JPWO2008102582A1 - Optical element manufacturing method and optical element - Google Patents

Optical element manufacturing method and optical element Download PDF

Info

Publication number
JPWO2008102582A1
JPWO2008102582A1 JP2009500106A JP2009500106A JPWO2008102582A1 JP WO2008102582 A1 JPWO2008102582 A1 JP WO2008102582A1 JP 2009500106 A JP2009500106 A JP 2009500106A JP 2009500106 A JP2009500106 A JP 2009500106A JP WO2008102582 A1 JPWO2008102582 A1 JP WO2008102582A1
Authority
JP
Japan
Prior art keywords
optical element
mold
manufacturing
element according
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009500106A
Other languages
Japanese (ja)
Other versions
JP5105260B2 (en
Inventor
岳美 宮崎
岳美 宮崎
藤井 雄一
雄一 藤井
細江 秀
秀 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2009500106A priority Critical patent/JP5105260B2/en
Publication of JPWO2008102582A1 publication Critical patent/JPWO2008102582A1/en
Application granted granted Critical
Publication of JP5105260B2 publication Critical patent/JP5105260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • B29C39/006Monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00365Production of microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2301/00Use of unspecified macromolecular compounds as reinforcement
    • B29K2301/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Abstract

均一な性能を有する光学素子を大量に製造できる光学素子の製造方法及び光学素子を提供するために、シール部材30を、上型10と下型20との間に挟むため、注入された熱硬化性樹脂の粘度が低くても、上型10と下型20の分割面から外部に漏れ出すことはない。注入された熱硬化性樹脂は、加熱された上方キャビティ11と下方キャビティ21とに接触することで硬化し、これによりマトリクス状に配列された光学素子OEを含む円形部材CY(図2)を形成できる。In order to provide an optical element manufacturing method and an optical element capable of manufacturing an optical element having uniform performance in a large amount, the sealing member 30 is sandwiched between the upper mold 10 and the lower mold 20 so that the injected thermosetting is performed. Even if the viscosity of the functional resin is low, it does not leak out from the divided surfaces of the upper mold 10 and the lower mold 20. The injected thermosetting resin is cured by coming into contact with the heated upper cavity 11 and the lower cavity 21, thereby forming a circular member CY (FIG. 2) including the optical elements OE arranged in a matrix. it can.

Description

本発明は、光学素子の製造技術に関し、例えば携帯電話等に搭載する小型カメラなどに好適な光学素子の製造方法及び光学素子に関する。   The present invention relates to an optical element manufacturing technology, for example, an optical element manufacturing method and an optical element suitable for a small camera mounted on a mobile phone or the like.

近年、小型カメラが組み込まれた携帯電話機やハンディパソコン(携帯型パーソナルコンピュータ)の開発が進められている。例えば、小型カメラを備えた携帯電話機は、通話者の映像を内蔵の小型カメラにより撮像して画像データとして取り込み、通話相手にその画像データを送信することができる。このような小型カメラは、一般的にイメージセンサとレンズとにより構成される。すなわち、レンズによりイメージセンサ上に光学的像を形成し、イメージセンサにより光学像に対応した電気信号を生成することができる。   In recent years, mobile phones and handy personal computers (portable personal computers) incorporating small cameras have been developed. For example, a mobile phone equipped with a small camera can capture a caller's video with a built-in small camera, capture it as image data, and transmit the image data to the other party. Such a small camera is generally composed of an image sensor and a lens. That is, an optical image can be formed on the image sensor by the lens, and an electrical signal corresponding to the optical image can be generated by the image sensor.

ところで、携帯電話機やハンディパソコンに使用される小型カメラは、低コスト化が推進されており、従って小型カメラに搭載されるレンズ等も大量生産による低コスト化が望まれている。ここで、特許文献1には、マトリクス状に配列された複数の光学素子を含むレンズアレイを形成し、同様にマトリクス状にイメージセンサを形成したウエハ上に重ねた後、ダイシング加工で切断することにより、個々のモジュールを形成する技術が開示されている。
特開2002−290842号公報
By the way, cost reduction is being promoted for a small camera used in a mobile phone or a handy personal computer. Therefore, it is desired to reduce the cost of a lens mounted on the small camera by mass production. Here, in Patent Document 1, a lens array including a plurality of optical elements arranged in a matrix is formed, and after being stacked on a wafer on which image sensors are similarly formed in a matrix, cutting is performed by dicing. Discloses a technique for forming individual modules.
JP 2002-290842 A

しかるに、特許文献1には、具体的にどのようにしてレンズアレイを形成するのか開示されていない。例えば、レンズの素材として一般的に知られている熱可塑性樹脂を用いてレンズアレイを形成しようとすると、粘度が高く流れ性が悪いため、直径に対して薄いレンズアレイを形成することは困難であり、特にゲートから遠い光学素子には成形不良が生ずる恐れがある。   However, Patent Document 1 does not disclose how to form a lens array. For example, when trying to form a lens array using a thermoplastic resin generally known as a lens material, it is difficult to form a lens array that is thin with respect to its diameter because of its high viscosity and poor flowability. In particular, there is a risk that molding defects may occur in an optical element far from the gate.

加えて、従来の熱可塑性樹脂をダイシング加工等により切断分離しようとすると、発生した加工熱で樹脂が容易に溶融し、これが刃先に付着して工具の寿命を低下させるという問題がある。このため、頻繁に工具を交換しなくてはならず、光学素子の製造効率を低下させる恐れがある。   In addition, when the conventional thermoplastic resin is cut and separated by dicing or the like, the resin is easily melted by the generated processing heat, which adheres to the cutting edge and reduces the tool life. For this reason, it is necessary to change the tool frequently, and there is a risk of reducing the manufacturing efficiency of the optical element.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、均一な性能を有する光学素子を大量に製造できる光学素子の製造方法及び光学素子を提供することを目的とする。   The present invention has been made in view of the problems of the prior art, and an object thereof is to provide an optical element manufacturing method and an optical element capable of manufacturing a large number of optical elements having uniform performance.

請求の範囲第1項に記載の光学素子の製造方法は、
第1の型と第2の型の間にシール部材を配置する工程と、
前記第1の型と前記第2の型との間に前記シール部材を配置した状態で、液状のエネルギー硬化樹脂を注入して固化させることにより、マトリクス状に配置された複数の光学素子を含む成形部材を一体的に成形する工程と、を有することを特徴とする。
The manufacturing method of the optical element according to claim 1 is:
Disposing a seal member between the first mold and the second mold;
A plurality of optical elements arranged in a matrix form by injecting and solidifying a liquid energy curable resin in a state where the sealing member is disposed between the first mold and the second mold; And a step of integrally forming the forming member.

例えば熱硬化性樹脂は、常温では液状であるが、一定の温度に加熱することで硬化し、硬化した後は更に加熱しても溶融・変形しにくいという特性を有する。このような熱硬化性樹脂は常温での粘度が低いので、金型の間に入り込みやすく、従って、マトリクス状に配置された複数の光学素子を含む成形部材が、外寸に対して厚さが薄い場合でも、各光学素子のキャビティまで樹脂が流れ、高精度な光学素子を容易に成形できることとなる。即ち、一回の成形で大量の光学素子を製造できるという利点がある。ところが、粘度が低い熱硬化性樹脂は、金型の隙間に入り込みやすいため、隙間に入り込んだ樹脂がそこで硬化すると成形動作を妨げる恐れがある。これに対し、成形部材を成形するためのキャビティを形成する一対の第1の型と第2の型の間にシール部材を配置することによって、その内側に、マトリクス状に配置された複数の光学素子を含む成形部材を一体的に成形するようにしているため、粘度が低い熱硬化性樹脂の漏れを抑制して、成形を繰り返しても樹脂の詰まりなどが発生せず、高精度な光学素子の効率的な成形を行えるようにしている。   For example, a thermosetting resin is in a liquid state at room temperature, but is cured by heating to a certain temperature, and has a characteristic that after curing, it is difficult to melt and deform even if further heated. Since such a thermosetting resin has a low viscosity at room temperature, it easily enters between molds. Therefore, a molded member including a plurality of optical elements arranged in a matrix has a thickness with respect to the outer dimension. Even if it is thin, the resin flows to the cavity of each optical element, and a highly accurate optical element can be easily molded. That is, there is an advantage that a large amount of optical elements can be manufactured by one molding. However, since the thermosetting resin having a low viscosity is likely to enter the gap between the molds, the molding operation may be hindered if the resin that has entered the gap is cured there. On the other hand, by arranging a sealing member between a pair of first mold and second mold forming a cavity for molding a molding member, a plurality of optical elements arranged in a matrix form inside the sealing member. Since the molded member including the element is molded integrally, the leakage of thermosetting resin with low viscosity is suppressed, and clogging of the resin does not occur even if molding is repeated. Can be efficiently formed.

尚、前記シール部材は、別部材として組み込んだインサート成形としても良いが、2色成形を用いて前記第1の型と前記第2の型の間に形成することもできる。シール部材としては、光学素子の成形温度に耐えること、ある程度の弾性を有すること、シールすべきエネルギー硬化性樹脂に侵されないこと等の特性を有すれば、いかなる素材を用いても良い。シール部材の素材としては、シリコーン樹脂、フッ素樹脂、ポリイミド、ポリアミドイミド、66ナイロン、パ−フロロエラストマーなどが用いられる。   The seal member may be insert molding incorporated as a separate member, but can also be formed between the first mold and the second mold using two-color molding. As the sealing member, any material may be used as long as it has characteristics such as withstanding the molding temperature of the optical element, having a certain degree of elasticity, and not being affected by the energy curable resin to be sealed. As a material for the seal member, silicone resin, fluororesin, polyimide, polyamideimide, 66 nylon, perfluoroelastomer, or the like is used.

更に、熱硬化性樹脂の場合、一旦硬化した後は、更に加熱しても溶融しにくいので、前記成形部材におけるマトリクス状の光学素子を切断する際に、溶融して刃物に付着するなどの不具合が抑制され、大量の光学素子を効率的に製造することができる。尚、「エネルギー硬化樹脂」とは、エネルギーを与えることで硬化する樹脂をいい、例えば熱を与えることで硬化する熱硬化性樹脂や、紫外線を与えることで硬化するUV硬化性樹脂などがある。いずれも硬化直前では、粘度が低い液体であり、流動性に富む。   Furthermore, in the case of a thermosetting resin, once cured, it is difficult to melt even if heated, so when the matrix-shaped optical element in the molded member is cut, it melts and adheres to the blade. Is suppressed, and a large amount of optical elements can be manufactured efficiently. The “energy curable resin” refers to a resin that is cured by applying energy, and includes, for example, a thermosetting resin that is cured by applying heat, and a UV curable resin that is cured by applying ultraviolet light. In any case, immediately before curing, the liquid is low in viscosity and rich in fluidity.

ここで「熱硬化性樹脂」としては、シリコーン樹脂、アリルエステル、アクリル系樹脂、エポキシ樹脂、ポリイミド、ウレタン系樹脂などがあり、又、「UV硬化性樹脂」としては、シリコーン樹脂、アクリル系樹脂、エポキシ樹脂、ポリイミド、ウレタン系樹脂などがある。   Here, “thermosetting resin” includes silicone resin, allyl ester, acrylic resin, epoxy resin, polyimide, urethane resin, and “UV curable resin” includes silicone resin, acrylic resin. , Epoxy resin, polyimide, urethane resin and the like.

請求の範囲第2項に記載の光学素子の製造方法は、請求の範囲第1項に記載の発明において、前記成形部材の外周形状は円形であることを特徴とするが、多角形であっても良い。例えば、前記成形部材の外周形状が角が丸い四角の場合は、請求の範囲第6項にあるような位置決め部が不要になるというメリットがある。しかし、かかる場合には、成形収縮が回転対称にならず、硬化後の形状が糸巻き形状や樽形状になることがある。これによって、光学素子の光軸位置が場所によってずれて等間隔にならなかったり、成形光学面が変形したりするため、前記成形部材の外周形状はできるだけ回転対称形状に近くする方が良く、さらには角部を大きな円弧状にすると良く、好ましくは完全な円形とすると、回転対称形状なので硬化収縮が回転対称となり、成形転写性が向上する。   The method for manufacturing an optical element according to claim 2 is characterized in that, in the invention according to claim 1, the outer shape of the molded member is circular, but is polygonal. Also good. For example, when the outer peripheral shape of the molded member is a square with rounded corners, there is a merit that a positioning portion as described in claim 6 is unnecessary. However, in such a case, the molding shrinkage is not rotationally symmetric, and the shape after curing may be a pincushion shape or a barrel shape. As a result, the optical axis position of the optical element is shifted from place to place and is not evenly spaced, or the molding optical surface is deformed, so it is better that the outer peripheral shape of the molding member be as close to a rotationally symmetric shape as possible. If the corners are formed into a large arc shape, and preferably a perfect circle, since the rotationally symmetric shape, the curing shrinkage becomes rotationally symmetric and molding transferability is improved.

請求の範囲第3項に記載の光学素子の製造方法は、請求の範囲1又は2に記載の発明において、前記シール部材は前記成形部材を取り囲むように形成されていることを特徴とする。   The optical element manufacturing method according to claim 3 is the invention according to claim 1 or 2, wherein the seal member is formed so as to surround the molded member.

請求の範囲第4項に記載の光学素子の製造方法は、請求の範囲第1項〜第3項のいずれかに記載の発明において、前記成形部材の外周に、前記光学素子の肉厚より厚い外周部を形成したことを特徴とする。マトリクス状に配置された多数の光学素子を含む成形部材は、光学素子の軸上厚さに対して外周径が大きくなるので、金型の転写面との密着力が高まり、成形された成形部材を離型する際に部分的に破損等を生じる恐れがある。そこで、本発明においては、前記成形部材の外周に、前記光学素子の肉厚より厚い外周部を形成することによって、この成形部材を補強し、離型時に破損することなく一体で金型から分離できるようにしている。   The method for manufacturing an optical element according to claim 4 is the invention according to any one of claims 1 to 3, wherein the outer periphery of the molded member is thicker than the thickness of the optical element. The outer peripheral part is formed. Since the molded member including a large number of optical elements arranged in a matrix has a larger outer diameter with respect to the axial thickness of the optical element, the adhesion with the transfer surface of the mold is increased, and the molded member is molded. There is a risk of partial damage when releasing the mold. Therefore, in the present invention, by forming an outer peripheral portion thicker than the thickness of the optical element on the outer periphery of the molding member, the molding member is reinforced and separated from the mold integrally without being damaged during mold release. I can do it.

請求の範囲第5項に記載の光学素子の製造方法は、請求の範囲第1項〜第4項のいずれかに記載の発明において、前記成形部材を複数成形し、複数の前記成形部材間で対応する光学素子同士を重ね合わせて接着した後、前記光学素子同士を一体で分離することを特徴とする。これにより、個々の光学素子同士を位置決めして接着する手間が省け、複数の光学素子を重ねた高機能な光学系を大量生産できる。   The method for manufacturing an optical element according to claim 5 is the invention according to any one of claims 1 to 4, wherein a plurality of the molded members are molded, and a plurality of the molded members are formed. After the corresponding optical elements are superposed and bonded, the optical elements are separated as a unit. Thereby, the trouble of positioning and bonding individual optical elements can be saved, and a high-performance optical system in which a plurality of optical elements are stacked can be mass-produced.

請求の範囲第6項に記載の光学素子の製造方法は、請求の範囲第5項に記載の発明において、複数の前記成形部材を重ね合わせる際に位置決めを行う位置決め部を、少なくとも一つの前記成形部材に設けたことを特徴とする。   The method for manufacturing an optical element according to claim 6 is the invention according to claim 5, wherein at least one of the moldings is provided with a positioning portion for positioning when the plurality of molding members are overlapped. It is provided in the member.

請求の範囲第7項に記載の光学素子の製造方法は、請求の範囲第1項〜第6項のいずれかに記載の発明において、前記成形部材は、前記光学素子の並びの間にリブを有することを特徴とするので、成形部材を補強することにより、離型時に破損することなく一体で金型から分離できるようにしている。尚、このリブを、複数の前記成形部材を重ね合わせる際に位置決めを行う位置決め部として用いても良い。   The method for manufacturing an optical element according to claim 7 is the invention according to any one of claims 1 to 6, wherein the molding member has a rib between the rows of the optical elements. Therefore, by reinforcing the molded member, the molded member can be separated from the mold integrally without being damaged at the time of mold release. In addition, you may use this rib as a positioning part which positions when it overlaps | superposes the said some shaping | molding member.

請求の範囲第8項に記載の光学素子の製造方法は、請求の範囲第1項〜第7項のいずれかに記載の発明において、前記液状のエネルギー硬化樹脂は、前記成形部材をその厚さ方向に見たときに、前記成形部材を形成するキャビティの中心から注入されることを特徴とする。これにより、前記第1の型と前記第2の型の間に注入された前記液状のエネルギー硬化樹脂は放射状に広がるので、マトリクス状の光学素子の位置に関わらず、均一な光学素子を成形することができる。   The method for producing an optical element according to claim 8 is the invention according to any one of claims 1 to 7, wherein the liquid energy curable resin has a thickness of the molded member. When viewed in the direction, it is injected from the center of the cavity forming the molding member. As a result, the liquid energy curable resin injected between the first mold and the second mold spreads radially, so that a uniform optical element is formed regardless of the position of the matrix optical element. be able to.

請求の範囲第9項に記載の光学素子の製造方法は、請求の範囲第1項〜第7項のいずれかに記載の発明において、前記液状のエネルギー硬化樹脂は、複数箇所から注入されることを特徴とする。成形部材の寸法によっては、複数箇所から注入した方が効率的に注入を行える場合もあるからである。   The method for manufacturing an optical element according to claim 9 is the invention according to any one of claims 1 to 7, wherein the liquid energy curable resin is injected from a plurality of locations. It is characterized by. This is because, depending on the dimensions of the molded member, injection from a plurality of locations may be more efficient.

請求の範囲第10項に記載の光学素子の製造方法は、請求の範囲第1項〜第9項のいずれかに記載の発明において、20MPa以上の圧力下で、前記液状のエネルギー硬化樹脂の硬化処理を行うことを特徴とするので、硬化時に発生しやすいガスを抑えて、光学素子の内部に残留する気泡を極力排除し、更に収縮時のヒケの発生を抑え、高品質で高精度な光学素子を成形できる。尚、エネルギー硬化樹脂を加圧注入する場合、特にシール部材によるシーリングが効果的である。   The method for producing an optical element according to claim 10 is the invention according to any one of claims 1 to 9, wherein the liquid energy curable resin is cured under a pressure of 20 MPa or more. Because it is characterized by processing, it suppresses gas that is likely to be generated during curing, eliminates bubbles remaining inside the optical element as much as possible, and further suppresses the occurrence of sink marks during shrinkage, resulting in high-quality and high-precision optics. The element can be molded. In addition, when an energy curable resin is injected under pressure, sealing with a seal member is particularly effective.

請求の範囲第11項に記載の光学素子の製造方法は、請求の範囲第1項〜第10項のいずれかに記載の発明において、前記シール部材は、凹部が形成され、該凹部の側方の一方の外面が前記第1の型に対向し、他方の外面が前記第2の型に対向し、前記凹部に前記液状のエネルギー硬化樹脂が注入されるように配置されることを特徴とする。これにより例え高圧下で前記液状のエネルギー硬化樹脂の注入を行った場合でも、その圧力に応じてシーリング効果が高まるので、樹脂漏れを極力抑制することができる。   The method of manufacturing an optical element according to claim 11 is the invention according to any one of claims 1 to 10, wherein the seal member has a recess, and a side of the recess. One outer surface of the liquid crystal is opposed to the first mold, the other outer surface is opposed to the second mold, and the liquid energy curable resin is injected into the recess. . As a result, even when the liquid energy curable resin is injected under high pressure, the sealing effect is enhanced according to the pressure, so that resin leakage can be suppressed as much as possible.

請求の範囲第12項に記載の光学素子の製造方法は、請求の範囲第1項〜第10項のいずれかに記載の発明において、前記シール部材は、O−リングであることを特徴とするので、簡単な構成でシーリング効果を実現できる。   The method for manufacturing an optical element according to claim 12 is the invention according to any one of claims 1 to 10, wherein the seal member is an O-ring. Therefore, the sealing effect can be realized with a simple configuration.

請求の範囲第13項に記載の光学素子の製造方法は、請求の範囲第1項〜第12項のいずれかに記載の発明において、前記エネルギー硬化樹脂は光学的に透明であることを特徴とするので、成形品を光学素子として用いる場合に所望の光学機能を発揮できる。   The method for producing an optical element according to claim 13 is the invention according to any one of claims 1 to 12, wherein the energy curable resin is optically transparent. Therefore, a desired optical function can be exhibited when the molded product is used as an optical element.

請求の範囲第14項に記載の光学素子は、請求の範囲第1項〜第13項のいずれかに記載の光学素子の製造方法によって製造されたことを特徴とする。   The optical element according to claim 14 is manufactured by the method for manufacturing an optical element according to any one of claims 1 to 13.

本発明によれば、均一な性能を有する光学素子を大量に製造できる光学素子の製造方法及び光学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and optical element of an optical element which can manufacture the optical element which has uniform performance in large quantities can be provided.

第1の実施の形態にかかる光学素子の製造工程を示す図であり、(d)は(b)の矢印で示すIC部を拡大している。It is a figure which shows the manufacturing process of the optical element concerning 1st Embodiment, (d) has expanded the IC part shown by the arrow of (b). 本実施の形態の製造方法によって製造される光学素子を含む円形部材を示す図である。It is a figure which shows the circular member containing the optical element manufactured by the manufacturing method of this Embodiment. カメラモジュールの製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of a camera module. 第2の実施の形態にかかる光学素子の製造工程で用いる金型を示す図である。It is a figure which shows the metal mold | die used at the manufacturing process of the optical element concerning 2nd Embodiment. 図4に示す金型によって形成される円形部材を示す図であり、(c)は(b)の矢印で示すVC部を拡大している。It is a figure which shows the circular member formed with the metal mold | die shown in FIG. 4, (c) has expanded the VC part shown by the arrow of (b). 第3の実施の形態にかかる光学素子の製造工程で用いる金型を示す図である。It is a figure which shows the metal mold | die used at the manufacturing process of the optical element concerning 3rd Embodiment. 図6に示す金型によって形成される円形部材を示す図である。It is a figure which shows the circular member formed with the metal mold | die shown in FIG. 熱硬化性樹脂の注入位置のその他の例を示す図である。It is a figure which shows the other example of the injection | pouring position of a thermosetting resin.

符号の説明Explanation of symbols

10 上型
10A 第1の上型
10B 第2の上型
11 上方キャビティ
12 上方円筒凹部
13 上方環状凹部
14 上方直線凹部
15 ランナー
16 キャビティ
16a 円管部
16b 内周面
17 ランナー
17 上方環状凹部
17a 内周面
20 下型
21 下方キャビティ
22 下方円筒凹部
23 下方環状凹部
24 下方直線凹部
25 周溝
30 シール部材
30’ O−リング
31 周溝
32 側面
40 ヒータ
ASY 組立体
CY 円形部材
CY1〜CY3 円形部材
CY1a 外周部
CY2a 外周部
CY3a 外周部
CYb リブ
DB ダイシングブレード
IS イメージセンサ
OE 光学素子
OE1〜OE3 光学素子
W 半導体ウエハ
DESCRIPTION OF SYMBOLS 10 Upper mold | type 10A 1st upper mold | type 10B 2nd upper mold | type 11 Upper cavity 12 Upper cylindrical recessed part 13 Upper annular recessed part 14 Upper linear recessed part 15 Runner 16 Cavity 16a Circular pipe part 16b Inner peripheral surface 17 Runner 17 Upper annular recessed part 17a Peripheral surface 20 Lower mold 21 Lower cavity 22 Lower cylindrical recess 23 Lower annular recess 24 Lower linear recess 25 Circumferential groove 30 Seal member 30 'O-ring 31 Peripheral groove 32 Side surface 40 Heater ASY assembly CY Circular member CY1 to CY3 Circular member CY1a Outer part CY2a Outer part CY3a Outer part CYb Rib DB Dicing blade IS Image sensor OE Optical element OE1 to OE3 Optical element W Semiconductor wafer

以下、図面を参照して本発明の実施の形態について説明する。図1は、第1の実施の形態にかかる光学素子の製造工程を示す図であり、金型の断面を示している。図2は、本実施の形態の製造方法によって製造される光学素子を含む成形部材である円形部材を示す図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a manufacturing process of the optical element according to the first embodiment, and shows a cross section of a mold. FIG. 2 is a diagram showing a circular member that is a molded member including an optical element manufactured by the manufacturing method of the present embodiment.

図1において、上型10の下面には、マトリクス状に円形凸状の上方キャビティ11が並べて配置され、その中央に上方円筒凹部12が形成され、これを中心として輪帯状に上方キャビティ11の外側を取り巻くようにして上方環状凹部13が形成されている。更に上方直線凹部14が、上方円筒凹部12から十字放射状に上方キャビティ11の間を上方環状凹部13に向かって延在している。尚、上方直線凹部14は、貫通路であるランナー15を介して、熱硬化性の樹脂を吐出するノズル(不図示)に接続されている。   In FIG. 1, a circular convex upper cavity 11 is arranged in a matrix on the lower surface of the upper mold 10, and an upper cylindrical concave portion 12 is formed at the center thereof. An upper annular recess 13 is formed so as to surround. Further, the upper straight concave portion 14 extends from the upper cylindrical concave portion 12 to the upper annular concave portion 13 between the upper cavities 11 in a cross radial manner. In addition, the upper linear recessed part 14 is connected to the nozzle (not shown) which discharges thermosetting resin through the runner 15 which is a penetration path.

一方、下型20の上面には、上方キャビティ11に対応してマトリクス状に円形凹状の下方キャビティ21が並べて形成されており、その中央に下方円筒凹部22が形成され、これを中心として輪帯状に下方キャビティ21の外側を取り巻くようにして下方環状凹部23が形成されている。更に下方直線凹部24が、下方円筒凹部22から十字放射状に下方キャビティ21の間を下方環状凹部23に向かって延在している。   On the other hand, on the upper surface of the lower mold 20, circular lower concave cavities 21 are formed side by side in a matrix corresponding to the upper cavities 11, and a lower cylindrical concave 22 is formed at the center thereof, and a ring-like shape is formed around this A lower annular recess 23 is formed so as to surround the outside of the lower cavity 21. Further, a lower straight concave portion 24 extends from the lower cylindrical concave portion 22 between the lower cavities 21 in a cross-shaped manner toward the lower annular concave portion 23.

シール部材30は、シリコーン樹脂又はフッ素樹脂などからなり、環状であって、その内周には周溝34が形成されている。   The seal member 30 is made of silicone resin or fluorine resin, and has an annular shape. A circumferential groove 34 is formed on the inner periphery of the seal member 30.

次に、光学素子の製造方法について説明する。まず型締めを行う前に、図1(a)に示すように上型10と下型20とを分離した状態から、シール部材30を、下型20の下方環状凹部23に嵌め込むように取り付け、更に上方キャビティ11の軸線が、下方キャビティ21の軸線にそれぞれ一致するようにして(拡大図である図1(d)参照)、上型10を下型20に接近させる。これによりシール部材30は、上方環状凹部13と下方環状凹部23との間で押圧されて弾性変形し、両者に密着するようになる(図1(b)参照)。尚、図示していないが、上型10と下型20の位置決めは、例えば一方に形成したピンと、他方に形成した孔とを係合させることで行えるが、これに限られない。   Next, a method for manufacturing an optical element will be described. First, before clamping, the seal member 30 is attached so as to fit into the lower annular recess 23 of the lower mold 20 from the state where the upper mold 10 and the lower mold 20 are separated as shown in FIG. Further, the upper die 10 is brought closer to the lower die 20 so that the axis of the upper cavity 11 coincides with the axis of the lower cavity 21 (see FIG. 1D which is an enlarged view). Thereby, the seal member 30 is pressed between the upper annular recess 13 and the lower annular recess 23 to be elastically deformed, and comes into close contact with both (see FIG. 1B). Although not shown, the positioning of the upper mold 10 and the lower mold 20 can be performed by, for example, engaging a pin formed on one side with a hole formed on the other side, but is not limited thereto.

次に、図1(b)に示すように、上型10と下型20のキャビティ部周辺を、ヒータ40により熱硬化性樹脂の硬化温度に加熱する。かかる状態で液状の熱硬化性の樹脂をランナー15を介して、20MPa以上で加圧しながら上型10と下型20との間に注入する。ランナー15は、上型10と下型20との間に形成される円形のキャビティの中央に配置されているので、中央から周辺のシール部材30に向かって均一に樹脂が流れ、熱硬化性樹脂の粘度が低いことによる流れ性も良好であることから、成形不良を生じることなく光学素子を形成できる。   Next, as shown in FIG. 1B, the periphery of the cavity portion of the upper mold 10 and the lower mold 20 is heated by the heater 40 to the curing temperature of the thermosetting resin. In this state, a liquid thermosetting resin is injected between the upper mold 10 and the lower mold 20 through the runner 15 while being pressurized at 20 MPa or more. Since the runner 15 is disposed at the center of a circular cavity formed between the upper mold 10 and the lower mold 20, the resin flows uniformly from the center toward the peripheral sealing member 30, and the thermosetting resin Since the flowability due to the low viscosity is good, an optical element can be formed without causing molding defects.

更に、シール部材30が、上方環状凹部13と下方環状凹部23との間をシーリングしているため、注入された熱硬化性樹脂の粘度が低くても、上型10と下型20の分割面から外部に漏れ出すことが抑制される。注入された熱硬化性樹脂は、加熱された上方キャビティ11と下方キャビティ21とに接触することで硬化し、これによりマトリクス状に配列された光学素子OEを含む外周形状が円形の成形部材CY(図2)が形成できる。以下、円形の成形部材を円形部材とも称す
その後、上型10を下型20に対して離隔させて型開きを行うと、シール部材30が下型20の下方環状凹部23の内周面と外周面に拘束された状態であることから、周溝34内で外周縁を固化させた円形部材CYは、シール部材30と共に下型20側に付着したままとなる。そこで、シール部材30ごと下型20から円形部材CYを引き剥がし、更にシール部材30を切断して、マトリクス状に配置された光学素子OEを含む円形部材CYを取り出すことができる(図2参照)。このとき、円形部材CYの径に対して光学素子OEが薄くても、上方環状凹部13と下方環状凹部23とにより形成される、光学素子の肉厚より厚く形成された環状の外周部CYaと、上方直線凹部14と下方直線凹部24とにより形成されるリブCYbとが、円形部材CYの剛性を確保するので、離型時の力によって円形部材CYが損傷することを抑制できる。
Furthermore, since the seal member 30 seals between the upper annular recess 13 and the lower annular recess 23, the divided surfaces of the upper mold 10 and the lower mold 20 can be obtained even when the viscosity of the injected thermosetting resin is low. Leakage from the outside is suppressed. The injected thermosetting resin is cured by being in contact with the heated upper cavity 11 and lower cavity 21, whereby the outer peripheral shape including the optical elements OE arranged in a matrix is formed into a molded member CY having a circular shape. FIG. 2) can be formed. Hereinafter, the circular molded member is also referred to as a circular member. After that, when the upper mold 10 is separated from the lower mold 20 and the mold is opened, the seal member 30 becomes the inner peripheral surface and the outer periphery of the lower annular recess 23 of the lower mold 20. Since the surface is constrained by the surface, the circular member CY whose outer peripheral edge is solidified in the circumferential groove 34 remains attached to the lower mold 20 side together with the seal member 30. Therefore, the circular member CY is peeled off from the lower mold 20 together with the seal member 30, and the seal member 30 is further cut to take out the circular member CY including the optical elements OE arranged in a matrix (see FIG. 2). . At this time, even if the optical element OE is thin relative to the diameter of the circular member CY, the annular outer peripheral portion CYa formed by the upper annular recess 13 and the lower annular recess 23 is formed thicker than the thickness of the optical element. Since the rib CYb formed by the upper linear recess 14 and the lower linear recess 24 ensures the rigidity of the circular member CY, it is possible to suppress the circular member CY from being damaged by the force at the time of mold release.

図3は、このようにして形成した円形部材CYを、イメージセンサに接合する工程を示す図である。図3(a)に示すように、円形部材CYの光学素子OEは、半導体ウエハW上に形成されたイメージセンサISに対応したマトリクス状となっている。従って、円形部材CYを半導体ウエハWに位置決めしながら接着すると、各光学素子OEは、対応するイメージセンサISの中心に対して光軸が一致することとなる。   FIG. 3 is a diagram showing a process of joining the circular member CY formed in this way to the image sensor. As shown in FIG. 3A, the optical element OE of the circular member CY has a matrix shape corresponding to the image sensor IS formed on the semiconductor wafer W. Therefore, when the circular member CY is bonded to the semiconductor wafer W while being positioned, the optical axes of the optical elements OE coincide with the center of the corresponding image sensor IS.

その後、円形部材CYと半導体ウエハWとを接着してなる組立体ASYを、ダイシングブレードDBを用いて直線的に切断する。これにより光学素子OEとイメージセンサISとを組み合わせたカメラモジュールを得ることができる。   Thereafter, the assembly ASY formed by bonding the circular member CY and the semiconductor wafer W is linearly cut using the dicing blade DB. Thereby, a camera module in which the optical element OE and the image sensor IS are combined can be obtained.

図4は、第2の実施の形態にかかる光学素子の製造工程で用いる金型を示す図である。図5は、図4に示す金型によって形成される円形部材を示す図である。本実施の形態においては、3セットの金型を用いて3つの円形部材を成形し、これを組み合わせて接着し、ダイシングブレード等で切断することで、3つの光学素子からなる光学系を形成する。より具体的には、図4(a)の金型を用いて円形部材CY1を成形し、図4(b)の金型を用いて円形部材CY2を成形し、図4(c)の金型を用いて円形部材CY3を成形する(図5(a)参照)。成形の詳細は、上述した実施の形態と同様であるため説明を省略する。   FIG. 4 is a diagram illustrating a mold used in the manufacturing process of the optical element according to the second embodiment. FIG. 5 is a view showing a circular member formed by the mold shown in FIG. In the present embodiment, three circular members are formed using three sets of molds, these are combined and bonded together, and cut with a dicing blade or the like to form an optical system including three optical elements. . More specifically, the circular member CY1 is formed using the mold shown in FIG. 4A, the circular member CY2 is formed using the mold shown in FIG. 4B, and the mold shown in FIG. Is used to shape the circular member CY3 (see FIG. 5A). Details of the molding are the same as those in the above-described embodiment, and thus description thereof is omitted.

本実施の形態で用いる金型は、上述した実施の形態における上型10及び下型20と基本的に同様な構成を有するが、シール部材としてはO−リング30’を用いている。より具体的には、下型20の外周近傍に周溝25を形成し、その内部にO−リング30’を配置して、型締め時に上型10の下面に当接させて、液状の熱硬化性樹脂の漏れを抑制している。   The mold used in the present embodiment has basically the same configuration as the upper mold 10 and the lower mold 20 in the above-described embodiment, but uses an O-ring 30 'as a seal member. More specifically, a circumferential groove 25 is formed in the vicinity of the outer periphery of the lower mold 20, an O-ring 30 ′ is disposed therein, and is brought into contact with the lower surface of the upper mold 10 at the time of clamping, so that the liquid heat The leakage of the curable resin is suppressed.

更に、本実施の形態では、図5(a)に示すように、円形部材CY2の外周部CY2aの内径φ2と円形部材CY1の外周部CY1aの外径φ1とを一致させ、また同様に、円形部材CY2の外周部CY2aの内径φ2と円形部材CY3の外周部CY3aの外径φ3と一致させ、図5(b)に示すように円形部材CY1〜CY3を組み合わせる際に互いに嵌合させて、心合わせ用の位置決め基準(即ち位置決め部)として用いている。又、図5(a)に示すように、円形部材CY2の上下のリブCY2bが精度良く嵌合するような溝CY1c及びCY3cを、円形部材CY1のリブCY1bの下面及び円形部材CY3のリブCY3bの上面に形成し、図5(b)に示すように円形部材CY1〜CY3を組み合わせる際に互いに嵌合させて、位相合わせ用の位置決め基準(即ち位置決め部)として用いている。このように外周部とリブを位置決め基準として用いることにより、円形部材同士の位置決めを行うだけで、図5(c)に示すように、全ての光学素子OE1〜OE3の光軸を一致させることができる。   Furthermore, in the present embodiment, as shown in FIG. 5A, the inner diameter φ2 of the outer peripheral portion CY2a of the circular member CY2 and the outer diameter φ1 of the outer peripheral portion CY1a of the circular member CY1 are made to coincide with each other. The inner diameter φ2 of the outer peripheral portion CY2a of the member CY2 is matched with the outer diameter φ3 of the outer peripheral portion CY3a of the circular member CY3, and when the circular members CY1 to CY3 are combined as shown in FIG. It is used as a positioning reference for alignment (that is, a positioning portion). Further, as shown in FIG. 5A, the grooves CY1c and CY3c in which the upper and lower ribs CY2b of the circular member CY2 are accurately fitted are formed on the lower surface of the rib CY1b of the circular member CY1 and the rib CY3b of the circular member CY3. As shown in FIG. 5B, the circular members CY1 to CY3 are fitted to each other and used as a positioning reference for positioning (ie, a positioning portion). Thus, by using the outer peripheral portion and the rib as the positioning reference, the optical axes of all the optical elements OE1 to OE3 can be made to coincide with each other only by positioning the circular members as shown in FIG. it can.

図6は、第3の実施の形態にかかる光学素子の製造工程で用いる金型を示す図である。図7は、図6に示す金型によって形成される円形部材を示す図である。本実施の形態においては、2種類の上型と1種類の下型を用い、シール部材及び円形部材を形成するものである。   FIG. 6 is a diagram illustrating a mold used in the manufacturing process of the optical element according to the third embodiment. FIG. 7 is a view showing a circular member formed by the mold shown in FIG. In this embodiment, two types of upper molds and one type of lower mold are used to form the seal member and the circular member.

より具体的には、図6(a)に示すように、下型20に対して第1の上型10Aを型締めする。第1の上型10Aは、下型20の下方環状凹部23に対向して、シール部材30の上面に対応する環状のキャビティ16を形成している。更に、凹環状のキャビティ16の底(図6では上面)に、先端に向かうにつれて薄くなった断面先細形状の円管部16aを形成している。又、キャビティ16の内周面16bには、所定の抜き勾配が設けられ、またキャビティ16に連通するように側面から延在するランナー17が、第1の上型10Aの下面に形成されている。   More specifically, as shown in FIG. 6A, the first upper mold 10 </ b> A is clamped with respect to the lower mold 20. The first upper mold 10 </ b> A is opposed to the lower annular recess 23 of the lower mold 20, and forms an annular cavity 16 corresponding to the upper surface of the seal member 30. Furthermore, a circular pipe portion 16a having a tapered cross section that is thinner toward the tip is formed at the bottom (upper surface in FIG. 6) of the concave annular cavity 16. A predetermined draft angle is provided on the inner peripheral surface 16b of the cavity 16, and a runner 17 extending from the side surface so as to communicate with the cavity 16 is formed on the lower surface of the first upper mold 10A. .

第1の上型10Aと下型20とを合わせた状態で、ランナー17を介して溶融した熱可塑性樹脂を注入する。熱可塑性樹脂は比較的粘度が高いので、第1の上型10Aと下型20との隙間より漏れ出す恐れはほとんどない。第1の上型10Aと下型20を冷却して熱可塑性樹脂を固化させた後、下型20から第1の上型10Aを離隔させて型開きを行う。このとき、環状のキャビティ16の内周面16bに、所定の抜き勾配が設けられているので、熱可塑性樹脂は容易に分離し、下型20の下方環状凹部23に付着したままシール部材30となる。かかる状態で、シール部材30の上面には、円管部16aに対応して、奥に向かうにつれて幅狭となった周溝31が形成され、その側面32は内周面16bに対応してテーパ状となる。   In a state where the first upper mold 10A and the lower mold 20 are combined, a molten thermoplastic resin is injected through the runner 17. Since the thermoplastic resin has a relatively high viscosity, there is almost no risk of leakage from the gap between the first upper mold 10A and the lower mold 20. After the first upper mold 10A and the lower mold 20 are cooled to solidify the thermoplastic resin, the first upper mold 10A is separated from the lower mold 20 to perform mold opening. At this time, since a predetermined draft is provided on the inner peripheral surface 16b of the annular cavity 16, the thermoplastic resin is easily separated and remains attached to the lower annular recess 23 of the lower mold 20 with the seal member 30. Become. In this state, a circumferential groove 31 that becomes narrower toward the back is formed on the upper surface of the seal member 30 corresponding to the circular pipe portion 16a, and its side surface 32 is tapered corresponding to the inner circumferential surface 16b. It becomes a shape.

続いて、第2の上型10Bと下型20とを合わせ、型締めを行う。このとき、シール部材30は、図6(c)に示すように、シール部材30に対応して下端側だけ抜き勾配が設けられた、第2の上型10Bの上方環状凹部18の内周面18aによって半径方向に押され、第2の上型10B及び下型20により密着するようになる。更に、液状の熱硬化性樹脂をランナー15を介して注入すると、加圧された熱硬化性樹脂がシール部材30の周溝31内へと侵入し、これを押し開くように作用するので、シール部材30は第2の上型10B及び下型20に更に密着するようになる。これにより、粘度が低い熱硬化性樹脂の漏れを抑制することができる。   Subsequently, the second upper mold 10B and the lower mold 20 are combined and clamped. At this time, as shown in FIG. 6C, the sealing member 30 has an inner peripheral surface of the upper annular recess 18 of the second upper mold 10B provided with a draft on the lower end side corresponding to the sealing member 30. The second upper die 10B and the lower die 20 are brought into close contact with each other by being pushed in the radial direction by 18a. Further, when a liquid thermosetting resin is injected through the runner 15, the pressurized thermosetting resin enters into the circumferential groove 31 of the seal member 30 and acts to push it open. The member 30 comes to further adhere to the second upper mold 10B and the lower mold 20. Thereby, the leakage of the thermosetting resin having a low viscosity can be suppressed.

同様にして、それぞれ円形部材CY1〜CY3(図7(a)参照)を成形し、図7(b)に示すように光学素子同士の光軸を一致させた状態に重ね合わせて接着し、個々に切断されることで、3つの光学素子からなる光学系が形成されることとなる。   Similarly, circular members CY1 to CY3 (see FIG. 7 (a)) are respectively formed, and are overlapped and bonded in a state where the optical axes of the optical elements are aligned as shown in FIG. 7 (b). By cutting into two, an optical system composed of three optical elements is formed.

以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。例えば、熱硬化性樹脂の注入位置は単一に限られず、例えば円形部材の中心に対応する位置から等距離であって、且つ周方向に等間隔に形成された複数のランナーから注入されても良い。
図8は、熱硬化性樹脂の注入位置のその他の例を示す図である。図8は、金型10Bを外上面側から見た図である。
図8(a)は、破線で示す円形部材の中心Cから等距離で、且つ周方向180°間隔で2箇所に注入位置Tを設けたものである。図8(b)は、破線で示す円形部材の中心Cから等距離で、且つ周方向120°間隔で3箇所に注入位置Tを設けたものである。図8(c)は、破線で示す円形部材の中心Cから等距離で、且つ周方向90°間隔で4箇所に注入位置Tを設けたものである。
The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be modified or improved as appropriate. For example, the injection position of the thermosetting resin is not limited to a single one, and may be injected from a plurality of runners that are equidistant from the position corresponding to the center of the circular member and equally spaced in the circumferential direction, for example. good.
FIG. 8 is a diagram illustrating another example of the injection position of the thermosetting resin. FIG. 8 is a view of the mold 10B as seen from the outer upper surface side.
FIG. 8A shows an injection position T provided at two locations equidistant from the center C of the circular member indicated by a broken line and at intervals of 180 ° in the circumferential direction. FIG. 8B shows the injection positions T provided at three locations equidistant from the center C of the circular member indicated by a broken line and at 120 ° intervals in the circumferential direction. FIG. 8C shows an injection position T provided at four locations at equal intervals from the center C of the circular member indicated by a broken line and at intervals of 90 ° in the circumferential direction.

Claims (14)

第1の型と第2の型の間にシール部材を配置する工程と、
前記第1の型と前記第2の型との間に前記シール部材を配置した状態で、液状のエネルギー硬化樹脂を注入して固化させることにより、マトリクス状に配置された複数の光学素子を含む成形部材を一体的に成形する工程と、を有することを特徴とする光学素子の製造方法。
Disposing a seal member between the first mold and the second mold;
A plurality of optical elements arranged in a matrix form by injecting and solidifying a liquid energy curable resin in a state where the sealing member is disposed between the first mold and the second mold; And a step of integrally molding the molding member.
前記成形部材の外周形状は円形であることを特徴とする請求の範囲第1項に記載の光学素子の製造方法。   2. The method of manufacturing an optical element according to claim 1, wherein the outer peripheral shape of the molded member is a circle. 前記シール部材は前記成形部材を取り囲むように形成されていることを特徴とする請求の範囲第1項又は第2項に記載の光学素子の製造方法。   3. The method of manufacturing an optical element according to claim 1, wherein the seal member is formed so as to surround the molded member. 前記成形部材の外周に、前記光学素子の肉厚より厚い外周部を形成したことを特徴とする請求の範囲第1項〜第3項のいずれかに記載の光学素子の製造方法。   The optical element manufacturing method according to any one of claims 1 to 3, wherein an outer peripheral portion thicker than a thickness of the optical element is formed on an outer periphery of the molded member. 前記成形部材を複数成形し、複数の前記成形部材間で対応する光学素子同士を重ね合わせて接着した後、前記光学素子同士を一体で分離することを特徴とする請求の範囲第1項〜第4項のいずれかに記載の光学素子の製造方法。   A plurality of the molding members are molded, and the corresponding optical elements are overlapped and bonded to each other among the plurality of molding members, and then the optical elements are integrally separated. 5. A method for producing an optical element according to any one of items 4 to 4. 複数の前記成形部材を重ね合わせる際に位置決めを行う位置決め部を、少なくとも一つの前記成形部材に設けたことを特徴とする請求の範囲第5項に記載の光学素子の製造方法。   6. The method of manufacturing an optical element according to claim 5, wherein a positioning portion for positioning when the plurality of molding members are overlapped is provided in at least one of the molding members. 前記成形部材は、前記光学素子の並びの間にリブを有することを特徴とする請求の範囲第1項〜第6項のいずれかに記載の光学素子の製造方法。   The method for manufacturing an optical element according to any one of claims 1 to 6, wherein the molding member has a rib between the rows of the optical elements. 前記液状のエネルギー硬化樹脂は、前記成形部材をその厚さ方向に見たときに、前記成形部材を形成するキャビティの中心から注入されることを特徴とする請求の範囲第1項〜第7項のいずれかに記載の光学素子の製造方法。   The liquid energy curable resin is injected from the center of a cavity forming the molding member when the molding member is viewed in its thickness direction. The manufacturing method of the optical element in any one of. 前記液状のエネルギー硬化樹脂は、複数箇所から注入されることを特徴とする請求の範囲第1項〜第7項のいずれかに記載の光学素子の製造方法。   The method for manufacturing an optical element according to any one of claims 1 to 7, wherein the liquid energy curable resin is injected from a plurality of locations. 20MPa以上の圧力下で、前記液状のエネルギー硬化樹脂の硬化処理を行うことを特徴とする請求の範囲第1項〜第9項のいずれかに記載の光学素子の製造方法。   The method of manufacturing an optical element according to any one of claims 1 to 9, wherein the liquid energy curable resin is cured under a pressure of 20 MPa or more. 前記シール部材は、凹部が形成され、該凹部の側方の一方の外面が前記第1の型に対向し、他方の外面が前記第2の型に対向し、前記凹部に前記液状のエネルギー硬化樹脂が注入されるように配置されることを特徴とする請求の範囲第1項〜第10項のいずれかに記載の光学素子の製造方法。   The seal member has a recess, one outer surface on the side of the recess faces the first mold, the other outer surface faces the second mold, and the liquid energy curing in the recess. The method of manufacturing an optical element according to any one of claims 1 to 10, wherein the resin is arranged so as to be injected. 前記シール部材は、O−リングであることを特徴とする請求の範囲第1項〜第10項のいずれかに記載の光学素子の製造方法。   The method for manufacturing an optical element according to any one of claims 1 to 10, wherein the seal member is an O-ring. 前記エネルギー硬化樹脂は光学的に透明であることを特徴とする請求の範囲第1項〜第12項のいずれかに記載の光学素子の製造方法。   The method of manufacturing an optical element according to any one of claims 1 to 12, wherein the energy curable resin is optically transparent. 請求の範囲第1項〜第13項のいずれかに記載の光学素子の製造方法によって製造されたことを特徴とする光学素子。   An optical element manufactured by the method for manufacturing an optical element according to any one of claims 1 to 13.
JP2009500106A 2007-02-19 2008-01-18 Optical element manufacturing method and optical element Active JP5105260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009500106A JP5105260B2 (en) 2007-02-19 2008-01-18 Optical element manufacturing method and optical element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007037674 2007-02-19
JP2007037674 2007-02-19
PCT/JP2008/050596 WO2008102582A1 (en) 2007-02-19 2008-01-18 Method for manufacturing optical element, and optical element
JP2009500106A JP5105260B2 (en) 2007-02-19 2008-01-18 Optical element manufacturing method and optical element

Publications (2)

Publication Number Publication Date
JPWO2008102582A1 true JPWO2008102582A1 (en) 2010-05-27
JP5105260B2 JP5105260B2 (en) 2012-12-26

Family

ID=39709861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009500106A Active JP5105260B2 (en) 2007-02-19 2008-01-18 Optical element manufacturing method and optical element

Country Status (2)

Country Link
JP (1) JP5105260B2 (en)
WO (1) WO2008102582A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2255941A4 (en) * 2008-03-19 2014-05-28 Konica Minolta Opto Inc Method for producing wafer lens
JP4819152B2 (en) * 2008-09-25 2011-11-24 シャープ株式会社 Optical element wafer, optical element wafer module, optical element module, method for manufacturing optical element module, electronic element wafer module, method for manufacturing electronic element module, electronic element module, and electronic information device
JP4768060B2 (en) * 2008-09-25 2011-09-07 シャープ株式会社 Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
JP4764942B2 (en) * 2008-09-25 2011-09-07 シャープ株式会社 Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
JP4764941B2 (en) * 2008-09-25 2011-09-07 シャープ株式会社 Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
JP2010264652A (en) * 2009-05-14 2010-11-25 Fujifilm Corp Method and apparatus for manufacturing shaped article
JP5401168B2 (en) * 2009-05-14 2014-01-29 富士フイルム株式会社 Wafer level lens array manufacturing method, wafer level lens array, lens module, and imaging unit
JP2010266667A (en) * 2009-05-14 2010-11-25 Fujifilm Corp Wafer-level lens array and method for manufacturing the same
JP5352392B2 (en) * 2009-09-14 2013-11-27 富士フイルム株式会社 Wafer level lens array manufacturing method, wafer level lens array, lens module, and imaging unit
JP5401227B2 (en) * 2009-09-16 2014-01-29 富士フイルム株式会社 Wafer level lens array manufacturing method, wafer level lens array, lens module, and imaging unit
JP2011206980A (en) * 2010-03-29 2011-10-20 Maxell Finetech Ltd Optical element, molded article, and method for manufacturing optical element
WO2014119751A1 (en) * 2013-02-02 2014-08-07 コニカミノルタ株式会社 Lens array, compound eye optical system and lens array manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124902A (en) * 1999-10-25 2001-05-11 Konica Corp Optical element, optical unit, molded parts provided with the optical element and manufacturing method therefor
JP2005001313A (en) * 2003-06-13 2005-01-06 Sony Corp Production method for optical element with projection for gap control
JP2006056246A (en) * 2004-07-20 2006-03-02 Hoya Corp Gasket for mold for forming plastic lens and designing method of gasket

Also Published As

Publication number Publication date
JP5105260B2 (en) 2012-12-26
WO2008102582A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5105260B2 (en) Optical element manufacturing method and optical element
TWI685065B (en) Camera module and its molded circuit board components and manufacturing method
US8982486B2 (en) Image pickup lens unit manufacturing method and image pickup lens unit
CN112130272B (en) Plastic lens cone, camera module and electronic device
EP2805803B1 (en) Method for producing optical element, and optical element
US20060284327A1 (en) Optical unit manufacturing method, optical unit, and forming apparatus
WO2018023887A1 (en) Photographing module, molded circuit board assembly and molded photosensitive assembly thereof and manufacturing methods
KR200455066Y1 (en) Lens holder for laminated lens module
KR20100113466A (en) Die
TW201418818A (en) Plastic lens barrel and method for manufacturing the same
TWI551428B (en) Manufacturing method of imaging lens unit
JP4930773B2 (en) Optical element manufacturing method
TWM557833U (en) Camera module, molded photosensitive element, molding die, and its electronic equipment
WO2014162770A1 (en) Lens unit structure for molded lens, and die for molding molded lens
JP5637215B2 (en) Imaging lens unit manufacturing method and imaging lens unit
JP5716958B2 (en) Lens unit manufacturing method
JP5077640B2 (en) Optical element manufacturing method, intermediate member, and optical element
JP5479704B2 (en) Two-color molded product and its manufacturing method
JP5880567B2 (en) Imaging lens unit
CN107682592B (en) Camera module and molded circuit board assembly and manufacturing method thereof
JP3154933U (en) Stacking lens module positioning lens holder
TWI411827B (en) Lens module
JP6439604B2 (en) Optical element and optical element manufacturing method
TWI475678B (en) Array optical element manufacturing method
JP4347655B2 (en) Lens array and lens parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Ref document number: 5105260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350