JPWO2008096714A1 - Resin-sealed light emitting device, planar light source, method for producing the same, and liquid crystal display device - Google Patents

Resin-sealed light emitting device, planar light source, method for producing the same, and liquid crystal display device Download PDF

Info

Publication number
JPWO2008096714A1
JPWO2008096714A1 JP2008557105A JP2008557105A JPWO2008096714A1 JP WO2008096714 A1 JPWO2008096714 A1 JP WO2008096714A1 JP 2008557105 A JP2008557105 A JP 2008557105A JP 2008557105 A JP2008557105 A JP 2008557105A JP WO2008096714 A1 JPWO2008096714 A1 JP WO2008096714A1
Authority
JP
Japan
Prior art keywords
light
light emitting
resin
emitting element
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008557105A
Other languages
Japanese (ja)
Inventor
俊二 渡辺
俊二 渡辺
雅之 四條
雅之 四條
香織 江面
香織 江面
嘉信 江面
嘉信 江面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2008096714A1 publication Critical patent/JPWO2008096714A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Planar Illumination Modules (AREA)

Abstract

発光素子と、該発光素子から発される光束を制御可能な形状に成形された、熱可塑性樹脂からなる光束制御部材とを、前記発光素子の光出射面と前記光束制御部材の光入射面の間に硬化性樹脂を介在させた状態で、前記硬化性樹脂を硬化させて接合する、樹脂封止発光素子の製造方法。A light emitting element and a light flux controlling member made of a thermoplastic resin formed into a shape capable of controlling a light flux emitted from the light emitting element, a light emitting surface of the light emitting element and a light incident surface of the light flux controlling member. A method for producing a resin-sealed light emitting element, wherein the curable resin is cured and bonded with a curable resin interposed therebetween.

Description

本発明は、光束制御部材を備えた樹脂封止発光素子、平面状光源及びそれらの製造方法、並びに液晶表示装置に関する。   The present invention relates to a resin-sealed light emitting device including a light flux controlling member, a planar light source, a manufacturing method thereof, and a liquid crystal display device.

代表的な発光素子である発光ダイオード(Light Emitting Diode、LED)素子は、p型半導体とn型半導体を接合させ、それぞれを正極と負極に接合し順方向に電圧印加して、p型半導体の正孔(ホール)とn型半導体の電子(エレクトロン)をpn接合近辺で結合させることにより発光させる素子である。   A light emitting diode (LED) element, which is a typical light emitting element, joins a p-type semiconductor and an n-type semiconductor, joins each of them to a positive electrode and a negative electrode, applies a voltage in the forward direction, and applies a voltage in the forward direction. It is an element that emits light by combining holes (holes) and electrons (electrons) of an n-type semiconductor near a pn junction.

このようなLED素子は、プロジェクタの光源や、液晶表示装置等のフラットパネルディスプレイ用バックライトに応用されている。例えば、特許文献1には、青、緑、赤の三原色のLEDを配列させて光学素子とし、液晶パネルに投射して白色光をつくり、これをディスプレイ用バックライトに利用する技術が開示されている。   Such an LED element is applied to a light source of a projector or a backlight for a flat panel display such as a liquid crystal display device. For example, Patent Literature 1 discloses a technology in which LEDs of three primary colors of blue, green, and red are arranged to form an optical element, projected onto a liquid crystal panel to produce white light, and used as a display backlight. Yes.

LED素子を用いたバックライトは、従来の冷陰極管を用いたものと比べて長寿命であり、またディスプレイの広色域化に有利であるという特徴を有するが、複数のLED素子を配列させて一定の面積を均一に照明するためには、各LED素子の放射光束の指向性を適切に制御する必要がある。放射光束の指向性を制御するための構造を有するLED素子は、例えば特許文献2に開示されている。バックライト装置の光源に適したLED素子及びそのLED素子を用いたバックライト装置の例については、特許文献3及び特許文献4に開示されている。
国際公開第WO03/107319号パンフレット 米国特許第5013144号明細書 特開2006−286906号公報 特開2006−92983号公報
Backlights using LED elements have a longer life than those using conventional cold-cathode tubes and are advantageous for widening the color gamut of displays. In order to uniformly illuminate a certain area, it is necessary to appropriately control the directivity of the luminous flux of each LED element. An LED element having a structure for controlling the directivity of a radiation beam is disclosed in, for example, Patent Document 2. Examples of an LED element suitable for a light source of a backlight device and a backlight device using the LED element are disclosed in Patent Literature 3 and Patent Literature 4.
International Publication No. WO03 / 107319 Pamphlet US Pat. No. 5,013,144 JP 2006-286906 A JP 2006-92983 A

特許文献2に記載されているように、放射光束の指向性を制御するための構造を形成させるためには、LED素子を液状のエポキシ樹脂中に浸漬した状態で、このエポキシ樹脂を硬化させる方法が一般的であるが、このような成型方法ではエポキシ樹脂の硬化収縮や反応熱の発生などにより、高精度の素子を製造することが困難であり、製造効率も低下する。   As described in Patent Document 2, in order to form a structure for controlling the directivity of a radiated light beam, a method of curing the epoxy resin while the LED element is immersed in a liquid epoxy resin However, in such a molding method, it is difficult to manufacture a highly accurate element due to curing shrinkage of epoxy resin, generation of reaction heat, and the like, and the manufacturing efficiency is also lowered.

そこで本発明の目的は、光量損失が十分なレベルまで低減された発光素子を効率よく製造する方法を提供することにある。本発明の目的はまた、そのような発光素子を光源とする平面状光源及びその製造方法、並びにこの平面上光源を用いた液晶表示装置を提供することにある。   Therefore, an object of the present invention is to provide a method for efficiently manufacturing a light emitting device in which the light loss is reduced to a sufficient level. Another object of the present invention is to provide a planar light source using such a light emitting element as a light source, a method for manufacturing the same, and a liquid crystal display device using the planar light source.

本発明の樹脂封止発光素子の製造方法は、発光素子と、発光素子から発される光束を制御可能な形状に成形された、熱可塑性樹脂からなる光束制御部材とを、発光素子の光出射面と光束制御部材の光入射面の間に硬化性樹脂を介在させた状態で、硬化性樹脂を硬化させて接合することを特徴とする。   A method for manufacturing a resin-sealed light emitting device according to the present invention includes: a light emitting device; and a light beam control member made of a thermoplastic resin that is molded into a shape capable of controlling a light beam emitted from the light emitting device. The curable resin is cured and bonded in a state where the curable resin is interposed between the surface and the light incident surface of the light flux controlling member.

ここで、硬化性樹脂は熱硬化性樹脂であることが好ましく、このような樹脂を用いた場合は、樹脂封止発光素子は以下の方法により得ることができる。すなわち、発光素子と、予め所定形状に成形された熱可塑性樹脂からなる光束制御部材とを用意し、発光素子の光出射面と光束制御部材の光入射面とを熱硬化性樹脂のモノマー組成物により貼着した後、モノマー組成物を所定の硬化温度で加熱硬化させて発光素子と前記光束制御部材とを所定の相対位置に固結することを特徴とする製造方法により樹脂封止発光素子が提供できる。   Here, the curable resin is preferably a thermosetting resin, and when such a resin is used, the resin-sealed light-emitting element can be obtained by the following method. That is, a light emitting element and a light flux control member made of a thermoplastic resin molded in a predetermined shape are prepared, and a light emitting surface of the light emitting element and a light incident surface of the light flux control member are provided as a monomer composition of a thermosetting resin. The resin-encapsulated light-emitting element is manufactured by the manufacturing method, wherein the monomer composition is heat-cured at a predetermined curing temperature and the light-emitting element and the light flux controlling member are consolidated at a predetermined relative position. Can be provided.

本発明においては、硬化性樹脂を硬化させて接合する温度Tc(℃)と、前記熱可塑性樹脂の熱変形温度Td(℃)とは、以下の式(1)を満たすことが好ましい。
Tc≦Td−20 …(1)
In the present invention, it is preferable that the temperature Tc (° C.) at which the curable resin is cured and bonded and the heat distortion temperature Td (° C.) of the thermoplastic resin satisfy the following formula (1).
Tc ≦ Td-20 (1)

また、硬化性樹脂の硬化後の屈折率は、発光素子の光出射面を構成する素材の屈折率よりも低く、且つ熱可塑性樹脂の屈折率よりも高くすることが好適であり、硬化性樹脂としては、エピスルフィド樹脂又はチオウレタン樹脂を用いることができる。   The refractive index after curing of the curable resin is preferably lower than the refractive index of the material constituting the light emitting surface of the light emitting element and higher than the refractive index of the thermoplastic resin. As such, an episulfide resin or a thiourethane resin can be used.

光束制御部材として特に好ましいのは、光入射面に発光素子を収容するための凹部が設けられており、この凹部が曲面を有しておりその表面が平滑である光束制御部材である。すなわち、光束制御部材の光入射面に前記発光素子を収容するための凹部が設けられ、かつこの凹部の表面が平滑曲面により構成されていることが好ましい。   Particularly preferable as the light flux controlling member is a light flux controlling member in which a concave portion for accommodating the light emitting element is provided on the light incident surface, the concave portion has a curved surface, and the surface thereof is smooth. That is, it is preferable that a concave portion for accommodating the light emitting element is provided on the light incident surface of the light flux controlling member, and the surface of the concave portion is constituted by a smooth curved surface.

この場合において、凹部が球面形状を有しており、発光素子の発光点がこの球面形状の曲率中心に位置していることが特に好適である。   In this case, it is particularly preferable that the concave portion has a spherical shape, and the light emitting point of the light emitting element is located at the center of curvature of the spherical shape.

本発明における発光素子は単一の発光素子のみに限定されず、予め基板上に所定の配列をなして固定された複数の発光素子であってもよい。すなわち、発光素子を、基板上に配列した複数の発光素子とし、発光素子のそれぞれと光束制御部材とを接合することで、複数の樹脂封止発光素子を配列させてアレイとすることができる。   The light-emitting elements in the present invention are not limited to a single light-emitting element, and may be a plurality of light-emitting elements fixed in advance in a predetermined arrangement on a substrate. That is, the light emitting element is a plurality of light emitting elements arranged on the substrate, and a plurality of resin-sealed light emitting elements can be arranged to form an array by joining each of the light emitting elements and the light flux controlling member.

なお、発光素子としては発光ダイオード(LED)を用いることができ、特にベアチップLED素子を用いることが好ましい。   Note that a light emitting diode (LED) can be used as the light emitting element, and it is particularly preferable to use a bare chip LED element.

上述の製造方法により樹脂封止発光素子の製造が可能となる。すなわち、発光素子と、発光素子から発される光束を制御可能な形状に成形された熱可塑性樹脂からなる光束制御部材とを有する樹脂封止発光素子であって、発光素子の光出射面と光束制御部材の光入射面とが、硬化性樹脂の硬化物で接合されている樹脂封止発光素子が提供される。   The resin-encapsulated light emitting device can be manufactured by the above manufacturing method. That is, a resin-sealed light emitting element having a light emitting element and a light flux controlling member made of a thermoplastic resin shaped into a shape capable of controlling the light emitted from the light emitting element, the light emitting surface of the light emitting element and the light flux A resin-sealed light-emitting element in which a light incident surface of a control member is bonded with a cured product of a curable resin is provided.

また、本発明の製造方法を適用して平面状光源の製造が可能となる。すなわち、上述の樹脂封止発光素子の製造方法により樹脂封止発光素子を製造する工程と、樹脂封止発光素子を光源として平面状に配置する工程とを含む、平面状光源の製造方法が提供される。このようにして得られた平面状光源は、透過型液晶パネルのバックライト面に配置させて液晶表示装置とすることができる。   In addition, a planar light source can be manufactured by applying the manufacturing method of the present invention. That is, a method for producing a planar light source is provided, which includes a step of producing a resin-sealed light emitting device by the above-described method for producing a resin-sealed light emitting device and a step of arranging the resin-sealed light emitting device as a light source in a planar shape. Is done. The planar light source thus obtained can be disposed on the backlight surface of a transmissive liquid crystal panel to form a liquid crystal display device.

本発明が提供する樹脂封止発光素子及び平面状光源の製造方法によれば、光束制御部材を備えた樹脂封止発光素子、及び該樹脂封止発光素子を光源とする平面状光源装置を効率よく製造することができる。   According to the resin-sealed light emitting device and the planar light source manufacturing method provided by the present invention, a resin-sealed light emitting device including a light flux controlling member and a planar light source device using the resin-sealed light emitting device as a light source are efficiently used. Can be manufactured well.

樹脂封止発光素子の一例を示す断面図であるIt is sectional drawing which shows an example of a resin sealing light-emitting device. 光束制御部材の例を示す断面図であるIt is sectional drawing which shows the example of a light beam control member 基板及び発光素子の例を示す断面図であるIt is sectional drawing which shows the example of a board | substrate and a light emitting element. 樹脂封止発光素子の斜視図であるIt is a perspective view of a resin sealing light emitting element. 基板及び発光素子の例を示す断面図であるIt is sectional drawing which shows the example of a board | substrate and a light emitting element. 平面状光源の一例を示す断面図であるIt is sectional drawing which shows an example of a planar light source.

符号の説明Explanation of symbols

1…光束制御部材、2…発光素子、3…基板、4…硬化性樹脂の硬化物、5…拡散板、10,11…樹脂封止発光素子。   DESCRIPTION OF SYMBOLS 1 ... Light flux control member, 2 ... Light emitting element, 3 ... Board | substrate, 4 ... Hardened | cured material of curable resin, 5 ... Diffuser plate, 10, 11 ... Resin sealing light emitting element.

以下、場合により図面を参照しつつ、本発明の好適な実施形態について詳細に説明するが、本発明は下記実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as the case may be, but the present invention is not limited to the following embodiments. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

図1は本発明の製造方法により得ることのできる樹脂封止発光素子の一実施形態を示す断面図である。図1に示す樹脂封止発光素子10は、基板3上に形成された発光素子2と、発光素子2から発される光束を制御可能な形状に成形された熱可塑性樹脂からなる光束制御部材1とを有するものである。光束制御部材1には発光素子2を収容するための凹部が設けられており、その凹部表面が光入射面に相当する。図1の樹脂封止発光素子10においては、発光素子2の光出射面と光束制御部材1の光入射面とが、硬化性樹脂の硬化物4で接合されている。   FIG. 1 is a cross-sectional view showing an embodiment of a resin-sealed light emitting device that can be obtained by the manufacturing method of the present invention. A resin-sealed light-emitting element 10 shown in FIG. 1 includes a light-emitting element 2 formed on a substrate 3 and a light-beam control member 1 made of a thermoplastic resin formed into a shape capable of controlling a light beam emitted from the light-emitting element 2. It has. The light flux controlling member 1 is provided with a recess for accommodating the light emitting element 2, and the surface of the recess corresponds to the light incident surface. In the resin-sealed light emitting element 10 of FIG. 1, the light emitting surface of the light emitting element 2 and the light incident surface of the light flux controlling member 1 are joined with a cured product 4 of a curable resin.

図1に示す樹脂封止発光素子10は、以下に述べる工程により製造され得る。まず始めに、熱可塑性樹脂を所定形状に成形してなる光束制御部材1を用意する。ここで所定形状とは、発光素子から発される光束を制御可能な形状を意味する。また、本発明における光束制御部材とは、LED等の発光素子から発する光束に所望の指向性を付与するための部材であって、具体的には、レンズ機能を有する形状に成形された透明樹脂部材等である。   The resin-sealed light emitting device 10 shown in FIG. 1 can be manufactured by the steps described below. First, a light flux controlling member 1 formed by molding a thermoplastic resin into a predetermined shape is prepared. Here, the predetermined shape means a shape capable of controlling the light beam emitted from the light emitting element. The light flux controlling member in the present invention is a member for giving desired directivity to a light flux emitted from a light emitting element such as an LED, and specifically, a transparent resin molded into a shape having a lens function. Member.

光束制御部材1は図1に示す形状に限られない。図2(a)〜(d)は、本発明に適用可能な光束制御部材の例を示す断面図である。図2(b)の光束制御部材は図1における光束制御部材1と同一形状を有しているが、図2(a)、(c)及び(d)は図1の光束制御部材1と形状が異なっている。   The light flux controlling member 1 is not limited to the shape shown in FIG. 2A to 2D are cross-sectional views showing examples of light flux controlling members applicable to the present invention. 2 (b) has the same shape as the light flux control member 1 in FIG. 1, but FIGS. 2 (a), (c) and (d) have the same shape as the light flux control member 1 in FIG. Is different.

図2(a)〜(d)に示す光束制御部材はいずれも、発光素子から発される光束が入射する光入射面1bと、入射した光束が制御されて出射する光出射面1aとを有しており、光出射面1a及び光入射面1bは、光入射面1bから入射して光束制御部材1の内部を通過し光出射面1aから出射する光束に対して、後述する所望の指向性を付与するような形状に成形されている。   Each of the light beam control members shown in FIGS. 2A to 2D has a light incident surface 1b on which a light beam emitted from the light emitting element is incident, and a light emission surface 1a on which the incident light beam is controlled and emitted. The light exit surface 1a and the light entrance surface 1b are desired directivities to be described later with respect to a light beam that is incident from the light incident surface 1b, passes through the inside of the light beam control member 1, and exits from the light output surface 1a. It is formed into a shape that gives

例えば図2(a)に示した光束制御部材1では、光入射面1bは平滑平面に成形され、光出射面1aは中心付近に内向きの傾斜面1dを有する平滑曲面に成形されている。このような形状を有する光束制御部材の光入射面1bに光出射面1a方向に向かう光線を入射させると、傾斜面1dの傾斜角度が適切に設定されていれば、光束制御部材1の内部を透過して傾斜面1dに到達した光束は全反射を起こして周囲へ拡散する。このため光束制御部材1の中心を通って光出射面1aから直上に出射する光束の強度が相対的に低下するので、バックライト等の平面状光源装置を構成する発光素子に適用すれば、多数個の発光素子を配列して用いる場合でも、発光素子の直上の輝度が高くなることによって生じる平面内の輝度むらを抑制することができる。なお、本発明において平面が平滑であるとは、JIS B0601(1994)で定義される算術平均粗さRaが、0.1μm以下であることをいう。   For example, in the light flux controlling member 1 shown in FIG. 2A, the light incident surface 1b is formed into a smooth plane, and the light exit surface 1a is formed into a smooth curved surface having an inwardly inclined surface 1d near the center. When a light beam traveling in the direction of the light exit surface 1a is incident on the light incident surface 1b of the light flux controlling member having such a shape, the interior of the light flux controlling member 1 is moved as long as the inclination angle of the inclined surface 1d is appropriately set. The light beam that has passed through and reached the inclined surface 1d undergoes total reflection and diffuses to the surroundings. For this reason, since the intensity of the light beam emitted from the light exit surface 1a through the center of the light beam control member 1 is relatively lowered, a large number of light-emitting elements constituting a planar light source device such as a backlight can be used. Even when a plurality of light emitting elements are used in an array, uneven luminance in a plane caused by an increase in luminance directly above the light emitting elements can be suppressed. In the present invention, that the plane is smooth means that the arithmetic average roughness Ra defined by JIS B0601 (1994) is 0.1 μm or less.

光束制御部材1としては、上述のように部材表面の反射作用又は屈折作用を利用して指向性を制御するものの他、部材を構成する材質自体に所定の屈折率分布を持たせ、部材内部における光線の屈折を利用して指向性を付与する、いわゆるGRIN(GRaded INdex)レンズ等の部材も光束制御部材として用いることが可能である。   As the light flux controlling member 1, the directivity is controlled using the reflecting or refracting action of the member surface as described above, and the material itself constituting the member itself has a predetermined refractive index distribution, A member such as a so-called GRIN (GRreaded Index) lens that imparts directivity by utilizing refraction of light rays can also be used as a light flux controlling member.

光束制御部材1の光入射面1bは図2(a)のように平面であってもよいが、発光素子を収容するための凹部を設けることが好ましい。図2(b)はこのような凹部を設けた光束制御部材の一例である。図2(b)に示す光束制御部材1には、光入射面1bに発光素子を収容するための凹部が設けられており、凹部の少なくとも一部が、発光素子からの放射光束が入射する光入射面1bとして作用する。このとき光入射面1bが粗面であると、光束制御部材1へ入射する光束が光入射面1bで散乱され、入射光量の損失や、出射光束の指向性の低下を生じることが避けられない。したがって凹部の表面は平滑であることが好ましく、凹部は曲面を有していればなお好ましい。   The light incident surface 1b of the light flux controlling member 1 may be a flat surface as shown in FIG. 2A, but it is preferable to provide a concave portion for accommodating the light emitting element. FIG. 2B is an example of a light flux controlling member provided with such a recess. The light flux controlling member 1 shown in FIG. 2B is provided with a concave portion for accommodating the light emitting element on the light incident surface 1b, and at least a part of the concave portion is light into which the radiant light flux from the light emitting element is incident. It acts as the incident surface 1b. At this time, if the light incident surface 1b is a rough surface, the light beam incident on the light beam control member 1 is scattered by the light incident surface 1b, and it is inevitable that the incident light amount is lost and the directivity of the emitted light beam is reduced. . Therefore, the surface of the recess is preferably smooth, and it is more preferable that the recess has a curved surface.

光入射面1bの凹部が曲面を有しこの凹部の表面が平滑である場合において、凹部を球面形状とし、LED等の点光源ないし微小面光源に近い特性を有する発光素子と組み合わせ、さらに発光素子の発光点を球面形状の曲率中心に位置させれば、光入射面1bへの入射光束の入射角をほぼ垂直とすることができるので、反射による損失を著しく低減することが可能になる。また完全な球面としない場合であっても、光入射面1bへの入射角ができるだけ垂直に近くなるような表面形状とすることにより、反射損失を低減することが可能である。   When the concave portion of the light incident surface 1b has a curved surface and the surface of the concave portion is smooth, the concave portion has a spherical shape and is combined with a light emitting element having characteristics close to a point light source or a minute surface light source such as an LED. If the light emitting point is positioned at the center of curvature of the spherical shape, the incident angle of the incident light beam on the light incident surface 1b can be made substantially vertical, so that the loss due to reflection can be remarkably reduced. Even if it is not a perfect spherical surface, it is possible to reduce reflection loss by making the surface shape so that the incident angle to the light incident surface 1b is as vertical as possible.

図2(c)は光出射面1aを砲弾型、光入射面1bを球面形状にそれぞれ成形した光束制御部材の例であり、図2(d)は光出射面1aをフライアイレンズ形状、光入射面1bを球面形状にそれぞれ成形した光束制御部材の例である。   FIG. 2C shows an example of a light beam control member in which the light exit surface 1a is formed into a bullet shape and the light incident surface 1b is formed into a spherical shape. FIG. 2D shows the light exit surface 1a having a fly-eye lens shape and light. This is an example of a light flux controlling member in which the incident surface 1b is formed into a spherical shape.

なお、光出射面1a及び光入射面1bの形状は、組み合わせて用いる発光素子の放射特性を考慮して設計されるべきである。   The shapes of the light exit surface 1a and the light entrance surface 1b should be designed in consideration of the radiation characteristics of the light emitting elements used in combination.

光束制御部材1は、熱可塑性樹脂により構成される。光束制御部材1を構成する熱可塑性樹脂は、発光素子の発光波長のうち、少なくとも光源として利用する波長の光線に対して十分高い光透過性(例えば、光透過率95〜100%)を有し、かつ成形性が良く、表面形状等による指向性の制御精度に優れたものであることが好ましい。このような条件を満たす熱可塑性樹脂としては、ポリエチレン樹脂、ポリカーボネート樹脂、スチレン樹脂、アクリル樹脂、脂環式オレフィン樹脂又は、脂環式オレフィンと鎖状オレフィンの共重合樹脂等、従来より光学材料として用いられている各種熱可塑性樹脂を用いることができるが、なかでも脂環式オレフィン樹脂及び、脂環式オレフィンと鎖状オレフィンの共重合樹脂が特に好適である。これらの樹脂の具体的な例としては、例えば日本ゼオン株式会社のZEONEX(登録商標)、JSR株式会社のARTON(登録商標)、三井化学株式会社のAPEL(登録商標)等を挙げることができる。   The light flux controlling member 1 is made of a thermoplastic resin. The thermoplastic resin constituting the light flux controlling member 1 has a sufficiently high light transmittance (for example, light transmittance of 95 to 100%) with respect to at least a light beam having a wavelength used as a light source among light emission wavelengths of the light emitting element. Moreover, it is preferable that the moldability is good and the directivity control accuracy by the surface shape or the like is excellent. As thermoplastic resins satisfying such conditions, polyethylene resins, polycarbonate resins, styrene resins, acrylic resins, alicyclic olefin resins, or copolymer resins of alicyclic olefins and chain olefins have been conventionally used as optical materials. Various thermoplastic resins that are used can be used, and among them, alicyclic olefin resins and copolymer resins of alicyclic olefins and chain olefins are particularly suitable. Specific examples of these resins include ZEONEX (registered trademark) manufactured by Nippon Zeon Co., Ltd., ARTON (registered trademark) manufactured by JSR Corporation, APEL (registered trademark) manufactured by Mitsui Chemicals, Inc., and the like.

これらの脂環式オレフィン樹脂及び、脂環式オレフィンと鎖状オレフィンの共重合樹脂は、光学的な透明性が高いだけでなく、脂環式構造を有するため耐光性や耐湿性等の耐環境性能に優れており、光束制御部材1として用いれば、耐環境性に優れた樹脂封止発光素子を実現することが可能となる。また、これらの樹脂は耐環境性能のうち耐熱性が特に高いという特徴を有しているため発光素子の発熱によって変形や着色等の劣化を生じにくく、それ自身が長寿命であるLEDと組み合わせることによって、全体として長寿命な樹脂封止発光素子を実現することができる。   These alicyclic olefin resins and copolymer resins of alicyclic olefins and chain olefins not only have high optical transparency, but also have an alicyclic structure, so that they have an environment resistance such as light resistance and moisture resistance. If it is used as the light flux controlling member 1 with excellent performance, it becomes possible to realize a resin-sealed light emitting device with excellent environmental resistance. In addition, since these resins have the feature of particularly high heat resistance among the environmental resistance performances, they are difficult to cause deterioration such as deformation and coloring due to heat generation of the light emitting element, and are combined with LEDs having a long life. Thus, it is possible to realize a resin-sealed light emitting element having a long life as a whole.

なお、耐環境性能に優れ長寿命な樹脂封止発光素子を実現することができるという本発明の効果は、分子中に酸素原子等の極性原子や不飽和結合を含まず、飽和炭化水素のみからなる熱可塑性樹脂を用いた場合に特に顕著である。   The effect of the present invention that can realize a resin-sealed light emitting device having excellent environmental resistance and a long lifetime is that the molecule does not contain polar atoms such as oxygen atoms or unsaturated bonds, and only from saturated hydrocarbons. This is particularly remarkable when a thermoplastic resin is used.

また本発明において用いられる熱可塑性樹脂は、当業者が通常用いる紫外線吸収剤や可塑剤、内部離型剤等の添加剤を含んでいても良く、また透過光束に新たなスペクトル分布を付与するための色素や蛍光物質等を含んでいても良い。   In addition, the thermoplastic resin used in the present invention may contain additives such as ultraviolet absorbers, plasticizers, and internal mold release agents that are commonly used by those skilled in the art, and to impart a new spectral distribution to the transmitted light beam. It may contain a dye or a fluorescent substance.

これらの熱可塑性樹脂を発光素子から発される光束を制御可能な形状に成形してなる光束制御部材1は、射出成形(Injection Molding)により成形されたものであることが好ましい。   The light flux controlling member 1 formed by molding these thermoplastic resins into a shape capable of controlling the light emitted from the light emitting element is preferably molded by injection molding.

従来、樹脂封止発光素子は、複数の凹部を有する金型を用いて、凹部内に発光素子を保持した後、凹部に樹脂を充填し、樹脂を硬化させることにより製造されていた。しかし、このような方法では、高屈折率樹脂を用いて光束制御部材を成形すると、成形性が低く、所望の形状の光束制御部材を効率よく得ることはできなかった。一方、射出成形は成形品の形状制御性と量産性の双方に優れた成形方法であり、特に熱可塑性樹脂を射出成形により成形すれば、形状精度の高い成形品を短いサイクルタイムで安価に得ることができるという特徴を有する。本発明では光束制御部材1を発光素子と接合する前に予め成形する(射出成形が好ましい)ので、光束制御部材1を備えた樹脂封止発光素子を効率よく製造することができる。   Conventionally, resin-sealed light-emitting elements have been manufactured by using a mold having a plurality of recesses, holding the light-emitting elements in the recesses, filling the recesses with resin, and curing the resin. However, in such a method, when the light flux controlling member is molded using a high refractive index resin, the moldability is low, and a light flux controlling member having a desired shape cannot be obtained efficiently. On the other hand, injection molding is a molding method that is excellent in both shape controllability and mass productivity of a molded product. In particular, if a thermoplastic resin is molded by injection molding, a molded product with high shape accuracy can be obtained at low cost in a short cycle time. It has the feature that it can be. In the present invention, since the light flux controlling member 1 is molded in advance before joining the light emitting element (injection molding is preferred), the resin-sealed light emitting element provided with the light flux controlling member 1 can be efficiently manufactured.

光束制御部材を備える発光素子は、所定形状のパッケージに封入された発光素子を作製し、その形状を嵌合可能な凹部を形成した光束制御部材に嵌め込む方法によっても製造することができるが、このような方法では、嵌め込んだ後に生じる光束制御部材と発光素子との間の隙間により発光特性が損なわれる不具合があり、間隙が生じないようなサイズの発光素子を無理に嵌め込もうとすると、生産性が大きく損なわれるばかりでなく、発光素子の破損につながる恐れもある。   A light emitting element including a light flux controlling member can be manufactured by a method of manufacturing a light emitting element sealed in a package having a predetermined shape and fitting the light emitting element into a light flux controlling member formed with a recess into which the shape can be fitted. In such a method, there is a problem that light emission characteristics are impaired due to a gap between the light flux controlling member and the light emitting element generated after fitting, and when trying to forcibly insert a light emitting element of a size that does not cause a gap. The productivity is not only greatly impaired, but the light emitting element may be damaged.

これに対し、本発明の製造方法は、後に詳述するように、発光素子の光出射面と光束制御部材の光入射面の間に硬化性樹脂を介在させた状態で、硬化性樹脂を硬化させて接合する方法であるため、生産性に優れるのみならず、発光素子や光束制御部材の破損の問題も生じ難く、光束制御に優れた発光素子を得ることが可能になる。   On the other hand, the manufacturing method of the present invention cures the curable resin with the curable resin interposed between the light emitting surface of the light emitting element and the light incident surface of the light flux controlling member, as will be described in detail later. Therefore, not only the productivity is excellent, but also the problem of breakage of the light emitting element and the light flux controlling member hardly occurs, and a light emitting element excellent in light flux control can be obtained.

光束制御部材1を射出成形により製造する際のシリンダー温度、射出・保持圧力、射出速度、金型温度等の製造条件は、射出成形機の形式、成形金型の形状や構造、熱可塑性樹脂の特性等に応じて当業者が適宜設定することが可能である。   Manufacturing conditions such as cylinder temperature, injection / holding pressure, injection speed, mold temperature, etc. when the light flux controlling member 1 is manufactured by injection molding are the type of injection molding machine, the shape and structure of the mold, the thermoplastic resin It can be set as appropriate by those skilled in the art according to characteristics and the like.

本発明の方法においては、樹脂封止発光素子の製造にあたり、以上説明した光束制御部材1とともに、発光素子も準備する。以下、本発明で用いる発光素子について説明する。   In the method of the present invention, a light emitting element is also prepared together with the light flux controlling member 1 described above in manufacturing a resin-sealed light emitting element. Hereinafter, the light-emitting element used in the present invention will be described.

本発明において用いる発光素子としては、光束制御部材により指向性を制御可能な自発光素子であれば特に制限なく用いることができる。このような発光素子の一種である発光ダイオード(LED)は、小型でエネルギー効率が高く、点光源ないし微小面光源に近い放射特性を有するため指向性の制御が容易で、本発明で用いる発光素子として好適である。   As the light-emitting element used in the present invention, any self-light-emitting element whose directivity can be controlled by a light flux controlling member can be used without any particular limitation. A light-emitting diode (LED) which is a kind of such a light-emitting element is small in size, has high energy efficiency, and has a radiation characteristic close to that of a point light source or a minute surface light source, so that directivity can be easily controlled. It is suitable as.

LEDとしては、パッケージに封入されていない、いわゆるベアチップのLEDを用意することが望ましい。エポキシ樹脂等により予めパッケージされた状態のLEDでは、発光光束がパッケージを透過して出射してくるため、パッケージの製造ばらつきによって出射光の指向性が影響されることが避けられず、所定の形状に成形された光束制御部材と組み合わせても、最終的に所望の指向性を実現できない恐れがあるからである。これに対してベアチップLEDは、出射光の指向性に影響するパッケージが存在しないので、ほぼ点光源ないし微小面光源として取り扱うことができ、所定形状の光束制御部材と組み合わせることによって、出射光の指向性を予め設計したとおりに制御することができるため、本発明に用いる発光素子として適当である。   As the LED, it is desirable to prepare a so-called bare chip LED which is not enclosed in a package. In an LED packaged in advance with an epoxy resin or the like, the emitted light flux is emitted through the package, so that it is unavoidable that the directivity of the emitted light is affected by the manufacturing variation of the package, and it has a predetermined shape. This is because there is a possibility that the desired directivity may not be finally realized even when combined with the light flux controlling member formed in the above. On the other hand, since the bare chip LED does not have a package that affects the directivity of the emitted light, it can be handled almost as a point light source or a minute surface light source. Therefore, the light-emitting element used in the present invention is suitable.

発光素子2は光束制御部材と接合する前に、予め基板3上に固定しておくことが好ましい(図5)。基板の材質・形状や、発光素子を基板へ固定する方法は任意である。ベアチップの発光素子2を用いる場合、その実装方法には、ベアチップの配線面を基板3に対向させるフリップチップ実装と、ベアチップのウェハ面を基板3に対向させるフェイスアップ実装とがある。どちらを選ぶかは任意であるが、後の工程で用いる硬化性樹脂の硬化後の屈折率と、ベアチップの配線面及びウェハ面のそれぞれを構成する素材の屈折率とを比較して、ウェハ面の屈折率の方が配線面の屈折率よりも硬化性樹脂の硬化後の屈折率に近い場合にはフリップチップ実装とし、配線面の屈折率の方がウェハ面の屈折率よりも硬化性樹脂の硬化後の屈折率に近い場合にはフェイスアップ実装とすることが好ましい。硬化性樹脂の硬化後の屈折率と、これに直接接する面を構成する素材の屈折率の差が小さいほど、界面における反射損失を低減することができる。   The light emitting element 2 is preferably fixed on the substrate 3 in advance before being joined to the light flux controlling member (FIG. 5). The material and shape of the substrate and the method for fixing the light emitting element to the substrate are arbitrary. When the bare chip light emitting element 2 is used, the mounting method includes flip chip mounting in which the wiring surface of the bare chip faces the substrate 3 and face-up mounting in which the wafer surface of the bare chip faces the substrate 3. Which one is selected is arbitrary, but the wafer surface is compared by comparing the refractive index after curing of the curable resin used in the subsequent process with the refractive index of the material constituting each of the wiring surface of the bare chip and the wafer surface. If the refractive index is closer to the refractive index after curing of the curable resin than the refractive index of the wiring surface, flip chip mounting is used, and the refractive index of the wiring surface is more curable than the refractive index of the wafer surface. When the refractive index after curing is close to that of face-up mounting, it is preferable. The smaller the difference between the refractive index after curing of the curable resin and the refractive index of the material constituting the surface in direct contact with the curable resin, the lower the reflection loss at the interface.

ここで、屈折率は、発光素子の発光ピーク波長λについてマルチ分光ゴニオフォトメータ(例えば、テックワールド社製TPM−2500)を用いて25℃の環境下で測定して得ることができる。Here, the refractive index can be obtained by measuring the emission peak wavelength λ 0 of the light-emitting element using a multi-spectral goniometer (for example, TPM-2500 manufactured by Tech World) in an environment of 25 ° C.

樹脂封止発光素子をディスプレイ用バックライト等の平面状光源装置の製造に用いる場合には、一枚の基板上に複数の発光素子が固定されたものを用いてもよい。図3は、このような構成の例であって、基板3上の予め定められた位置に複数の発光素子2が固定されている状態を示すものである。この例において複数の発光素子2のそれぞれは、赤色(R)、緑色(G)、又は青色(B)のいずれかを発光する発光素子であり、それぞれの発光素子2からの放射光束に所定の指向性を付与することで、混色により均一な白色面状光源となるように配置されている。   In the case where the resin-sealed light emitting element is used for manufacturing a planar light source device such as a display backlight, a plurality of light emitting elements fixed on a single substrate may be used. FIG. 3 is an example of such a configuration, and shows a state in which a plurality of light emitting elements 2 are fixed at predetermined positions on the substrate 3. In this example, each of the plurality of light-emitting elements 2 is a light-emitting element that emits red (R), green (G), or blue (B). By providing directivity, the light source is arranged to be a uniform white surface light source by color mixing.

発光素子として、基板3上に複数の発光素子2が所定の配列で固定されたものを用い、発光素子2のそれぞれに光束制御部材を接合する場合には、予め基板3にアライメントマーク等の位置決め手段を形成しておけば、発光素子2や光束制御部材1の固定位置を高い精度で決定することができる。   When a light emitting element is used in which a plurality of light emitting elements 2 are fixed in a predetermined arrangement on a substrate 3 and a light flux controlling member is bonded to each of the light emitting elements 2, positioning of alignment marks or the like on the substrate 3 in advance is performed. If the means is formed, the fixed positions of the light emitting element 2 and the light flux controlling member 1 can be determined with high accuracy.

以上、本発明に用いる発光素子についてLEDを例にとり説明したが、有機EL(エレクトロルミネッセンス)素子や半導体レーザー等、他の発光原理による発光素子も同様に使用することができる。また、面光源に近い放射特性を有する発光素子であっても、発光素子の放射特性にあわせて光束制御部材の形状等を設計することが可能であるならば、本発明における発光素子として使用可能である。   As described above, the light emitting element used in the present invention has been described by taking the LED as an example. However, light emitting elements based on other light emission principles such as an organic EL (electroluminescence) element and a semiconductor laser can be used as well. Further, even a light emitting element having a radiation characteristic close to that of a surface light source can be used as the light emitting element in the present invention if the shape of the light flux controlling member can be designed in accordance with the radiation characteristic of the light emitting element. It is.

上記の光束制御部材及び発光素子を用意した後、発光素子の光出射面と光束制御部材の光入射面の間に硬化性樹脂を介在させた状態で、硬化性樹脂を硬化させて、発光素子と光束制御部材を接合する。   After preparing the light flux controlling member and the light emitting element, the curable resin is cured in a state where the curable resin is interposed between the light emitting surface of the light emitting element and the light incident surface of the light flux controlling member. And the light flux controlling member.

硬化性樹脂としては、熱硬化性樹脂、光硬化樹脂(紫外線硬化樹脂等)、湿気硬化樹脂、二液混合型の硬化性樹脂等が挙げられる。硬化性樹脂は、硬化剤や架橋剤、硬化促進剤、光増感剤を含有していてもよく、そのような成分を含有せず、加熱や光照射などによりそれ自身硬化するようなものであってもよい。   Examples of the curable resin include a thermosetting resin, a photocurable resin (such as an ultraviolet curable resin), a moisture curable resin, and a two-component mixed curable resin. The curable resin may contain a curing agent, a crosslinking agent, a curing accelerator, and a photosensitizer, and does not contain such a component, and is itself cured by heating or light irradiation. There may be.

硬化性樹脂としては、熱硬化性樹脂のモノマー組成物が好ましい。ここで熱硬化性樹脂のモノマー組成物とは、熱硬化性樹脂のモノマーに硬化剤や紫外線吸収剤等の添加剤を必要に応じて添加したものであって、加熱により所望の特性を有する硬化物を得ることができる状態に調製されている組成物をいう。   As the curable resin, a monomer composition of a thermosetting resin is preferable. Here, the monomer composition of the thermosetting resin is a thermosetting resin monomer that is added with additives such as a curing agent or an ultraviolet absorber as necessary, and has a desired property by heating. It refers to a composition that has been prepared so that a product can be obtained.

本発明に用いる熱硬化性樹脂としては、その硬化後の屈折率が、光束制御部材を構成する熱可塑性樹脂の屈折率よりも高く、かつ発光素子の光出射面を構成する素材の屈折率よりも低いものを選択して用いることが好ましい。   As the thermosetting resin used in the present invention, the refractive index after curing is higher than the refractive index of the thermoplastic resin constituting the light flux controlling member and the refractive index of the material constituting the light emitting surface of the light emitting element. Is preferably selected and used.

熱可塑性樹脂からなる光束制御部材を発光素子の光出射面に直接接合すると、両者の屈折率は相当程度異なるため、フレネル反射に起因する光量損失が生じ、また界面における全反射角が小さくなることにより全反射光束の割合が増大して、光束制御部材を通して最終的に利用可能な光量が低下してしまう。そこで光束制御部材と発光素子の光出射面との間に両者の中間の屈折率(硬化後)を有する熱硬化性樹脂層を配置すれば、界面におけるフレネル反射率を低下させる効果があるだけでなく、全反射角の増大により全反射光束の割合も低減されるので、光束制御部材を通して利用可能な光量を増加させることが可能となる。なお、本発明において屈折率の高低の比較は、光束制御の中心となる波長における屈折率を基準として行う。   When a light beam control member made of a thermoplastic resin is directly bonded to the light emitting surface of the light emitting element, the refractive indexes of the two are considerably different, resulting in light loss due to Fresnel reflection and a reduction in the total reflection angle at the interface. As a result, the ratio of the total reflected light beam increases, and the amount of light finally available through the light beam control member decreases. Therefore, if a thermosetting resin layer having an intermediate refractive index (after curing) is disposed between the light flux controlling member and the light emitting surface of the light emitting element, only the effect of reducing the Fresnel reflectivity at the interface is obtained. In addition, since the ratio of the total reflected light beam is also reduced by increasing the total reflection angle, the amount of light that can be used through the light beam control member can be increased. In the present invention, the comparison of the refractive index levels is performed based on the refractive index at the wavelength that is the center of the light beam control.

熱硬化性樹脂の具体的な例としては、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、エピスルフィド樹脂、チオウレタン樹脂等が挙げられるが、一般に発光素子の光出射面を構成する素材の屈折率は2.5〜3.5と高い値を有することから、より高い屈折率が得られる点で、硫黄原子を有する熱可塑性樹脂を用いることが好ましく、エピスルフィド樹脂又はチオウレタン樹脂を用いることが特に好ましい。   Specific examples of the thermosetting resin include an epoxy resin, a urethane resin, a silicone resin, an episulfide resin, a thiourethane resin, and the like. Generally, the refractive index of the material constituting the light emitting surface of the light emitting element is 2. Since it has a high value of 5 to 3.5, it is preferable to use a thermoplastic resin having a sulfur atom, and it is particularly preferable to use an episulfide resin or a thiourethane resin in terms of obtaining a higher refractive index.

ここでエピスルフィド樹脂とは、エピスルフィド構造を有する含硫黄化合物を重合硬化して得られる樹脂であり、このような樹脂の具体的な例は、特開平10−298287号公報に開示されている。また、チオウレタン樹脂とは、別名チオカルバミン酸S−アルキルエステル系樹脂であり、このような樹脂の具体的な例は、特開昭60−199016号公報に開示されているとおりである。   Here, the episulfide resin is a resin obtained by polymerizing and curing a sulfur-containing compound having an episulfide structure, and a specific example of such a resin is disclosed in JP-A-10-298287. The thiourethane resin is also known as a thiocarbamic acid S-alkyl ester resin, and a specific example of such a resin is as disclosed in JP-A-60-199016.

発光素子の光出射面と光束制御部材の光入射面の間に硬化性樹脂を介在させた状態で、硬化性樹脂を硬化させて接合するには、光束制御部材と発光素子との少なくとも一方に未硬化の硬化性樹脂(又は硬化が終了していない硬化性樹脂)の一定量を付着させた後、両者を対向させて固定又は貼着すればよい。この場合において、圧力印加や真空脱気等を行いながら所定位置に固定又は貼着することが好ましい。熱硬化性樹脂のモノマー組成物を用いる場合は、貼着面(接合面)に気泡や空間を生じないように、適正量のモノマー組成物を用いることが重要である。   In order to cure and bond the curable resin with the curable resin interposed between the light emitting surface of the light emitting element and the light incident surface of the light flux controlling member, at least one of the light flux controlling member and the light emitting element is used. After a certain amount of uncured curable resin (or curable resin that has not been cured) is attached, both may be fixed or stuck together. In this case, it is preferable to fix or stick to a predetermined position while applying pressure or vacuum deaeration. When using a monomer composition of a thermosetting resin, it is important to use an appropriate amount of the monomer composition so as not to generate bubbles or spaces on the sticking surface (bonding surface).

光束制御部材の光入射面と発光素子の光出射面とを固定又は貼着したら、両者を所定の相対位置に保持しながら所定の硬化温度(例えば、80〜100℃)に加熱してモノマー組成物を硬化させ、光束制御部材と発光素子とが所定位置に接合された樹脂封止発光素子を製造する。この際、硬化性樹脂を硬化させて接合する温度Tc(℃)(熱硬化性樹脂を用いる場合には熱硬化性樹脂の熱硬化温度)は、光束制御部材を構成する熱可塑性樹脂の熱変形温度Td(℃)より少なくとも20℃以上低く設定することが望ましい。すなわちTc≦Td−20(すなわち、Td−Tc≧20)の関係を満たすことが望ましい。   When the light incident surface of the light flux controlling member and the light emitting surface of the light emitting element are fixed or adhered, the monomer composition is heated to a predetermined curing temperature (for example, 80 to 100 ° C.) while holding both at a predetermined relative position. The product is cured to manufacture a resin-sealed light-emitting element in which the light flux controlling member and the light-emitting element are bonded to a predetermined position. At this time, the temperature Tc (° C.) at which the curable resin is cured and joined (the thermosetting temperature of the thermosetting resin when a thermosetting resin is used) is the thermal deformation of the thermoplastic resin constituting the light flux controlling member. It is desirable to set it at least 20 ° C. lower than the temperature Td (° C.). That is, it is desirable to satisfy the relationship of Tc ≦ Td−20 (that is, Td−Tc ≧ 20).

TcをTdより低く設定し、かつ両者の温度差を20℃以上とすれば、硬化時の加熱による光束制御部材の変形が防止され、予め適切に設計された表面形状を維持しながら光束制御部材と発光素子とを所定の相対位置に接合(固結)することができる。これに対してTcがTdよりも高い場合、又はTcがTdより低くても両者の差が20℃よりも小さい場合には、モノマー組成物の加熱硬化時に光束制御部材が熱変形を起こし、表面形状の変化等により予定された光束制御性能が得られなくなるという不都合を生じる場合がある。Td−Tcの値は30以上がより好ましく、40以上が更に好ましい。   If Tc is set lower than Td and the temperature difference between the two is 20 ° C. or more, the light flux controlling member is prevented from being deformed by heating during curing, and the light flux controlling member is maintained while maintaining a properly designed surface shape. And the light emitting element can be bonded (consolidated) at a predetermined relative position. On the other hand, when Tc is higher than Td, or when Tc is lower than Td and the difference between the two is less than 20 ° C., the light flux controlling member undergoes thermal deformation during heat curing of the monomer composition, and the surface There may be a disadvantage that the scheduled light flux control performance cannot be obtained due to a change in shape or the like. The value of Td−Tc is more preferably 30 or more, and still more preferably 40 or more.

なお、硬化性樹脂を硬化させて接合する温度Tc(℃)とは、硬化性樹脂が硬化する際の最高到達温度を意味する。熱硬化性樹脂のモノマー組成物を硬化する際には、樹脂のゲル化と完全硬化とを異なる温度で行うために2段階以上のステップ状の昇温プログラムを用いることも可能であるが、この場合には昇温プログラムにおける最高温度が硬化温度Tcとなる。   The temperature Tc (° C.) at which the curable resin is cured and bonded means the highest temperature at which the curable resin is cured. When curing the monomer composition of the thermosetting resin, it is possible to use a stepwise temperature rising program of two or more steps in order to perform the gelation and complete curing of the resin at different temperatures. In this case, the maximum temperature in the temperature raising program is the curing temperature Tc.

なお、本発明において熱変形温度Tdとは、JIS K7191−1,2に記載されている方法により規定される温度である。   In the present invention, the heat distortion temperature Td is a temperature defined by the method described in JIS K7191-1,2.

光束制御部材と発光素子とを所定の相対位置に接合(固結)するためには、両者に光学式アライメントマークや機械的な嵌合構造等の位置決め手段を設けておくことが望ましいが、図3の例のように発光素子2が予め基板3上に固定されている場合には、基板3に位置決め手段を設けておいてもよい。なお、一般的に熱硬化性樹脂のモノマー組成物は、加熱硬化過程において一時的に粘度が低下するため、この際にモノマー組成物が流動して光束制御部材と発光素子の相対位置にずれを生じないよう、適当な固定手段により両者の相対位置を維持しながら加熱硬化することが好ましい。   In order to join (consolidate) the light flux controlling member and the light emitting element at a predetermined relative position, it is desirable to provide positioning means such as an optical alignment mark or a mechanical fitting structure on both. When the light emitting element 2 is fixed on the substrate 3 in advance as in the example 3, positioning means may be provided on the substrate 3. In general, the monomer composition of a thermosetting resin temporarily decreases in viscosity during the heat curing process, and thus the monomer composition flows at this time, and the relative position between the light flux controlling member and the light emitting element is shifted. In order not to occur, it is preferable to carry out heat curing while maintaining the relative position of both by an appropriate fixing means.

以上の工程により、図1の樹脂封止発光素子10のような構造を有する樹脂封止発光素子が製造される。   Through the above steps, a resin-sealed light emitting device having a structure like the resin-sealed light emitting device 10 of FIG. 1 is manufactured.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to a following example.

本実施例は、基板上の所定位置に固定された赤色(R)、緑色(G)、青色(B)の各色LED素子からなる樹脂封止発光素子の製造例及び、該樹脂封止発光素子を光源とする、フラットパネルディスプレイ用バックライトとして利用可能な平面状光源(平面状光源装置)の製造例である。   The present example is a manufacturing example of a resin-sealed light-emitting element composed of red (R), green (G), and blue (B) LED elements fixed at predetermined positions on a substrate, and the resin-sealed light-emitting element. Is a manufacturing example of a planar light source (planar light source device) that can be used as a backlight for a flat panel display.

始めに、光学用グレードの熱可塑性樹脂である日本ゼオン株式会社製ZEONEX−480Rを用い、射出成形により図2(b)の形状を有する光束制御部材を製造する。このときの射出成形による形状制御精度は概ね10μm程度を実現することが可能であり、またサイクルタイムは概ね10〜60秒程度である。なお、ZEONEX−480Rの熱変形温度Tdは120℃であり、587nm(D線)における屈折率は1.53である。   First, a light flux controlling member having the shape shown in FIG. 2B is manufactured by injection molding using ZEONEX-480R manufactured by Nippon Zeon Co., Ltd., which is an optical grade thermoplastic resin. At this time, the shape control accuracy by injection molding can be approximately 10 μm, and the cycle time is approximately 10 to 60 seconds. ZEONEX-480R has a thermal deformation temperature Td of 120 ° C. and a refractive index at 587 nm (D line) of 1.53.

なお、図2(b)の形状を有する光束制御部材1の光入射面1aには、発光素子として用いるベアチップLEDを収容するための凹部が設けられ、その表面が平滑である球面形状に形成されている。また、基板上に固定されたベアチップLEDと組み合わせた際に、LEDの発光点が該球面形状の曲率中心に位置するように成形されている。光束制御部材1の光出射面1aには、光入射面1bから光束制御部材1の中心軸に沿って入射した光線を全反射により排除して直上へ透過させないための傾斜面1dが設けられており、またその他の面は出射光に所定の指向性が付与されるような形状に成形されている。   The light incident surface 1a of the light flux controlling member 1 having the shape shown in FIG. 2B is provided with a recess for accommodating a bare chip LED used as a light emitting element, and the surface thereof is formed into a smooth spherical shape. ing. Further, when combined with the bare chip LED fixed on the substrate, the light emitting point of the LED is formed so as to be positioned at the center of curvature of the spherical shape. The light exit surface 1a of the light beam control member 1 is provided with an inclined surface 1d for preventing light incident from the light incident surface 1b along the central axis of the light beam control member 1 from being totally reflected and not transmitted directly above. In addition, the other surface is formed into a shape that gives a predetermined directivity to the emitted light.

次に、基板上にRGB各色のベアチップLEDを固定する。赤色LEDには昭和電工株式会社製GOD−350(AlInGaP/GaP)を、緑色LEDには同社製GU35R525T(InGaN/サファイア)を、また青色LEDには同社製GU35R470T(InGaN/サファイア)を用いる。   Next, RGB bare-chip LEDs are fixed on the substrate. GOD-350 (AlInGaP / GaP) manufactured by Showa Denko KK is used for the red LED, GU35R525T (InGaN / sapphire) manufactured by the same company is used for the green LED, and GU35R470T (InGaN / sapphire) manufactured by the same company is used for the blue LED.

図3は基板3上に固定された複数の発光素子2の例を示す概略図であるが、本実施例において発光素子2はそれぞれが赤色、緑色、又は青色のいずれかに発光するベアチップLEDであり、混色により白色光源が構成されるよう、適切な位置に分散して配置されている。   FIG. 3 is a schematic view showing an example of a plurality of light emitting elements 2 fixed on the substrate 3. In the present embodiment, the light emitting elements 2 are bare chip LEDs each emitting light in red, green, or blue. Yes, the white light sources are configured by mixing colors and are distributed at appropriate positions.

基板3には予め配線パターンが形成されており、またLEDを所定位置に実装するためのアライメントマークが形成されている。上記のベアチップLEDは、それぞれウェハ面から発光光束が射出されるように、基板3上の所定位置にフリップチップ実装により固定する。サファイアウェハのベアチップLEDをフリップチップ実装することにより、LEDの光射出面がサファイア(587nmにおける屈折率1.76)により形成されることとなるので、熱硬化性樹脂との屈折率差がより小さくなり、反射損失が低減されて放射光束の取り出し効率が向上する。   A wiring pattern is formed on the substrate 3 in advance, and an alignment mark for mounting the LED at a predetermined position is formed. Each of the bare chip LEDs is fixed to a predetermined position on the substrate 3 by flip chip mounting so that the luminous flux is emitted from the wafer surface. By flip-chip mounting the bare chip LED on the sapphire wafer, the light emission surface of the LED is formed by sapphire (refractive index 1.76 at 587 nm), so the difference in refractive index from the thermosetting resin is smaller. Thus, the reflection loss is reduced and the extraction efficiency of the radiated light flux is improved.

次に、基板3上に固定された各ベアチップLEDの光出射面に熱硬化性樹脂のモノマー組成物を所定量滴下し、ベアチップLEDの光出射面に光束制御部材1の光入射面を対向させて所定位置に貼着する(図4)。このとき光束制御部材1は、自動実装機を用いて、基板3上に設けられたアライメントマークを基準として適切な位置に貼着される。モノマー組成物の滴下量は、光束制御部材1の凹部とベアチップLEDとの間に空隙を生じず、かつ貼着面の外部に必要以上に流出しないよう、メータリングポンプ等を用いて精密に制御する。   Next, a predetermined amount of a thermosetting resin monomer composition is dropped on the light emitting surface of each bare chip LED fixed on the substrate 3, and the light incident surface of the light flux controlling member 1 is opposed to the light emitting surface of the bare chip LED. And stick it in place (FIG. 4). At this time, the light flux controlling member 1 is attached to an appropriate position with reference to the alignment mark provided on the substrate 3 using an automatic mounting machine. The dropping amount of the monomer composition is precisely controlled by using a metering pump or the like so as not to generate a gap between the concave portion of the light flux controlling member 1 and the bare chip LED and to flow out more than necessary outside the sticking surface. To do.

熱硬化性樹脂のモノマー組成物としては、特開平10−298287号公報の実施例11に開示されているエピスルフィド樹脂である、ビス(β―エピチオプロピル)スルフィド:95質量部、ビス(2−メルカプトエチル)スルフィド:5質量部の混合物を用いる。なお該組成物の硬化物の屈折率は587nmにおいて1.71である。   As the monomer composition of the thermosetting resin, bis (β-epithiopropyl) sulfide, which is an episulfide resin disclosed in Example 11 of JP-A-10-298287, 95 parts by mass, bis (2- Mercaptoethyl) sulfide: A mixture of 5 parts by weight is used. The refractive index of the cured product of the composition is 1.71 at 587 nm.

所定位置に光束制御部材1が貼着された基板3は、100℃に設定された熱風循環式加熱炉に送られて、モノマー組成物が完全に硬化するまで保持され、室温まで徐冷される。このときのモノマー組成物の硬化温度Tcは100℃である。   The substrate 3 on which the light flux controlling member 1 is adhered at a predetermined position is sent to a hot-air circulating heating furnace set at 100 ° C., held until the monomer composition is completely cured, and gradually cooled to room temperature. . The curing temperature Tc of the monomer composition at this time is 100 ° C.

以上の工程により、基板3上に固定された複数の発光素子2と、光束制御部材1とからなる樹脂封止発光素子が製造される。   Through the above steps, a resin-sealed light-emitting element including the plurality of light-emitting elements 2 fixed on the substrate 3 and the light flux controlling member 1 is manufactured.

この樹脂封止発光素子を拡散板と組み合わせれば、液晶表示装置のバックライトとして利用可能な平面状光源を製造することができる。図6は、このようにして製造される平面状光源の一例を示す概略断面図である。ここで、平面状光源を構成する樹脂封止発光素子11は、基板3上に固定されRGB各色を発光する複数の発光素子2と、複数の発光素子2のそれぞれに熱硬化性樹脂の硬化物4により接合された、熱可塑性樹脂からなる光束制御部材1とにより構成されている。そして樹脂封止発光素子11は所定の距離をおいて拡散板5と対向して配置され、光束制御部材1により指向性が制御されたRGB各色の出射光束は拡散板5において混合されて、均一な白色光を放射する平面状光源装置が構成される。   When this resin-sealed light emitting element is combined with a diffusion plate, a planar light source that can be used as a backlight of a liquid crystal display device can be manufactured. FIG. 6 is a schematic cross-sectional view showing an example of a planar light source manufactured in this way. Here, the resin-sealed light-emitting element 11 constituting the planar light source includes a plurality of light-emitting elements 2 that are fixed on the substrate 3 and emit RGB colors, and a cured product of a thermosetting resin on each of the plurality of light-emitting elements 2. 4 and a light flux controlling member 1 made of a thermoplastic resin joined together. The resin-sealed light-emitting element 11 is disposed facing the diffusion plate 5 at a predetermined distance, and the emitted light beams of RGB colors whose directivities are controlled by the light beam control member 1 are mixed in the diffusion plate 5 to be uniform. A planar light source device that emits white light is configured.

また、以上の構成を有する平面状光源装置を、公知の方法により製造される透過型液晶パネルの背面(バックライト面)に配置すれば、バックライト付き液晶表示装置を製造することができる。   Moreover, if the planar light source device having the above configuration is arranged on the back surface (backlight surface) of a transmissive liquid crystal panel manufactured by a known method, a liquid crystal display device with a backlight can be manufactured.

本実施例の樹脂封止発光素子は、光束制御部材が脂環式オレフィン樹脂で構成されているため耐熱性及び耐湿性に優れるものである。また光束制御部材が射出成形により高精度に成形されているので指向性制御精度が高く、さらに光束制御部材と発光素子とが両者の中間屈折率を有する熱硬化性樹脂により固結されているので界面での反射損失が低減され、発光光束の外部取り出し効率が高くなり、低消費電力で高い輝度を得ることができる。したがって、本実施例の樹脂封止発光素子を光源として用いる平面状光源装置は、耐久性が高く、輝度むらや色調ずれが少ない上に、低コストで生産することが可能である。また平面状光源装置を透過型液晶パネルの背面に配置してなる液晶表示装置は、耐久性が高く、輝度むらや色調ずれが小さいという特徴を有する。   The resin-sealed light emitting device of this example is excellent in heat resistance and moisture resistance because the light flux controlling member is composed of an alicyclic olefin resin. In addition, since the light beam control member is molded with high accuracy by injection molding, the directivity control accuracy is high, and the light beam control member and the light emitting element are solidified by a thermosetting resin having an intermediate refractive index of both. The reflection loss at the interface is reduced, the efficiency of extracting the emitted light flux is increased, and high luminance can be obtained with low power consumption. Therefore, the planar light source device using the resin-encapsulated light emitting element of this embodiment as a light source has high durability, has little luminance unevenness and color tone shift, and can be produced at low cost. In addition, a liquid crystal display device in which a planar light source device is disposed on the back surface of a transmissive liquid crystal panel has characteristics that durability is high and luminance unevenness and color tone deviation are small.

本実施例の樹脂封止発光素子の製造方法によれば、熱可塑性樹脂の射出成形により光束制御部材を成形するので、形状精度の高い光束制御部材を短いサイクルタイムで製造することができ、光束制御部材を有する樹脂封止発光素子を低コストで製造することができる。また光束制御部材と発光素子とを熱硬化性樹脂のモノマー組成物により貼着し、熱可塑性樹脂の熱変形温度よりも20℃以上低い硬化温度で所定の相対位置に固結することによって、指向性制御精度に優れた高性能な樹脂封止発光素子を製造することができる。また樹脂封止発光素子を光源として組み込むことにより、輝度むらや色調ずれが低減された平面状光源装置及び液晶表示装置を低コストで製造することができる。   According to the method for manufacturing the resin-sealed light emitting device of this embodiment, the light flux controlling member is formed by injection molding of a thermoplastic resin, so that a light flux controlling member with high shape accuracy can be produced in a short cycle time. A resin-sealed light emitting element having a control member can be manufactured at low cost. Further, the light flux controlling member and the light emitting element are bonded with a thermosetting resin monomer composition, and the light beam control member and the light emitting element are fixed at a predetermined relative position at a curing temperature that is 20 ° C. or more lower than the thermal deformation temperature of the thermoplastic resin. It is possible to manufacture a high-performance resin-encapsulated light-emitting element having excellent property control accuracy. In addition, by incorporating a resin-sealed light emitting element as a light source, a planar light source device and a liquid crystal display device with reduced luminance unevenness and color tone deviation can be manufactured at low cost.

Claims (22)

発光素子と、該発光素子から発される光束を制御可能な形状に成形された、熱可塑性樹脂からなる光束制御部材とを、
前記発光素子の光出射面と前記光束制御部材の光入射面の間に硬化性樹脂を介在させた状態で、前記硬化性樹脂を硬化させて接合する、樹脂封止発光素子の製造方法。
A light emitting element, and a light flux controlling member made of a thermoplastic resin, shaped into a shape capable of controlling a light flux emitted from the light emitting element,
A method for producing a resin-sealed light emitting element, wherein the curable resin is cured and bonded in a state where a curable resin is interposed between a light emitting surface of the light emitting element and a light incident surface of the light flux controlling member.
前記硬化性樹脂を硬化させて接合する温度Tc(℃)と、前記熱可塑性樹脂の熱変形温度Td(℃)とは、以下の式(1)
Tc≦Td−20 …(1)
を満たす、請求項1記載の製造方法。
The temperature Tc (° C.) at which the curable resin is cured and bonded and the heat distortion temperature Td (° C.) of the thermoplastic resin are expressed by the following formula (1):
Tc ≦ Td-20 (1)
The manufacturing method of Claim 1 which satisfy | fills.
前記硬化性樹脂の硬化後の屈折率は、前記発光素子の光出射面を構成する素材の屈折率よりも低く、且つ前記熱可塑性樹脂の屈折率よりも高い、請求項1又は2に記載の製造方法。   The refractive index after hardening of the said curable resin is lower than the refractive index of the material which comprises the light-projection surface of the said light emitting element, and is higher than the refractive index of the said thermoplastic resin. Production method. 前記硬化性樹脂は熱硬化性樹脂である、請求項1〜3のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, wherein the curable resin is a thermosetting resin. 前記硬化性樹脂は、エピスルフィド樹脂又はチオウレタン樹脂である、請求項1〜4のいずれか一項に記載の製造方法。   The said curable resin is a manufacturing method as described in any one of Claims 1-4 which is an episulfide resin or a thiourethane resin. 前記光束制御部材の光入射面には、前記発光素子を収容するための凹部が設けられており、該凹部は曲面を有し該凹部の表面は平滑である、請求項1〜5のいずれか一項に記載の製造方法。   The light incident surface of the light flux controlling member is provided with a recess for accommodating the light emitting element, the recess has a curved surface, and the surface of the recess is smooth. The manufacturing method according to one item. 前記凹部は球面形状を有しており、前記発光素子の発光点は該球面形状の曲率中心に位置している、請求項6記載の製造方法。   The manufacturing method according to claim 6, wherein the concave portion has a spherical shape, and the light emitting point of the light emitting element is located at the center of curvature of the spherical shape. 前記発光素子は、基板上に配列した複数の発光素子であり、該発光素子のそれぞれと前記光束制御部材とを接合する、請求項1〜7のいずれか一項に記載の製造方法。   The said light emitting element is a several light emitting element arranged on the board | substrate, The manufacturing method as described in any one of Claims 1-7 which joins each of this light emitting element and the said light beam control member. 前記発光素子は発光ダイオードである、請求項1〜8のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, wherein the light emitting element is a light emitting diode. 請求項1〜9のいずれか一項に記載の製造方法により得ることのできる樹脂封止発光素子。   The resin-sealed light emitting element which can be obtained with the manufacturing method as described in any one of Claims 1-9. 請求項1〜9のいずれか一項に記載の製造方法により樹脂封止発光素子を製造する工程と、該樹脂封止発光素子を光源として平面状に配置する工程とを含む、平面状光源の製造方法。   A planar light source comprising: a step of producing a resin-sealed light emitting device by the production method according to claim 1; and a step of arranging the resin-sealed light emitting device in a planar shape using the resin-sealed light emitting device as a light source. Production method. 発光素子と、該発光素子から発される光束を制御可能な形状に成形された熱可塑性樹脂からなる光束制御部材とを有する樹脂封止発光素子であって、
前記発光素子の光出射面と前記光束制御部材の光入射面とが、硬化性樹脂の硬化物で接合されている、樹脂封止発光素子。
A resin-sealed light-emitting element comprising: a light-emitting element; and a light beam control member made of a thermoplastic resin molded into a shape capable of controlling a light beam emitted from the light-emitting element,
A resin-sealed light-emitting element in which a light emitting surface of the light-emitting element and a light incident surface of the light flux controlling member are bonded with a cured product of a curable resin.
前記硬化性樹脂の硬化後の屈折率は、前記発光素子の光出射面を構成する素材の屈折率よりも低く、且つ前記熱可塑性樹脂の屈折率よりも高い、請求項12記載の樹脂封止発光素子。   The resin sealing according to claim 12, wherein a refractive index after curing of the curable resin is lower than a refractive index of a material constituting a light emitting surface of the light emitting element and higher than a refractive index of the thermoplastic resin. Light emitting element. 前記硬化性樹脂は熱硬化性樹脂である、請求項12又は13に記載の樹脂封止発光素子。   The resin-sealed light emitting element according to claim 12 or 13, wherein the curable resin is a thermosetting resin. 前記硬化性樹脂は、エピスルフィド樹脂又はチオウレタン樹脂である、請求項12〜14のいずれか一項に記載の樹脂封止発光素子。   The resin-sealed light-emitting element according to any one of claims 12 to 14, wherein the curable resin is an episulfide resin or a thiourethane resin. 前記光束制御部材の光入射面に設けられた凹部に前記発光素子が収容されている、請求項12〜15のいずれか一項に記載の樹脂封止発光素子。   The resin-sealed light emitting element according to any one of claims 12 to 15, wherein the light emitting element is accommodated in a recess provided on a light incident surface of the light flux controlling member. 前記凹部は曲面を有し該凹部の表面は平滑である、請求項16記載の樹脂封止発光素子。   The resin-sealed light-emitting element according to claim 16, wherein the recess has a curved surface, and the surface of the recess is smooth. 前記凹部は球面形状を有しており、前記発光素子の発光点が該球面形状の曲率中心に位置している、請求項16又は17に記載の樹脂封止発光素子。   The resin-sealed light emitting device according to claim 16 or 17, wherein the recess has a spherical shape, and a light emitting point of the light emitting device is located at a center of curvature of the spherical shape. 前記発光素子は、基板上に配列した複数の発光素子であり、該発光素子のそれぞれが前記光束制御部材と接合されている、請求項12〜18のいずれか一項に記載の樹脂封止発光素子。   The resin light emitting according to any one of claims 12 to 18, wherein the light emitting elements are a plurality of light emitting elements arranged on a substrate, and each of the light emitting elements is joined to the light flux controlling member. element. 前記発光素子が発光ダイオードである、請求項12〜19のいずれか一項に記載の樹脂封止発光素子。   The resin-sealed light emitting device according to any one of claims 12 to 19, wherein the light emitting device is a light emitting diode. 請求項12〜20のいずれか一項に記載の樹脂封止発光素子を平面状に配置させてなる平面状光源。   The planar light source formed by arrange | positioning the resin-sealed light emitting element as described in any one of Claims 12-20 in planar shape. 請求項21記載の平面状光源を透過型液晶パネルのバックライト面に配置した液晶表示装置。   A liquid crystal display device comprising the planar light source according to claim 21 disposed on a backlight surface of a transmissive liquid crystal panel.
JP2008557105A 2007-02-05 2008-02-04 Resin-sealed light emitting device, planar light source, method for producing the same, and liquid crystal display device Pending JPWO2008096714A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007024972 2007-02-05
JP2007024972 2007-02-05
PCT/JP2008/051781 WO2008096714A1 (en) 2007-02-05 2008-02-04 Resin-sealed light emitting element, planar light source, methods for manufacturing the resin-sealed light emitting element and the planar light source, and liquid crystal display device

Publications (1)

Publication Number Publication Date
JPWO2008096714A1 true JPWO2008096714A1 (en) 2010-05-20

Family

ID=39681623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008557105A Pending JPWO2008096714A1 (en) 2007-02-05 2008-02-04 Resin-sealed light emitting device, planar light source, method for producing the same, and liquid crystal display device

Country Status (2)

Country Link
JP (1) JPWO2008096714A1 (en)
WO (1) WO2008096714A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803171B2 (en) * 2009-07-22 2014-08-12 Koninklijke Philips N.V. Reduced color over angle variation LEDs
US20120126261A1 (en) * 2009-08-07 2012-05-24 Sharp Kabushiki Kaisha Lens, light-emitting module, light-emitting element package, illumination device, display device, and television receiver
JP2012109532A (en) 2010-09-08 2012-06-07 Mitsubishi Chemicals Corp Light emitting apparatus, lighting apparatus, and lens
JP5760655B2 (en) * 2011-04-28 2015-08-12 三菱化学株式会社 RESIN PACKAGE FOR SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE HAVING THE RESIN PACKAGE AND METHOD FOR MANUFACTURING THE SAME
KR102140226B1 (en) * 2014-02-05 2020-07-31 엘지이노텍 주식회사 Light emitting device package and lighting apparatus including the same
KR102131771B1 (en) * 2014-02-05 2020-07-08 엘지이노텍 주식회사 Light emitting device package and lighting apparatus including the same
KR102154061B1 (en) * 2014-02-05 2020-09-09 엘지이노텍 주식회사 Light emitting device package and lighting apparatus including the same
TWI532222B (en) 2015-04-21 2016-05-01 隆達電子股份有限公司 Lighting apparatus and lens structure thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092665U (en) * 1973-12-27 1975-08-05
JPH0563343A (en) * 1991-08-30 1993-03-12 Techno Sunstar Kk Electronic parts packaging method
JPH05291627A (en) * 1992-04-10 1993-11-05 Iwasaki Electric Co Ltd Light emitting diode
JPH0653554A (en) * 1992-07-28 1994-02-25 Rohm Co Ltd Optical semiconductor device
JPH098357A (en) * 1995-06-16 1997-01-10 Rohm Co Ltd Light emitting device and production thereof
JP2000282442A (en) * 1999-03-30 2000-10-10 Ube Nitto Kasei Co Ltd Partition panel made of fiber reinforced resin
JP2001279585A (en) * 2000-03-29 2001-10-10 Asahi Lite Optical Co Ltd Method for producing colored plastic lens having high refractive index
JP3101037U (en) * 2002-11-26 2004-06-03 玄基光電半導體股▲ふん▼有限公司 Surface mount type light emitting diode
WO2005025831A1 (en) * 2003-09-09 2005-03-24 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
JP2006525682A (en) * 2003-04-30 2006-11-09 クリー インコーポレイテッド High power solid state light emitting device package
JP2006310710A (en) * 2005-05-02 2006-11-09 Sony Corp Semiconductor light-emitting element
JP2006319149A (en) * 2005-05-13 2006-11-24 Sony Corp Light source, manufacturing method thereof, and display unit using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092665U (en) * 1973-12-27 1975-08-05
JPH0563343A (en) * 1991-08-30 1993-03-12 Techno Sunstar Kk Electronic parts packaging method
JPH05291627A (en) * 1992-04-10 1993-11-05 Iwasaki Electric Co Ltd Light emitting diode
JPH0653554A (en) * 1992-07-28 1994-02-25 Rohm Co Ltd Optical semiconductor device
JPH098357A (en) * 1995-06-16 1997-01-10 Rohm Co Ltd Light emitting device and production thereof
JP2000282442A (en) * 1999-03-30 2000-10-10 Ube Nitto Kasei Co Ltd Partition panel made of fiber reinforced resin
JP2001279585A (en) * 2000-03-29 2001-10-10 Asahi Lite Optical Co Ltd Method for producing colored plastic lens having high refractive index
JP3101037U (en) * 2002-11-26 2004-06-03 玄基光電半導體股▲ふん▼有限公司 Surface mount type light emitting diode
JP2006525682A (en) * 2003-04-30 2006-11-09 クリー インコーポレイテッド High power solid state light emitting device package
WO2005025831A1 (en) * 2003-09-09 2005-03-24 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
JP2006310710A (en) * 2005-05-02 2006-11-09 Sony Corp Semiconductor light-emitting element
JP2006319149A (en) * 2005-05-13 2006-11-24 Sony Corp Light source, manufacturing method thereof, and display unit using the same

Also Published As

Publication number Publication date
WO2008096714A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JPWO2008096714A1 (en) Resin-sealed light emitting device, planar light source, method for producing the same, and liquid crystal display device
TWI507635B (en) Led with molded bi-directional optics
CN102800790B (en) Luminescent device
CN101485004B (en) Lighting device package
TWI447450B (en) Light guide panel, backlight module, and manufacturing method thereof
JP5632824B2 (en) Overmold lens on LED die
TWI393841B (en) Wide emitting lens for led useful for backlighting
CN103486451B (en) Light-emitting device and the lighting device including the light-emitting device
KR20090023688A (en) Lighting device
JP2008226928A (en) Light-emitting device, its manufacturing method, and lighting equipment
KR101575366B1 (en) Light emitting device package
CN109814189B (en) Optical device and light source module including the same
JP6510256B2 (en) LED module manufacturing method
KR101288918B1 (en) Manufacturing method of light emitting device having wavelenth-converting layer and light emitting device produced by the same
KR20130103080A (en) Led illumination apparatus
KR101308774B1 (en) Method of manufacturing an optical element and a resin-sealed light emitting element, the optical element, the resin-sealed light emitting element, and a planar light source device
JP6021485B2 (en) Semiconductor light emitting device with optical member
KR100900286B1 (en) light emitting device package and method for manufacturing it
CN103219450A (en) Solid state lighting system
JP2023073973A (en) Light-emitting device, light source device, and manufacturing method of the light-emitting device
KR20050090707A (en) Chip type led
JP2010050294A (en) Method for manufacturing light emitting unit having lens
TW201306227A (en) Manufacture method of LED packaging
KR20110090493A (en) Light guide plate and light device having the same
KR20080056424A (en) Light emitting device package and method for manufacturing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507