferably 1 mm to 20 mm and the height is preferably 1 mm to 30 mm. In the case of a spherical shape, the diameter is preferably 0.5 mm to 20 mm, and in the case of crushed particles, the particle diameter is preferably 0.15 mm to 1 mm. The length L of the plurality of photocatalyst-supporting porous bodies 1 in the light direction (direction in which the directions of the diffused light are averaged) is preferably 100 mm or less, and more preferably 70 mm or less.

一方、流体は、容器50に充填した複数の光触媒担持多孔質体1の下面1d上に配置した面光源5の主面8n,8mから、複数の光触媒担持多孔質体1の間を通って、上面1u上に配置した面光源5の主面8m,8nへの方向(図22において矢印Fの方向)、または、容器50に充填した複数の光触媒担持多孔質体1の上面1u上に配置した面光源5の主面8n,8mから、複数の光触媒担持多孔質体1の間を通って、下面1d上に配置した面光源5の主面8m,8nへの方向(図22において矢印F’の方向)に流れる。   On the other hand, the fluid passes between the plurality of photocatalyst-supporting porous bodies 1 from the main surfaces 8n and 8m of the surface light source 5 disposed on the lower surfaces 1d of the plurality of photocatalyst-supporting porous bodies 1 filled in the container 50, The direction of the surface light source 5 arranged on the upper surface 1u toward the main surfaces 8m and 8n (direction of arrow F in FIG. 22) or the upper surface 1u of the plurality of photocatalyst-supporting porous bodies 1 filled in the container 50. The direction from the main surfaces 8n, 8m of the surface light source 5 to the main surfaces 8m, 8n of the surface light source 5 disposed on the lower surface 1d through the space between the plurality of photocatalyst-supporting porous bodies 1 (in FIG. 22, the arrow F ′ Direction).

すなわち、本実施形態の型流体多孔質体は、面光源(光源5)および光触媒担持多孔質体1は、いずれも光および流体が通過可能であるため、出光方向と流体の流れる方向とが同じかまたは反対になるように設計することが可能であり、設計の自由度が高くなる。   That is, in the mold fluid porous body of the present embodiment, both the surface light source (light source 5) and the photocatalyst-supporting porous body 1 can pass light and fluid, so the light exit direction and the fluid flow direction are the same. It is possible to design so as to be opposite to each other, and the degree of freedom in design is increased.

[酸化チタン担持活性炭A(光触媒担持多孔質体)の作製]
2次粒子の粒径が50nm〜100nmの水酸化チタン(Ti(OH)4・2H2O)微粉末50.64gと2次粒子の粒径が50nm〜100nmの酸化チタン(TiO2)微粉末26.62gに2−プロパノール(イソプロピルアルコール)80.12gの割合でよく攪拌して混合し、水酸化チタン・酸化チタン混合スラリーを作製した。その水酸化チタン・酸化チタン混合スラリー49.3gを口径が5mmで高さが10mmの円柱状の活性炭100gに含浸させた。これに30℃の温度下で過酸化水素水(35質量%)を加えると、自己発熱反応が起こった。反応後、乾燥機内で、200℃で1時間乾燥させると、酸化チタン担持活性炭Aが得られた。この酸化チタン担持活性炭Aは、以下の実施例1および2においてきわめて高い有害物質除去性能を有することから、多孔質状の酸化チタンが活性炭の少なくとも孔の入口部分に担持されているものと考えられる。
[Preparation of titanium oxide-supported activated carbon A (photocatalyst-supported porous body)]
50.64 g of titanium hydroxide (Ti (OH) 4 .2H 2 O) fine powder having a secondary particle size of 50 nm to 100 nm and titanium oxide (TiO 2 ) fine powder having a secondary particle size of 50 nm to 100 nm 26.62 g was mixed with 80.12 g of 2-propanol (isopropyl alcohol) with sufficient stirring to prepare a titanium hydroxide / titanium oxide mixed slurry. 49.3 g of the titanium hydroxide / titanium oxide mixed slurry was impregnated into 100 g of cylindrical activated carbon having a diameter of 5 mm and a height of 10 mm. When hydrogen peroxide solution (35% by mass) was added to this at a temperature of 30 ° C., a self-exothermic reaction occurred. After the reaction, when it was dried at 200 ° C. for 1 hour in a dryer, titanium oxide-supported activated carbon A was obtained. Since this titanium oxide-supported activated carbon A has extremely high harmful substance removal performance in Examples 1 and 2 below, it is considered that porous titanium oxide is supported at least at the inlet portion of the pores of the activated carbon. .

(実施例1)
本実施例は、酸化チタン担持活性炭Aを用いて空気中の有害物質であるトルエンを除去した例である。5リットルのテトラパックに、上記酸化チタン担持活性炭Aを1g入れたシャーレおよび1リットルの空気を封入した。次に、発光ピーク波長が375nmで出力0.5mWのLED16個による1cmの距離からの発光を1gの酸化チタン担持活性炭Aに2時間照射させた後、その光照射を続けながら、1回のガス注入によりテトラパック中のトルエンガス濃度が1000ppmとなるようにトルエンガスを1時間ごとに注入し、各回におけるトルエン含有ガスの注入30分後のテトラパック中のトルエンガス濃度を検知管により測定した。
Example 1
In this example, toluene, which is a harmful substance in the air, was removed using activated carbon A supporting titanium oxide. A petri dish containing 1 g of the titanium oxide-supported activated carbon A and 1 liter of air were sealed in a 5-liter tetrapack. Next, after emitting light from a distance of 1 cm by 16 LEDs having an emission peak wavelength of 375 nm and an output of 0.5 mW to 1 g of titanium oxide-supported activated carbon A for 2 hours, one gas was emitted while continuing the light irradiation. Toluene gas was injected every hour so that the concentration of toluene gas in Tetra Pak was 1000 ppm by injection, and the concentration of toluene gas in Tetra Pak 30 minutes after injection of toluene-containing gas at each time was measured with a detector tube.

また、ブランクとして上記酸化チタン担持活性炭Aを入れなかったこと以外は実施例1と同様にしてテトラパック中のトルエンガス濃度を測定した(これを比較例1aという)。また、テトラパックに上記酸化チタン担持活性炭Aに替えて口径が5mmで高さが10mmの円柱状の活性炭を1g入れたこと以外は実施例1と同様にしてテトラパック中のトルエンガス濃度を測定した(これを比較例1bという)。結果を表1および図28にまとめた。   Further, the toluene gas concentration in the Tetra Pak was measured in the same manner as in Example 1 except that the titanium oxide-supporting activated carbon A was not used as a blank (this is referred to as Comparative Example 1a). Further, the toluene gas concentration in the tetrapack was measured in the same manner as in Example 1 except that 1 g of columnar activated carbon having a diameter of 5 mm and a height of 10 mm was placed in the tetrapack instead of the above-described titanium oxide-supported activated carbon A. (This is referred to as Comparative Example 1b). The results are summarized in Table 1 and FIG.

Figure 2008105295
Figure 2008105295

表1および図28から明らかなように、ブランク(比較例1a)および活性炭(比較例1b)の場合は、トルエンガスの注入回数が多くなるにつれてテトラパック中のトルエン濃度は増加したが、酸化チタン担持活性炭Aの場合(実施例1)は、テトラパック中のトルエン濃度は急激に減少し、トルエンガスの注入回数が5回以上のとき、注入30分後においてはトルエンが検出されなかった。以上のことから、酸化チタン担持活性炭Aは空気中においてきわめて高いトルエン除去性能を有することがわかった。   As apparent from Table 1 and FIG. 28, in the case of the blank (Comparative Example 1a) and the activated carbon (Comparative Example 1b), the toluene concentration in the Tetra Pak increased as the number of injections of toluene gas increased. In the case of supported activated carbon A (Example 1), the toluene concentration in Tetra Pak decreased sharply, and when toluene gas was injected five times or more, toluene was not detected 30 minutes after the injection. From the above, it was found that the titanium oxide-supported activated carbon A has extremely high toluene removal performance in the air.

(実施例2)
本実施例は、酸化チタン担持活性炭Aを用いて水中の汚濁物質であるメチレンブルーを除去した例である。2リットルのステンレス鋼トレーに、上記酸化チタン担持活性炭Aを10gと1リットルの水を入れた。次に、発光ピーク波長が375nmで出力0.5mWのLED16個による1cmの距離からの発光を10gの酸化チタン担持活性炭Aに2時間照射させた後、その光照射を続けながら、10質量%のメチレンブルー水溶液を10g注入して、注入後15分毎にトレー中の水の色合いを目視にて評価した。メチレンブルー水溶液注入直後の青さを5、純水の青さを0として6段階で評価した。
(Example 2)
In this example, methylene blue, which is a contaminant in water, was removed using activated carbon A carrying titanium oxide. In a 2 liter stainless steel tray, 10 g of the titanium oxide-supported activated carbon A and 1 liter of water were placed. Next, after emitting light from a distance of 1 cm by 16 LEDs having an emission peak wavelength of 375 nm and an output of 0.5 mW to 10 g of titanium oxide-supported activated carbon A for 2 hours, 10 g of methylene blue aqueous solution was injected, and the color of water in the tray was visually evaluated every 15 minutes after the injection. The blueness immediately after the injection of the methylene blue aqueous solution was 5 and the blueness of pure water was 0.

また、ブランクとしてトレーに上記酸化チタン担持活性炭Aを入れなかったこと以外は実施例2と同様にしてトレー中の水の青さを評価した(これを比較例2aという)。また、トレーに上記酸化チタン担持活性炭Aに替えて口径が5mmで高さが10mmの円柱状の活性炭を1g入れたこと以外は実施例2と同様にしてトレー中の水の青さを評価した(これを比較例2bという)。結果を表2にまとめた。   Moreover, the blueness of the water in a tray was evaluated like Example 2 except not having put the said titanium oxide carrying activated carbon A into a tray as a blank (this is called Comparative Example 2a). Further, the blueness of water in the tray was evaluated in the same manner as in Example 2 except that 1 g of columnar activated carbon having a diameter of 5 mm and a height of 10 mm was placed in the tray instead of the titanium oxide-supported activated carbon A. (This is referred to as Comparative Example 2b). The results are summarized in Table 2.

Figure 2008105295
Figure 2008105295

表2から明らかなように、ブランク(比較例2a)の場合はトレー中の水の色合いに変化はなく、活性炭(比較例2b)の場合は60分後には、トレー中の水の色合いは2まで低減した。これに対し、酸化チタン担持活性炭Aの場合(実施例2)は、トレーの水の色合いは、15分後には2まで、30分後には1まで下がり、45分後には純水と同様となった。以上のことから、酸化チタン担持活性炭Aは水中においてきわめて高いメチレンブルー除去性能を有することがわかった。   As is clear from Table 2, in the case of the blank (Comparative Example 2a), there is no change in the color of water in the tray, and in the case of activated carbon (Comparative Example 2b), the color of the water in the tray is 2 after 60 minutes. Reduced to. In contrast, in the case of activated carbon A carrying titanium oxide (Example 2), the color of the water in the tray drops to 2 after 15 minutes, to 1 after 30 minutes, and becomes the same as that of pure water after 45 minutes. It was. From the above, it was found that the titanium oxide-supported activated carbon A has very high methylene blue removal performance in water.

[シート型流体浄化装置HHS−AR1の作製]
1.酸化チタン担持多孔質体B(光触媒担持多孔質体)の作製
2次粒子の粒径が50nm〜100nmの水酸化チタン(Ti(OH)4・2H2O)微粉末80.12gに水80.12gの割合でよく攪拌して混合し、水酸化チタンスラリーを作製した。その水酸化チタンスラリー49.3gを粒径が0.5mmの椰子柄活性炭50gおよび粒径0.5mmのゼオライト50gの混合物に含浸させた。これに30℃の温度下で過酸化水素水(35質量%)を加えると、自己発熱反応が起こった。反応後、乾燥機内で、250℃で1時間乾燥させると、酸化チタン担持多孔質体Bが得られた。この酸化チタン担持多孔質体Bは、以下の実施例3および4においてきわめて高い有害物質除去性能を有することから、多孔質状の酸化チタンが多孔質体(活性炭およびゼオライト)の少なくとも孔の入口部分に担持されているものと考えられる。
[Production of sheet type fluid purification device HHS-AR1]
1. Production of Titanium Oxide-Supported Porous Material B (Photocatalyst-Supported Porous Material) 80.12 g of titanium hydroxide (Ti (OH) 4 .2H 2 O) fine powder having a secondary particle size of 50 nm to 100 nm and 80. The titanium hydroxide slurry was prepared by thoroughly stirring and mixing at a rate of 12 g. 49.3 g of the titanium hydroxide slurry was impregnated with a mixture of 50 g of cocoon pattern activated carbon having a particle size of 0.5 mm and 50 g of zeolite having a particle size of 0.5 mm. When hydrogen peroxide solution (35% by mass) was added to this at a temperature of 30 ° C., a self-exothermic reaction occurred. After the reaction, when dried at 250 ° C. for 1 hour in a dryer, a titanium oxide-supported porous body B was obtained. Since this titanium oxide-supporting porous body B has extremely high harmful substance removal performance in the following Examples 3 and 4, the porous titanium oxide is at least the entrance portion of the pores of the porous body (activated carbon and zeolite). It is thought that it is carried on the surface.

2.シート型流体浄化装置HHS−AR1の作製
図1を参照して、長さLSが80mm、幅WSが80mmおよび厚さ3mmのポリウレタン布のシート71上に上記酸化チタン担持多孔質体Bを0.7g点着させた。次いで、上板75上に光源5として発光ピーク波長が375nmで出力0.5mWのLED16個をピッチPL,PWが20mmで配置した。ここで、光源5とシート71に点着された酸化チタン担持多孔質体B(光触媒担持多孔質体1)との距離Hは1cmであり、下板73および上板75の長さLおよび幅Wはいずれも10cmであった。また、下板73および上板75には白色のアクリル樹脂板を用いた。こうして、シート型流体浄化装置HHS−AR1を得た。
2. Production of Sheet Type Fluid Purification Device HHS-AR1 Referring to FIG. 1, the above-mentioned titanium oxide-supported porous body B is placed on a polyurethane cloth sheet 71 having a length L S of 80 mm, a width W S of 80 mm, and a thickness of 3 mm. 0.7 g was spotted. Next, 16 LEDs with an emission peak wavelength of 375 nm and an output of 0.5 mW were arranged on the upper plate 75 as the light source 5 with a pitch P L and P W of 20 mm. Here, the distance H between the light source 5 and the titanium oxide-supporting porous body B (photocatalyst-supporting porous body 1) spotted on the sheet 71 is 1 cm, and the length L and width of the lower plate 73 and the upper plate 75 are as follows. W was 10 cm in all cases. The lower plate 73 and the upper plate 75 were white acrylic resin plates. Thus, a sheet type fluid purification device HHS-AR1 was obtained.

(実施例3)
本実施例は、シート型流体浄化装置HHS−AR1を用いて空気中の有害物質であるトルエンを除去した例である。まず、シート型流体浄化装置HHS−AR1を2時間予備運転した。次に、2リットルのテトラパックに、運転を続けているシート型流体浄化装置HHS−AR1を封入した。次に、初期のトルエンガス濃度が100ppmとなるようにトルエンガスを25分毎に注入し、各回におけるトルエンガスの注入5分毎にテトラパック中のトルエンガス濃度を検知管により測定した。結果を表3および図29にまとめた。
(Example 3)
In this embodiment, toluene, which is a harmful substance in the air, is removed using the sheet type fluid purification device HHS-AR1. First, the sheet type fluid purification device HHS-AR1 was preliminarily operated for 2 hours. Next, the sheet-type fluid purification device HHS-AR1 that was continuously operated was sealed in a 2-liter tetrapack. Next, toluene gas was injected every 25 minutes so that the initial toluene gas concentration was 100 ppm, and the toluene gas concentration in Tetra Pak was measured with a detector tube every 5 minutes of toluene gas injection each time. The results are summarized in Table 3 and FIG.

Figure 2008105295
Figure 2008105295

表3および図29から明らかなように、毎回のトルエンガスの注入において、注入直後にはトルエンガスの濃度(残留濃度)は100ppmであったが、注入5分後にはトルエンガス濃度(残留濃度)は20ppm程度に低減し、注入20分後にはトルエンガス濃度(残留濃度)は0ppm、すなわち完全に除去された。これはトルエンガスの注入回数にかかわらず同様の結果が得られた。こうして、注入されたトルエンガスは全て除去され、245分経過後のトルエンガスの累積分解濃度は1000ppmにまで達した。以上のことから、シート型流体浄化装置HHS−AR1は空気中においてきわめて高いトルエン除去性能を有することがわかった。   As apparent from Table 3 and FIG. 29, in each injection of toluene gas, the concentration (residual concentration) of toluene gas was 100 ppm immediately after the injection, but the concentration of toluene gas (residual concentration) was 5 minutes after the injection. Was reduced to about 20 ppm, and after 20 minutes from the injection, the toluene gas concentration (residual concentration) was 0 ppm, that is, completely removed. Similar results were obtained regardless of the number of toluene gas injections. Thus, all of the injected toluene gas was removed, and the cumulative decomposition concentration of toluene gas after 245 minutes reached 1000 ppm. From the above, it was found that the sheet type fluid purification device HHS-AR1 has a very high toluene removal performance in the air.

(実施例4)
本実施例は、シート型流体浄化装置HHS−AR1を用いて水中の汚濁物質であるメチレンブルーを除去した例である。まず、シート型流体浄化装置HHS−AR1を2時間予備運転した。次に、2リットルのステンレス鋼トレーに、運転を続けているシート型流体浄化装置HHS−AR1と1リットルの水を入れた。次に、10質量%のメチレンブルー水溶液を10g注入して、注入後15分毎にトレー中の水の色合いを目視にて評価した。メチレンブルー水溶液注入直後の青さを5、純水の青さを0として6段階で評価した。
Example 4
The present embodiment is an example in which methylene blue, which is a pollutant in water, is removed using a sheet type fluid purification device HHS-AR1. First, the sheet type fluid purification device HHS-AR1 was preliminarily operated for 2 hours. Next, the sheet-type fluid purification apparatus HHS-AR1 and 1 liter of water that were kept in operation were placed in a 2-liter stainless steel tray. Next, 10 g of a 10 mass% methylene blue aqueous solution was injected, and the color of water in the tray was visually evaluated every 15 minutes after the injection. The blueness immediately after the injection of the methylene blue aqueous solution was 5 and the blueness of pure water was 0.

また、ブランクとしてトレーにシート型流体浄化装置HHS−AR1を入れなかったこと以外は実施例4と同様にしてトレー中の水の青さを評価した(これを比較例3という)。結果を表4にまとめた。   Moreover, the blueness of the water in a tray was evaluated like Example 4 except not having put the sheet | seat type | formula fluid purification apparatus HHS-AR1 into the tray as a blank (this is called the comparative example 3). The results are summarized in Table 4.

Figure 2008105295
Figure 2008105295

表4から明らかなように、ブランク(比較例3)の場合はトレー中の水の色合いに変化はなかった。これに対し、シート型流体浄化装置HHS−AR1が存在する場合(実施例4)は、トレーの水の色合いは、15分後には3まで、30分後には2まで、45秒後には1まで下がり、60分後には純水と同様となった。以上のことから、シート型流体浄化装置HHS−AR1は水中においてきわめて高いメチレンブルー除去性能を有することがわかった。   As is clear from Table 4, in the case of the blank (Comparative Example 3), there was no change in the color of water in the tray. On the other hand, when the sheet-type fluid purification device HHS-AR1 is present (Example 4), the water color of the tray is up to 3 after 15 minutes, up to 2 after 30 minutes, and up to 1 after 45 seconds. After 60 minutes, it became the same as pure water. From the above, it was found that the sheet type fluid purification device HHS-AR1 has a very high methylene blue removal performance in water.

[光源の保護]
以下に説明する実施例5〜28の流体浄化装置においては、光源5または元光源4として、点光源または線光源をフッ素樹脂塗料(セラスター塗料社製FXクリヤー)(光透過性コーティング材)で被覆した光源を用いた。
[Light source protection]
In the fluid purifying apparatuses of Examples 5 to 28 described below, a point light source or a line light source is covered with a fluororesin paint (FX clear manufactured by Cerastar Paint Co., Ltd.) (light transmissive coating material) as the light source 5 or the original light source 4. The light source used was used.

[酸化チタン担持粉末状ゼオライトC(光触媒担持多孔質体)の作製]
2次粒子の粒径が50nm〜100nmの水酸化チタン(Ti(OH)4・2H2O)微粉末50.64gと2次粒子の粒径が50nm〜100nmの酸化チタン(TiO2)微粉末26.62gに水63.29gの割合でよく攪拌して混合し、水酸化チタン・酸化チタン混合スラリーを作製した。その水酸化チタン・酸化チタン混合スラリー44.0gを平均粒径が30μmのゼオライト粉末(中部電力社製シーキュラス)100gに含浸させた。これに30℃の温度下で過酸化水素水(35質量%)を加えると、自己発熱反応が起こった。反応後、乾燥機内で、200℃で1時間乾燥させると、酸化チタン担持粉末状ゼオライトCが得られた。この酸化チタン担持粉末状ゼオライトCは、以下の実施例5、7、9および11においてきわめて高い有害物質除去性能を有することから、多孔質状の酸化チタンが粉末状ゼオライトの少なくとも孔の入口部分に担持されているものと考えられる。
[Production of Titanium Oxide-Supported Powdered Zeolite C (Photocatalyst-Supported Porous Material)]
50.64 g of titanium hydroxide (Ti (OH) 4 .2H 2 O) fine powder having a secondary particle size of 50 nm to 100 nm and titanium oxide (TiO 2 ) fine powder having a secondary particle size of 50 nm to 100 nm 26.62 g and 63.29 g of water were thoroughly stirred and mixed to prepare a titanium hydroxide / titanium oxide mixed slurry. 44.0 g of the titanium hydroxide / titanium oxide mixed slurry was impregnated with 100 g of zeolite powder (Chigusu manufactured by Chubu Electric Power Co., Inc.) having an average particle size of 30 μm. When hydrogen peroxide solution (35% by mass) was added to this at a temperature of 30 ° C., a self-exothermic reaction occurred. After the reaction, when dried in a dryer at 200 ° C. for 1 hour, titanium oxide-supported powdery zeolite C was obtained. Since this titanium oxide-supported powdery zeolite C has extremely high harmful substance removal performance in Examples 5, 7, 9 and 11 below, porous titanium oxide is present at least at the entrance of the pores of the powdered zeolite. It is thought that it is carried.

[硫黄ドープ酸化チタン担持粉末状ゼオライトD(光触媒担持多孔質体)の作製]
2次粒子の粒径が50nm〜100nmの水酸化チタン(Ti(OH)4・2H2O)微粉末50.64gと2次粒子の粒径が50nm〜100nmの酸化チタン(TiO2)微粉末26.62gとチオ尿素微粉末5.06gに水63.29gの割合でよく攪拌して混合し、硫黄添加水酸化チタン・酸化チタン混合スラリーを作製した。その硫黄添加水酸化チタン・酸化チタン混合スラリー44.0gを平均粒径が30μmのゼオライト粉末(中部電力社製シーキュラス)100gに含浸させた。これに30℃の温度下で過酸化水素水(35質量%)を加えると、自己発熱反応が起こった。反応後、乾燥機内で、200℃で1時間乾燥させると、硫黄ドープ酸化チタン担持粉末状ゼオライトDが得られた。この酸化チタン担持粉末状ゼオライトDは、以下の実施例6、8、10および12においてきわめて高い有害物質除去性能を有することから、多孔質状の硫黄ドープ酸化チタンが粉末状ゼオライトの少なくとも孔の入口部分に担持されているものと考えられる。
[Preparation of sulfur-doped titanium oxide-supported powdery zeolite D (photocatalyst-supported porous body)]
50.64 g of titanium hydroxide (Ti (OH) 4 .2H 2 O) fine powder having a secondary particle size of 50 nm to 100 nm and titanium oxide (TiO 2 ) fine powder having a secondary particle size of 50 nm to 100 nm 26.62 g and thiourea fine powder 5.06 g were mixed with good stirring at a ratio of 63.29 g of water to prepare a sulfur-added titanium hydroxide / titanium oxide mixed slurry. 44.0 g of the sulfur-added titanium hydroxide / titanium oxide mixed slurry was impregnated with 100 g of zeolite powder (Chikyuls manufactured by Chubu Electric Power Co., Inc.) having an average particle size of 30 μm. When hydrogen peroxide solution (35% by mass) was added to this at a temperature of 30 ° C., a self-exothermic reaction occurred. After reaction, when dried at 200 ° C. for 1 hour in a dryer, sulfur-doped titanium oxide-supported powdery zeolite D was obtained. Since this titanium oxide-supported powdery zeolite D has extremely high harmful substance removal performance in the following Examples 6, 8, 10 and 12, the porous sulfur-doped titanium oxide is at least the entrance of the pores of the powdered zeolite. It is thought that it is carried on the part.

(実施例5)
図1を参照して、長さLSが200mm、幅WSが100mmおよび厚さ3mmの空隙率が70体積%のポリエチレン不織布のシート71上に、上記酸化チタン担持ゼオライトC(光触媒担持多孔質体1)を50g/m2の目付け量で点着させた。次いで、この酸化チタン担持粉末状ゼオライトCを点着したシート71を下板73上に配置した。次いで、上板75上に点光源(光源5)として発光ピーク波長が375nmで順電圧3.2V(標準)で20mAのSMD(ナイトライド社製NS375L−7SFF)32個をピッチPL,PWが25mmで配置した。ここで、点光源(光源5)とシート71に点着された酸化チタン担持粉末状ゼオライトCとの距離Hは10mmであり、下板73および上板75は、いずれも長さLが200mm、幅Wが100mmであった。また、下板73および上板75には白色のアクリル樹脂板を用いた。また、下板73と上板75との間の空間に空気を流すための送風ファンを設けた。こうして、シート型流体浄化装置Vを得た。
(Example 5)
Referring to FIG. 1, on a polyethylene non-woven sheet 71 having a length L S of 200 mm, a width W S of 100 mm and a thickness of 3 mm and a porosity of 70% by volume, the above-mentioned titanium oxide-supported zeolite C (photocatalyst-supported porous material) Body 1) was spotted with a basis weight of 50 g / m 2 . Next, the sheet 71 spotted with the titanium oxide-supported powdered zeolite C was placed on the lower plate 73. Next, 32 points of SMD (NS375L-7SFF manufactured by Nitride) having 32 light emitting peak wavelengths of 375 nm and a forward voltage of 3.2 V (standard) as a point light source (light source 5) on the upper plate 75 have pitches P L and P W. Arranged at 25 mm. Here, the distance H between the point light source (light source 5) and the titanium oxide-supported powdered zeolite C spotted on the sheet 71 is 10 mm, and the lower plate 73 and the upper plate 75 both have a length L of 200 mm. The width W was 100 mm. The lower plate 73 and the upper plate 75 were white acrylic resin plates. Further, a blower fan for flowing air into the space between the lower plate 73 and the upper plate 75 was provided. Thus, a sheet type fluid purification device V was obtained.

アセトアルデヒド濃度が100ppmの空気で満たされた1m3の気密ボックス内に、送風ファンにより内部流量が0.5m3/minに調節された上記シート型流体浄化装置Vを入れて、10分毎に、検知管(ガステック社製92Mおよび92L)を用いて、気密ボックス内のアセトアルデヒド濃度を測定した。結果を表5にまとめた。The sheet type fluid purification device V in which the internal flow rate was adjusted to 0.5 m 3 / min by a blower fan was placed in a 1 m 3 hermetic box filled with 100 ppm of acetaldehyde concentration, and every 10 minutes, Acetaldehyde concentration in the hermetic box was measured using a detector tube (92M and 92L manufactured by Gastec). The results are summarized in Table 5.

(実施例6)
図1を参照して、長さLSが200mm、幅WSが100mmおよび厚さ3mmの空隙率が70体積%のポリエチレン不織布のシート71上に、上記硫黄ドープ酸化チタン担持ゼオライトD(光触媒担持多孔質体1)を50g/m2の目付け量で点着させた。次いで、この硫黄ドープ酸化チタン担持ゼオライトDを点着したシート71を下板73上に配置した。次いで、上板75上に点光源(光源5)として400nm〜700nmの間に発光ピーク波長を有する順電圧3.2V(標準)で20mAのSMD(日亜化学工業社製NSSW100D)32個をピッチPL,PWが25mm(で配置した。ここで、点光源(光源5)とシート71に点着された硫黄ドープ酸化チタン担持粉末状ゼオライトDとの距離Hは10mmであり、下板73および上板75は、いずれも長さLが200mm、幅Wが100mmであった。また、下板73および上板75には白色のアクリル樹脂板を用いた。また、下板73と上板75との間の空間に空気を流すための送風ファンを設けた。こうして、シート型流体浄化装置VIを得た。このシート型流体浄化装置VIを用いて、実施例5と同様の条件で、気密ボックス内のアセトアルデヒド濃度を測定した。結果を表5にまとめた。
(Example 6)
Referring to FIG. 1, the above-mentioned sulfur-doped titanium oxide-supported zeolite D (photocatalyst-supported) is placed on a polyethylene non-woven sheet 71 having a length L S of 200 mm, a width W S of 100 mm and a thickness of 3 mm and a porosity of 70% by volume. The porous body 1) was spotted at a basis weight of 50 g / m 2 . Next, a sheet 71 spotted with this sulfur-doped titanium oxide-supported zeolite D was placed on the lower plate 73. Next, 32 point SMDs (NSSW100D manufactured by Nichia Corporation) with a forward voltage of 3.2 V (standard) having a light emission peak wavelength between 400 nm and 700 nm are pitched as point light sources (light sources 5) on the upper plate 75. P L and P W are arranged at 25 mm. Here, the distance H between the point light source (light source 5) and the sulfur-doped titanium oxide-supported powdered zeolite D spotted on the sheet 71 is 10 mm, and the lower plate 73 Each of the upper plate 75 and the upper plate 75 had a length L of 200 mm and a width W of 100 mm, and a white acrylic resin plate was used for the lower plate 73 and the upper plate 75. The lower plate 73 and the upper plate 75 A blower fan was provided for flowing air in the space between the sheet 75 and the sheet-type fluid purification device VI, and the sheet-type fluid purification device VI was used under the same conditions as in Example 5. Airtight box The acetaldehyde concentration was measured. The results are summarized in Table 5.

(実施例7)
図4を参照して、長さLが200mm、幅Wが100mmおよび厚さ3mmの空隙率が70体積%のポリエチレン不織布のシート71上に、上記酸化チタン担持ゼオライトC(光触媒担持多孔質体1)を50g/m2の目付け量で点着させた。次いで、この酸化チタン担持ゼオライトCを点着したシート71を固定枠74の下板上に配置した。次いで、固定枠74の上板上に点光源(光源5)として発光ピーク波長が360nmで4Wのブラックライト(東芝社製FL4BLB)2本をピッチPWが50mmで配置した。ここで、線光源(光源5)とシート71に点着された酸化チタン担持粉末状ゼオライトCとの距離Hは50mmであり、固定枠74の下板および上板は、いずれも長さLが200mm、幅Wが100mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、固定枠74の下板と上板との間の空間に空気を流すための送風ファンを設けた。こうして、シート型流体浄化装置VIIを得た。このシート型流体浄化装置VIIを用いて、実施例5と同様の条件で、気密ボックス内のアセトアルデヒド濃度を測定した。結果を表5にまとめた。
(Example 7)
Referring to FIG. 4, on a sheet 71 of polyethylene nonwoven fabric having a length L of 200 mm, a width W of 100 mm and a thickness of 3 mm and a porosity of 70% by volume, the above titanium oxide-supported zeolite C (photocatalyst-supported porous body 1 ) Was spotted at a basis weight of 50 g / m 2 . Next, the sheet 71 spotted with the titanium oxide-carrying zeolite C was placed on the lower plate of the fixed frame 74. Next, two black lights (FL4BLB manufactured by Toshiba Corporation) having a light emission peak wavelength of 360 nm and 4 W as a point light source (light source 5) were arranged on the upper plate of the fixed frame 74 with a pitch P W of 50 mm. Here, the distance H between the line light source (light source 5) and the titanium oxide-supported powdered zeolite C spotted on the sheet 71 is 50 mm, and the lower plate and the upper plate of the fixed frame 74 both have a length L. The width was 200 mm and the width W was 100 mm. A white acrylic resin plate was used for the fixed frame 74. Moreover, the ventilation fan for flowing air in the space between the lower board and upper board of the fixed frame 74 was provided. Thus, a sheet type fluid purification device VII was obtained. Using this sheet type fluid purification device VII, the acetaldehyde concentration in the airtight box was measured under the same conditions as in Example 5. The results are summarized in Table 5.

(実施例8)
図4を参照して、長さLが200mm、幅Wが100mmおよび厚さ3mmの空隙率が70体積%のポリエチレン不織布のシート71上に、上記硫黄ドープ酸化チタン担持ゼオライトD(光触媒担持多孔質体1)を50g/m2の目付け量で点着させた。次いで、この硫黄ドープ酸化チタン担持ゼオライトDを点着したシート71を固定枠74の下板上に配置した。次いで、固定枠74の上板上に点光源(光源5)として400nm〜700nmの間に発光ピーク波長を有する4Wの直管蛍光灯(NEC社製FL4W)2本をピッチPWが50mmで配置した。ここで、線光源(光源5)とシート71に点着された硫黄ドープ酸化チタン担持粉末状ゼオライトDとの距離Hは50mmであり、固定枠74の下板および上板は、いずれも長さLが200mm、幅Wが100mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、固定枠74の下板と上板との間の空間に空気を流すための送風ファンを設けた。こうして、シート型流体浄化装置VIIIを得た。このシート型流体浄化装置VIIIを用いて、実施例5と同様の条件で、気密ボックス内のアセトアルデヒド濃度を測定した。結果を表5にまとめた。
(Example 8)
Referring to FIG. 4, on a polyethylene non-woven sheet 71 having a length L of 200 mm, a width W of 100 mm and a thickness of 3 mm and a porosity of 70% by volume, the sulfur-doped titanium oxide-supported zeolite D (photocatalyst-supported porous material) Body 1) was spotted with a basis weight of 50 g / m 2 . Next, the sheet 71 on which the sulfur-doped titanium oxide-carrying zeolite D was spotted was placed on the lower plate of the fixed frame 74. Next, two 4 W straight tube fluorescent lamps (FL4W manufactured by NEC) having a peak emission wavelength between 400 nm and 700 nm are arranged on the upper plate of the fixed frame 74 as a point light source (light source 5) with a pitch P W of 50 mm. did. Here, the distance H between the line light source (light source 5) and the sulfur-doped titanium oxide-supported powdery zeolite D spotted on the sheet 71 is 50 mm, and the lower plate and the upper plate of the fixed frame 74 are both lengths. L was 200 mm and width W was 100 mm. A white acrylic resin plate was used for the fixed frame 74. Moreover, the ventilation fan for flowing air in the space between the lower board and upper board of the fixed frame 74 was provided. Thus, a sheet type fluid purification device VIII was obtained. Using this sheet type fluid purification device VIII, the acetaldehyde concentration in the airtight box was measured under the same conditions as in Example 5. The results are summarized in Table 5.

(実施例9)
図7を参照して、長さLが200mm、幅Wが100mmおよび厚さ3mmの空隙率が70体積%のポリエチレン不織布のシート71上に、上記酸化チタン担持ゼオライトC(光触媒担持多孔質体1)を50g/m2の目付け量で点着させた。また、等間隔に配置された6個のSMD(ナイトライド社製NS375L−7SFF)を含む元光源4と紫外光用の導光板7(ナノクリエイト社製)とを含む面光源(光源5)を準備した。次いで、この面光源(光源5)を固定枠74の下板上に配置し、面光源(光源5)の導光板7上に酸化チタン担持ゼオライトCを点着したシート71を配置した。ここで、シート71に点着された酸化チタン担持粉末状ゼオライトCと固定枠74の上板との距離Hは10mmであり、面光源(光源5)の導光板7および固定枠74の上板は、いずれも長さLが200mm、幅Wが100mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、面光源(光源5)の導光板7と固定枠74の上板との間の空間に空気を流すための送風ファンを設けた。こうして、シート型流体浄化装置IXを得た。このシート型流体浄化装置IXを用いて、実施例5と同様の条件で、気密ボックス内のアセトアルデヒド濃度を測定した。結果を表5にまとめた。
Example 9
Referring to FIG. 7, the above-mentioned titanium oxide-supported zeolite C (photocatalyst-supported porous body 1) was placed on a polyethylene non-woven sheet 71 having a length L of 200 mm, a width W of 100 mm, and a thickness of 3 mm and a porosity of 70% by volume. ) Was spotted at a basis weight of 50 g / m 2 . In addition, a surface light source (light source 5) including an original light source 4 including six SMDs (NS375L-7SFF manufactured by Nitride Co., Ltd.) and a light guide plate 7 for ultraviolet light (manufactured by NanoCreate) arranged at equal intervals. Got ready. Next, the surface light source (light source 5) was disposed on the lower plate of the fixed frame 74, and the sheet 71 spotted with the titanium oxide-carrying zeolite C was disposed on the light guide plate 7 of the surface light source (light source 5). Here, the distance H between the titanium oxide-supported powdery zeolite C spotted on the sheet 71 and the upper plate of the fixed frame 74 is 10 mm, and the light guide plate 7 of the surface light source (light source 5) and the upper plate of the fixed frame 74 are. Each had a length L of 200 mm and a width W of 100 mm. A white acrylic resin plate was used for the fixed frame 74. Moreover, the ventilation fan for flowing air in the space between the light-guide plate 7 of a surface light source (light source 5) and the upper board of the fixed frame 74 was provided. Thus, a sheet type fluid purification device IX was obtained. Using this sheet type fluid purification device IX, the acetaldehyde concentration in the airtight box was measured under the same conditions as in Example 5. The results are summarized in Table 5.

(実施例10)
図7を参照して、長さLが200mm、幅Wが100mmおよび厚さが3mmの空隙率が70体積%のポリエチレン不織布のシート71上に、上記硫黄ドープ酸化チタン担持ゼオライトD(光触媒担持多孔質体1)を50g/m2の目付け量で点着させた。また、等間隔に配置された6個のSMD(日亜化学工業社製NSSW100D)を含む元光源4と可視光用の導光板7(ナノクリエイト社製)とを含む面光源(光源5)を準備した。次いで、この面光源(光源5)を固定枠74の下板上に配置し、面光源(光源5)の導光板7上に硫黄ドープ酸化チタン担持ゼオライトDを点着したシート71を配置した。次いで、この硫黄ドープ酸化チタン担持ゼオライトDを点着したシート71を固定枠74の下板上に配置した。ここで、シート71に点着された硫黄ドープ酸化チタン担持粉末状ゼオライトDと固定枠74の上板との距離Hは10mmであり、面光源(光源5)の導光板7および固定枠74の上板は、いずれも長さLが200mmおよび幅Wが100mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、面光源(光源5)の導光板7と固定枠74の上板との間の空間に空気を流すための送風ファンを設けた。こうして、シート型流体浄化装置Xを得た。このシート型流体浄化装置Xを用いて、実施例5と同様の条件で、気密ボックス内のアセトアルデヒド濃度を測定した。結果を表5にまとめた。
(Example 10)
Referring to FIG. 7, on a polyethylene non-woven fabric sheet 71 having a length L of 200 mm, a width W of 100 mm and a thickness of 3 mm and a porosity of 70 vol. The compact 1) was spotted with a basis weight of 50 g / m 2 . Further, a surface light source (light source 5) including an original light source 4 including six SMDs (NSW100D manufactured by Nichia Corporation) and a light guide plate 7 for visible light (manufactured by Nanocreate) arranged at equal intervals is provided. Got ready. Next, the surface light source (light source 5) was disposed on the lower plate of the fixed frame 74, and the sheet 71 on which the sulfur-doped titanium oxide-carrying zeolite D was spotted was disposed on the light guide plate 7 of the surface light source (light source 5). Next, the sheet 71 on which the sulfur-doped titanium oxide-carrying zeolite D was spotted was placed on the lower plate of the fixed frame 74. Here, the distance H between the sulfur-doped titanium oxide-supported powdery zeolite D spotted on the sheet 71 and the upper plate of the fixed frame 74 is 10 mm, and the light guide plate 7 and the fixed frame 74 of the surface light source (light source 5) All of the upper plates had a length L of 200 mm and a width W of 100 mm. A white acrylic resin plate was used for the fixed frame 74. Moreover, the ventilation fan for flowing air in the space between the light-guide plate 7 of a surface light source (light source 5) and the upper board of the fixed frame 74 was provided. Thus, a sheet type fluid purification device X was obtained. Using this sheet type fluid purification device X, the acetaldehyde concentration in the airtight box was measured under the same conditions as in Example 5. The results are summarized in Table 5.

(実施例11)
図9を参照して、2枚の幅W1が100mm、幅W2が100mmおよび厚さTSが3mmの空隙率が70体積%のポリエチレン不織布のシート71上に上記酸化チタン担持ゼオライトC(光触媒担持多孔質体1)を50g/m2の目付け量で点着させた。また、通風性基体中に等間隔に配置された9個のSMD(ナイトライド社製NS375L−7SFF)を含む元光源4と光拡散材8とを含む面光源(光源5)を準備した。ここで、光拡散材8として、幅W1が100mm、幅W2が100mmおよび厚さTLが25mmの空隙率が70体積%のステンレス繊維シートを用いた。次いで面光源(光源5)の光拡散材の主面8m上に、上記酸化チタン担持ゼオライトCを点着させた上記2枚のポリエチレン不織布のシート71を重ねて配置した。また、シート71の主面から面光源(光源5)の光拡散材8および元光源4の主面に空気を流すための送風ファンを設けた。こうして、シート型流体浄化装置XIを得た。このシート型流体浄化装置XIを用いて、実施例5と同様の条件で、気密ボックス内のアセトアルデヒド濃度を測定した。結果を表5にまとめた。
(Example 11)
Referring to FIG. 9, the above-mentioned titanium oxide-supported zeolite C (on a polyethylene non-woven sheet 71 having a width W 1 of 100 mm, a width W 2 of 100 mm and a thickness T S of 3 mm and a porosity of 70% by volume) The photocatalyst-supporting porous body 1) was spotted at a basis weight of 50 g / m 2 . In addition, a surface light source (light source 5) including the original light source 4 including nine SMDs (NS375L-7SFF manufactured by Nitride Co., Ltd.) and the light diffusing material 8 arranged at equal intervals in the ventilation base was prepared. Here, as the light diffusing material 8, a stainless fiber sheet having a width W 1 of 100 mm, a width W 2 of 100 mm, and a thickness T L of 25 mm and a porosity of 70% by volume was used. Next, the two polyethylene nonwoven fabric sheets 71 on which the titanium oxide-carrying zeolite C was spotted were placed on the main surface 8m of the light diffusing material of the surface light source (light source 5). Moreover, the ventilation fan for flowing air from the main surface of the sheet | seat 71 to the light diffusing material 8 of the surface light source (light source 5) and the main surface of the original light source 4 was provided. Thus, a sheet type fluid purification device XI was obtained. Using this sheet type fluid purification device XI, the acetaldehyde concentration in the airtight box was measured under the same conditions as in Example 5. The results are summarized in Table 5.

(実施例12)
図10を参照して、2枚の幅W1が100mm、幅W2が100mmおよび厚さTSが3mmの空隙率が70体積%のポリエチレン不織布のシート71上に上記硫黄ドープ酸化チタン担持ゼオライトD(光触媒担持多孔質体1)を50g/m2の目付け量で点着させた。また、通風性基体中に等間隔に配置された2本の直管蛍光灯(NEC社製FL4W)を含む元光源4と光拡散材8とを含む面光源(光源5)を準備した。ここで、光拡散材8として、幅W1が100mm、幅W2が100mmおよび厚さTLが25mmの空隙率が70体積%のステンレス繊維シートを用いた。次いで面光源(光源5)の光拡散材の主面8m上に、上記硫黄ドープ酸化チタン担持ゼオライトDを点着させた上記2枚のポリエチレン不織布のシート71を重ねて配置した。また、シート71の主面から面光源(光源5)の光拡散材8および元光源4の主面に空気を流すための送風ファンを設けた。こうして、シート型流体浄化装置XIIを得た。このシート型流体浄化装置XIIを用いて、実施例5と同様の条件で、気密ボックス内のアセトアルデヒド濃度を測定した。結果を表5にまとめた。
(Example 12)
Referring to FIG. 10, two width W 1 is 100mm, the width W 2 is 100mm and thickness T S is 3mm of porosity 70% by volume of a polyethylene nonwoven sheet 71 the sulfur-doped titanium oxide supported zeolite on D (photocatalyst-supported porous body 1) was spotted at a basis weight of 50 g / m 2 . In addition, a surface light source (light source 5) including an original light source 4 including two straight tube fluorescent lamps (FL4W manufactured by NEC Corporation) and a light diffusing material 8 arranged at equal intervals in a ventilation base was prepared. Here, as the light diffusing material 8, a stainless fiber sheet having a width W 1 of 100 mm, a width W 2 of 100 mm, and a thickness T L of 25 mm and a porosity of 70% by volume was used. Next, the two polyethylene nonwoven fabric sheets 71 on which the sulfur-doped titanium oxide-carrying zeolite D was spotted were placed on the main surface 8 m of the light diffusing material of the surface light source (light source 5). Moreover, the ventilation fan for flowing air from the main surface of the sheet | seat 71 to the light diffusing material 8 of the surface light source (light source 5) and the main surface of the original light source 4 was provided. Thus, a sheet type fluid purification device XII was obtained. Using this sheet type fluid purification device XII, the acetaldehyde concentration in the airtight box was measured under the same conditions as in Example 5. The results are summarized in Table 5.

Figure 2008105295
Figure 2008105295

上記表5の結果における経過時間と気密ボックス内のアルデヒド濃度との関係を図30にプロットした。表5および図30から明らかなように、実施例5〜実施例12のいずれのシート型流体浄化装置においても、高い流体浄化性能が得られた。   The relationship between the elapsed time and the aldehyde concentration in the airtight box in the results of Table 5 is plotted in FIG. As is clear from Table 5 and FIG. 30, high fluid purification performance was obtained in any of the sheet-type fluid purification devices of Examples 5 to 12.

[酸化チタン担持ハニカム状活性炭E(光触媒担持多孔質体)の作製]
2次粒子の粒径が50nm〜100nmの水酸化チタン(Ti(OH)4・2H2O)微粉末25.32gと2次粒子の粒径が50nm〜100nmの酸化チタン(TiO2)微粉末13.31gに2−プロパノール(イソプロピルアルコール)80.12gの割合でよく攪拌して混合し、水酸化チタン・酸化チタン混合スラリーを作製した。その水酸化チタン・酸化チタン混合スラリー71.0gを、幅W1が100mm、幅W2が100mmおよび長さLHが30mmで、長さL方向に伸びるハニカム構造を有し、ハニカム目粗さが200メッシュのハニカム状活性炭(産栄サービス社製)120gに含浸させた。これに30℃の温度下で過酸化水素水(35質量%)を加えると、自己発熱反応が起こった。反応後、乾燥機内で、200℃で1時間乾燥させると、酸化チタン担持ハニカム状活性炭Eが得られた。この酸化チタン担持ハニカム状活性炭Eは、以下の実施例13、15、17および19においてきわめて高い有害物質除去性能を有することから、多孔質状の酸化チタンがハニカム状活性炭の少なくとも孔の入口部分に担持されているものと考えられる。
[Production of Titanium Oxide-Supported Honeycomb Activated Carbon E (Photocatalyst-Supported Porous Material)]
25.32 g of titanium hydroxide (Ti (OH) 4 .2H 2 O) fine powder with a secondary particle size of 50 nm to 100 nm and titanium oxide (TiO 2 ) fine powder with a secondary particle size of 50 nm to 100 nm 13.31 g and 80.12 g of 2-propanol (isopropyl alcohol) were thoroughly stirred and mixed to prepare a titanium hydroxide / titanium oxide mixed slurry. 71.0 g of the titanium hydroxide / titanium oxide mixed slurry has a honeycomb structure that has a width W 1 of 100 mm, a width W 2 of 100 mm, a length L H of 30 mm, and extends in the length L direction. Were impregnated with 120 g of 200-mesh honeycomb activated carbon (manufactured by Seiei Service Co., Ltd.). When hydrogen peroxide solution (35% by mass) was added to this at a temperature of 30 ° C., a self-exothermic reaction occurred. After the reaction, when dried for 1 hour at 200 ° C. in a dryer, a titanium-oxide-supported honeycomb-like activated carbon E was obtained. Since this titanium oxide-supporting honeycomb-like activated carbon E has extremely high harmful substance removal performance in Examples 13, 15, 17 and 19 below, porous titanium oxide is at least at the entrance of the pores of the honeycomb-like activated carbon. It is thought that it is carried.

[硫黄ドープ酸化チタン担持ハニカム状活性炭F(光触媒担持多孔質体)の作製]
2次粒子の粒径が50nm〜100nmの水酸化チタン(Ti(OH)4・2H2O)微粉末25.32gと2次粒子の粒径が50nm〜100nmの酸化チタン(TiO2)微粉末13.31gとチオ尿素微粉末2.53gに2−プロパノール(イソプロピルアルコール)80.12gの割合でよく攪拌して混合し、硫黄添加水酸化チタン・酸化チタン混合スラリーを作製した。その硫黄添加水酸化チタン・酸化チタン混合スラリー71.0gを、幅W1が100mm、幅W2が100mmおよび長さLHが30mmで、長さL方向に伸びるハニカム構造を有し、ハニカム目粗さが200メッシュのハニカム状活性炭(産栄サービス社製)120gに含浸させた。これに30℃の温度下で過酸化水素水(35質量%)を加えると、自己発熱反応が起こった。反応後、乾燥機内で、200℃で1時間乾燥させると、硫黄ドープ酸化チタン担持ハニカム状活性炭Fが得られた。この硫黄ドープ酸化チタン担持ハニカム状活性炭Fは、以下の実施例14、16、18および20においてきわめて高い有害物質除去性能を有することから、多孔質状の硫黄ドープ酸化チタンがハニカム状活性炭の少なくとも孔の入口部分に担持されているものと考えられる。
[Preparation of sulfur-doped titanium oxide-supported honeycomb activated carbon F (photocatalyst-supported porous body)]
25.32 g of titanium hydroxide (Ti (OH) 4 .2H 2 O) fine powder with a secondary particle size of 50 nm to 100 nm and titanium oxide (TiO 2 ) fine powder with a secondary particle size of 50 nm to 100 nm 13.31 g and thiourea fine powder 2.53 g were mixed with sufficient stirring at a ratio of 80.12 g of 2-propanol (isopropyl alcohol) to prepare a sulfur-added titanium hydroxide / titanium oxide mixed slurry. 71.0 g of the sulfur-added titanium hydroxide / titanium oxide mixed slurry has a honeycomb structure having a width W 1 of 100 mm, a width W 2 of 100 mm, a length L H of 30 mm, and extending in the length L direction. 120 g of honeycomb activated carbon having a roughness of 200 mesh (manufactured by Seiei Service Co., Ltd.) was impregnated. When hydrogen peroxide solution (35% by mass) was added to this at a temperature of 30 ° C., a self-exothermic reaction occurred. After the reaction, when dried in a dryer at 200 ° C. for 1 hour, sulfur-doped titanium oxide-supported honeycomb-like activated carbon F was obtained. Since this sulfur-doped titanium oxide-supported honeycomb activated carbon F has extremely high harmful substance removal performance in the following Examples 14, 16, 18 and 20, the porous sulfur-doped titanium oxide is at least pores of the honeycomb-shaped activated carbon. It is thought that it is carried at the inlet portion of the.

(実施例13)
図11を参照して、幅W1が100mm、幅W2が100mmおよび長さLが30mmの酸化チタン担持ハニカム状活性炭E(光触媒担持多孔質体1)の両側のハニカム開口面1k,1k’のそれぞれに対向させて、幅W1が100mmおよび幅W2が100mmの固定枠74上に点光源(光源5)として発光ピーク波長が375nmで順電圧3.2V(標準)で20mAのSMD(ナイトライド社製NS375L−7SFF)16個をピッチPL,PWが25mmで配置した。ここで、ハニカム開口面1k,1k’と点光源(光源5)との距離HHは10mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、一方のハニカム開口面1kから他方のハニカム開口面1k’に空気を流すための送風ファンを設けた。こうして、ハニカム型流体浄化装置XIIIを得た。
(Example 13)
Referring to FIG. 11, honeycomb openings 1k and 1k ′ on both sides of titanium oxide-supporting honeycomb-like activated carbon E (photocatalyst-supporting porous body 1) having a width W 1 of 100 mm, a width W 2 of 100 mm, and a length L of 30 mm. And an SMD having a peak emission wavelength of 375 nm and a forward voltage of 3.2 V (standard) of 20 mA as a point light source (light source 5) on a fixed frame 74 having a width W 1 of 100 mm and a width W 2 of 100 mm. Nitride NS375L-7SFF) 16 pitches P L and P W were arranged at 25 mm. Here, the distance H H between the honeycomb opening surfaces 1k and 1k ′ and the point light source (light source 5) was 10 mm. A white acrylic resin plate was used for the fixed frame 74. Further, a blower fan for flowing air from one honeycomb opening surface 1k to the other honeycomb opening surface 1k ′ was provided. Thus, a honeycomb type fluid purification device XIII was obtained.

アンモニア濃度が100ppmの空気で満たされた1m3の気密ボックス内に、送風ファンにより内部流量が0.5m3/minに調節された上記ハニカム型流体浄化装置XIIIを入れて、10分毎に、検知管(ガステック社製3LAおよび3L)を用いて、気密ボックス内のアンモニア濃度を測定した。結果を表6にまとめた。In the airtight box of 1 m 3 filled with air with an ammonia concentration of 100 ppm, the honeycomb type fluid purification device XIII whose internal flow rate was adjusted to 0.5 m 3 / min by a blower fan was put, and every 10 minutes, The ammonia concentration in the hermetic box was measured using detector tubes (3LA and 3L manufactured by Gastec). The results are summarized in Table 6.

(実施例14)
図11を参照して、幅W1が100mm、幅W2が100mmおよび長さLが30mmの硫黄ドープ酸化チタン担持ハニカム状活性炭F(光触媒担持多孔質体1)の両側のハニカム開口面1k,1k’のそれぞれに対向させて、幅W1が100mmおよび幅W2が100mmの固定枠74上に点光源(光源5)として400nm〜700nmの間に発光ピーク波長を有する順電圧3.2V(標準)で20mAのSMD(日亜化学工業社製NSSW100D)16個をピッチPL,PWが25mmで配置した。ここで、ハニカム開口面1k,1k’と点光源(光源5)との距離HHは10mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、一方のハニカム開口面1kから他方のハニカム開口面1k’に空気を流すための送風ファンを設けた。こうして、ハニカム型流体浄化装置XIVを得た。このハニカム型流体浄化装置XIVを用いて、実施例13と同様の条件で、気密ボックス内のアンモニア濃度を測定した。結果を表6にまとめた。
(Example 14)
Referring to FIG. 11, both sides of the honeycomb opening surface 1k of the width W 1 is 100mm, the width W 2 is 100mm and the length L of 30mm sulfur-doped titanium oxide supporting honeycomb activated carbon F (photocatalyst supported porous body 1), A forward voltage of 3.2 V having a light emission peak wavelength between 400 nm and 700 nm as a point light source (light source 5) on a fixed frame 74 having a width W 1 of 100 mm and a width W 2 of 100 mm facing each of 1 k ′. 16 standard 20mA SMDs (NSSW100D manufactured by Nichia Corporation) were arranged at pitches P L and P W of 25 mm. Here, the distance H H between the honeycomb opening surfaces 1k and 1k ′ and the point light source (light source 5) was 10 mm. A white acrylic resin plate was used for the fixed frame 74. Further, a blower fan for flowing air from one honeycomb opening surface 1k to the other honeycomb opening surface 1k ′ was provided. Thus, a honeycomb type fluid purification device XIV was obtained. Using this honeycomb type fluid purification device XIV, the ammonia concentration in the airtight box was measured under the same conditions as in Example 13. The results are summarized in Table 6.

(実施例15)
図12を参照して、幅W1が100mm、幅W2が100mmおよび長さLが30mmの酸化チタン担持ハニカム状活性炭E(光触媒担持多孔質体1)の両側のハニカム開口面1k,1k’のそれぞれに対向させて、幅W1が100mmおよび幅W2が100mmの固定枠74の中央線上に線光源(光源5)として発光ピーク波長が360nmで4Wのブラックライト(東芝社製FL4BLB)を配置した。ここで、ハニカム開口面1k,1k’と線光源(光源5)との距離HHは100mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、一方のハニカム開口面1kから他方のハニカム開口面1k’に空気を流すための送風ファンを設けた。こうして、ハニカム型流体浄化装置XVを得た。このハニカム型流体浄化装置XVを用いて、実施例13と同様の条件で、気密ボックス内のアンモニア濃度を測定した。結果を表6にまとめた。
(Example 15)
Referring to FIG. 12, honeycomb openings 1k and 1k ′ on both sides of titanium oxide-supporting honeycomb-like activated carbon E (photocatalyst-supporting porous body 1) having a width W 1 of 100 mm, a width W 2 of 100 mm, and a length L of 30 mm. A black light (FL4BLB manufactured by Toshiba Corp.) with a light emission peak wavelength of 360 nm as a line light source (light source 5) on the center line of the fixed frame 74 having a width W 1 of 100 mm and a width W 2 of 100 mm. Arranged. Here, the distance H H between the honeycomb opening surfaces 1k and 1k ′ and the line light source (light source 5) was 100 mm. A white acrylic resin plate was used for the fixed frame 74. Further, a blower fan for flowing air from one honeycomb opening surface 1k to the other honeycomb opening surface 1k ′ was provided. Thus, a honeycomb type fluid purification device XV was obtained. Using this honeycomb type fluid purification device XV, the ammonia concentration in the airtight box was measured under the same conditions as in Example 13. The results are summarized in Table 6.

(実施例16)
図12を参照して、幅W1が100mm、幅W2が100mmおよび長さLが30mmの硫黄ドープ酸化チタン担持ハニカム状活性炭F(光触媒担持多孔質体1)の両側のハニカム開口面1k,1k’のそれぞれに対向させて、幅W1が100mmおよび幅W2が100mmの固定枠74の中央線上に線光源(光源5)として400nm〜700nmの間に発光ピーク波長を有する4Wの直管蛍光灯(NEC社製FL4W)を配置した。ここで、ハニカム開口面1k,1k’と線光源(光源5)との距離HHは100mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、一方のハニカム開口面1kから他方のハニカム開口面1k’に空気を流すための送風ファンを設けた。こうして、ハニカム型流体浄化装置XVIを得た。このハニカム型流体浄化装置XVIを用いて、実施例13と同様の条件で、気密ボックス内のアンモニア濃度を測定した。結果を表6にまとめた。
(Example 16)
Referring to FIG. 12, honeycomb openings 1k on both sides of sulfur-doped titanium oxide-supported honeycomb-like activated carbon F (photocatalyst-supporting porous body 1) having a width W 1 of 100 mm, a width W 2 of 100 mm, and a length L of 30 mm. A 4 W straight tube having an emission peak wavelength between 400 nm and 700 nm as a linear light source (light source 5) on the center line of the fixed frame 74 having a width W 1 of 100 mm and a width W 2 of 100 mm, facing each of 1 k ′. A fluorescent lamp (FL4W manufactured by NEC) was disposed. Here, the distance H H between the honeycomb opening surfaces 1k and 1k ′ and the line light source (light source 5) was 100 mm. A white acrylic resin plate was used for the fixed frame 74. Further, a blower fan for flowing air from one honeycomb opening surface 1k to the other honeycomb opening surface 1k ′ was provided. Thus, a honeycomb type fluid purification device XVI was obtained. Using this honeycomb type fluid purification device XVI, the ammonia concentration in the airtight box was measured under the same conditions as in Example 13. The results are summarized in Table 6.

(実施例17)
図13を参照して、幅W1が100mm、幅W2が100mmおよび長さLが30mmの酸化チタン担持ハニカム状活性炭E(光触媒担持多孔質体1)の両側のハニカム開口面1k,1k’のそれぞれに対向させて、固定枠74上に面光源(光源5)を配置した。この面光源(光源5)は、等間隔に配置された6個のSMD(ナイトライド社製NS375L−7SFF)を含む元光源4と紫外光用の導光板7(ナノクリエイト社製)とを含む。ここで、ハニカム開口面1k,1k’と面光源(光源5)の導光板7の主面7mとの距離HHは25mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、一方のハニカム開口面1kから他方のハニカム開口面1k’に空気を流すための送風ファンを設けた。こうして、ハニカム型流体浄化装置XVIIを得た。このハニカム型流体浄化装置XVIIを用いて、実施例13と同様の条件で、気密ボックス内のアンモニア濃度を測定した。結果を表6にまとめた。
(Example 17)
Referring to FIG. 13, honeycomb openings 1k and 1k ′ on both sides of titanium oxide-supporting honeycomb-like activated carbon E (photocatalyst-supporting porous body 1) having a width W 1 of 100 mm, a width W 2 of 100 mm, and a length L of 30 mm. A surface light source (light source 5) was disposed on the fixed frame 74 so as to face each of the two. This surface light source (light source 5) includes an original light source 4 including six SMDs (NS375L-7SFF manufactured by Nitride Co., Ltd.) and UV light guide plates 7 (manufactured by NanoCreate Co., Ltd.) arranged at equal intervals. . Here, the distance H H between the honeycomb opening surfaces 1k and 1k ′ and the main surface 7m of the light guide plate 7 of the surface light source (light source 5) was 25 mm. A white acrylic resin plate was used for the fixed frame 74. Further, a blower fan for flowing air from one honeycomb opening surface 1k to the other honeycomb opening surface 1k ′ was provided. Thus, a honeycomb type fluid purification device XVII was obtained. Using this honeycomb type fluid purification device XVII, the ammonia concentration in the airtight box was measured under the same conditions as in Example 13. The results are summarized in Table 6.

(実施例18)
図13を参照して、幅W1が100mm、幅W2が100mmおよび長さLが30mmの硫黄ドープ酸化チタン担持ハニカム状活性炭F(光触媒担持多孔質体1)の両側のハニカム開口面1k,1k’のそれぞれに対向させて、固定枠74上に面光源(光源5)を配置した。この面光源(光源5)は、等間隔に配置された6個のSMD(日亜化学工業社製NSSW100D)を含む元光源4と可視光用の導光板7(ナノクリエイト社製)とを含む。ここで、ハニカム開口面1k,1k’と面光源(光源5)の導光板7の主面7mとの距離HHは25mmであった。また、固定枠74には白色のアクリル樹脂板を用いた。また、一方のハニカム開口面1kから他方のハニカム開口面1k’に空気を流すための送風ファンを設けた。こうして、ハニカム型流体浄化装置XVIIIを得た。このハニカム型流体浄化装置XVIIIを用いて、実施例13と同様の条件で、気密ボックス内のアンモニア濃度を測定した。結果を表6にまとめた。
(Example 18)
Referring to FIG. 13, honeycomb openings 1k on both sides of a sulfur-doped titanium oxide-supported honeycomb activated carbon F (photocatalyst-supported porous body 1) having a width W 1 of 100 mm, a width W 2 of 100 mm, and a length L of 30 mm. A surface light source (light source 5) was arranged on the fixed frame 74 so as to face each of 1k ′. The surface light source (light source 5) includes an original light source 4 including six SMDs (NSSW100D manufactured by Nichia Corporation) arranged at equal intervals, and a light guide plate 7 for visible light (manufactured by Nanocreate). . Here, the distance H H between the honeycomb opening surfaces 1k and 1k ′ and the main surface 7m of the light guide plate 7 of the surface light source (light source 5) was 25 mm. A white acrylic resin plate was used for the fixed frame 74. Further, a blower fan for flowing air from one honeycomb opening surface 1k to the other honeycomb opening surface 1k ′ was provided. Thus, a honeycomb type fluid purification device XVIII was obtained. Using this honeycomb type fluid purification device XVIII, the ammonia concentration in the airtight box was measured under the same conditions as in Example 13. The results are summarized in Table 6.

(実施例19)
図14を参照して、幅W1が100mm、幅W2が100mmおよび長さLが30mmの酸化チタン担持ハニカム状活性炭E(光触媒担持多孔質体1)のハニカム開口面1k’上に、面光源(光源5)を配置した。この面光源(光源5)は、通風性基体中に等間隔に配置された9個のSMD(ナイトライド社製NS375L−7SFF)を含む元光源4と光拡散材8とを含む。ここで、光拡散材8として、幅W1が100mm、幅W2が100mmおよび厚さTLが25mmの空隙率が70体積%のステンレス繊維シートを用いた。また、酸化チタン担持ハニカム状活性炭Eのハニカム開口面1kから面光源(光源5)の光拡散材8および元光源4の主面に空気を流すための送風ファンを設けた。こうして、ハニカム型流体浄化装置XIXを得た。このシート型流体浄化装置XIXを用いて、実施例13と同様の条件で、気密ボックス内のアンモニア濃度を測定した。結果を表6にまとめた。
(Example 19)
Referring to FIG. 14, on the honeycomb opening surface 1k ′ of titanium oxide-supported honeycomb-like activated carbon E (photocatalyst-supporting porous body 1) having a width W 1 of 100 mm, a width W 2 of 100 mm, and a length L of 30 mm, A light source (light source 5) was arranged. This surface light source (light source 5) includes an original light source 4 including nine SMDs (NS375L-7SFF manufactured by Nitride Co., Ltd.) and light diffusing material 8 arranged at equal intervals in the air-permeable base. Here, as the light diffusing material 8, a stainless fiber sheet having a width W 1 of 100 mm, a width W 2 of 100 mm, and a thickness T L of 25 mm and a porosity of 70% by volume was used. Further, a blower fan for flowing air from the honeycomb opening surface 1 k of the titanium oxide-supporting honeycomb-like activated carbon E to the light diffusing material 8 of the surface light source (light source 5) and the main surface of the original light source 4 was provided. Thus, a honeycomb type fluid purification device XIX was obtained. Using this sheet type fluid purification device XIX, the ammonia concentration in the airtight box was measured under the same conditions as in Example 13. The results are summarized in Table 6.

(実施例20)
図15を参照して、幅W1が100mm、幅W2が100mmおよび長さLが30mmの硫黄ドープ酸化チタン担持ハニカム状活性炭F(光触媒担持多孔質体1)のハニカム開口面1k’上に、面光源(光源5)を配置した。この面光源(光源5)は、通風性基体中に等間隔に配置された2個の直管蛍光灯(NEC社製FL4W)を含む元光源4と光拡散材8とを含む。ここで、光拡散材8として、幅W1が100mm、幅W2が100mmおよび厚さTLが25mmのステンレス繊維シートを用いた。また、硫黄ドープ酸化チタン担持ハニカム状活性炭Fのハニカム開口面1kから面光源(光源5)の光拡散材8および元光源4の主面への方向に空気を流すための送風ファンを設けた。こうして、ハニカム型流体浄化装置XXを得た。このシート型流体浄化装置XXを用いて、実施例13と同様の条件で、気密ボックス内のアンモニア濃度を測定した。結果を表6にまとめた。
(Example 20)
Referring to FIG. 15, on the honeycomb opening surface 1k ′ of sulfur-doped titanium oxide-supported honeycomb-like activated carbon F (photocatalyst-supporting porous body 1) having a width W 1 of 100 mm, a width W 2 of 100 mm, and a length L of 30 mm. A surface light source (light source 5) was disposed. This surface light source (light source 5) includes an original light source 4 including two straight tube fluorescent lamps (FL4W manufactured by NEC) and a light diffusing material 8 arranged at equal intervals in a ventilation base. Here, as the light diffusing material 8, a stainless fiber sheet having a width W 1 of 100 mm, a width W 2 of 100 mm, and a thickness T L of 25 mm was used. Further, a blower fan for flowing air in the direction from the honeycomb opening surface 1k of the sulfur-doped titanium oxide-supported honeycomb activated carbon F to the light diffusing material 8 of the surface light source (light source 5) and the main surface of the original light source 4 was provided. Thus, a honeycomb type fluid purification device XX was obtained. Using this sheet type fluid purification device XX, the ammonia concentration in the airtight box was measured under the same conditions as in Example 13. The results are summarized in Table 6.

Figure 2008105295
Figure 2008105295

上記表6の結果における経過時間と気密ボックス内のアルデヒド濃度との関係を図31にプロットした。表6および図31から明らかなように、実施例13〜実施例20のいずれのハニカム型流体浄化装置においても、高い流体浄化性能が得られた。   The relationship between the elapsed time and the aldehyde concentration in the airtight box in the results of Table 6 is plotted in FIG. As can be seen from Table 6 and FIG. 31, in any of the honeycomb type fluid purification devices of Examples 13 to 20, high fluid purification performance was obtained.

[酸化チタン担持粒状活性炭G(光触媒担持多孔質体)の作製]
2次粒子の粒径が50nm〜100nmの水酸化チタン(Ti(OH)4・2H2O)微粉末10.13kgと2次粒子の粒径が50nm〜100nmの酸化チタン(TiO2)微粉末5.32kgに2−プロパノール(イソプロピルアルコール)16.02gの割合でよく攪拌して混合し、水酸化チタン・酸化チタン混合スラリーを作製した。その水酸化チタン・酸化チタン混合スラリー9.86kgを、平均粒径が5mmの粒状活性炭(日本エンバイロケミカル社製白鷺4−6)20kgに含浸させた。これに30℃の温度下で過酸化水素水(35質量%)を加えると、自己発熱反応が起こった。反応後、乾燥機内で、200℃で1時間乾燥させると、酸化チタン担持粒状活性炭Gが得られた。この酸化チタン担持粒状活性炭Gは、以下の実施例21、23、25および27においてきわめて高い有害物質除去性能を有することから、多孔質状の酸化チタンが粒状活性炭の少なくとも孔の入口部分に担持されているものと考えられる。
[Production of Titanium Oxide-Supported Granular Activated Carbon G (Photocatalyst-Supported Porous Material)]
10.13 kg of titanium hydroxide (Ti (OH) 4 .2H 2 O) fine powder having a secondary particle diameter of 50 nm to 100 nm and titanium oxide (TiO 2 ) fine powder having a secondary particle diameter of 50 nm to 100 nm 5.32 kg of 2-propanol (isopropyl alcohol) at a ratio of 16.02 g was thoroughly stirred and mixed to prepare a titanium hydroxide / titanium oxide mixed slurry. 9.86 kg of the titanium hydroxide / titanium oxide mixed slurry was impregnated with 20 kg of granular activated carbon (Shirakaba 4-6, manufactured by Nippon Environmental Chemical Co., Ltd.) having an average particle diameter of 5 mm. When hydrogen peroxide solution (35% by mass) was added to this at a temperature of 30 ° C., a self-exothermic reaction occurred. After the reaction, when dried in a dryer at 200 ° C. for 1 hour, titanium oxide-supported granular activated carbon G was obtained. Since this titanium oxide-supporting granular activated carbon G has extremely high harmful substance removal performance in the following Examples 21, 23, 25 and 27, porous titanium oxide is supported on at least the inlet portion of the granular activated carbon. It is thought that.

[硫黄ドープ酸化チタン担持粒状活性炭H(光触媒担持多孔質体)の作製]
2次粒子の粒径が50nm〜100nmの水酸化チタン(Ti(OH)4・2H2O)微粉末10.13kgと2次粒子の粒径が50nm〜100nmの酸化チタン(TiO2)微粉末5.32kgとチオ尿素微粉末1.01kgに2−プロパノール(イソプロピルアルコール)16.02kgの割合でよく攪拌して混合し、硫黄添加水酸化チタン・酸化チタン混合スラリーを作製した。その硫黄添加水酸化チタン・酸化チタン混合スラリー9.86kgを、平均粒径が5mmの粒状活性炭(日本エンバイロケミカル社製白鷺4−6)20kgに含浸させた。これに30℃の温度下で過酸化水素水(35質量%)を加えると、自己発熱反応が起こった。反応後、乾燥機内で、200℃で1時間乾燥させると、硫黄ドープ酸化チタン担持粒状活性炭Hが得られた。この硫黄ドープ酸化チタン担持粒状活性炭Hは、以下の実施例22、24、26および28においてきわめて高い有害物質除去性能を有することから、多孔質状の硫黄ドープ酸化チタンが粒状活性炭の少なくとも孔の入口部分に担持されているものと考えられる。
[Preparation of sulfur-doped titanium oxide-supported granular activated carbon H (photocatalyst-supported porous body)]
10.13 kg of titanium hydroxide (Ti (OH) 4 .2H 2 O) fine powder having a secondary particle diameter of 50 nm to 100 nm and titanium oxide (TiO 2 ) fine powder having a secondary particle diameter of 50 nm to 100 nm 5.32 kg and 1.01 kg of thiourea fine powder were mixed well with stirring at a ratio of 16.02 kg of 2-propanol (isopropyl alcohol) to prepare a sulfur-added titanium hydroxide / titanium oxide mixed slurry. 9.86 kg of the sulfur-added titanium hydroxide / titanium oxide mixed slurry was impregnated with 20 kg of granular activated carbon (Shirakaba 4-6 manufactured by Nippon Enviro Chemical Co., Ltd.) having an average particle diameter of 5 mm. When hydrogen peroxide solution (35% by mass) was added to this at a temperature of 30 ° C., a self-exothermic reaction occurred. After reaction, when dried at 200 ° C. for 1 hour in a dryer, sulfur-doped titanium oxide-supported granular activated carbon H was obtained. Since this sulfur-doped titanium oxide-supported granular activated carbon H has extremely high harmful substance removal performance in the following Examples 22, 24, 26 and 28, the porous sulfur-doped titanium oxide is at least the entrance of the pores of the granular activated carbon. It is thought that it is carried on the part.

(実施例21)
図19を参照して、幅W1が250mm、幅W2が250mmおよび長さL0が300mmの容器50に、その容器50の長さL0方向および幅W2方向で形成される面に平行に41.7mmのピッチPW1で6枚の幅W1が250mmおよび幅W2が250mmの光源固定板76を配置した。この光源固定板76の両主面上には、点光源(光源5)として発光ピーク波長が375nmで順電圧3.2V(標準)で20mAのSMD(ナイトライド社製NS375L−7SFF)36個が41.7mmのピッチで配置されていた。この光源固定板76が配置された容器50に、5kgの酸化チタン担持粒状活性炭G(光触媒担持多孔質体1)を入れた。このとき、酸化チタン担持粒状活性炭1は、幅W1が250mm、幅W2が250mmおよび長さLが250mmの空間内に充填されていた。ここで、充填された酸化チタン担持粒状活性炭1を保持する容器50の上板54uおよび下板54dは、いずれも開口部を有する。こうして、粒状型流体浄化装置XXIを得た。この粒状型流体浄化装置XXIを上下方向に3段重ねて、各粒状型流体浄化装置XXIの下板54dから上板54uへの方向に空気を流すための送風ファンを設けた。こうして、粒状型流体浄化装置XXI−IIIを得た。
(Example 21)
Referring to FIG. 19, a container 50 having a width W 1 of 250 mm, a width W 2 of 250 mm, and a length L 0 of 300 mm is formed on a surface formed in the length L 0 direction and the width W 2 direction of the container 50. In parallel, six light source fixing plates 76 having a pitch P W1 of 41.7 mm and a width W 1 of 250 mm and a width W 2 of 250 mm were arranged. On both main surfaces of the light source fixing plate 76, 36 SMDs (NS375L-7SFF manufactured by Nitride) having a light emission peak wavelength of 375 nm, a forward voltage of 3.2 V (standard), and 20 mA as point light sources (light sources 5) are provided. It was arranged at a pitch of 41.7 mm. 5 kg of titanium oxide-supported granular activated carbon G (photocatalyst-supported porous body 1) was placed in the container 50 in which the light source fixing plate 76 was disposed. At this time, the titanium oxide-supporting granular activated carbon 1 was filled in a space having a width W 1 of 250 mm, a width W 2 of 250 mm, and a length L of 250 mm. Here, both the upper plate 54u and the lower plate 54d of the container 50 holding the filled titanium oxide-supporting granular activated carbon 1 have openings. Thus, a granular fluid purification device XXI was obtained. The granular fluid purification devices XXI are stacked in three stages in the vertical direction, and a blower fan is provided for flowing air in the direction from the lower plate 54d to the upper plate 54u of each granular fluid purification device XXI. In this way, the granular fluid purification apparatus XXI-III was obtained.

トルエン濃度が100ppmの空気で満たされた1m3の気密ボックス内に、送風ファンにより内部流量が1.0m3/minに調節された上記粒状型流体浄化装置XXI−IIIを入れて、3時間毎に、検知管(ガステック社製122L)を用いて、第1段および第2段の流体浄化装置の出口におけるトルエン濃度を測定した。結果を表7にまとめた。The granular fluid purification device XXI-III, whose internal flow rate is adjusted to 1.0 m 3 / min by a blower fan, is placed in a 1 m 3 hermetic box filled with air with a toluene concentration of 100 ppm. Every 3 hours The toluene concentration at the outlet of the first and second stage fluid purification devices was measured using a detector tube (122 L manufactured by Gastec). The results are summarized in Table 7.

(実施例22)
図19を参照して、点光源(光源5)として400nm〜700nmの間に発光ピーク波長を有する順電圧3.2V(標準)で20mAのSMD(日亜化学工業社製NSSW100D)を用いたこと、光触媒担持多孔質体1として硫黄ドープ酸化チタン担持粒状活性炭Hを用いたこと以外は、実施例21と同様にして、粒状型流体浄化装置XXII−IIIを得た。この粒状型流体浄化装置XXII−IIIを用いて、実施例21と同様の条件で、第1段および第2段の流体浄化装置の出口におけるトルエン濃度を測定した。結果を表7にまとめた。
(Example 22)
Referring to FIG. 19, a 20 mA SMD (NSSW100D manufactured by Nichia Corporation) having a forward voltage of 3.2 V (standard) having an emission peak wavelength between 400 nm and 700 nm was used as a point light source (light source 5). A granular fluid purification apparatus XXII-III was obtained in the same manner as in Example 21 except that the sulfur-doped titanium oxide-supporting granular activated carbon H was used as the photocatalyst-supporting porous body 1. Using this granular fluid purification device XXII-III, the toluene concentration at the outlets of the first and second stage fluid purification devices was measured under the same conditions as in Example 21. The results are summarized in Table 7.

(実施例23)
図20を参照して、幅W1が250mm、幅W2が250mmおよび長さL0が300mmの容器50に、線光源(光源5)として、発光ピーク波長が360nmで4Wのブラックライト(東芝社製FL4BLB)16本を、容器50の長さL0方向平行に、62.5mmのピッチPW1,PW2で、配置した。この線光源が配置された容器50に、5kgの酸化チタン担持粒状活性炭G(光触媒担持多孔質体1)を入れた。このとき、酸化チタン担持粒状活性炭Gは、幅W1が250mm、幅W2が250mmおよび長さLが250mmの空間内に充填されていた。ここで、充填された酸化チタン担持粒状活性炭を保持する容器50の上板54uおよび下板54dは、いずれも開口部を有する。こうして、粒状型流体浄化装置XXIIIを得た。この粒状型流体浄化装置XXIIIを上下方向に3段重ねて、各粒状型流体浄化装置XXIIIの下板54dから上板54uへの方向に空気を流すための送風ファンを設けた。こうして、粒状型流体浄化装置XXIII−IIIを得た。この粒状型流体浄化装置XXIII−IIIを用いて、実施例21と同様の条件で、第1段および第2段の流体浄化装置の出口におけるトルエン濃度を測定した。結果を表7にまとめた。
(Example 23)
Referring to FIG. 20, a container 50 having a width W 1 of 250 mm, a width W 2 of 250 mm, and a length L 0 of 300 mm is used as a linear light source (light source 5). 16 FL4BLB manufactured by the company were arranged in parallel with the length L 0 of the container 50 at a pitch P W1 and P W2 of 62.5 mm. 5 kg of titanium oxide-supported granular activated carbon G (photocatalyst-supported porous body 1) was placed in a container 50 in which the line light source was disposed. At this time, the granular activated carbon G carrying titanium oxide was filled in a space having a width W 1 of 250 mm, a width W 2 of 250 mm, and a length L of 250 mm. Here, both the upper plate 54u and the lower plate 54d of the container 50 holding the filled titanium oxide-supporting granular activated carbon have openings. Thus, a granular fluid purification apparatus XXIII was obtained. The granular fluid purification devices XXIII are stacked in three stages in the vertical direction, and a blower fan is provided to flow air in the direction from the lower plate 54d to the upper plate 54u of each granular fluid purification device XXIII. Thus, a granular fluid purification apparatus XXIII-III was obtained. Using this granular fluid purification device XXIII-III, the toluene concentration at the outlet of the first and second stage fluid purification devices was measured under the same conditions as in Example 21. The results are summarized in Table 7.

(実施例24)
図20を参照して、線光源(光源5)として400nm〜700nmの間に発光ピーク波長を有する4Wの直管蛍光灯(NEC社製FL4W)を用いたこと、光触媒担持多孔質体1として硫黄ドープ酸化チタン担持粒状活性炭Hを用いたこと以外は、実施例23と同様にして、粒状型流体浄化装置XXIV−IIIを得た。この粒状型流体浄化装置XXIV−IIIを用いて、実施例21と同様の条件で、第1段および第2段の流体浄化装置の出口におけるトルエン濃度を測定した。結果を表7にまとめた。
(Example 24)
Referring to FIG. 20, a 4 W straight tube fluorescent lamp (FL4W manufactured by NEC) having an emission peak wavelength between 400 nm and 700 nm was used as a linear light source (light source 5), and sulfur was used as a photocatalyst-supporting porous body 1. A granular fluid purification apparatus XXIV-III was obtained in the same manner as in Example 23 except that the doped titanium oxide-supported granular activated carbon H was used. Using this granular fluid purification device XXIV-III, the toluene concentration at the outlets of the first and second stage fluid purification devices was measured under the same conditions as in Example 21. The results are summarized in Table 7.

(実施例25)
図21を参照して、幅W1が250mm、幅W2が250mmおよび長さL0が300mmの容器50に、その容器50の長さL0方向および幅W2方向で形成される面に平行に41.7mmのピッチPW1で6対の面光源(光源5)を配置した。ここで、1対の面光源(光源5)は、アルミニウム箔(東洋アルミニウム社製)(反射板9)の両主面に配置された1対の紫外光用の導光板7(ナノクリエイト社製)と等間隔に配置された15個のSMD(ナイトライド社製NS375L−7SFF)を含む元光源4とを含む。面光源(光源5)における元光源4の位置は、特に制限はないが、導光板7の側面であって、容器50内に充填される酸化チタン担持粒状活性炭G(光触媒担持多孔質体1)の外側に配置されることが、メンテナンスが容易な観点から、好ましい。この面光源(光源5)が配置された容器50に、5kgの酸化チタン担持粒状活性炭Gを入れた。このとき、酸化チタン担持粒状活性炭Gは、幅W1が250mm、幅W2が250mmおよび長さLが250mmの空間内に充填されていた。ここで、充填された酸化チタン担持粒状活性炭1を保持する容器50の上板54uおよび下板54dは、いずれも開口部を有する。こうして、粒状型流体浄化装置XXVを得た。この粒状型流体浄化装置XXVを上下方向に3段重ねて、各粒状型流体浄化装置XXVの下板54dから上板54uへの方向に空気を流すための送風ファンを設けた。こうして、粒状型流体浄化装置XXV−IIIを得た。この粒状型流体浄化装置XXV−IIIを用いて、実施例21と同様の条件で、第1段および第2段の流体浄化装置の出口におけるトルエン濃度を測定した。結果を表7にまとめた。
(Example 25)
Referring to FIG. 21, a container 50 having a width W 1 of 250 mm, a width W 2 of 250 mm, and a length L 0 of 300 mm is formed on a surface formed in the length L 0 direction and the width W 2 direction of the container 50. Six pairs of surface light sources (light sources 5) were arranged in parallel with a pitch P W1 of 41.7 mm. Here, the pair of surface light sources (light source 5) is a pair of light guide plates 7 for ultraviolet light (manufactured by Nanocreate) disposed on both main surfaces of an aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) (reflector 9). ) And the original light source 4 including 15 SMDs (NS375L-7SFF manufactured by Nitride) arranged at equal intervals. The position of the original light source 4 in the surface light source (light source 5) is not particularly limited, but is a side surface of the light guide plate 7 and is filled with the titanium oxide-supporting granular activated carbon G (the photocatalyst-supporting porous body 1). It is preferable from the viewpoint that maintenance is easy. 5 kg of titanium oxide-supporting granular activated carbon G was placed in a container 50 in which the surface light source (light source 5) was placed. At this time, the granular activated carbon G carrying titanium oxide was filled in a space having a width W 1 of 250 mm, a width W 2 of 250 mm, and a length L of 250 mm. Here, both the upper plate 54u and the lower plate 54d of the container 50 holding the filled titanium oxide-supporting granular activated carbon 1 have openings. Thus, a granular fluid purification apparatus XXV was obtained. The granular fluid purification devices XXV were stacked in three stages in the vertical direction, and a blower fan was provided to flow air in the direction from the lower plate 54d to the upper plate 54u of each granular fluid purification device XXV. Thus, a granular fluid purification apparatus XXV-III was obtained. Using this granular fluid purification device XXV-III, the toluene concentration at the outlets of the first and second stage fluid purification devices was measured under the same conditions as in Example 21. The results are summarized in Table 7.

(実施例26)
図26を参照して、1対の面光源(光源5)としてアルミニウム箔(東洋アルミニウム社製)(反射板9)の両主面に配置された1対の可視光用の導光板7(ナノクリエイト社製)と等間隔に配置された15個のSMD(日亜化学工業社製NSSW100D)を含む元光源4とを含むものを用いたこと、光触媒担持多孔質体1として硫黄ドープ酸化チタン担持粒状活性炭Hを用いたこと以外は、実施例25と同様にして、粒状型流体浄化装置XXVI−IIIを得た。この粒状型流体浄化装置XXVI−IIIを用いて、実施例21と同様の条件で、第1段および第2段の流体浄化装置の出口におけるトルエン濃度を測定した。結果を表7にまとめた。
(Example 26)
Referring to FIG. 26, a pair of visible light guide plates 7 (nano) arranged on both main surfaces of an aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) (reflecting plate 9) as a pair of surface light sources (light source 5). Used as a photocatalyst-supporting porous body 1, and a photocatalyst-supporting porous body 1. A granular fluid purification apparatus XXVI-III was obtained in the same manner as in Example 25 except that granular activated carbon H was used. Using this granular fluid purification device XXVI-III, the toluene concentration at the outlets of the first and second stage fluid purification devices was measured under the same conditions as in Example 21. The results are summarized in Table 7.

Figure 2008105295
Figure 2008105295

上記表7の結果における経過時間と第1段および第2段の粒状型流体浄化装置の出口におけるトルエン濃度との関係を図32にプロットした。表7および図31から明らかなように、実施例21〜実施例26のいずれの粒状型流体浄化装置においても、高い流体浄化性能が得られた。   The relationship between the elapsed time in the results of Table 7 above and the toluene concentration at the outlet of the first-stage and second-stage granular fluid purifiers is plotted in FIG. As is clear from Table 7 and FIG. 31, high fluid purification performance was obtained in any of the granular fluid purification devices of Examples 21 to 26.

(実施例27)
図22を参照して、幅W1が250mm、幅W2が250mmおよび長さLが100mmの容器50に、2kgの酸化チタン担持粒状活性炭G(光触媒担持多孔質体1)を充填した。ここで、充填された酸化チタン担持粒状活性炭Gを保持する容器50の上板および下板は、いずれも開口部を有する。この充填された酸化チタン担持粒状活性炭Gの上面1uおよび下面1d上に、それぞれ面光源(光源5)を配置した。この面光源(光源5)は、通風性基体中に等間隔に配置された6本の発光ピーク波長が360nmで6Wのブラックライト(東芝社製FL6BLB)を含む元光源4と光拡散材8とを含む。ここで、光拡散材8として、幅W1が250mm、幅W2が250mmおよび厚さTLが25mmの空隙率が70体積%のステンレス繊維シートを用いた。こうして、粒状型流体浄化装置XXVIIを得た。この粒状型流体浄化装置XXVIIを上下方向に3段重ねて、各粒状型流体浄化装置XXVの充填された酸化チタン担持粒状活性炭Gの下面1dに配置された面光源(光源5)の主面8n,8mから、充填された酸化チタン担持粒状活性炭Gの上面1uに配置された面光源(光源5)の主面8m,8nへの方向に、空気を流すための送風ファンを設けた。こうして、粒状型流体浄化装置XXVII−IIIを得た。
(Example 27)
Referring to FIG. 22, 2 kg of titanium oxide-supported granular activated carbon G (photocatalyst-supported porous body 1) was filled in a container 50 having a width W 1 of 250 mm, a width W 2 of 250 mm, and a length L of 100 mm. Here, both the upper plate and the lower plate of the container 50 holding the filled titanium oxide-supporting granular activated carbon G have openings. A surface light source (light source 5) was arranged on each of the upper surface 1u and the lower surface 1d of the filled titanium oxide-supporting granular activated carbon G. This surface light source (light source 5) is composed of an original light source 4 and a light diffusing material 8 including black light (FL6BLB manufactured by Toshiba) having six emission peak wavelengths of 360 nm and 6 W arranged at equal intervals in an air-permeable substrate. including. Here, as the light diffusing material 8, a stainless fiber sheet having a width W 1 of 250 mm, a width W 2 of 250 mm and a thickness T L of 25 mm and a porosity of 70% by volume was used. Thus, a granular fluid purification device XXVII was obtained. 8 n of main surfaces of the surface light source (light source 5) arranged on the lower surface 1d of the granular activated carbon G filled with titanium oxide filled with the granular fluid purifying devices XXVII in three stages in the vertical direction. , 8m to the main surfaces 8m, 8n of the surface light source (light source 5) disposed on the upper surface 1u of the filled titanium oxide-supporting granular activated carbon G was provided with a blower fan for flowing air. Thus, a granular fluid purification apparatus XXVII-III was obtained.

トルエン濃度が100ppmの空気で満たされた1m3の気密ボックス内に、送風ファンにより内部流速が0.5m3/minに調節された上記粒状型流体浄化装置XXVII−IIIを入れて、3時間毎に、検知管(ガステック社製122L)を用いて、第1段、第2段および第3段の流体浄化装置の出口におけるトルエン濃度を測定した。結果を表8にまとめた。The granular fluid purification apparatus XXVII-III, whose internal flow rate is adjusted to 0.5 m 3 / min by a blower fan, is placed in a 1 m 3 hermetic box filled with air with a toluene concentration of 100 ppm. Every 3 hours The toluene concentration at the outlet of the first, second and third stage fluid purification devices was measured using a detector tube (122 L manufactured by Gastec). The results are summarized in Table 8.

(実施例28)
図22を参照して、面光源(光源5)の元光源4に含まれる線光源として等間隔に配置された6本の400nm〜700nmの間に発光ピーク波長を有する6Wの直管蛍光灯(NEC社製FL6W)を用いたこと、光触媒担持多孔質体1として硫黄ドープ酸化チタン担持粒状活性炭Hを用いたこと以外は、実施例27と同様にして、粒状型流体浄化装置XXVIII−IIIを得た。この粒状型流体浄化装置XXVIII−IIIを用いて、実施例27と同様の条件で、第1段、第2段および第3段の流体浄化装置の出口におけるトルエン濃度を測定した。結果を表8にまとめた。
(Example 28)
Referring to FIG. 22, 6 W straight tube fluorescent lamps having emission peak wavelengths between six 400 nm to 700 nm arranged at equal intervals as line light sources included in the original light source 4 of the surface light source (light source 5). A granular type fluid purification device XXVIII-III is obtained in the same manner as in Example 27 except that FL6W manufactured by NEC Corporation is used and that the sulfur-doped titanium oxide-supported granular activated carbon H is used as the photocatalyst-supporting porous body 1. It was. Using this granular fluid purification device XXVIII-III, the toluene concentration at the outlet of the first, second, and third-stage fluid purification devices was measured under the same conditions as in Example 27. The results are summarized in Table 8.

Figure 2008105295
Figure 2008105295

上記表8の結果における経過時間と第1段、第2段および第3段の粒状型流体浄化装置の出口におけるトルエン濃度との関係を図33にプロットした。表7および図31から明らかなように、実施例27および28のいずれの粒状型流体浄化装置においても、高い流体浄化性能が得られた。   The relationship between the elapsed time in the results of Table 8 above and the toluene concentration at the outlet of the first-stage, second-stage and third-stage granular fluid purifiers is plotted in FIG. As apparent from Table 7 and FIG. 31, in any of the granular fluid purification devices of Examples 27 and 28, high fluid purification performance was obtained.

なお、実施例27および実施例28の3段の粒状型流体浄化装置において、各段の粒状型流体浄化装置の間に挟まれた2つの面光源は、1つの面光源にまとめて用いることもできることはいうまでもない。   In the three-stage granular fluid purification device of Example 27 and Example 28, the two surface light sources sandwiched between the granular fluid purification devices of each stage may be used together as one surface light source. Needless to say, it can be done.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (18)

多孔質状の光触媒物質(11)が多孔質体(10)の少なくとも孔の入口部分(10e)に担持されている1つ以上の光触媒担持多孔質体(1)と、前記光触媒物質(11)を活性化させる光を発する1つ以上の光源(5)を含む流体浄化装置。   One or more photocatalyst-supporting porous bodies (1) in which a porous photocatalytic substance (11) is supported on at least an inlet portion (10e) of the porous body (10), and the photocatalytic substance (11) A fluid purification device comprising one or more light sources (5) that emit light that activates. 前記光触媒担持多孔質体(1)は、粉末状、粒状、ハニカム状およびブラシ状のいずれかの形状を有する請求の範囲第1項に記載の流体浄化装置。   The fluid purification device according to claim 1, wherein the photocatalyst-supporting porous body (1) has any one of a powder shape, a granular shape, a honeycomb shape, and a brush shape. 前記光触媒物質(11)は酸化チタンである請求の範囲第1項に記載の流体浄化装置。   The fluid purification device according to claim 1, wherein the photocatalytic substance (11) is titanium oxide. 前記光源(5)は発光ピーク波長が700nm以下の発光素子である請求の範囲第3項に記載の流体浄化装置。   The fluid purification device according to claim 3, wherein the light source (5) is a light emitting element having an emission peak wavelength of 700 nm or less. 前記光源(5)は、光透過性材料(6)により流体から隔離されている請求の範囲第1項に記載の流体浄化装置。   The fluid purification device according to claim 1, wherein the light source (5) is isolated from the fluid by a light transmissive material (6). 前記光源(5)は、点光源、線光源および面光源のいずれかを含む請求の範囲第1項に記載の流体浄化装置。   The fluid purification device according to claim 1, wherein the light source (5) includes any one of a point light source, a line light source, and a surface light source. 前記面光源は、元光源(4)と、導光板(7)および光拡散材(8)のいずれかと、を含み、
前記元光源(4)は、点光源および線光源のいずれかを含む請求の範囲第6項に記載の流体浄化装置。
The surface light source includes an original light source (4) and any one of a light guide plate (7) and a light diffusing material (8),
The fluid purification device according to claim 6, wherein the original light source (4) includes either a point light source or a line light source.
前記光触媒担持多孔質体(1)を点着するためのシート(71)をさらに含み、
前記光源は前記シート(71)上に点着された前記光触媒担持多孔質体(1)に対向して配置されている請求の範囲第1項から第7項までのいずれかに記載の流体浄化装置。
A sheet (71) for spotting the photocatalyst-supporting porous body (1);
The fluid purification according to any one of claims 1 to 7, wherein the light source is disposed to face the photocatalyst-supporting porous body (1) spotted on the sheet (71). apparatus.
前記光源(5)は面光源を含み、
前記光触媒多孔質体(1)が点着された前記シート(71)は、前記面光源の主面上に配置されている請求の範囲第8項に記載の流体浄化装置。
The light source (5) includes a surface light source,
The fluid purification device according to claim 8, wherein the sheet (71) on which the photocatalytic porous body (1) is spotted is disposed on a main surface of the surface light source.
流体が前記面光源の主面を貫通するように、前記面光源および前記光触媒担持多孔質体(1)が配置されている請求の範囲第9項に記載の流体浄化装置。   The fluid purification device according to claim 9, wherein the surface light source and the photocatalyst-supporting porous body (1) are arranged so that the fluid penetrates the main surface of the surface light source. 前記光触媒担持多孔質体(1)はハニカム状の形状を有し、
前記光源(5)は、前記光触媒担持多孔質体(1)のハニカム開口面(1k,1k’)に対向して配置されている請求の範囲第1項から第7項までのいずれかに記載の流体浄化装置。
The photocatalyst-supporting porous body (1) has a honeycomb shape,
The said light source (5) is arrange | positioned facing the honeycomb opening surface (1k, 1k ') of the said photocatalyst carrying | support porous body (1), The range in any one of Claim 1-7 Fluid purification device.
前記光源(5)は面光源を含み、
流体が前記面光源の主面を貫通するように、前記面光源および前記光触媒担持多孔質体(1)が配置されている請求の範囲第11項に記載の流体浄化装置。
The light source (5) includes a surface light source,
The fluid purification device according to claim 11, wherein the surface light source and the photocatalyst-supporting porous body (1) are arranged so that a fluid penetrates a main surface of the surface light source.
前記光触媒担持多孔質体(1)はブラシ状の形状を有し、
前記光源(5)は、前記光触媒担時多孔質体(1)のブラシ毛部(1a)の側面に対向して配置されている請求の範囲第1項から第7項までのいずれかに記載の流体浄化装置。
The photocatalyst-supporting porous body (1) has a brush-like shape,
The said light source (5) is arrange | positioned facing the side surface of the brush bristle part (1a) of the said porous body (1) at the time of the said photocatalyst support, The range in any one of Claim 1-7 Fluid purification device.
前記光源(5)は面光源を含み、
流体が前記面光源の主面を貫通するように、前記面光源および前記光触媒担持多孔質体(1)が配置されている請求の範囲第13項に記載の流体浄化装置。
The light source (5) includes a surface light source,
The fluid purification device according to claim 13, wherein the surface light source and the photocatalyst-supporting porous body (1) are arranged so that the fluid penetrates the main surface of the surface light source.
前記光源(5)は複数の前記光触媒担持多孔質体(1)間に配置されている請求の範囲第1項から第7項までのいずれかに記載の流体浄化装置。   The fluid purification device according to any one of claims 1 to 7, wherein the light source (5) is disposed between the plurality of the photocatalyst-supporting porous bodies (1). 前記光源(5)は面光源を含み、
流体が前記面光源の主面を貫通するように、前記面光源および前記光触媒担持多孔質体(1)が配置されている請求の範囲第15項に記載の流体浄化装置。
The light source (5) includes a surface light source,
The fluid purification device according to claim 15, wherein the surface light source and the photocatalyst-supporting porous body (1) are arranged so that the fluid penetrates the main surface of the surface light source.
前記光源(5)は面光源を含み、
流体が前記面光源の主面を貫通するように、前記面光源および前記光触媒担持多孔質体(1)が配置されている請求の範囲第1項から第7項までのいずれかに記載の流体浄化装置。
The light source (5) includes a surface light source,
The fluid according to any one of claims 1 to 7, wherein the surface light source and the photocatalyst-supporting porous body (1) are arranged so that the fluid penetrates a main surface of the surface light source. Purification equipment.
前記流体は空気または水である請求の範囲第1項から第7項までのいずれかに記載の流体浄化装置。   The fluid purification device according to any one of claims 1 to 7, wherein the fluid is air or water.
JP2009501200A 2007-02-20 2008-02-20 Fluid purification device Withdrawn JPWO2008105295A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007039571 2007-02-20
JP2007039571 2007-02-20
PCT/JP2008/052876 WO2008105295A1 (en) 2007-02-20 2008-02-20 Fluid purifying apparatus

Publications (1)

Publication Number Publication Date
JPWO2008105295A1 true JPWO2008105295A1 (en) 2010-06-03

Family

ID=39721130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009501200A Withdrawn JPWO2008105295A1 (en) 2007-02-20 2008-02-20 Fluid purification device

Country Status (2)

Country Link
JP (1) JPWO2008105295A1 (en)
WO (1) WO2008105295A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374697B2 (en) * 2009-07-09 2013-12-25 ユーヴィックス株式会社 UV sterilization water purifier and UV LED unit used for it
JP5674436B2 (en) * 2010-11-29 2015-02-25 前澤工業株式会社 UV irradiation water treatment equipment
JP5264957B2 (en) * 2011-04-15 2013-08-14 シャープ株式会社 Water purification equipment
JP5961447B2 (en) * 2012-05-24 2016-08-02 シャープ株式会社 Water purification equipment
JP6009254B2 (en) * 2012-07-17 2016-10-19 シャープ株式会社 Photocatalyst, method for producing the same, and purification device
JP5812970B2 (en) * 2012-11-19 2015-11-17 株式会社トクヤマ Air purifier
EP3015166A4 (en) * 2013-06-26 2017-04-05 IHI Corporation Catalyst structure, reactor, and manufacturing method for catalyst structure
JP2015033669A (en) * 2013-08-08 2015-02-19 旭有機材工業株式会社 Uv sterilization apparatus
JP5837109B2 (en) * 2014-02-19 2015-12-24 シャープ株式会社 Gas decomposition filter unit and air purifier
JP6369383B2 (en) * 2015-04-23 2018-08-08 株式会社デンソー Chlorine dioxide generator
JP6406112B2 (en) * 2015-04-23 2018-10-17 株式会社デンソー Chlorine dioxide generator
JP6615893B2 (en) * 2015-07-30 2019-12-04 水ing株式会社 Ultraviolet irradiation device for water treatment using ultraviolet light emitting diode and water treatment method using ultraviolet irradiation
CN105396459B (en) 2015-12-18 2017-11-14 中国商用飞机有限责任公司 Photocatalyst cellular component and photocatalyst purification plant
JP6757060B2 (en) * 2016-04-18 2020-09-16 国立研究開発法人産業技術総合研究所 Visible light active titania-carbon particle composite and its manufacturing method
JP2017217647A (en) * 2016-06-02 2017-12-14 パナソニックIpマネジメント株式会社 Photocatalyst particle, method for decomposing organic compound contained in alkaline aqueous solution using the same, and method for converting toxic ion contained in alkaline aqueous liquid into non-toxic ion using the same
CN113336297A (en) * 2021-07-01 2021-09-03 山东建筑大学 Nano oxidation fixed bed reactor suitable for photo-assisted Fenton oxidation and use method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102155B2 (en) * 1988-02-29 1994-12-14 株式会社日立製作所 Deodorant, deodorant manufacturing method, deodorizing method, deodorizing device, and refrigeration cycle device equipped with this deodorizing device
JP2549691B2 (en) * 1988-03-02 1996-10-30 触媒化成工業株式会社 Method for producing titanium oxide coated body
JP2000317315A (en) * 1999-05-11 2000-11-21 Agency Of Ind Science & Technol Phototransmittable porous film containing dispersed photocatalyst
JP3848605B2 (en) * 2002-08-21 2006-11-22 パナホーム株式会社 Building material having environmental improvement function and method for manufacturing the same
JP4140762B2 (en) * 2002-10-24 2008-08-27 惠次 飯村 Photocatalytic device
JP4564733B2 (en) * 2003-09-22 2010-10-20 株式会社フォレスティ峯岸 Unglazed made of multiple porous clays and titanium dioxide

Also Published As

Publication number Publication date
WO2008105295A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JPWO2008105295A1 (en) Fluid purification device
US8709341B2 (en) System for purifying air through germicidal irradiation and method of manufacture
US20090041632A1 (en) Air Purifier System and Method
US11920828B2 (en) System and method for photoelectrochemical air purification
KR102532936B1 (en) Fluid Filtration Systems and Methods of Use
ES2912993T3 (en) Aircraft air purification and volatile organic compound reduction unit comprising a photocatalyst activated by ultraviolet light-emitting diodes
JP2021100910A (en) Purified hydrogen peroxide gas generation methods and devices
US20080142435A1 (en) Surface Emitting Device
KR102184694B1 (en) Air Cleaning Filter Using Visible Light Excitation Photocatalyst and Manufacturing Method Thereof
JP5195595B2 (en) Photocatalyst deodorizer
JP2008104739A (en) Air cleaning apparatus
WO2006018949A1 (en) Air purifier, method for purifying air, photocatalyst-supporting formed body, and method for producing photocatalyst-supporting formed body
US20160250372A1 (en) Device for photocatalytic removal of volatile organic and inorganic contamination as well as microorganisms especially from automobile air conditioning systems
CN103239987B (en) Methane conversion device
JP5262219B2 (en) Photocatalyst deodorizer
US11224860B2 (en) Nanofiber surfaces
KR102021420B1 (en) Air filter made of glass or aluminum structure using photocatalyst precoat and manufaturing method there of
JP4806108B2 (en) Deodorizing device
JP2014171572A (en) Photocatalyst air cleaning filter
CN2568189Y (en) Nano photocatalysis air purifying fittings
JP2012086195A (en) Photocatalyst filter, and water purifying apparatus
JP2008183522A (en) Photocatalytic air cleaner
KR100627972B1 (en) equipment for treatment of air using immobilized photocatalytic fiber filter
KR102164887B1 (en) Air purifying system using photocatalytic filter
JP2005230759A (en) Cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110214

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120626

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703