JP5077640B2 - Optical element manufacturing method, intermediate member, and optical element - Google Patents

Optical element manufacturing method, intermediate member, and optical element Download PDF

Info

Publication number
JP5077640B2
JP5077640B2 JP2006355848A JP2006355848A JP5077640B2 JP 5077640 B2 JP5077640 B2 JP 5077640B2 JP 2006355848 A JP2006355848 A JP 2006355848A JP 2006355848 A JP2006355848 A JP 2006355848A JP 5077640 B2 JP5077640 B2 JP 5077640B2
Authority
JP
Japan
Prior art keywords
optical element
intermediate member
manufacturing
molds
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006355848A
Other languages
Japanese (ja)
Other versions
JP2008165039A (en
Inventor
岳美 宮崎
雄一 藤井
秀 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2006355848A priority Critical patent/JP5077640B2/en
Priority to PCT/JP2007/072743 priority patent/WO2008081660A1/en
Priority to TW96148964A priority patent/TW200909180A/en
Publication of JP2008165039A publication Critical patent/JP2008165039A/en
Application granted granted Critical
Publication of JP5077640B2 publication Critical patent/JP5077640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光学素子の成形技術に関し、特に熱硬化性樹脂を用いて光学素子を成形する製造方法、それに用いる中間部材、それにより製造された光学素子に関する。   The present invention relates to an optical element molding technique, and more particularly to a manufacturing method for molding an optical element using a thermosetting resin, an intermediate member used therefor, and an optical element manufactured thereby.

近年においては、携帯電話等に撮像装置を搭載することが通常行われている。一般的な撮像装置は、基板上にレンズ等の光学素子を接合し、光学素子を介して固体撮像素子の受光面に被写体像を結像させるようになっている。ところで、製造プロセスの簡略化のために、基板に光学素子を搭載した状態で、高温のハンダリフロー槽内を通過させたいという要請がある。ところが、光学素子の素材として現在用いられているアクリルやポリカーボネートは耐熱性が低く、高温のハンダリフロー槽内を通過させたとき、容易に溶融・変形してしまうという問題がある。これに対し、熱硬化性の樹脂は、加熱することで粘度が低下して流れ易くなるが、さらに加熱して一旦固化すると、より高温下でもその形状を維持するという特徴を有する。そこで本発明者らは、熱硬化性の樹脂を用いて光学素子を成形できないかと考えた。
特開2001−124902号公報
In recent years, it has been common practice to mount an imaging device on a mobile phone or the like. A general imaging device is configured to join an optical element such as a lens on a substrate and form a subject image on a light receiving surface of a solid-state imaging element via the optical element. By the way, in order to simplify the manufacturing process, there is a demand to pass through a high-temperature solder reflow bath with an optical element mounted on a substrate. However, acrylics and polycarbonates currently used as materials for optical elements have low heat resistance, and there is a problem that they easily melt and deform when passed through a high-temperature solder reflow bath. On the other hand, a thermosetting resin has a characteristic that its viscosity decreases and it flows easily by heating, but once heated and solidified, its shape is maintained even at a higher temperature. Therefore, the present inventors considered whether an optical element could be molded using a thermosetting resin.
JP 2001-124902 A

ここで、熱硬化性の樹脂を用いて成形を行う際の問題点の一つは、加熱したときの粘度が、従来用いていたアクリルやポリカーボネートに比べ著しく低いということである。従って、成形時に金型の分割面(合わせ面)の隙間から漏れ出る樹脂の量が従来より増えるので、離型後にバリ取りを行う必要が生じ、製造に手間がかかるという問題がある。特に、成形後に金型に貼り付いた光学素子を離型させるために、押し出しピンを用いる場合があるが、押し出しピンと金型の孔との間の摺動部に樹脂が侵入して固化すると、押し出しピンが摺動しなくなるため、これを分解して清掃作業を行わなくてはならず手間がかかるという問題もある。尚、特許文献1には、熱硬化性樹脂を用いた成形技術が開示されているが、成形時に金型の隙間から樹脂が漏れ出ることについて、特に記載されていない。   Here, one of the problems at the time of molding using a thermosetting resin is that the viscosity when heated is significantly lower than that of conventionally used acrylic or polycarbonate. Therefore, the amount of resin leaking from the gap between the split surfaces (mating surfaces) of the mold during molding is increased as compared with the prior art, so that there is a need to perform deburring after mold release, resulting in troublesome manufacturing. In particular, an extruding pin may be used to release the optical element attached to the mold after molding. Since the push pin does not slide, there is a problem that it takes time and effort to disassemble the push pin and perform cleaning work. Patent Document 1 discloses a molding technique using a thermosetting resin, but does not particularly describe that the resin leaks from a gap between molds during molding.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、熱硬化性樹脂を用いて光学素子を容易に成形する光学素子の製造方法、それに用いる中間部材、及びそれにより製造された光学素子を提供することを目的とする。   The present invention has been made in view of the problems of the prior art, and is a method for manufacturing an optical element that easily molds an optical element using a thermosetting resin, an intermediate member used therefor, and a manufacturing method therefor. An object is to provide an optical element.

請求項1に記載の光学素子の製造方法は、
光学素子を転写成形するために相対移動可能な一対の金型の間に中間部材を介在させる工程と、
前記一対の金型を近接する方向に相対移動して前記中間部材を圧縮させる工程と、
前記中間部材を圧縮させた状態で前記一対の金型のキャビティ内に、液体状の熱硬化性樹脂を注入して硬化させる工程と、
前記一対の金型を離れる方向に相対移動させる工程とを有し、
前記中間部材の少なくとも一部は、前記一対の金型のキャビティ内に突き出しており、光学素子の成形後に、成形された光学素子と一体となり遮光部材として機能することを特徴とする。
The method for producing an optical element according to claim 1 comprises:
Interposing an intermediate member between a pair of relatively movable molds for transfer molding of the optical element;
A step of compressing the intermediate member by relatively moving the pair of molds in the approaching direction;
Injecting and curing a liquid thermosetting resin into the cavities of the pair of molds in a state where the intermediate member is compressed, and
Possess a step of relatively moving in a direction away the pair of molds,
At least a part of the intermediate member protrudes into the cavities of the pair of molds and functions as a light shielding member integrally with the molded optical element after the optical element is molded .

本発明によれば、前記一対の金型を近接する方向に相対移動して前記中間部材を圧縮させた状態で熱硬化性樹脂を加熱して硬化させるので、液体状の熱硬化性樹脂の粘度が低くても、圧縮された前記中間部材がシールの役割を果たし、ランナーやゲートなどから液体状の熱硬化性樹脂が漏れ出ることを抑制できる。又、成形された光学素子を、前記中間部材と一体的に離型させれば、押し出しピン等を金型に設ける必要がなくなり、従って摺動部を設けなくて済むため、その清掃をする必要もなく手間がかからないという利点もある。   According to the present invention, since the thermosetting resin is heated and cured in a state where the pair of molds are relatively moved in the approaching direction and the intermediate member is compressed, the viscosity of the liquid thermosetting resin Even if the temperature is low, the compressed intermediate member serves as a seal, and the liquid thermosetting resin can be prevented from leaking from the runner or the gate. Further, if the molded optical element is released from the intermediate member integrally, there is no need to provide an extruding pin or the like in the mold, and therefore it is not necessary to provide a sliding part, so it is necessary to clean it. There is also an advantage that it is not time-consuming.

ここで「熱硬化性樹脂」としては、シリコン樹脂、アリルエステル、アクリル系樹脂、エポキシ樹脂、ポリイミド、ウレタン系樹脂などがある。又、「光学素子」としては、例えばレンズ、プリズム、回折格子光学素子(回折レンズ、回折プリズム、回折板)、光学フィルター(空間ローパスフィルター、波長バンドパスフィルター、波長ローパスフィルター、波長ハイパスフィルター等々)、偏光フィルター(検光子、旋光子、偏光分離プリズム等々)、位相フィルター(位相板、ホログラム等々)があげられるが、以上に限られることはない。   Here, examples of the “thermosetting resin” include silicon resin, allyl ester, acrylic resin, epoxy resin, polyimide, and urethane resin. Examples of the “optical element” include lenses, prisms, diffraction grating optical elements (diffraction lenses, diffraction prisms, diffraction plates), optical filters (spatial low-pass filters, wavelength band-pass filters, wavelength low-pass filters, wavelength high-pass filters, etc.). , A polarizing filter (analyzer, optical rotator, polarization separation prism, etc.) and a phase filter (phase plate, hologram, etc.), but are not limited thereto.

請求項2に記載の光学素子の製造方法は、請求項1に記載の発明において、前記中間部材の材料が、銅、りんせい銅、アルミニウムの少なくとも1つであることを特徴とする。前記中間部材の材料を、銅、りんせい銅、アルミニウムのような軟質金属とすることで、容易且つ安価に中間部材としての精度の高い等厚の板状形態を得ることができ、製作の手間やコストを大幅に低減できる。また、前記中間部材に、金型のキャビティ等に対応した穴を形成する場合、連続プレス打ち抜き加工などのように確立された技術で精度良く穴を形成できるので、多数の光学素子を一度に成形するための中間部材も容易に形成できる。成形後において、例えば前記中間部材を光学素子の周囲で切断することで、成形した光学素子の内部に固定絞りを形成することもできるし、光学素子内部に不要光防止の遮光部材を形成することもできる。このように、絞り部材や遮光部材等を光学素子と一体化することで、組込み精度の向上と省スペース化が図れる。 According to a second aspect of the present invention, there is provided an optical element manufacturing method according to the first aspect of the present invention, wherein the material of the intermediate member is at least one of copper, phosphorous copper, and aluminum. By using a soft metal such as copper, phosphor copper, or aluminum as the material for the intermediate member, it is possible to easily and inexpensively obtain a uniform plate shape with high accuracy as the intermediate member, which is troublesome to manufacture. And cost can be greatly reduced. In addition, when forming holes in the intermediate member corresponding to mold cavities, etc., holes can be formed with high precision by established techniques such as continuous press punching, so many optical elements can be molded at once. An intermediate member can be easily formed. After molding, for example, by cutting the intermediate member around the optical element, a fixed aperture can be formed inside the molded optical element, or a light blocking member for preventing unnecessary light is formed inside the optical element. You can also. Thus, by integrating the diaphragm member, the light shielding member, and the like with the optical element, it is possible to improve assembling accuracy and save space.

請求項3に記載の光学素子の製造方法は、請求項1に記載の発明において、前記中間部材の材料が樹脂であることを特徴とする。前記中間部材に樹脂を用いると、金属よりも弾性変形しやすいことから、金型の分割面の加工表面粗さを高めなくてもシール効果を高く維持することができる。又、金属素材に比べると弾性変形領域が広がるので、金型同士の一部を突き当てて成形を行う場合でも十分なシール効果を維持できるため、成形される光学素子の厚み管理を高精度に行うことができ、成形収率を高めることができる。尚、前記中間部材は高温に曝されるので、耐熱性が高いポリイミド(API)、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリエーテルサルホン(PES)等を素材とすると好ましい。
請求項4に記載の光学素子の製造方法は、請求項3に記載の発明において、前記中間部材を、前記熱硬化性樹脂と同じ素材から形成したことを特徴とする。
According to a third aspect of the present invention, there is provided an optical element manufacturing method according to the first aspect, wherein the material of the intermediate member is a resin. When a resin is used for the intermediate member, it is easier to elastically deform than a metal, so that the sealing effect can be maintained high without increasing the processing surface roughness of the dividing surface of the mold. In addition, since the elastic deformation area is widened compared to metal materials, it is possible to maintain a sufficient sealing effect even when molding is performed by hitting a part of the molds, so the thickness control of the molded optical element can be performed with high accuracy. And the molding yield can be increased. Since the intermediate member is exposed to high temperature, polyimide (API), polyamide imide (PAI), polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polyether imide (PEI), poly It is preferable to use ether sulfone (PES) or the like as a material.
According to a fourth aspect of the invention, there is provided an optical element manufacturing method according to the third aspect of the invention, wherein the intermediate member is formed of the same material as the thermosetting resin.

請求項に記載の光学素子の製造方法は、請求項1〜のいずれかに記載の発明において、前記一対の金型の少なくとも一方には、外部から前記キャビティに前記熱硬化性樹脂を注入するための溝状の流路が形成されており、前記中間部材は、前記流路から前記熱硬化樹脂が漏れないようにシールすることを特徴とする。尚、前記中間部材を圧縮するために前記金型に付与される圧力をプレス圧という。 The method of manufacturing an optical element according to claim 5 is the invention according to any one of claims 1 to 4 , wherein the thermosetting resin is injected into the cavity from outside in at least one of the pair of molds. A groove-like flow path is formed, and the intermediate member is sealed so that the thermosetting resin does not leak from the flow path. The pressure applied to the mold for compressing the intermediate member is referred to as a press pressure.

ここで、「流路」とは、ランナーやゲート等、キャビティに樹脂が注入される部分を指す。 Here, the "flow path" to the finger portions such runners and gates, the resin in the cavity is injected.

請求項に記載の光学素子の製造方法は、請求項1〜のいずれかに記載の発明において、前記一対の金型の間隔に応じて前記中間部材圧縮され、成形される光学素子の厚さ調整されることを特徴とする。前記中間部材は弾性変形する部材であるため、成形時に前記金型のプレス圧に応じて、成形される光学素子の厚さを制御することが可能である。即ち、成形する光学素子の厚さを金型の加工精度によらずに制御できるため、高精度の光学素子を成形することができる。 According to a sixth aspect of the present invention, there is provided an optical element manufacturing method according to any one of the first to fifth aspects, wherein the intermediate member is compressed and molded according to the distance between the pair of molds . thickness and wherein Rukoto adjusted. Since the intermediate member is a member that is elastically deformed, it is possible to control the thickness of the optical element to be molded in accordance with the press pressure of the mold during molding. That is, since the thickness of the optical element to be molded can be controlled regardless of the processing accuracy of the mold, a highly accurate optical element can be molded.

請求項に記載の光学素子の製造方法は、請求項1〜のいずれかに記載の発明において、成形時に前記一対の金型の一部が互いに当接するようになっており、前記中間部材は、弾性変形領域で圧縮されることを特徴とする。前記一対の金型の一部を互いに当接させることで、プレス圧に関わらず、成形される光学素子の厚みを一定にすることができる。 The method for manufacturing an optical element according to claim 7 is the invention according to any one of claims 1 to 6, wherein a portion of the pair of molds is adapted to abut against each other at the time of molding, the intermediate member Is compressed in the elastic deformation region. By bringing a part of the pair of molds into contact with each other, the thickness of the optical element to be molded can be made constant regardless of the press pressure.

請求項に記載の光学素子の製造方法は、請求項1〜のいずれかに記載の発明において、前記中間部材と前記熱硬化性樹脂との線膨張係数差を16×10-6以下とすることを特徴とする。前記熱硬化性樹脂と前記中間部材の線膨張係数差を16×10-6以下とすることにより、成形後の冷却時に成形された光学素子が収縮して前記中間部材からはずれてしまい、前記金型に貼り付いて取り出しが困難になることや、成形後の冷却時に前記中間部材が収縮して成形した光学素子に応力が加わり変形を招くことを効果的に抑制できるので、離型が容易で高精度な光学素子を成形できる。 The method of manufacturing an optical element according to claim 8 is the invention according to any one of claims 1 to 7 , wherein a difference in linear expansion coefficient between the intermediate member and the thermosetting resin is 16 × 10 −6 or less. It is characterized by doing. By setting the difference in linear expansion coefficient between the thermosetting resin and the intermediate member to 16 × 10 −6 or less, the optical element formed during the cooling after the molding contracts and comes off from the intermediate member, and the gold It is easy to release because it can be effectively prevented from sticking to the mold and becoming difficult to take out, and the intermediate member shrinks during cooling after molding, and stress is applied to the molded optical element to cause deformation. A highly accurate optical element can be molded.

例えば外径2mmの光学素子を加熱成形後室温に冷却する場合、温度が150度変化したとすると、中間部材から光学素子が外れることを防止するために、中間部材と光学素子の直径の変化の差を0.005mm以下に抑えたい。かかる条件が成り立つのは、線膨張係数差が16×10-6のときであるから、前記中間部材と前記熱硬化性樹脂との線膨張係数差を16×10-6以下とすることが好ましい。 For example, when cooling an optical element having an outer diameter of 2 mm to room temperature after thermoforming, if the temperature changes by 150 degrees, in order to prevent the optical element from coming off from the intermediate member, I want to keep the difference below 0.005mm. Since this condition is satisfied when the difference in linear expansion coefficient is 16 × 10 −6 , the difference in linear expansion coefficient between the intermediate member and the thermosetting resin is preferably 16 × 10 −6 or less. .

請求項9に記載の光学素子の製造方法は、請求項1〜8のいずれかに記載の発明において、前記中間部材に、前記熱硬化性樹脂の流路を形成したことを特徴とする。前記中間部材に流路を形成すれば、その分だけ体積が減少するので、前記中間部材の熱容量が低下し、成形時に前記中間部材を昇温するための時間を短縮することで、成形サイクルタイムの短縮化を図ることができる。更に、前記中間部材に流路を形成すれば、プレス圧を受ける面積も減少するので、面圧を同程度にする場合には、その分だけプレス圧の低減ができる。   A method for manufacturing an optical element according to a ninth aspect is characterized in that, in the invention according to any one of the first to eighth aspects, a flow path of the thermosetting resin is formed in the intermediate member. If the flow path is formed in the intermediate member, the volume is reduced by that amount, so the heat capacity of the intermediate member is reduced, and the time for raising the temperature of the intermediate member at the time of molding is shortened. Can be shortened. Further, if the flow path is formed in the intermediate member, the area for receiving the press pressure is also reduced. Therefore, when the surface pressure is made the same level, the press pressure can be reduced accordingly.

また、金型にゲートを設ける場合、予め小さな断面積のゲートを形成しておき、試し成形を行いながら徐々にゲートを広げ、最適な断面積になるような微調整が必要であって、しかも基本的に一方向(広げる方向)にしか調整できないということがある。これに対し、本発明のように前記中間部材に流路の一部としてゲートを設ければ、予め複数種類の断面積のゲートを有する中間部材を用意しておき、それを交換しながら最適なゲートを両方向(広げる方向及び狭める方向)に探索することができ、ゲート調整を容易に短時間で行うことができる。   In addition, when a gate is provided in a mold, a gate with a small cross-sectional area is formed in advance, and the gate is gradually expanded while performing trial molding, and fine adjustment is necessary so that an optimal cross-sectional area is obtained. Basically, there are cases where adjustment is possible only in one direction (in the direction of expansion). On the other hand, if a gate is provided as a part of the flow path in the intermediate member as in the present invention, an intermediate member having a plurality of kinds of cross-sectional area gates is prepared in advance, and the optimum is obtained while exchanging it. The gate can be searched in both directions (the direction of expansion and the direction of narrowing), and the gate adjustment can be easily performed in a short time.

請求項10に記載の光学素子の製造方法は、請求項1〜9のいずれかに記載の発明において、前記中間部材の熱伝導率は、前記金型の熱伝導率と同じか、より高いことを特徴とする。例えば、成形時に中間部材をインサートして、成形された光学素子と一体化することもできる。このような場合、インサートされる中間部材は、成形ごとに新規の部材を金型に供給されることになるが、供給された中間部材の温度が金型温度まで上昇してから樹脂材料を金型に供給することになるので、中間部材の熱伝導率が高く、その温度上昇が早ければサイクルタイムの短縮、コスト低減が可能となる。また、中間部材に熱伝導率の高い材料を用いることで温度分布の均一化も図れるため、成形品の精度向上にもなる。尚、成形前に、外部ヒータ等で中間部材を予め成形温度付近に加熱しておくと更に好ましい。   The method for producing an optical element according to claim 10 is the invention according to any one of claims 1 to 9, wherein the thermal conductivity of the intermediate member is the same as or higher than the thermal conductivity of the mold. It is characterized by. For example, an intermediate member can be inserted at the time of molding and can be integrated with the molded optical element. In such a case, as for the inserted intermediate member, a new member is supplied to the mold for each molding. However, after the temperature of the supplied intermediate member rises to the mold temperature, the resin material is molded into the mold. Since it is supplied to the mold, the thermal conductivity of the intermediate member is high, and if the temperature rises quickly, the cycle time can be shortened and the cost can be reduced. Moreover, since the temperature distribution can be made uniform by using a material having high thermal conductivity for the intermediate member, the accuracy of the molded product can be improved. In addition, it is more preferable that the intermediate member is preliminarily heated near the molding temperature with an external heater or the like before molding.

請求項11に記載の光学素子の製造方法は、請求項1〜10のいずれかに記載の発明において、前記中間部材は、金属板の少なくとも一方の面に樹脂層を形成してなることを特徴とする。前記中間部材が金属の場合、厚み方向に弾性変形させて樹脂のシールを行う場合に、高いプレス圧が必要になる。一方、前記中間部材が樹脂の場合、成形しようとする光学素子が小型の場合には、板厚がかなり薄くなり剛性が不足して、成形された光学素子の取り出しができなくなる。そこで、金属の剛性と樹脂の弾性という双方の長所を活用すべく、金属をべースとして表面に樹脂層を形成した中間部材とするのが好ましい。「樹脂層を形成する」工程は、コ一ティング、塗装、貼付けのいずれであっても良い。   An optical element manufacturing method according to an eleventh aspect is the invention according to any one of the first to tenth aspects, wherein the intermediate member is formed by forming a resin layer on at least one surface of a metal plate. And In the case where the intermediate member is made of metal, a high press pressure is required when sealing the resin by elastic deformation in the thickness direction. On the other hand, when the intermediate member is a resin, if the optical element to be molded is small, the plate thickness is considerably thin and the rigidity is insufficient, so that the molded optical element cannot be taken out. Therefore, in order to take advantage of both the rigidity of the metal and the elasticity of the resin, it is preferable to use an intermediate member in which a resin layer is formed on the surface using the metal as a base. The step of “forming a resin layer” may be any of coating, painting, and pasting.

請求項12に記載の光学素子の製造方法は、請求項1〜11のいずれかに記載の発明において、成形された光学素子と一体となる前記中間部材の少なくとも一部は黒色であることを特徴とするので、光学素子にインサート成形された中間部材による内面反射を防止して、ゴースト等の発生を抑制できる。 According to a twelfth aspect of the present invention, there is provided the optical element manufacturing method according to any one of the first to eleventh aspects, wherein at least a part of the intermediate member integrated with the molded optical element is black. Therefore, it is possible to prevent internal reflection by the intermediate member insert-molded in the optical element, and to suppress the occurrence of ghosts and the like.

請求項13に記載の光学素子の製造方法は、請求項1〜12のいずれかに記載の発明において、成形された光学素子と一体となる前記中間部材の少なくとも一部は、円形の開口を有することを特徴とする。前記中間部材の少なくとも一部を一般的な固定絞りとして使用する場合には、開口部の最適形状が円形だからである。 According to a thirteenth aspect of the present invention, there is provided the optical element manufacturing method according to any one of the first to twelfth aspects, wherein at least a part of the intermediate member integrated with the molded optical element has a circular opening. It is characterized by that. This is because when the intermediate member is used as a general fixed diaphragm, the optimum shape of the opening is circular.

請求項14に記載の光学素子の製造方法は、請求項1〜12のいずれかに記載の発明において、成形された光学素子と一体となる前記中間部材の少なくとも一部は、矩形の開口を有することを特徴とする。前記中間部材の少なくとも一部を含む光学素子を、個体撮像素子の被写体側に設ける場合には、開口部の最適形状が矩形だからである。尚、矩形とは各辺が湾曲しているものも含む。 A method for manufacturing an optical element according to claim 14 is the invention according to any one of claims 1 to 12, wherein at least a part of the intermediate member integrated with the molded optical element has a rectangular opening. It is characterized by that. This is because when the optical element including at least a part of the intermediate member is provided on the subject side of the individual imaging element, the optimum shape of the opening is rectangular. In addition, the rectangle includes those in which each side is curved.

請求項15に記載の光学素子の製造方法は、請求項1〜14のいずれかに記載の発明において、成形された光学素子と一体となる前記中間部材の少なくとも一部において、前記光学素子から外部へと延在している部分を板ばねとして利用することを特徴とする。光学素子によっては、別個のばね部材で鏡枠に対して付勢されるものがあるが、前記中間部材の少なくとも一部を板ばねとして利用できれば、別個にいたばねを設ける必要がなくなるので組付性が良好となる。 The method for manufacturing an optical element according to claim 15 is the invention according to any one of claims 1 to 14 , wherein at least a part of the intermediate member integrated with the molded optical element is external to the optical element. The portion extending to the side is used as a leaf spring. Some optical elements are urged against the lens frame by a separate spring member. However, if at least a part of the intermediate member can be used as a leaf spring, it is not necessary to provide a separate spring, so that the assembly is possible. Property is improved.

請求項16に記載の中間部材は、請求項1〜15のいずれかに記載の光学素子の製造方法に用いることを特徴とする。 The intermediate member according to claim 16 is used in the method for manufacturing an optical element according to any one of claims 1 to 15 .

請求項17に記載の光学素子は、請求項1〜15のいずれかに記載の光学素子の製造方法により製造されたことを特徴とする。 An optical element according to a seventeenth aspect is manufactured by the method for manufacturing an optical element according to any one of the first to fifteenth aspects.

本発明によれば、熱硬化性樹脂を用いて光学素子を容易に成形する光学素子の製造方法、それに用いる中間部材、及びそれにより製造された光学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the optical element which shape | molds an optical element easily using a thermosetting resin, the intermediate member used for it, and the optical element manufactured by it can be provided.

以下、図面を参照して本発明の実施の形態について説明する。本実施の形態によれば、いわゆる押し切り成形を行うことができる。押し切り成形とは、動粘度が100poises以下の成形品の素材を成形キャビティに注入し硬化成形する成形金型であって、その金型が成形キャビティの開閉に伴って可動又は固定する部品から構成されるものを用いて行う成形であり、成形時に固定側金型と可動側金型の間に、弾性変形可能な材料で加工した中間部材を挟み、中間部材の弾性変形範囲内で金型を加圧して樹脂の成形を行うものをいう。図1は、本実施の形態による光学素子の金型及び中間部材の斜視図である。図1において、ブロック状の上型10と下型20との間に、板状の中間部材30が配置されるようになっている。   Embodiments of the present invention will be described below with reference to the drawings. According to the present embodiment, so-called press-cut molding can be performed. Push-cut molding is a molding die that is molded by injecting a molding material having a kinematic viscosity of 100 poise or less into a molding cavity, and the die is composed of parts that move or fix as the molding cavity opens and closes. An intermediate member processed with an elastically deformable material is sandwiched between a fixed mold and a movable mold at the time of molding, and the mold is added within the elastic deformation range of the intermediate member. It refers to what is molded by pressing. FIG. 1 is a perspective view of an optical element mold and intermediate member according to the present embodiment. In FIG. 1, a plate-shaped intermediate member 30 is arranged between a block-shaped upper mold 10 and a lower mold 20.

上型10の下面(分割面)には、2列に円形凹状の上方キャビティ11が並べて配置されており、又、対角線上の離れた位置に2つのピン孔12が形成されている。一方、下型20の上面(分割面)には、上方キャビティ11に対応して2列に円形凹状の下方キャビティ21が並べて形成されており、又、ピン孔2に対応して整合ピン22が植設されている。下型20の上面において、下方キャビティ21の列間には、下型20の端部から延在する大溝23が形成されており、更に大溝23から各下方キャビティ21に向かうテーパ溝24が形成されている。テーパ溝24と下方キャビティ21との間には、それぞれ小断面積のゲート部25が形成されている。尚、大溝23とテーパ溝24とでランナーを構成し、大溝23とテーパ溝24とゲート部25とで樹脂の流路を構成している。   On the lower surface (divided surface) of the upper mold 10, circular concave upper cavities 11 are arranged in two rows, and two pin holes 12 are formed at diagonally spaced positions. On the other hand, a circular concave lower cavity 21 is formed in two rows corresponding to the upper cavity 11 on the upper surface (divided surface) of the lower mold 20, and an alignment pin 22 corresponding to the pin hole 2. It has been planted. On the upper surface of the lower mold 20, a large groove 23 extending from the end of the lower mold 20 is formed between the rows of the lower cavities 21, and a tapered groove 24 extending from the large groove 23 toward each lower cavity 21 is formed. ing. Between the taper groove 24 and the lower cavity 21, gate portions 25 each having a small cross-sectional area are formed. The large groove 23 and the taper groove 24 constitute a runner, and the large groove 23, the taper groove 24 and the gate portion 25 constitute a resin flow path.

中間部材30は、銅、りんせい銅、アルミニウムの少なくとも1つから形成された板材であって、キャビティ11,21に対応して2列に円形の開口31を形成しており、又、整合ピン22に対応して整合孔32を形成している。尚、中間部材30の熱伝導率は、金型10,20の熱伝導率と同じか、より高いと好ましい。   The intermediate member 30 is a plate material made of at least one of copper, phosphorous copper, and aluminum, and has circular openings 31 formed in two rows corresponding to the cavities 11 and 21. Matching holes 32 are formed correspondingly to 22. The thermal conductivity of the intermediate member 30 is preferably the same as or higher than the thermal conductivity of the molds 10 and 20.

図2は、本実施の形態の金型及び中間部材を用いて光学素子を成形する工程を示す概略図であるが、理解しやすいようにキャビティを単一として示している。まず、図2(a)に示すように、定盤上に設置した下型20の上に、中間部材30を載置し、その上方に上型10をセットする。このとき、図1に示す下型20の整合ピン22は、中間部材30の整合孔32と、上型10のピン孔12に嵌合するので、金型10,20及び中間部材30は、上下方向に精度良く整列されることとなる。また、上型10と下型20は、ヒータ50により熱硬化性樹脂の硬化温度に加熱されている。   FIG. 2 is a schematic view showing a process of molding an optical element using the mold and the intermediate member of the present embodiment, but shows a single cavity for easy understanding. First, as shown in FIG. 2A, the intermediate member 30 is placed on the lower mold 20 installed on the surface plate, and the upper mold 10 is set above the intermediate member 30. At this time, since the alignment pin 22 of the lower mold 20 shown in FIG. 1 is fitted into the alignment hole 32 of the intermediate member 30 and the pin hole 12 of the upper mold 10, the molds 10, 20 and the intermediate member 30 are It will be accurately aligned in the direction. The upper mold 10 and the lower mold 20 are heated to the curing temperature of the thermosetting resin by the heater 50.

ここで、図2(b)を参照すると、上型10は、油圧シリンダ40により加圧されるようになっている。油圧シリンダ40には、圧力センサ41が設けられており、プレス圧を検出できるようになっている。圧力センサ41により検出されたプレス圧は、制御装置42に入力される。制御装置42は、検出されたプレス圧に応じて油圧シリンダ40の圧力制御が可能となっている。   Here, referring to FIG. 2 (b), the upper mold 10 is pressurized by the hydraulic cylinder 40. The hydraulic cylinder 40 is provided with a pressure sensor 41 so that the press pressure can be detected. The press pressure detected by the pressure sensor 41 is input to the control device 42. The control device 42 can control the pressure of the hydraulic cylinder 40 in accordance with the detected press pressure.

図2(b)において、油圧シリンダ40により加圧された上型10は、中間部材30に圧縮力を付与する。これにより、中間部材30は、上型10と下型20との間に所定の面圧で密着することとなる。更に、中間部材30の弾性変形領域内で、プレス圧を調整することで、上型10と下型20との距離が変化するため、それにより、成形された後の光学素子の軸上厚さを調整することができる。   In FIG. 2B, the upper mold 10 pressed by the hydraulic cylinder 40 applies a compressive force to the intermediate member 30. As a result, the intermediate member 30 comes into close contact between the upper mold 10 and the lower mold 20 with a predetermined surface pressure. Furthermore, since the distance between the upper mold 10 and the lower mold 20 changes by adjusting the pressing pressure within the elastic deformation region of the intermediate member 30, the axial thickness of the optical element after molding is thereby changed. Can be adjusted.

図2(c)において、プレス圧を保持された金型10,20及び中間部材30は、ヒータ50により熱硬化性樹脂の硬化温度に加熱されており、ここで粘度の低い熱硬化性の樹脂を、外部から大溝23(図1)を介して内部に注入する。かかる状態では、大溝23とテーパ溝24とゲート部25の上部が、中間部材30により遮蔽されシールされているため、粘度の低い熱硬化性の樹脂を、大溝23に注入しても漏れが生じることはない。注入された樹脂は、大溝23とテーパ溝24とゲート部25を通過して、キャビティ11,21内に至る。   In FIG. 2C, the molds 10 and 20 and the intermediate member 30 that are maintained at the press pressure are heated to the curing temperature of the thermosetting resin by the heater 50, and the thermosetting resin having a low viscosity here. Is injected into the inside from the outside through the large groove 23 (FIG. 1). In such a state, since the upper portion of the large groove 23, the tapered groove 24 and the gate portion 25 is shielded and sealed by the intermediate member 30, leakage occurs even when a thermosetting resin having a low viscosity is injected into the large groove 23. There is nothing. The injected resin passes through the large groove 23, the tapered groove 24, and the gate portion 25 and reaches the cavities 11 and 21.

熱硬化性樹脂を加熱して硬化した後に、上型10を上方に移動させると、フランジ部が中間部材30に密着するように成形された光学素子OEが露出する。そこで、図2(d)に示すように、中間部材30を下型20から取り外すことにより、中間部材30に付着した全ての光学素子OEを一度に取り外すことができる。その後、別の中間部材30を、上型10と下型20との間に配置して、再び成形の準備を行うことができる(図2(a)参照)。これと並行して、取り外した中間部材30から光学素子OEを分離することができる。これにより成形サイクルタイムを短縮できる。光学素子OEを取り外した中間部材30は再利用可能である。   After the thermosetting resin is heated and cured, when the upper mold 10 is moved upward, the optical element OE formed so that the flange portion is in close contact with the intermediate member 30 is exposed. Therefore, as shown in FIG. 2D, all the optical elements OE attached to the intermediate member 30 can be removed at once by removing the intermediate member 30 from the lower mold 20. Thereafter, another intermediate member 30 can be disposed between the upper mold 10 and the lower mold 20 to prepare for molding again (see FIG. 2A). In parallel with this, the optical element OE can be separated from the removed intermediate member 30. Thereby, the molding cycle time can be shortened. The intermediate member 30 from which the optical element OE has been removed can be reused.

本実施の形態によれば、一対の金型10,20を近接する方向に相対移動して中間部材30を圧縮した状態で液体状の熱硬化性樹脂を注入するので、液体状の熱硬化性樹脂の粘度が低くても、圧縮された中間部材30がシールの役割を果たし、ランナーやゲートなどから液体状の熱硬化性樹脂が漏れ出ることを抑制できる。又、成形された光学素子OEを、中間部材30と一体的に離型させることができるので、押し出しピン等を下型10等に設ける必要がなくなり、従って摺動部を設けなくて済むため、その清掃をする必要もなく手間がかからないという利点もある。熱硬化性樹脂は、一端冷却した後は、より高い温度でも変形しないため、本実施の形態の製造方法により製造された光学素子は、電子部品の基板と共に高温のハンダリフロー槽を通過させることができる。また、熱硬化性樹脂は粘度が低く流動性が良いため、回折格子などの微細構造も転写することができる。   According to the present embodiment, since the liquid thermosetting resin is injected while the intermediate member 30 is compressed by relatively moving the pair of molds 10 and 20 in the approaching direction, the liquid thermosetting resin is injected. Even if the viscosity of the resin is low, the compressed intermediate member 30 serves as a seal, and the liquid thermosetting resin can be prevented from leaking from a runner, a gate, or the like. In addition, since the molded optical element OE can be released from the intermediate member 30 integrally, it is not necessary to provide an extruding pin or the like on the lower mold 10 or the like, and therefore it is not necessary to provide a sliding portion. There is also an advantage that it does not need to be cleaned and takes time and effort. Since the thermosetting resin is not deformed even at a higher temperature after being cooled once, the optical element manufactured by the manufacturing method of the present embodiment can be passed through a high-temperature solder reflow tank together with the substrate of the electronic component. it can. Further, since the thermosetting resin has low viscosity and good fluidity, a fine structure such as a diffraction grating can also be transferred.

また、本実施の形態によれば、金型10、20はヒータ50により常に熱硬化性樹脂の硬化温度に保たれているが、熱硬化性樹脂を金型のキャビティ内に注入した後に金型10、20をヒータ50により熱硬化性樹脂の硬化温度に加熱して、熱硬化性樹脂を加熱硬化した後に、金型10、20の温度を下げて硬化した熱硬化性樹脂を冷却してから取り出す方法を採用することもできる。この方法は、硬化した熱硬化性樹脂を冷却することにより離型性を向上できる点では好ましい。一方、加熱と冷却をくり返すために成形のサイクルタイムが長くなるので、この成形のサイクルタイムを短縮するという観点からは、金型10、20の温度を一定に保つようにした本実施の形態で説明した方法がより好ましい。   Further, according to the present embodiment, the molds 10 and 20 are always maintained at the curing temperature of the thermosetting resin by the heater 50. However, after the thermosetting resin is injected into the cavity of the mold, the molds 10 and 20 are heated to the curing temperature of the thermosetting resin by the heater 50 to heat and cure the thermosetting resin, and then the cured thermosetting resin is cooled by lowering the temperature of the molds 10 and 20. A method of taking out can also be adopted. This method is preferable in that the release property can be improved by cooling the cured thermosetting resin. On the other hand, since the molding cycle time is lengthened in order to repeat heating and cooling, from the viewpoint of shortening the molding cycle time, the embodiment in which the temperatures of the molds 10 and 20 are kept constant. The method described in (1) is more preferable.

尚、中間部材30は、金型10,20が近接する方向へ相対移動するときに、流路の周囲5mmの範囲内で圧縮力を受けるようになっていると好ましい。本発明者らが、流路周りの距離とシール効果を実験的に求めたところ、中間部材30が樹脂製の場合は、流路周りの距離が3.5mm程度であっても、溶融した樹脂の一般的な注入圧力である2000N/cm2まで漏れることはなかった。しかし中間部材30を銅製としたときは、注入圧力が1350N/cm2でも樹脂が金型分割面の隙間に漏れ出した。しかしながら、流路周りの距離を5mmとしたら、中間部材30を銅製とした場合でも、2000N/cm2まで樹脂が漏れることはなかった。 The intermediate member 30 preferably receives a compressive force within a range of 5 mm around the flow path when the molds 10 and 20 move relative to each other. The inventors experimentally obtained the distance around the flow path and the sealing effect, and when the intermediate member 30 is made of resin, the molten resin is used even if the distance around the flow path is about 3.5 mm. However, it did not leak up to 2000 N / cm 2, which is a general injection pressure of 1. However, when the intermediate member 30 was made of copper, the resin leaked into the gap between the mold dividing surfaces even when the injection pressure was 1350 N / cm 2 . However, if the distance around the flow path is 5 mm, the resin did not leak up to 2000 N / cm 2 even when the intermediate member 30 was made of copper.

図3は、第2の実施の形態にかかる中間部材30Aの斜視図である。図3において、中間部材30Aは、2列に並んだ開口31の列間に、端部から延在する細長い切欠部33を形成しており、更に切欠部33から各開口31に向かうテーパ状の切欠部34を形成している。切欠部34と開口31との間には、それぞれ小断面積のゲート部35が形成されている。尚、切欠部33,34とでランナーを構成し、切欠部33,34とゲート部35とで樹脂の流路を構成している。   FIG. 3 is a perspective view of an intermediate member 30A according to the second embodiment. In FIG. 3, the intermediate member 30 </ b> A has an elongated notch 33 extending from the end between the rows of the openings 31 arranged in two rows, and is further tapered from the notch 33 toward each opening 31. A notch 34 is formed. Between the cutout portion 34 and the opening 31, gate portions 35 each having a small cross-sectional area are formed. The cutout portions 33 and 34 constitute a runner, and the cutout portions 33 and 34 and the gate portion 35 constitute a resin flow path.

本実施の形態にかかる中間部材30Aも、上型10と下型20との間に配置されて使用される。このとき、下型20には流路を形成する必要がなく、キャビティ以外の分割面は、上型10と同様な平面であって良い。成形時には、加熱された粘度の低い熱硬化性の樹脂を、外部から切欠部33を介して内部に注入する。かかる状態では、上型10と下型20の分割面により中間部材30Aが圧縮されているので、切欠部33,34とゲート部35はシールされることとなり、加熱された粘度の低い熱硬化性の樹脂を、切欠部33から注入しても内部に漏れが生じることはない。注入された樹脂は、切欠部33、34とゲート部35を通過して、キャビティ11,21内に至ることとなる。   The intermediate member 30 </ b> A according to the present embodiment is also used by being disposed between the upper mold 10 and the lower mold 20. At this time, it is not necessary to form a flow path in the lower mold 20, and the dividing surface other than the cavity may be the same plane as the upper mold 10. At the time of molding, a heated thermosetting resin having a low viscosity is injected into the inside through the notch 33 from the outside. In such a state, since the intermediate member 30A is compressed by the dividing surface of the upper mold 10 and the lower mold 20, the notches 33 and 34 and the gate part 35 are sealed, and the thermosetting property having a low heated viscosity. Even if the resin is injected from the notch 33, no leakage occurs inside. The injected resin passes through the notches 33 and 34 and the gate part 35 and reaches the cavities 11 and 21.

図4は、第3の実施の形態にかかる中間部材を金型と共に示す概略断面図である。図4に示す中間部材30Bの面積は、上型10と下型20の分割面の面積より小さくなっている。かかる構成によれば、プレス圧を小さくしても中間部材30Bの面圧を確保できるため、樹脂のシール効果を高めながら油圧シリンダ40をより容量の低いものとでき、成形装置のコストを低減できる。   FIG. 4 is a schematic cross-sectional view showing the intermediate member according to the third embodiment together with a mold. The area of the intermediate member 30 </ b> B shown in FIG. 4 is smaller than the area of the dividing surface of the upper mold 10 and the lower mold 20. According to such a configuration, the surface pressure of the intermediate member 30B can be ensured even if the pressing pressure is reduced, so that the hydraulic cylinder 40 can have a lower capacity while enhancing the sealing effect of the resin, and the cost of the molding apparatus can be reduced. .

図5は、第4の実施の形態にかかる中間部材と金型を示す概略断面図である。図5において、下型20は、その分割面に突出部26を形成している。自由状態では、中間部材30Cの上面は、突出部26の上端より高い位置にある。成形時に、上型10を上方から押圧すると、下型20の突出部26が上型10の分割面に当接して、それ以上の圧縮を阻止することとなる。ここで、下型20の突出部26が上型10の分割面に当接した状態で、圧縮された中間部材30Cが弾性変形領域にあれば、シール機能により流路から樹脂が漏れ出ること抑制できる。又、下型20の突出部26が上型10の分割面に当接することで、上型10と下型20との距離が定まるため、成形される光学素子OEの軸上厚さが精度良く定まり、上述した実施の形態のようにプレス圧を制御する必要がなく、成形装置の低コスト化を図れる。   FIG. 5 is a schematic cross-sectional view showing an intermediate member and a mold according to the fourth embodiment. In FIG. 5, the lower mold | type 20 forms the protrusion part 26 in the division | segmentation surface. In the free state, the upper surface of the intermediate member 30 </ b> C is positioned higher than the upper end of the protruding portion 26. When the upper die 10 is pressed from above at the time of molding, the protruding portion 26 of the lower die 20 comes into contact with the dividing surface of the upper die 10 to prevent further compression. Here, if the projecting portion 26 of the lower mold 20 is in contact with the dividing surface of the upper mold 10 and the compressed intermediate member 30C is in the elastic deformation region, the resin can be prevented from leaking from the flow path by the sealing function. it can. In addition, since the distance between the upper mold 10 and the lower mold 20 is determined by the projecting portion 26 of the lower mold 20 coming into contact with the dividing surface of the upper mold 10, the axial thickness of the optical element OE to be molded is accurate. As a result, it is not necessary to control the press pressure as in the above-described embodiment, and the cost of the molding apparatus can be reduced.

図6は、第4の実施の形態にかかる中間部材と金型を示す概略断面図である。図7〜9は、図6の中間部材と金型を用いて成形された光学素子の例を示す図であり、(a)は断面を示し、(b)は上面を示している。本実施の形態においては、中間部材30Dの内縁を金型のキャビティ内に突き出している。尚、中間部材30Dは黒色の樹脂から形成されると好ましいが、金属から形成する場合、その表面に黒色の層を被覆するとよい。又、中間部材30Dと成形に用いる熱硬化性樹脂との線膨張係数差は16×10-6以下とすると好ましい。 FIG. 6 is a schematic cross-sectional view showing an intermediate member and a mold according to the fourth embodiment. 7 to 9 are views showing examples of optical elements formed using the intermediate member and the mold shown in FIG. 6, wherein (a) shows a cross section and (b) shows an upper surface. In the present embodiment, the inner edge of the intermediate member 30D protrudes into the mold cavity. The intermediate member 30D is preferably formed from a black resin, but when formed from a metal, the surface may be covered with a black layer. The difference in linear expansion coefficient between the intermediate member 30D and the thermosetting resin used for molding is preferably 16 × 10 −6 or less.

図7の光学素子においては、成形後に中間部材30Dと光学素子OEとを一体的に離型させた後、光学素子OEの周囲の中間部材30Dを図7(b)に示すように、半径方向及び周方向にスリットを設けるように切断してなる。これにより、中間部材30Dは、周方向に延在する片持ち状の3つのアーム30aが形成され、これにより光学素子OEは弾性的に支持される。   In the optical element of FIG. 7, after the intermediate member 30 </ b> D and the optical element OE are integrally released after molding, the intermediate member 30 </ b> D around the optical element OE is moved in the radial direction as shown in FIG. 7B. And it cut | disconnects so that a slit may be provided in the circumferential direction. As a result, the intermediate member 30D is formed with three cantilevered arms 30a extending in the circumferential direction, whereby the optical element OE is elastically supported.

光学素子OEの用途によっては、鏡枠(不図示)に対してばね部材で付勢される構成があるが、ばね部材を別個に取り付けなくてはならないため、組み立て性に劣る。これに対し図7に示す光学素子OEによれば、光学素子OEに一体的に形成されたアーム30aの端部を鏡枠等に取り付けることで、弾性変形するアーム30aによって光学素子OEを弾性的に、光軸方向に変位可能に支持することができるため、別個にばね部材等を設ける必要がなく、コスト低減を図れる。又、中間部材30Dの円形の開口31は、光学素子OEの絞りとして機能する。中間部材30Dは、黒色の素材からできているため、不要光をカットする遮光部材としての機能を兼ねる。   Depending on the use of the optical element OE, there is a configuration in which it is biased by a spring member with respect to a lens frame (not shown). However, since the spring member must be attached separately, the assembly is poor. On the other hand, according to the optical element OE shown in FIG. 7, the end of the arm 30a formed integrally with the optical element OE is attached to a lens frame or the like, so that the optical element OE is elastically deformed by the elastically deforming arm 30a. In addition, since it can be supported so as to be displaceable in the direction of the optical axis, it is not necessary to provide a separate spring member or the like, and costs can be reduced. Further, the circular opening 31 of the intermediate member 30D functions as a stop of the optical element OE. Since the intermediate member 30D is made of a black material, it also functions as a light blocking member that cuts unnecessary light.

図8の光学素子においては、中間部材30Dが光学素子OEの周囲でカットされているため、アームを有しておらず、従って中間部材30Dの円形の開口31を、光学素子OEの絞りとして機能させた例である。   In the optical element of FIG. 8, since the intermediate member 30D is cut around the optical element OE, it does not have an arm. Therefore, the circular opening 31 of the intermediate member 30D functions as a stop of the optical element OE. This is an example.

図9の光学素子においては、図8の例と同様に中間部材30Dが光学素子OEの周囲でカットされているため、アームを有していない。但し、中間部材30Dの開口31を矩形状として、固体撮像素子に光学像を結像するのに適した構成としている。   In the optical element of FIG. 9, since the intermediate member 30D is cut around the optical element OE as in the example of FIG. 8, it does not have an arm. However, the opening 31 of the intermediate member 30D has a rectangular shape, which is suitable for forming an optical image on the solid-state imaging device.

以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。   The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be modified or improved as appropriate.

本実施の形態による光学素子の金型及び中間部材の斜視図である。It is a perspective view of the metal mold | die and intermediate member of the optical element by this Embodiment. 本実施の形態の金型及び中間部材を用いて光学素子を成形する工程を示す概略図である。It is the schematic which shows the process of shape | molding an optical element using the metal mold | die and intermediate member of this Embodiment. 第2の実施の形態にかかる中間部材30Aの斜視図である。It is a perspective view of intermediate member 30A concerning a 2nd embodiment. 第3の実施の形態にかかる中間部材30Bを金型と共に示す概略断面図である。It is a schematic sectional drawing which shows the intermediate member 30B concerning 3rd Embodiment with a metal mold | die. 第4の実施の形態にかかる中間部材と金型を示す概略断面図である。It is a schematic sectional drawing which shows the intermediate member and metal mold | die concerning 4th Embodiment. 第4の実施の形態にかかる中間部材と金型を示す概略断面図である。It is a schematic sectional drawing which shows the intermediate member and metal mold | die concerning 4th Embodiment. 図6の中間部材と金型を用いて成形された光学素子の例を示す図である。It is a figure which shows the example of the optical element shape | molded using the intermediate member and metal mold | die of FIG. 図6の中間部材と金型を用いて成形された光学素子の例を示す図である。It is a figure which shows the example of the optical element shape | molded using the intermediate member and metal mold | die of FIG. 図6の中間部材と金型を用いて成形された光学素子の例を示す図である。It is a figure which shows the example of the optical element shape | molded using the intermediate member and metal mold | die of FIG.

符号の説明Explanation of symbols

10 上型
11 上方キャビティ
12 ピン孔
20 下型
21 下方キャビティ
22 整合ピン
23 大溝
24 テーパ溝
25 ゲート部
26 突出部
30 中間部材
30A 中間部材
30B 中間部材
30C 中間部材
30D 中間部材
30a アーム
31 開口
32 整合孔
33 切欠部
34 切欠部
35 ゲート部
40 油圧シリンダ
41 圧力センサ
42 制御装置
50 ヒータ
OE 光学素子
10 Upper mold 11 Upper cavity 12 Pin hole 20 Lower mold 21 Lower cavity 22 Alignment pin 23 Large groove 24 Tapered groove 25 Gate part 26 Projection part 30 Intermediate member 30A Intermediate member 30B Intermediate member 30C Intermediate member 30D Intermediate member 30a Arm 31 Opening 32 Alignment Hole 33 Notch 34 Notch 35 Gate 40 Hydraulic cylinder 41 Pressure sensor 42 Controller 50 Heater OE Optical element

Claims (17)

光学素子を転写成形するために相対移動可能な一対の金型の間に中間部材を介在させる工程と、
前記一対の金型を近接する方向に相対移動して前記中間部材を圧縮させる工程と、
前記中間部材を圧縮させた状態で前記一対の金型のキャビティ内に、液体状の熱硬化性樹脂を注入して硬化させる工程と、
前記一対の金型を離れる方向に相対移動させる工程とを有し、
前記中間部材の少なくとも一部は、前記一対の金型のキャビティ内に突き出しており、光学素子の成形後に、成形された光学素子と一体となり遮光部材として機能することを特徴とする光学素子の製造方法。
Interposing an intermediate member between a pair of relatively movable molds for transfer molding of the optical element;
A step of compressing the intermediate member by relatively moving the pair of molds in the approaching direction;
Injecting and curing a liquid thermosetting resin into the cavities of the pair of molds in a state where the intermediate member is compressed, and
Possess a step of relatively moving in a direction away the pair of molds,
At least a part of the intermediate member protrudes into the cavity of the pair of molds, and after the optical element is molded, the optical element is integrated with the molded optical element and functions as a light shielding member. Method.
前記中間部材の材料が、銅、りんせい銅、アルミニウムの少なくとも1つであることを特徴とする請求項1に記載の光学素子の製造方法。   2. The method of manufacturing an optical element according to claim 1, wherein the material of the intermediate member is at least one of copper, phosphorous copper, and aluminum. 前記中間部材の材料が樹脂であることを特徴とする請求項1に記載の光学素子の製造方法。   The method for manufacturing an optical element according to claim 1, wherein the material of the intermediate member is a resin. 前記中間部材を、前記熱硬化性樹脂と同じ素材から形成したことを特徴とする請求項に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 3 , wherein the intermediate member is made of the same material as the thermosetting resin. 前記一対の金型の少なくとも一方には、外部から前記キャビティに前記熱硬化性樹脂を注入するための溝状の流路が形成されており、前記中間部材は、前記流路から前記熱硬化樹脂が漏れないようにシールすることを特徴とする請求項1〜のいずれかに記載の光学素子の製造方法。 At least one of the pair of molds is formed with a groove-like flow path for injecting the thermosetting resin into the cavity from the outside, and the intermediate member extends from the flow path to the thermosetting resin. the method for manufacturing an optical element according to any one of claims 1 to 4, characterized in that for sealing such leakage. 前記一対の金型の間隔に応じて前記中間部材圧縮され、成形される光学素子の厚さ調整されることを特徴とする請求項1〜のいずれかに記載の光学素子の製造方法。 Wherein in response to said distance between the pair of molds intermediate member is compressed, method for manufacturing an optical element according to any one of claims 1 to 5 the thickness of the optical element to be molded, characterized in Rukoto adjusted . 前記一対の金型の一部を互いに当接させることにより、前記中間部材の圧縮量が規制されることを特徴とする請求項1〜のいずれかに記載の光学素子の製造方法。 Wherein by abutting each other part of the pair of molds, method of manufacturing an optical element according to any one of claims 1 to 6, the amount of compression of the intermediate member, characterized in that it is regulated. 前記中間部材と前記熱硬化性樹脂との線膨張係数差を16×10-6以下とすることを特徴とする請求項1〜のいずれかに記載の光学素子の製造方法。 The method for manufacturing an optical element according to any one of claims 1 to 7, characterized in that the said linear expansion coefficient difference between the intermediate member and the thermosetting resin 16 × 10 -6 or less. 前記中間部材に、前記熱硬化性樹脂の流路を形成したことを特徴とする請求項1〜8のいずれかに記載の光学素子の製造方法。   The optical element manufacturing method according to claim 1, wherein a flow path for the thermosetting resin is formed in the intermediate member. 前記中間部材の熱伝導率は、前記金型の熱伝導率と同じか、より高いことを特徴とする請求項1〜9のいずれかに記載の光学素子の製造方法。   The method of manufacturing an optical element according to claim 1, wherein the thermal conductivity of the intermediate member is the same as or higher than the thermal conductivity of the mold. 前記中間部材は、金属板の少なくとも一方の面に樹脂層を形成してなることを特徴とする請求項1〜10のいずれかに記載の光学素子の製造方法。   The method for manufacturing an optical element according to claim 1, wherein the intermediate member is formed by forming a resin layer on at least one surface of a metal plate. 成形された光学素子と一体となる前記中間部材の少なくとも一部は黒色であることを特徴とする請求項1〜11のいずれかに記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 1, wherein at least a part of the intermediate member integrated with the molded optical element is black. 成形された光学素子と一体となる前記中間部材の少なくとも一部は、円形の開口を有することを特徴とする請求項1〜12のいずれかに記載の光学素子の製造方法。 The method for manufacturing an optical element according to any one of claims 1 to 12, wherein at least a part of the intermediate member integrated with the molded optical element has a circular opening. 成形された光学素子と一体となる前記中間部材の少なくとも一部は、矩形の開口を有することを特徴とする請求項1〜12のいずれかに記載の光学素子の製造方法。 At least a portion of the intermediate member made integral with the molded optical element, the optical element manufacturing method according to any one of claims 1 to 12, characterized in that it has a rectangular opening. 成形された光学素子と一体となる前記中間部材の少なくとも一部において、前記光学素子から外部へと延在している部分を板ばねとして利用することを特徴とする請求項1〜14のいずれかに記載の光学素子の製造方法。 The portion extending from the optical element to the outside in at least a part of the intermediate member integrated with the molded optical element is used as a leaf spring . The manufacturing method of the optical element of description. 請求項1〜15のいずれかに記載の光学素子の製造方法に用いることを特徴とする中間部材。 Intermediate member, which comprises using a method of manufacturing an optical element according to any one of claims 1 to 15. 請求項1〜15のいずれかに記載の光学素子の製造方法により製造されたことを特徴とする光学素子。 Optical element characterized by being manufactured by the manufacturing method of an optical element according to any one of claims 1 to 15.
JP2006355848A 2006-12-28 2006-12-28 Optical element manufacturing method, intermediate member, and optical element Expired - Fee Related JP5077640B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006355848A JP5077640B2 (en) 2006-12-28 2006-12-28 Optical element manufacturing method, intermediate member, and optical element
PCT/JP2007/072743 WO2008081660A1 (en) 2006-12-28 2007-11-26 Process for manufacturing optical element, intermediate member and optical element
TW96148964A TW200909180A (en) 2006-12-28 2007-12-20 Manufacturing method of optical element, intermediate member and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355848A JP5077640B2 (en) 2006-12-28 2006-12-28 Optical element manufacturing method, intermediate member, and optical element

Publications (2)

Publication Number Publication Date
JP2008165039A JP2008165039A (en) 2008-07-17
JP5077640B2 true JP5077640B2 (en) 2012-11-21

Family

ID=39694616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355848A Expired - Fee Related JP5077640B2 (en) 2006-12-28 2006-12-28 Optical element manufacturing method, intermediate member, and optical element

Country Status (1)

Country Link
JP (1) JP5077640B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298749B2 (en) * 2008-10-03 2013-09-25 コニカミノルタ株式会社 Molding method
TWI397464B (en) * 2008-10-15 2013-06-01 Asm Tech Singapore Pte Ltd Optical device molding system
JP6513188B2 (en) * 2015-04-21 2019-05-15 ソマール株式会社 Injection molding method of thermosetting resin composition
KR20230064807A (en) * 2021-11-04 2023-05-11 남도금형(주) double injection mould for stack plate of redox flow battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313309A (en) * 1989-06-10 1991-01-22 Asahi Chem Ind Co Ltd Insert molding method of base
JPH06285874A (en) * 1993-04-06 1994-10-11 Dainippon Printing Co Ltd Manufacture of lense sheet
JP2001124902A (en) * 1999-10-25 2001-05-11 Konica Corp Optical element, optical unit, molded parts provided with the optical element and manufacturing method therefor
JP4054658B2 (en) * 2002-10-31 2008-02-27 オリンパス株式会社 Lens connecting member and lens array mold
JP4345539B2 (en) * 2004-03-26 2009-10-14 株式会社ニコン Method for manufacturing optical element mold and method for manufacturing optical element
JP4923704B2 (en) * 2006-04-28 2012-04-25 ソニー株式会社 Optical element molding apparatus and molding method

Also Published As

Publication number Publication date
JP2008165039A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
US20060284327A1 (en) Optical unit manufacturing method, optical unit, and forming apparatus
KR101087695B1 (en) Lens unit composed of different materials and camera module having the same
JP5105260B2 (en) Optical element manufacturing method and optical element
JP4930773B2 (en) Optical element manufacturing method
TWI551428B (en) Manufacturing method of imaging lens unit
KR101161951B1 (en) Plastic lens, lens module, and lens injection mold
JP5077640B2 (en) Optical element manufacturing method, intermediate member, and optical element
JP2012502816A (en) Molded parts for optical purposes, especially filter rings or lens holders
WO2014162770A1 (en) Lens unit structure for molded lens, and die for molding molded lens
JP2007022905A (en) Optical element device manufacturing method, optical element device and forming apparatus
TW200909180A (en) Manufacturing method of optical element, intermediate member and optical element
EP2319672B1 (en) Element array mold and use of such a lens array mold
CN110554471B (en) Optical lens, camera module and assembling method thereof
CN102782863B (en) The precise intervals of stacked wafer assembly
JP5023719B2 (en) Optical element molding method
WO2013047653A1 (en) Image pickup lens unit and method for manufacturing image pickup lens unit
WO2019033961A1 (en) Photosensitive assembly, imaging module, intelligent terminal, and method and mould for manufacturing photosensitive assembly
KR102233297B1 (en) Non-dicing type grating structure mold for manufacturing microlens and method of manufacturing microlens using the same
KR102041264B1 (en) Apparatus for Manufacturing Wafer Level Lens
JP2008230084A (en) Mold for insert molding and centering method
JP7031666B2 (en) Molding equipment and manufacturing method of molded products
US20060269646A1 (en) Molding metal mold and method for producing the molding metal mold
US20140055868A1 (en) Plastic Lens with Improved Eccentricity and Method for Manufacturing the Same
KR101113523B1 (en) Injection mold for forming lens
TWI581031B (en) Wafer level lens system and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees