JPWO2008032618A1 - Semiconductor nanoparticles and manufacturing method thereof - Google Patents

Semiconductor nanoparticles and manufacturing method thereof Download PDF

Info

Publication number
JPWO2008032618A1
JPWO2008032618A1 JP2008534301A JP2008534301A JPWO2008032618A1 JP WO2008032618 A1 JPWO2008032618 A1 JP WO2008032618A1 JP 2008534301 A JP2008534301 A JP 2008534301A JP 2008534301 A JP2008534301 A JP 2008534301A JP WO2008032618 A1 JPWO2008032618 A1 JP WO2008032618A1
Authority
JP
Japan
Prior art keywords
semiconductor nanoparticles
semiconductor
core
nanoparticles
tauc plot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008534301A
Other languages
Japanese (ja)
Other versions
JP5131195B2 (en
Inventor
一賀 午菴
一賀 午菴
塚田 和也
和也 塚田
星野 秀樹
秀樹 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2008534301A priority Critical patent/JP5131195B2/en
Publication of JPWO2008032618A1 publication Critical patent/JPWO2008032618A1/en
Application granted granted Critical
Publication of JP5131195B2 publication Critical patent/JP5131195B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2054Light-sensitive devices comprising a semiconductor electrode comprising AII-BVI compounds, e.g. CdTe, CdSe, ZnTe, ZnSe, with or without impurities, e.g. doping materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Luminescent Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

発光素子材料としての半導体ナノ粒子の光学特性を間接遷移型から直接遷移型に変換し、量子収率を向上させた半導体ナノ粒子及びその製造方法で、平均粒径が2〜50nmの、表面が変性された半導体ナノ粒子であって、該半導体ナノ粒子についてのTaucプロットにより得られる接線の傾きが、該半導体ナノ粒子のコア部と同じ化学組成のバルク結晶についての該接線の傾きの2〜5倍であることを特徴とする。The semiconductor nanoparticle as a light emitting device material is converted from an indirect transition type to a direct transition type, and the quantum yield is improved. Modified semiconductor nanoparticles, wherein the slope of the tangent obtained by Tauc plot for the semiconductor nanoparticles is 2-5 of the slope of the tangent for bulk crystals of the same chemical composition as the core of the semiconductor nanoparticles It is characterized by being double.

Description

本発明は半導体ナノ粒子とその製造方法に関する。より詳しくは、光学特性が間接遷移型から直接遷移型に変換され、発光素子としての量子収率が高められた半導体ナノ粒子とその製造方法に関する。   The present invention relates to semiconductor nanoparticles and a method for producing the same. More specifically, the present invention relates to a semiconductor nanoparticle having an optical property converted from an indirect transition type to a direct transition type and an improved quantum yield as a light emitting device, and a method for manufacturing the same.

近年、SiやGe等に代表される超微粒子、ポーラスシリコン等のII−VI族半導体においてそのナノ構造結晶が特異的な光学的特性を示すことが注目されている。ここで、ナノ構造結晶とは、1〜100nm程度のナノオーダーの粒径の結晶粒のことをいい、一般的に、「ナノ粒子」、「ナノクリスタル」等の略称で呼ばれている。   In recent years, attention has been focused on nanostructure crystals exhibiting specific optical characteristics in II-VI group semiconductors such as ultrafine particles such as Si and Ge, and porous silicon. Here, the nanostructure crystal refers to a crystal grain having a nano-order particle size of about 1 to 100 nm, and is generally referred to as an abbreviation such as “nanoparticle” or “nanocrystal”.

II−VI族半導体において、上述したようなナノ構造結晶を有する場合と、バルク状の結晶を有する場合とを比較すると、ナノ構造結晶を有する場合には、良好な光吸収特性及び発光特性を示すことになる。これは、ナノ構造結晶を有するII−VI族半導体では、量子サイズ効果が発現するため、バルク状の結晶構造の場合よりも大きなバンドギャップを有するためと考えられる。すなわち、ナノ構造結晶を有するII−VI族半導体においては、量子サイズ効果によりバンドギャップが広げられるのではないかと考えられている。   In the II-VI group semiconductor, when the nanostructure crystal as described above is compared with the case of having a bulk crystal, when the nanostructure crystal is included, good light absorption characteristics and light emission characteristics are exhibited. It will be. This is presumably because a II-VI group semiconductor having a nanostructure crystal has a larger band gap than a bulk crystal structure because a quantum size effect is exhibited. That is, in the II-VI group semiconductors having nanostructure crystals, it is considered that the band gap may be widened by the quantum size effect.

ところで、半導体はバンドギャップの形式に応じて2種類に分類することができる。つまり、光の吸収及び放出が単純な直接遷移型(direct type:ガリウム砒素など)と光の吸収及び放出に少し複雑な過程を要する間接遷移型(indirect type:シリコンなど)である。   By the way, semiconductors can be classified into two types according to the band gap type. That is, there are a direct transition type (direct type: gallium arsenide, etc.) in which light absorption and emission are simple, and an indirect transition type (indirect type: silicon, etc.) that requires a slightly complicated process for light absorption and emission.

たとえば、結晶性シリコンは1.1eVのバンドギャップを持つ間接遷移型の半導体であり、水素化アモルファスシリコンは水素の含有量によって異なるが、はぼ1.5〜1.7eVぐらいのバンドギャップを持つ直接遷移型の半導体である。アモルファスシリコンで作った太陽電池は深いバンドギャップのために結晶性シリコンより約0.2−0.3ボルトぐらい高い出力電圧を示すのに対し、結晶性シリコンは間接遷移型であるために光学特性が悪く発光素子等の製作には不利な側面がある。   For example, crystalline silicon is an indirect transition type semiconductor having a band gap of 1.1 eV, and hydrogenated amorphous silicon has a band gap of about 1.5 to 1.7 eV although it depends on the hydrogen content. It is a direct transition type semiconductor. Solar cells made of amorphous silicon show an output voltage about 0.2-0.3 volts higher than crystalline silicon due to the deep band gap, whereas crystalline silicon is an indirect transition type, so its optical characteristics However, there are disadvantageous aspects in the production of light emitting elements.

発光素子としてナノ半導体粒子を使用する際、毒性の懸念がなく、原料コストの安いSiやGeなどを半導体の材料成分とすることが好ましい。しかし、これらの毒性等について問題が少ない成分からなる半導体は間接遷移型が多く、発光素子材料としては量子収率が著しく低いという欠点があり、実用化上の問題となっている。   When nano-semiconductor particles are used as a light-emitting element, it is preferable that Si or Ge, which has no concern about toxicity and has a low raw material cost, be a semiconductor material component. However, semiconductors composed of components having few problems with respect to toxicity and the like are often indirect transition type, and have a disadvantage that the quantum yield is extremely low as a light emitting device material, which is a problem in practical use.

間接遷移型を直接遷移型に変換する技術は、種々の観点から検討されており、一部の技術については開示されている(例えば、特許文献1〜3参照。)。しかし、これらの公知例は、いずれも異なる化学組成の結晶等を積層・結合することにより間接遷移型を直接遷移型に変換する方法であり、またいずれも基板上に形成された半導体素子であるため、半導体ナノ粒子系には応用が困難であると考えられるものである。   Techniques for converting the indirect transition type to the direct transition type have been studied from various viewpoints, and some techniques have been disclosed (see, for example, Patent Documents 1 to 3). However, all of these known examples are methods of converting an indirect transition type to a direct transition type by laminating and bonding crystals having different chemical compositions, etc., and all are semiconductor elements formed on a substrate. Therefore, it is considered that application to a semiconductor nanoparticle system is difficult.

従って、半導体ナノ粒子系に適用可能な変換技術の研究開発が望まれている。
特開平5−82837号公報 特開平7−79050号公報 特開2003−303983号公報
Therefore, research and development of conversion technologies applicable to semiconductor nanoparticle systems are desired.
JP-A-5-82837 Japanese Patent Laid-Open No. 7-79050 JP 2003-303983 A

本発明は、上記問題に鑑みてなされたものであり、その解決課題は、発光素子材料としての半導体ナノ粒子の光学特性を間接遷移型から直接遷移型に変換し、量子収率を向上させた半導体ナノ粒子及びその製造方法を提供することである。   The present invention has been made in view of the above problems, and its solution is to convert the optical properties of semiconductor nanoparticles as a light emitting device material from an indirect transition type to a direct transition type, thereby improving the quantum yield. It is to provide semiconductor nanoparticles and a method for producing the same.

本発明に係る上記課題は下記の手段により解決される。   The above-mentioned problem according to the present invention is solved by the following means.

1.平均粒径が2〜50nmの半導体ナノ粒子であって、表面が変性された半導体ナノ粒子であって、該半導体ナノ粒子についてのTaucプロットにより得られる接線の傾きが、該半導体ナノ粒子のコア部と同じ化学組成のバルク結晶についての該接線の傾きの2〜5倍であることを特徴とする半導体ナノ粒子。   1. A semiconductor nanoparticle having an average particle diameter of 2 to 50 nm, the surface of which is modified, and the slope of the tangent obtained by Tauc plot for the semiconductor nanoparticle is the core of the semiconductor nanoparticle. 2 to 5 times the slope of the tangent for a bulk crystal having the same chemical composition.

2.前記半導体ナノ粒子についてのTaucプロットにより求めたバンドギャップが、該半導体ナノ粒子のコア部と同じ化学組成のバルク結晶についてのTaucプロットにより求めたバンドギャップに対して0.2〜1.5eVの範囲で高いことを特徴とする前記1に記載の半導体ナノ粒子。   2. The band gap determined by the Tauc plot for the semiconductor nanoparticles is in the range of 0.2 to 1.5 eV with respect to the band gap determined by the Tauc plot for the bulk crystal having the same chemical composition as the core portion of the semiconductor nanoparticles. 2. The semiconductor nanoparticles according to 1 above, wherein the semiconductor nanoparticles are high.

3.前記半導体ナノ粒子がコア/シェル型半導体ナノ粒子でることを特徴とする前記1又は2に記載の半導体ナノ粒子。   3. 3. The semiconductor nanoparticles as described in 1 or 2 above, wherein the semiconductor nanoparticles are core / shell type semiconductor nanoparticles.

4.前記半導体ナノ粒子の構成成分としてSiまたはGeが含有されていることを特徴とする前記1〜3のいずれか一項に記載の半導体ナノ粒子。   4). 4. The semiconductor nanoparticle according to any one of 1 to 3, wherein Si or Ge is contained as a constituent component of the semiconductor nanoparticle.

5.前記1〜4のいずれか一項に記載の半導体ナノ粒子を製造する方法であって、気体雰囲気下において半導体ナノ粒子に表面処理を施す工程を含むことを特徴とする半導体ナノ粒子の製造方法。   5. A method for producing semiconductor nanoparticles according to any one of claims 1 to 4, comprising a step of subjecting the semiconductor nanoparticles to a surface treatment under a gas atmosphere.

本発明の上記手段により、発光素子材料としての半導体ナノ粒子の光学特性を間接遷移型から直接遷移型に変換し、量子収率を向上させた半導体ナノ粒子及びその製造方法を提供することができる。   By the above means of the present invention, it is possible to provide a semiconductor nanoparticle having improved quantum yield and a method for producing the same by converting the optical property of the semiconductor nanoparticle as a light emitting device material from an indirect transition type to a direct transition type. .

Taucプロットの一例Example of Tauc plot

符号の説明Explanation of symbols

1 Siバルク結晶のTaucプロット
2 Siナノ粒子c+窒素雰囲気下熱処理したサンプルのTaucプロット
1 Tauc plot of Si bulk crystal 2 Tauc plot of sample heat-treated in Si atmosphere c + nitrogen atmosphere

本発明の半導体ナノ粒子は、平均粒径が2〜50nmの、表面が変性された半導体ナノ粒子であって、該半導体ナノ粒子についてのTaucプロットにより得られる接線の傾きが、該半導体ナノ粒子のコア部と同じ化学組成のバルクについての該接線の傾きの2〜5倍であることを特徴とする。   The semiconductor nanoparticles of the present invention are surface-modified semiconductor nanoparticles having an average particle diameter of 2 to 50 nm, and the slope of the tangent obtained by Tauc plot for the semiconductor nanoparticles is that of the semiconductor nanoparticles. It is characterized in that it is 2 to 5 times the gradient of the tangent for the bulk having the same chemical composition as the core.

ここで言う本発明の半導体ナノ粒子のコア部とは、表面が変性されたナノ粒子の中心部を意味し、変性前の半導体ナノ粒子と同意である。   The core part of the semiconductor nanoparticle of this invention said here means the center part of the nanoparticle by which the surface was modified | denatured, and is synonymous with the semiconductor nanoparticle before modification | denaturation.

以下、本発明とその構成要素等について詳細な説明をする。   Hereinafter, the present invention and its components will be described in detail.

(半導体ナノ粒子)
本発明の一つの半導体ナノ粒子は、半導体材料からなる、平均粒径が2〜50nmの、表面が変性された半導体ナノ粒子であり、該半導体ナノ粒子についてのTaucプロットにより得られる接線の傾きが、該半導体ナノ粒子のコア部(変性前の半導体ナノ粒子)と同じ化学組成のバルク結晶についての該接線の傾きの2〜5倍であることを特徴とする。
(Semiconductor nanoparticles)
One semiconductor nanoparticle of the present invention is a semiconductor nanoparticle having a surface modified with an average particle diameter of 2 to 50 nm made of a semiconductor material, and a slope of a tangent obtained by Tauc plot for the semiconductor nanoparticle. The core portion of the semiconductor nanoparticle (semiconductor nanoparticle before modification) is 2 to 5 times the tangential slope of the bulk crystal having the same chemical composition.

(コア/シェル型半導体ナノ粒子)
本発明の半導体ナノ粒子の好ましい態様の一つは、半導体ナノ粒子が半導体材料からなるコア部と該コア部を被覆するシェル部(シェル層)とで構成されるコア/シエル構造を有する所謂コア/シェル型半導体ナノ粒子であって、平均粒径が2〜50nmで、表面が変性されたコア/シェル型半導体ナノ粒子についてのTaucプロットにより得られる接線の傾きが、該半導体ナノ粒子のコア部と同じ化学組成のバルク結晶についての該接線の傾きの2〜5倍であることを特徴とする。
(Core / shell type semiconductor nanoparticles)
One of the preferred embodiments of the semiconductor nanoparticles of the present invention is a so-called core having a core / shell structure in which the semiconductor nanoparticles are composed of a core portion made of a semiconductor material and a shell portion (shell layer) covering the core portion. / Shell-type semiconductor nanoparticles having an average particle diameter of 2 to 50 nm and a surface modified core / shell-type semiconductor nanoparticles, the slope of the tangent obtained by Tauc plot is the core part of the semiconductor nanoparticles 2 to 5 times the slope of the tangential line for a bulk crystal having the same chemical composition.

なお、「Taucプロット」とはアモルファス半導体に対して一般的に用いられている電子スペクトルから光学的バンドギャップを求める方法である。アモルファス半導体のバンド間の光学的遷移による光吸収においては、吸光度と光子エネルギーの関係は次の式で表される。   The “Tauc plot” is a method for obtaining an optical band gap from an electron spectrum generally used for an amorphous semiconductor. In light absorption by optical transition between bands of an amorphous semiconductor, the relationship between absorbance and photon energy is expressed by the following equation.

α=k(E−E02/E(kは定数)
ここで、αは吸光度、Eは光子エネルギー、E0は光学的バンドギャップである。この式から、横軸に光子エネルギー、縦軸に吸光度と光子エネルギーの積の平方根をとり、接線を引く。この接線と横軸との交点が光学的バンドギャップである(清水立生著「アモルファス半導体」、培風館(1994).p201)。
α = k (E−E 0 ) 2 / E (k is a constant)
Where α is the absorbance, E is the photon energy, and E 0 is the optical band gap. From this equation, the horizontal axis represents photon energy, the vertical axis represents the square root of the product of absorbance and photon energy, and a tangent line is drawn. The intersection of this tangent and the horizontal axis is the optical band gap (Tatsuo Shimizu “Amorphous Semiconductor”, Baifukan (1994), p201).

また、ここで「バルク結晶」とは、1μm以上の粒径をもつ粒子結晶の集まりをいう。   Here, “bulk crystal” refers to a collection of particle crystals having a particle diameter of 1 μm or more.

「平均粒径」とは、レーザー散乱法により測定される累積50%体積粒径をいう。   “Average particle size” refers to the cumulative 50% volume particle size measured by the laser scattering method.

本発明の表面が変性された半導体ナノ粒子においては、該半導体ナノ粒子のコア部と同じ組成のバルク結晶について、Taucプロットにより得られる接線と線形近似直線の傾きの差が5%以内であることが好ましい。ここで、「線形近似直線」とは、Taucプロットと得られた接線との接点よりも低い範囲の値について、1次近似を行ったときに得られる直線をいう。間接遷移型のバルク結晶のTaucプロットは、ほぼ直線になるため、接線と線形近似直線の傾きの差は5%以内となる。   In the semiconductor nanoparticles having a modified surface according to the present invention, the difference between the tangent line obtained by the Tauc plot and the slope of the linear approximation line is within 5% for the bulk crystal having the same composition as the core part of the semiconductor nanoparticle. Is preferred. Here, the “linear approximation straight line” refers to a straight line obtained when linear approximation is performed on values in a range lower than the contact point between the Tauc plot and the obtained tangent line. Since the Tauc plot of the indirect transition type bulk crystal is almost a straight line, the difference in slope between the tangent line and the linear approximate straight line is within 5%.

また、本発明の半導体ナノ粒子においては、該半導体ナノ粒子のコア部と同じ組成のバルク結晶について、コア/シェル型半導体ナノ粒子においては、コア/シェル型半導体ナノ粒子についてのコア部と同じ化学組成のバルク結晶について、Taucプロットにより求めたバンドギャップに対して0.2〜1.5eVの範囲で高いことが好ましい。   Further, in the semiconductor nanoparticles of the present invention, the bulk crystal having the same composition as the core part of the semiconductor nanoparticles, and in the core / shell type semiconductor nanoparticles, the same chemistry as the core part of the core / shell type semiconductor nanoparticles is used. About the bulk crystal of a composition, it is preferable that it is high in the range of 0.2-1.5 eV with respect to the band gap calculated | required by Tauc plot.

〈コア部粒子の形成〉
本発明の半導体ナノ粒子、若しくはコア/シエル構造を有する半導体ナノ粒子のコア部は、公知の種々の半導体材料を用いて形成することができる。
<Formation of core particles>
The semiconductor nanoparticles of the present invention or the core portion of the semiconductor nanoparticles having a core / shell structure can be formed using various known semiconductor materials.

コア部に用いられる半導体材料としては、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、GaAs、GaP、GaSb、InGaAs、InP、InN、InSb、InAs、AlAs、AlP、AlSb、AlS、PbS、PbSe、Ge、Si、又はこれらの混合物等が挙げられる。本発明において、特に好ましい半導体材料は、Si又はGeである。   Examples of the semiconductor material used for the core include MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, GaAs, GaP, Examples include GaSb, InGaAs, InP, InN, InSb, InAs, AlAs, AlP, AlSb, AlS, PbS, PbSe, Ge, Si, and mixtures thereof. In the present invention, a particularly preferable semiconductor material is Si or Ge.

本発明の係るコア部の平均粒径に関しては、発明の効果発現のために、1〜40nmであることが好ましい。より好ましいのは2〜30nmである。   The average particle size of the core part according to the present invention is preferably 1 to 40 nm in order to achieve the effect of the invention. More preferred is 2 to 30 nm.

なお、本発明に係るコア部の「平均粒径」とは、レーザー散乱法により測定される累積50%体積粒径をいう。   The “average particle diameter” of the core portion according to the present invention refers to a cumulative 50% volume particle diameter measured by a laser scattering method.

〈シェル部〉
本発明に係るシェル部は、本発明に係るコア/シェル型半導体ナノ粒子において、上記コア部を被覆する層であり、コア/シエル構造を形成するための構成層である。
<Shell part>
The shell part which concerns on this invention is a layer which covers the said core part in the core / shell type semiconductor nanoparticle which concerns on this invention, and is a structure layer for forming a core / shell structure.

なお、本発明に係るシェル部は、コア粒子が部分的に露出して弊害を生じない限り、コア粒子の全表面を完全に被覆するものでなくてもよい。   Note that the shell portion according to the present invention may not completely cover the entire surface of the core particle as long as the core particle is not partially exposed to cause a harmful effect.

シェル部に用いられる半導体材料としては、種々の公知の半導体材料を用いることができる。具体例としては、例えば、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaS、GaN、GaP、GaAs、GaSb、InAs、InN、InP、InSb、AlAs、AlN、AlP、AlSb、又はこれらの混合物等が挙げられる。   As a semiconductor material used for the shell portion, various known semiconductor materials can be used. Specific examples include, for example, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaS, GaN, GaP, GaAs, GaSb, InAs, InN, InP, InSb, AlAs, AlN, AlP. , AlSb, or a mixture thereof.

本発明において、特に好ましい半導体材料は、SiO2、ZnSである。In the present invention, particularly preferred semiconductor materials are SiO 2 and ZnS.

〈蛍光半導体微粒子の製造方法〉
本発明の半導体ナノ粒子若しくはコア/シェル型半導体ナノ粒子の表面を変性する前の半導体ナノ粒子の製造については、従来公知の種々の方法を用いることができる。
<Method for producing fluorescent semiconductor fine particles>
Various conventionally known methods can be used for producing the semiconductor nanoparticles before modifying the surface of the semiconductor nanoparticles or core / shell type semiconductor nanoparticles of the present invention.

液相法の製造方法としては、沈殿法である、共沈法、ゾル−ゲル法、均一沈殿法、還元法などがある。そのほかに、逆ミセル法、超臨界水熱合成法、などもナノ粒子を作製する上で優れた方法である(例えば、特開2002−322468号、特開2005−239775号、特開平10−310770号、特開2000−104058号公報等を参照。)。   As a production method of the liquid phase method, there are a precipitation method such as a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method. In addition, the reverse micelle method, the supercritical hydrothermal synthesis method, and the like are also excellent methods for producing nanoparticles (for example, JP 2002-322468, JP 2005-239775, JP 10-310770 A). No., JP 2000-104058 A, etc.).

気相法の製造方法としては、(1)対向する原料半導体を電極間で発生させた第一の高温プラズマによって蒸発させ、減圧雰囲気中において無電極放電で発生させた第二の高温プラズマ中に通過させる方法(例えば特開平6−279015号公報参照。)、(2)電気化学的エッチングによって、原料半導体からなる陽極からナノ粒子を分離・除去する方法(例えば特表2003−515459号公報参照。)、レーザーアブレーション法(例えば特開2004−356163号参照。)などが用いられる。また、原料ガスを低圧状態で気相反応させて、粒子を含む粉末を合成する方法も、好ましく用いられる。   As a manufacturing method of the vapor phase method, (1) the opposing raw material semiconductor is evaporated by the first high-temperature plasma generated between the electrodes, and the second high-temperature plasma generated by electrodeless discharge in a reduced pressure atmosphere (2) A method of separating / removing nanoparticles from an anode made of a raw material semiconductor by electrochemical etching (for example, see Japanese Patent Application Laid-Open No. 2003-515459). ), A laser ablation method (for example, see JP-A No. 2004-356163) and the like are used. A method of synthesizing a powder containing particles by reacting a raw material gas in a gas phase in a low pressure state is also preferably used.

本発明に係る半導体ナノ粒子若しくはコア/シェル型半導体ナノ粒子の製造方法としては、特に液相法によりコア粒子を作製し、その後当該粒子をシェル材料で被覆する製造方法が好ましい。   As a method for producing semiconductor nanoparticles or core / shell type semiconductor nanoparticles according to the present invention, a production method in which core particles are produced by a liquid phase method and then the particles are coated with a shell material is preferable.

なお、本発明においては、半導体ナノ粒子の表面を変性する方法としては、酸素雰囲気、アルゴン雰囲気、窒素雰囲気、窒素+水素雰囲気等の気体雰囲気下において、半導体ナノ粒子の表面処理を施し、上記のTaucプロットにより得られる接線の傾きの条件を満たすようにするための条件の最適化を要する。   In the present invention, as a method for modifying the surface of the semiconductor nanoparticles, the surface treatment of the semiconductor nanoparticles is performed in a gas atmosphere such as an oxygen atmosphere, an argon atmosphere, a nitrogen atmosphere, and a nitrogen + hydrogen atmosphere, It is necessary to optimize the conditions for satisfying the condition of the tangential slope obtained by the Tauc plot.

以下、実施例により本発明をより詳細に説明するが、本発明はこれに限定されるものではない。
1.コア部Si粒子の調製
トルエン100mlにテトラオクチルアンモニウムブロマイド(TOAB)を添加し、よく攪拌した後、SiCl4を92μL滴下する。1時間攪拌後、還元剤(水素化アルミニウムリチウムのTHF溶液(1M)2ml)を2分以上かけて滴下する。3時間放置後、メタノールを20ml添加して、過剰な還元剤を失活させることで、有機溶媒中にシリコンナノ粒子を得る。これを噴霧熱分解装置(大川原加工機(株)RH−2)を使い、200℃で1分間滞留させて乾燥することによって、シリコンナノ粒子の粉体が得られる。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this.
1. Preparation of core part Si particles Tetraoctyl ammonium bromide (TOAB) is added to 100 ml of toluene, and after stirring well, 92 μL of SiCl 4 is dropped. After stirring for 1 hour, a reducing agent (2 ml of lithium aluminum hydride in THF (1M)) is added dropwise over 2 minutes. After leaving for 3 hours, 20 ml of methanol is added to deactivate excess reducing agent, thereby obtaining silicon nanoparticles in an organic solvent. By using a spray pyrolysis apparatus (Okawara Processing Machine Co., Ltd., RH-2), this is retained at 200 ° C. for 1 minute and dried to obtain silicon nanoparticle powder.

シリコンナノ粒子の粒径は、SiCl4とTOABの比率で調整できる。SiCl4:TOABを1:0.1〜1:100まで変化させて下記の4種類の粒径の単分散粒子が得られた。The particle size of the silicon nanoparticles can be adjusted by the ratio of SiCl 4 and TOAB. SiCl 4 : TOAB was changed from 1: 0.1 to 1: 100 to obtain monodisperse particles having the following four particle sizes.

SiCl4:TOAB 平均粒径
Siナノ粒子a 1:0.1 30nm
Siナノ粒子b 1:1 10nm
Siナノ粒子c 1:10 5nm
Siナノ粒子d 1:100 2nm
2.シェル部SiO2層の被覆
二酸化ケイ素を含むコロイダルシリカ(扶桑化学工業株式会社製 PL−3)と水酸化カリウムを純水に混合して液量を1500mlに調整したものに、上記Siナノ粒子a〜dを分散させる。
SiCl 4 : TOAB Average particle size Si nanoparticle a 1: 0.1 30 nm
Si nanoparticle b 1: 1 10nm
Si nanoparticle c 1:10 5 nm
Si nanoparticle d 1: 100 2 nm
2. Coating of shell part SiO 2 layer Colloidal silica containing silicon dioxide (PL-3 manufactured by Fuso Chemical Industry Co., Ltd.) and potassium hydroxide mixed with pure water to adjust the liquid volume to 1500 ml, the above Si nanoparticles a ~ D is dispersed.

この分散液を噴霧熱分解装置を使い、200℃で5分間滞留させることでSiO2のシェル層を被覆させてSi/SiO2コア/シェルナノ粒子A〜Dの粉体が得られた。
2.ナノ粒子粉末の表面処理
得られたSiナノ粒子a〜dおよびそれぞれに対してシェル層を被覆させたSi/SiO2コア/シェルナノ粒子A〜Dを、酸素雰囲気、アルゴン雰囲気、窒素雰囲気、窒素+1%水素雰囲気と条件を変えて、噴霧熱分解装置内で10分間滞留させながら、900℃でナノ粒子表面の変性処理を施した。
This dispersion was retained at 200 ° C. for 5 minutes using a spray pyrolysis apparatus to coat the SiO 2 shell layer to obtain powders of Si / SiO 2 core / shell nanoparticles A to D.
2. Surface treatment of nanoparticle powder The obtained Si nanoparticles a to d and Si / SiO 2 core / shell nanoparticles A to D each having a shell layer coated thereon were mixed with oxygen atmosphere, argon atmosphere, nitrogen atmosphere, nitrogen + 1 The surface of the nanoparticles was modified at 900 ° C. while being retained for 10 minutes in a spray pyrolysis apparatus under different hydrogen atmosphere and conditions.

(評価)
Taucプロット:比較として、バルクのSi基板(厚さ50μm)の可視紫外吸収スペクトルを分光光度計を用いて測定する。得られた各試料についても全く同じ条件で可視紫外吸収スペクトルを測定する。横軸に光子エネルギー、縦軸に吸光度と光子エネルギーの積の平方根をとり、各データをプロットし、その接線を引く。この接線と横軸との交点が光学的バンドギャップである。
(Evaluation)
Tauc plot: For comparison, a visible ultraviolet absorption spectrum of a bulk Si substrate (thickness: 50 μm) is measured using a spectrophotometer. The visible ultraviolet absorption spectrum is measured for each of the obtained samples under exactly the same conditions. Take the photon energy on the horizontal axis, the square root of the product of absorbance and photon energy on the vertical axis, plot each data, and draw the tangent line. The intersection of this tangent and the horizontal axis is the optical band gap.

図1にTaucプロットの例を示す。1はSiバルク結晶のTaucプロットであり、2はSiナノ粒子cの窒素雰囲気下熱処理して表面を変性したサンプルのTaucプロットであり、各々その接線を示す。   FIG. 1 shows an example of Tauc plot. 1 is a Tauc plot of the Si bulk crystal, and 2 is a Tauc plot of a sample whose surface is modified by heat-treating the Si nanoparticles c in a nitrogen atmosphere, each showing its tangent line.

蛍光量子収率:得られた試料について、波長350nmの励起光を照射して発生する蛍光スペクトルを測定した。量子収率は、試料の吸収スペクトルから得られるモル吸光係数、蛍光スペクトルの波数積分値、溶媒の屈折率を、量子収率既知の標準物質(ローダミンB、アントラセン等)と比較することにより求めた。   Fluorescence quantum yield: About the obtained sample, the fluorescence spectrum which generate | occur | produces by irradiating the excitation light of wavelength 350nm was measured. The quantum yield was determined by comparing the molar extinction coefficient obtained from the absorption spectrum of the sample, the wavenumber integral value of the fluorescence spectrum, and the refractive index of the solvent with a standard substance (rhodamine B, anthracene, etc.) with a known quantum yield. .

試料の量子収率をφx、標準物質の量子収率をφrとすると、φxは以下の式で求めることができる。
φx=Fxx 2/Frr 2・εrrr/εxxx・φr・・・(A)
ここで、Fxは試料の波数積分値、nxは標準物質の溶媒の屈折率、εxxxは試料の吸光度、Frは標準物質の波数積分値、nrは標準物質の溶媒の屈折率、εrrrは標準物質の吸光度である。
When the quantum yield of the sample is φ x and the quantum yield of the standard substance is φ r , φ x can be obtained by the following equation.
φ x = F x n x 2 / F r n r 2 · ε r cr r dr / ε x c x d x · φ r (A)
Here, F x is the wave number integration value of the sample, n x is the refractive index of the standard solvent, ε x c x d x is the absorbance of the sample, wavenumber integral value of F r is standard, n r is the standard The refractive index of the solvent, ε r c r dr, is the absorbance of the standard substance.

上記の評価結果を表1に示す。   The evaluation results are shown in Table 1.

Figure 2008032618
Figure 2008032618

表1に示した結果から明らかなように、表面処理を施した半導体ナノ粒子又はコア/シェル型半導体ナノ粒子ついてのTaucプロットにより得られる接線の傾きが、該半導体ナノ粒子のコア部と同じ化学組成のバルク結晶について、或いはコア/シェル型半導体ナノ粒子のコア部と同じ化学組成のバルク結晶について、該接線の傾きの2〜5倍であるという条件等を満たす粒子は蛍光量子収率が高いことが分かる。   As is clear from the results shown in Table 1, the slope of the tangent obtained by Tauc plot for the surface-treated semiconductor nanoparticles or core / shell type semiconductor nanoparticles is the same as that of the core of the semiconductor nanoparticles. Particles satisfying the condition that the bulk crystal of the composition or the bulk crystal of the same chemical composition as the core part of the core / shell type semiconductor nanoparticles is 2 to 5 times the inclination of the tangent has a high fluorescence quantum yield. I understand that.

Claims (5)

平均粒径が2〜50nmの、表面が変性された半導体ナノ粒子であって、該半導体ナノ粒子についてのTaucプロットにより得られる接線の傾きが、変性前の半導体ナノ粒子のコア部と同じ化学組成のバルク結晶についての該接線の傾きの2〜5倍であることを特徴とする半導体ナノ粒子。 Semiconductor nanoparticles with an average particle diameter of 2 to 50 nm and modified on the surface, the tangent slope obtained by Tauc plot for the semiconductor nanoparticles is the same as the core of the semiconductor nanoparticles before modification A semiconductor nanoparticle characterized by being 2 to 5 times the slope of the tangent to the bulk crystal. 前記半導体ナノ粒子についてのTaucプロットにより求めたバンドギャップが、該半導体ナノ粒子のコア部と同じ化学組成のバルク結晶についてのTaucプロットにより求めたバンドギャップに対して0.2〜1.5eVの範囲で高いことを特徴とする請求の範囲第1項に記載の半導体ナノ粒子。 The band gap determined by the Tauc plot for the semiconductor nanoparticles is in the range of 0.2 to 1.5 eV with respect to the band gap determined by the Tauc plot for the bulk crystal having the same chemical composition as the core portion of the semiconductor nanoparticles. The semiconductor nanoparticles according to claim 1, wherein the semiconductor nanoparticles are high. 前記半導体ナノ粒子がコア/シェル型半導体ナノ粒子で有ることを特徴とする請求の範囲第1項又は第2項に記載の半導体ナノ粒子。 The semiconductor nanoparticles according to claim 1 or 2, wherein the semiconductor nanoparticles are core / shell type semiconductor nanoparticles. 前記半導体ナノ粒子のコア部の構成成分としてSiまたはGeが含有されていることを特徴とする請求の範囲第1項〜第3項のいずれか一項に記載の半導体ナノ粒子。 The semiconductor nanoparticles according to any one of claims 1 to 3, wherein Si or Ge is contained as a constituent component of a core part of the semiconductor nanoparticles. 請求の範囲第1項〜第4項のいずれか一項に記載の半導体ナノ粒子の製造方法であって、気体雰囲気下において半導体ナノ粒子に表面処理を施す工程を含むことを特徴とする半導体ナノ粒子の製造方法。 A method for producing semiconductor nanoparticles according to any one of claims 1 to 4, comprising a step of subjecting the semiconductor nanoparticles to a surface treatment under a gas atmosphere. Particle production method.
JP2008534301A 2006-09-15 2007-09-05 Semiconductor nanoparticles and manufacturing method thereof Expired - Fee Related JP5131195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008534301A JP5131195B2 (en) 2006-09-15 2007-09-05 Semiconductor nanoparticles and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006250712 2006-09-15
JP2006250712 2006-09-15
PCT/JP2007/067279 WO2008032618A1 (en) 2006-09-15 2007-09-05 Semiconductor nanoparticle and process for producing the same
JP2008534301A JP5131195B2 (en) 2006-09-15 2007-09-05 Semiconductor nanoparticles and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2008032618A1 true JPWO2008032618A1 (en) 2010-01-21
JP5131195B2 JP5131195B2 (en) 2013-01-30

Family

ID=39183679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008534301A Expired - Fee Related JP5131195B2 (en) 2006-09-15 2007-09-05 Semiconductor nanoparticles and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5131195B2 (en)
WO (1) WO2008032618A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280766A (en) * 2008-05-26 2009-12-03 Sharp Corp Ink composition
US9023659B2 (en) 2009-05-08 2015-05-05 Konica Minolta Medical & Graphic, Inc. Silica nanoparticle embedding quantum dots, preparation method thereof and biosubstance labeling agent by use thereof
JP5949567B2 (en) * 2013-01-11 2016-07-06 株式会社島津製作所 Method and apparatus for calculating optical band gap of semiconductor material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029160B2 (en) * 1992-02-10 2000-04-04 キヤノン株式会社 Nonlinear optical material and manufacturing method thereof
CA2495309C (en) * 2002-08-13 2011-11-08 Massachusetts Institute Of Technology Semiconductor nanocrystal heterostructures
KR100796122B1 (en) * 2003-09-09 2008-01-21 삼성전자주식회사 Improvement of Quantum Efficiency by Surface Treatment of Compound Semiconductor Nanocrystals
JP2006176859A (en) * 2004-12-24 2006-07-06 Canon Anelva Corp Method for producing silicon nano-crystal structure
JPWO2007034657A1 (en) * 2005-09-22 2009-03-19 コニカミノルタエムジー株式会社 Fine particle phosphor and method for producing the same
JP2007106832A (en) * 2005-10-12 2007-04-26 Konica Minolta Medical & Graphic Inc Method for producing phosphor and the phosphor produced by the method
US20090236563A1 (en) * 2006-01-27 2009-09-24 Konica Minolta Medical & Graphic, Inc. Nanosized Semiconductor Particle Having Core/Shell Structure and Manufacturing Method Thereof

Also Published As

Publication number Publication date
WO2008032618A1 (en) 2008-03-20
JP5131195B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5151993B2 (en) Core / shell type semiconductor nanoparticles and manufacturing method thereof
Zheng et al. Aqueous synthesis of glutathione‐capped ZnSe and Zn1–xCdxSe alloyed quantum dots
US8313972B2 (en) Photodetector using nanoparticles
EP1978072A1 (en) Semiconductor nanoparticle having core/shell structure and process for producing the same
EP3135745B1 (en) Semiconductor nanoparticle assembly and method for producing same
Mumin et al. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties
Osherov et al. Tunability of the optical band edge in thin PbS films chemically deposited on GaAs (100)
JP5233673B2 (en) Semiconductor nanoparticles and manufacturing method thereof
JP5131195B2 (en) Semiconductor nanoparticles and manufacturing method thereof
JP2017025219A (en) Method for producing covered semiconductor nanoparticle
Abrarov et al. Suppression of the green photoluminescence band in ZnO embedded into porous opal by spray pyrolysis
Almomani et al. White, blue and green emission from Si QDs derived from zinc incorporated porous silicon
Fu et al. Preparation and characterization of CdS/Si coaxial nanowires
Murugadoss et al. Optical and structural characterization of CdS/ZnS and CdS: Cu2+/ZnS core–shell nanoparticles
US7658899B2 (en) Production method of nanoparticle
Cheng et al. Ultra-small PbSe quantum dots synthesis by chemical nucleation controlling
Flores-Pacheco et al. Enhanced Stokes-shift and dispersibility in non-polar PMMA solvent of CdTe quantum dots by silica coating
Yang et al. Near-infrared emitting CdTe 0.5 Se 0.5/Cd 0.5 Zn 0.5 S quantum dots: synthesis and bright luminescence
Hullavarad et al. Optical properties of organic and inorganic capped CdS nanoparticles and the effects of x-ray irradiation on organic capped CdS nanoparticles
Vincent et al. Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots
JP5381711B2 (en) Aggregate of semiconductor nanoparticle phosphors, method for producing the same, and single molecule observation method using the same
Lu et al. Highly luminescent CdSe nanoparticles embedded in silica thin films
JP5761102B2 (en) High-brightness semiconductor nanoparticle assembly
Hao et al. Research of fluorescent spectra of oleic acid-stabilized ZnSe nanocrystals based on UV light modification
Ghiordanescu et al. Optical properties of polyaniline/CdS nanocrystals composite film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5131195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees