JPWO2007111327A1 - OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE - Google Patents

OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE Download PDF

Info

Publication number
JPWO2007111327A1
JPWO2007111327A1 JP2008507504A JP2008507504A JPWO2007111327A1 JP WO2007111327 A1 JPWO2007111327 A1 JP WO2007111327A1 JP 2008507504 A JP2008507504 A JP 2008507504A JP 2008507504 A JP2008507504 A JP 2008507504A JP WO2007111327 A1 JPWO2007111327 A1 JP WO2007111327A1
Authority
JP
Japan
Prior art keywords
refractive index
optical transmission
optical
substrate
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008507504A
Other languages
Japanese (ja)
Other versions
JP5244585B2 (en
Inventor
松原 孝宏
孝宏 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008507504A priority Critical patent/JP5244585B2/en
Publication of JPWO2007111327A1 publication Critical patent/JPWO2007111327A1/en
Application granted granted Critical
Publication of JP5244585B2 publication Critical patent/JP5244585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Abstract

光電気混載回路基板において、基板を貫通する貫通孔を介した光素子と光導波路との結合効率を高くし、正確かつ高効率な光信号伝送を可能にする。2つの主面2a、2b間に信号光の光路として貫通孔2cを設けた基板2と、貫通孔の両端開口2d1、2d2間に設けられた光伝送体1とを有し、光伝送体が第1の屈折率をもつ少なくとも1つの高屈折率部1a1、1a2と第1の屈折率よりも小さい第2の屈折率をもつ少なくとも1つの低屈折率部1bとを具備し、高屈折率部と低屈折率部との接合面1c1、1c2が少なくとも一方の開口の近傍に形成されかつ信号光の光軸方向において低屈折率部側を凹形状とすることにより信号光を集光させる。In an opto-electric hybrid circuit board, the coupling efficiency between an optical element and an optical waveguide through a through-hole penetrating the board is increased, thereby enabling accurate and highly efficient optical signal transmission. It has a substrate 2 provided with a through hole 2c as an optical path of signal light between two main surfaces 2a and 2b, and an optical transmission body 1 provided between both end openings 2d1 and 2d2 of the through hole. A high refractive index portion including at least one high refractive index portion 1a1, 1a2 having a first refractive index and at least one low refractive index portion 1b having a second refractive index smaller than the first refractive index; And the low refractive index portion are formed in the vicinity of at least one opening, and the low refractive index portion side is made concave in the optical axis direction of the signal light, thereby condensing the signal light.

Description

本発明は、電子機器内の電気信号配線と光信号配線を構成する光電気混載回路用の基板において、基板の表面と裏面を光学的に接続する光伝送体を形成した貫通孔を有する光伝送基板及びその製造方法、並びに光伝送装置に関する。   The present invention relates to an optical transmission circuit having a through hole in which an optical transmission body for optically connecting the front surface and the back surface of a substrate is formed in a substrate for an opto-electric hybrid circuit constituting an electrical signal wiring and an optical signal wiring in an electronic device. The present invention relates to a substrate, a manufacturing method thereof, and an optical transmission device.

情報処理における処理量を増加させ処理スピードを向上させるために、半導体デバイスの動作速度及び信号の入出力端子数は、将来に渡って増加の傾向にある。同時にその半導体デバイスを搭載する回路基板の信号配線数も著しく増大しており、配線密度も高くなる傾向にある。
それに伴って、回路基板に形成された電気配線における信号の減衰及び隣接する配線間のクロストークが顕著に増加し、深刻な問題となっている。とりわけマイクロプロセッサに代表される大規模な半導体集積回路においては、GHzレベルの信号を低消費電力で安定して入出力させることが大きな課題である。
In order to increase the amount of processing in information processing and improve the processing speed, the operating speed of the semiconductor device and the number of signal input / output terminals tend to increase in the future. At the same time, the number of signal wirings on the circuit board on which the semiconductor device is mounted has increased remarkably, and the wiring density tends to increase.
Along with this, signal attenuation in the electrical wiring formed on the circuit board and crosstalk between adjacent wirings remarkably increase, which is a serious problem. In particular, in a large-scale semiconductor integrated circuit typified by a microprocessor, it is a big problem to stably input and output signals at a GHz level with low power consumption.

この課題を解決するために、半導体デバイスに入出力される電気信号を光信号に変換し、その光信号を回路基板に形成した光導波路等の光配線によって伝送させる光伝送技術が検討されている。
光配線を用いた光伝送技術においては、回路基板の表面及び裏面に形成された光導波路だけでなく、回路基板の表面と裏面の間に設けた貫通孔を利用した信号光の伝送経路も提案されている。このような伝送経路は、例えば、光導波路に対して垂直に回路基板を貫通する孔に透明樹脂を充填して形成される。この信号光の光路としての貫通孔を用いることによって、従来の電気配線基板と同様に、光信号についても三次元的伝送を可能とした光伝送基板を構成できる。光伝送基板は、通常は電気配線も混在する形態であるので、より一般的には光電気混載回路基板とも称される。
In order to solve this problem, an optical transmission technique in which an electrical signal input to and output from a semiconductor device is converted into an optical signal and the optical signal is transmitted through an optical wiring such as an optical waveguide formed on a circuit board is being studied. .
In optical transmission technology using optical wiring, not only optical waveguides formed on the front and back surfaces of circuit boards, but also signal signal transmission paths using through holes provided between the front and back surfaces of circuit boards are proposed. Has been. Such a transmission path is formed, for example, by filling a hole penetrating the circuit board perpendicular to the optical waveguide with a transparent resin. By using the through-hole as the optical path of the signal light, an optical transmission board capable of three-dimensional transmission of optical signals can be configured as in the conventional electric wiring board. Since the optical transmission board is usually in a form in which electric wiring is also mixed, it is more generally referred to as an opto-electric hybrid circuit board.

図7は、従来の光路用貫通孔を具備する光電気混載回路基板の代表例を示す概略図である(例えば、特許文献1に開示)。図7(a)が光伝送基板の全体断面図であり、図7(b)が光路用貫通孔の拡大断面図である。
図7(a)に示す通り、基板102の一方の面には面型発光受光素子103a、103bが実装され、基板の他方の面には光導波路104が形成されている。光導波路104の二つの端面には45度マイクロミラー105a、105bが形成されている。面型発光受光素子103a、103bと光導波路と104は、基板102を貫通する光路用貫通孔101a、101bによりそれぞれ光結合されている。
FIG. 7 is a schematic diagram showing a representative example of a conventional opto-electric hybrid circuit board having a through hole for an optical path (for example, disclosed in Patent Document 1). FIG. 7A is an overall cross-sectional view of the optical transmission board, and FIG. 7B is an enlarged cross-sectional view of the optical path through hole.
As shown in FIG. 7A, surface light emitting / receiving elements 103a and 103b are mounted on one surface of the substrate 102, and an optical waveguide 104 is formed on the other surface of the substrate. On the two end faces of the optical waveguide 104, 45 degree micromirrors 105a and 105b are formed. The surface light emitting / receiving elements 103a and 103b and the optical waveguide 104 are optically coupled by optical path through holes 101a and 101b penetrating the substrate 102, respectively.

図7(b)に示す通り、光路用貫通孔101a、101bは、その内壁にメッキ処理により形成された導体層からなるクラッド部111と、内部空間に充填された透明樹脂または空気からなるコア部112とにより形成されている。
図7の例においては、光路用貫通孔に入射した信号光が、クラッド部111とコア部112の界面で全反射されて伝搬することにより、面型発光受光素子103a、103bと光導波路104とをそれぞれ光接続すると提案されている。
As shown in FIG. 7B, the optical path through-holes 101a and 101b have a clad portion 111 made of a conductor layer formed on the inner wall thereof by plating, and a core portion made of transparent resin or air filled in the internal space. 112.
In the example of FIG. 7, the signal light incident on the optical path through hole is totally reflected and propagated at the interface between the clad portion 111 and the core portion 112, whereby the surface light emitting / receiving elements 103 a and 103 b and the optical waveguide 104 are transmitted. It has been proposed that each be optically connected.

次に図8は、従来の光路用貫通孔を具備する光電気混載回路基板の別の代表例を示す概略断面図である(例えば、特許文献2に開示)。
図8に示す通り、基板202Aには、面型発光素子203Aが実装され、その発光点と対向する方向に光路用貫通孔201Aが形成されている。光路用貫通孔201Aの下方には、所定の間隔を空けて別の基板202Bが配置(半田接続部205Cを介して電気的に接続)されている。別の基板202Bの表面には、光導波路204Bが形成されている。さらに、光導波路204Bの端面は、光路用貫通孔201Aの下端開口の直下に位置しかつ光路変換ミラー205Bとなっている。なお、信号光を受光する受光素子においても同様の光路構成を提案している。
Next, FIG. 8 is a schematic sectional view showing another representative example of a conventional opto-electric hybrid circuit board having a through hole for an optical path (for example, disclosed in Patent Document 2).
As shown in FIG. 8, a planar light emitting element 203A is mounted on a substrate 202A, and an optical path through hole 201A is formed in a direction opposite to the light emitting point. Below the optical path through-hole 201A, another substrate 202B is disposed at a predetermined interval (electrically connected via the solder connection portion 205C). An optical waveguide 204B is formed on the surface of another substrate 202B. Further, the end surface of the optical waveguide 204B is located immediately below the lower end opening of the optical path through hole 201A and is an optical path conversion mirror 205B. A similar optical path configuration has been proposed for a light receiving element that receives signal light.

さらに、図8の例では、光路用貫通孔201Aの開口と面型発光素子203Aとの間の空隙208Aの端部にマイクロレンズ206Aが配置されている。このマイクロレンズ206Aは、信号光を集光させる働きがあり、信号光の伝送損失を低減することができるとされている。なお、マイクロレンズ206Aは、光学レンズを接着固定するか、または光学レンズ用樹脂を滴下し表面張力により半球体に硬化させて形成すると提案されている。
特開2000−81524号公報 特開2002−329891号公報
Further, in the example of FIG. 8, a micro lens 206A is disposed at the end of the gap 208A between the opening of the optical path through hole 201A and the surface light emitting element 203A. The micro lens 206A has a function of condensing the signal light and can reduce a transmission loss of the signal light. It has been proposed that the microlens 206A is formed by bonding and fixing an optical lens or by dropping a resin for an optical lens and curing it to a hemisphere by surface tension.
JP 2000-81524 A JP 2002-329891 A

しかしながら、特許文献1に開示された図7の従来例では、下記に示すように光路用貫通孔101a、101bと面型発光受光素子103a、103bとの光結合の結合効率は十分ではなかった。図7の従来例では、光路用貫通孔101aのコア部112の径が、面型発光受光素子103aの受光面の径と同等またはそれより大きい場合には、光路用貫通孔101aを通過して拡散しながら面型発光受光素子103aに至る信号光は当然、受光面の径より大きく拡がるため、受光されずに損失となる光量が大きくなってしまう。   However, in the conventional example of FIG. 7 disclosed in Patent Document 1, the coupling efficiency of optical coupling between the optical path through holes 101a and 101b and the surface light emitting / receiving elements 103a and 103b is not sufficient as described below. In the conventional example of FIG. 7, when the diameter of the core portion 112 of the optical path through hole 101a is equal to or larger than the diameter of the light receiving surface of the surface light emitting and receiving element 103a, the optical path through hole 101a passes through the optical path through hole 101a. Since the signal light that reaches the surface light emitting / receiving element 103a while being diffused is naturally larger than the diameter of the light receiving surface, the amount of light that is lost without being received increases.

また、面型発光受光素子103bが発光素子、例えば一般的な面発光レーザ(VCSEL)の場合には、特許文献1の実施形態で示された全反射10度より大きい半値全角20〜30度の広がりを持って空気層を介して光路用貫通孔101bに向かって出射される。そして、光路用貫通孔101bのコア部が透明樹脂で構成される場合は、空気との比屈折率の差分だけ幾分小さくなった角度で伝搬し、コア部が空気の場合はその角度のままコア部を全反射しながら伝搬する。
その後、光導波路104の下部クラッドに到達した時点で再度拡散し、45度マイクロミラー105bのコア部に到達する。45度マイクロミラー105bにおいては、その角度をほぼ維持しながら全反射するため、反射された光量の多くが上部と下部のクラッド層へ放出されることになる。
従って、図7の従来例は、光路用貫通孔のコア部の径が面型発光受光素子の受光面の径よりも小さい組み合わせで効果が発揮される構成であり、他の組み合わせにおいては信号光の減衰が大きくなる。従って、光路用貫通孔と面型発光受光素子における、組合せ上ないしは寸法上の制限が大きくなるという問題がある。
When the surface-emitting light-emitting / receiving element 103b is a light-emitting element, for example, a general surface-emitting laser (VCSEL), the half-value full angle of 20 to 30 degrees larger than the total reflection 10 degrees shown in the embodiment of Patent Document 1 is used. The light is emitted toward the optical path through hole 101b through the air layer with a spread. And when the core part of the through-hole 101b for optical paths is comprised with transparent resin, it propagates by the angle slightly reduced only by the difference of the relative refractive index with air, and when the core part is air, it remains at that angle Propagate while totally reflecting the core.
After that, when reaching the lower cladding of the optical waveguide 104, it diffuses again and reaches the core of the 45 degree micromirror 105b. Since the 45 degree micro mirror 105b totally reflects while maintaining the angle, most of the reflected light is emitted to the upper and lower cladding layers.
Therefore, the conventional example of FIG. 7 is a configuration in which the effect is exhibited by a combination in which the diameter of the core portion of the through hole for the optical path is smaller than the diameter of the light receiving surface of the surface light emitting and receiving element. Attenuation increases. Therefore, there is a problem that the limitation on the combination or the size of the through hole for the optical path and the surface light emitting / receiving element becomes large.

次に、特許文献2等に開示された図8に示す従来例は、光路用貫通孔201Aと光導波路204Bとの光結合に問題がある。
まず、図8に示す従来例では、樹脂組成物で構成された光路用貫通孔201Aの下端開口からの出射光は伝搬する方向に拡散し、伝搬距離が伸びるに従ってそのビーム径は大きくなる。このことは、樹脂組成物の屈折率が通常1.4〜1.6程度と、空気の屈折率1よりも高いことから材料的に回避し難い。そして、図8のように所定の間隔を空けてその拡散光を光導波路204Bに入射させる構成では、広がったビーム径に対して光導波路の断面サイズを相当大きくしない限り、そのわずか一部しか光導波路に入射しない。仮に光導波路の断面サイズを大きくすればその伝搬モードが増えるが、モード分散が大きくなるため光導波路の伝送帯域が制限されることとなる。
Next, the conventional example shown in FIG. 8 disclosed in Patent Document 2 has a problem in optical coupling between the optical path through hole 201A and the optical waveguide 204B.
First, in the conventional example shown in FIG. 8, the emitted light from the lower end opening of the optical path through-hole 201A made of a resin composition diffuses in the propagation direction, and the beam diameter increases as the propagation distance increases. This is difficult to avoid in terms of material since the refractive index of the resin composition is usually about 1.4 to 1.6 and higher than the refractive index 1 of air. In the configuration in which the diffused light is incident on the optical waveguide 204B with a predetermined interval as shown in FIG. 8, only a part of the light is transmitted unless the cross-sectional size of the optical waveguide is considerably increased with respect to the spread beam diameter. Does not enter the waveguide. If the cross-sectional size of the optical waveguide is increased, the propagation mode increases. However, since the mode dispersion increases, the transmission band of the optical waveguide is limited.

また、特許文献2では、マイクロレンズ206Aを形成することによって、マイクロレンズ206Aのない場合に比べて光路用貫通孔201Aの下端開口からの出射光を光導波路204Bに向かって集光することができ、より高い結合効率が期待できると提案されている。しかしながら、そのためには、光路用貫通孔201Aと光導波路204Bの位置合わせを十分高い精度で行うことが必要である。一般に回路基板は十数mm〜数cm角であり、大きくても数mm角である発光素子や受光素子と比較して桁違いにサイズが大きく、たわみが生じ易くかつ熱膨張によるサイズ変動が大きい。このため、回路基板同士を正確に位置決めして接合しかつこれを保持することは困難となる。例えば、光導波路204Bが、断面30〜100μm角のマルチモード光導波路である場合、出射光と光導波路の位置決め接合精度はμmのレベルが要求される。十数mm〜数cm角の回路基板同士をその精度で位置決めし接合することは、極めて困難である。従って、マイクロレンズ206Aにより集光してもその出射光を別の基板上の光導波路に入射する構造では、高効率の光結合を実現することはできない。   Further, in Patent Document 2, by forming the micro lens 206A, it is possible to condense emitted light from the lower end opening of the optical path through hole 201A toward the optical waveguide 204B as compared to the case without the micro lens 206A. It has been proposed that higher coupling efficiency can be expected. However, for this purpose, it is necessary to align the through hole 201A for the optical path and the optical waveguide 204B with sufficiently high accuracy. In general, a circuit board has a size of several tens of millimeters to several centimeters, and is at most an order of magnitude larger than a light emitting element or a light receiving element that is several mm square at most. . For this reason, it becomes difficult to accurately position and join the circuit boards and hold them. For example, when the optical waveguide 204B is a multimode optical waveguide having a cross section of 30 to 100 μm square, the positioning and joining accuracy between the emitted light and the optical waveguide is required to be on the order of μm. It is extremely difficult to position and bond circuit boards having a size of several tens of millimeters to several centimeters with high accuracy. Therefore, even when the light is condensed by the micro lens 206A, the structure in which the emitted light is incident on the optical waveguide on another substrate cannot realize high-efficiency optical coupling.

加えて、特許文献2のマイクロレンズ206Aは、図8で示すように、樹脂組成物で充填された光路用貫通孔201Aと空隙208Aで形成される光信号伝送用光路210Aの端部(空隙208Aの開口外側に突出)において、ソルダーレジスト層209Aの縁部に対しマイクロレンズ206Aの周縁を接合された形態で設けられている(特許文献2 段落0071)。このように空隙208Aの端部に設ける場合は、光学レンズを接着剤により取り付けざるを得ない(特許文献2 段落0139)。しかしながら、光学レンズの光軸が光信号伝送用光路210Aの光軸に一致するようにその位置決め精度を確保することは、非常に困難である。   In addition, as shown in FIG. 8, the microlens 206A of Patent Document 2 includes an optical signal transmission optical path 210A formed by an optical path through hole 201A filled with a resin composition and an air gap 208A (gap 208A). The outer periphery of the microlens 206A is joined to the edge of the solder resist layer 209A (paragraph 0071 of Patent Document 2). Thus, when providing in the edge part of the space | gap 208A, an optical lens must be attached with an adhesive agent (patent document 2 paragraph 0139). However, it is very difficult to ensure the positioning accuracy so that the optical axis of the optical lens matches the optical axis of the optical signal transmission optical path 210A.

また特許文献2では、マイクロレンズ206Aが、樹脂組成物で充填された光路用貫通孔201Aと空隙208Aで形成される光信号伝送用光路210Aの内部であってもよいとされている。ただし、特許文献2における光信号伝送用光路210Aの内部とは、光路用貫通孔201Aに充填された樹脂組成物の端部である(特許文献2 段落0073)。この樹脂組成物は、いずれの実施形態でも両端開口間に完全に充填されている。従って、特許文献2に図示はされていないが、樹脂組成物の端部に設けられるマイクロレンズ206Aは、光路用貫通孔201Aの開口面すなわち基板202Aの表面から外側に突出するものとなる。このことは、開示された製造方法からも明らかである。その製造方法によれば、樹脂組成物で充填された光路用貫通孔201Aの開口にレンズ用樹脂を滴下し、表面張力で半球状に硬化させて形成するとされている(特許文献2 段落0140)。従って、レンズ用樹脂を滴下する際に、マイクロレンズの光軸が光信号伝送用光路の光軸に一致するように位置決め精度を確保することは、非常に困難である。   Further, in Patent Document 2, the micro lens 206A may be inside the optical signal transmission optical path 210A formed by the optical path through hole 201A filled with the resin composition and the gap 208A. However, the inside of the optical signal transmission optical path 210A in Patent Document 2 is an end portion of the resin composition filled in the optical path through-hole 201A (Patent Document 2, paragraph 0073). In any embodiment, this resin composition is completely filled between the openings at both ends. Therefore, although not shown in Patent Document 2, the micro lens 206A provided at the end of the resin composition protrudes outward from the opening surface of the optical path through hole 201A, that is, the surface of the substrate 202A. This is clear from the disclosed manufacturing method. According to the manufacturing method, the lens resin is dropped into the opening of the optical path through-hole 201A filled with the resin composition, and is cured into a hemisphere by surface tension (Patent Document 2, Paragraph 0140). . Therefore, when dropping the lens resin, it is very difficult to ensure positioning accuracy so that the optical axis of the microlens coincides with the optical axis of the optical path for optical signal transmission.

以上のように、特許文献2には、光伝送損失を低減するために集光作用のあるマイクロレンズを設けることが開示されているが、その設置箇所が光信号伝送用光路の端部の場合であれ内部の場合であれ、マイクロレンズの光軸と信号光の光軸とを精度よく一致させて設ける手法については提示されておらず、実質的に利用可能な技術として十分ではない。   As described above, Patent Document 2 discloses that a microlens having a condensing function is provided in order to reduce optical transmission loss, but the installation location is the end of an optical path for transmitting an optical signal. Regardless of whether it is inside or not, a technique for providing the optical axis of the microlens and the optical axis of the signal light so as to coincide with each other with accuracy is not presented, and this is not sufficient as a practically usable technique.

以上述べたように、従来技術で提案されている光路用貫通孔では、基板を貫通する形態の発光素子及び受光素子と光導波路との光結合において、基板を貫通した後の出射光ビームの広がりにより光伝送損失を生じるという問題、レンズを使って集光させても別の基板上の光導波路との高精度位置決めは困難であるという問題、並びにレンズ自体の高精度の位置決めも困難であるという問題が十分に解決されていない。この結果、高い結合光量が得られず、正確かつ高効率な光信号伝送が実現できなかった。   As described above, in the optical path through hole proposed in the prior art, in the optical coupling between the light emitting element and the light receiving element that penetrates the substrate and the optical waveguide, the spread of the outgoing light beam after penetrating the substrate The problem of causing optical transmission loss due to the above, the problem of high accuracy positioning with an optical waveguide on another substrate even if light is collected using a lens, and the high accuracy positioning of the lens itself are also difficult The problem is not fully resolved. As a result, a high amount of combined light cannot be obtained, and accurate and highly efficient optical signal transmission cannot be realized.

本発明は、上記の問題を解決することにより、基板の一方の主面に形成した光導波路と、それに対し基板を貫通する位置に実装した発光素子または受光素子との結合、あるいは基板の対向する2つの主面にそれぞれ設けた光導波路同士の結合において、光結合効率を向上させることを目的とする。また、このように光結合効率を向上させた基板の製造方法、並びに、当該基板上に発光素子及び/または受光素子を実装した光伝送装置を提供することを目的とする。   In the present invention, by solving the above-described problem, the optical waveguide formed on one main surface of the substrate and the light-emitting element or the light-receiving element mounted at a position penetrating the substrate are opposed to each other or the substrate faces each other. An object of the present invention is to improve the optical coupling efficiency in the coupling between the optical waveguides respectively provided on the two main surfaces. It is another object of the present invention to provide a substrate manufacturing method with improved optical coupling efficiency and an optical transmission device in which a light emitting element and / or a light receiving element are mounted on the substrate.

本発明は、上記目的を達成するべく以下の構成を提供する。
(1)本発明による光伝送基板は、2つの主面間に信号光の光路として貫通孔を設けた基板と、前記貫通孔の両端開口間に設けられた光伝送体であって、第1の屈折率をもつ少なくとも1つの高屈折率部と前記第1の屈折率よりも小さい第2の屈折率をもつ少なくとも1つの低屈折率部とを具備し、前記高屈折率部と前記低屈折率部との接合面が少なくとも一方の開口の近傍に形成されかつ前記信号光の光軸方向において前記低屈折率部側を凹形状とすることにより前記信号光を集光させる光伝送体とを有する。
The present invention provides the following configurations to achieve the above object.
(1) An optical transmission board according to the present invention is a board in which a through hole is provided as an optical path of signal light between two main surfaces, and an optical transmission body provided between both ends of the through hole. At least one high refractive index portion having a refractive index of and at least one low refractive index portion having a second refractive index smaller than the first refractive index, and the high refractive index portion and the low refractive index portion. A light transmitting body for condensing the signal light by forming a joint surface with the refractive index portion in the vicinity of at least one opening and making the low refractive index portion concave in the optical axis direction of the signal light. Have.

(2)上記に加えて、光伝送基板は、前記低屈折率部の両端にそれぞれ前記高屈折率部を配置することにより前記両端開口の各々の近傍に前記接合面をそれぞれ形成したものである。 (2) In addition to the above, the optical transmission substrate is formed by disposing the high refractive index portions at both ends of the low refractive index portion, thereby forming the joint surfaces in the vicinity of the both end openings, respectively. .

(3)上記に加えて、光伝送基板は、前記高屈折率部の両端にそれぞれ前記低屈折率部を配置することにより前記両端開口の各々の近傍に前記接合面をそれぞれ形成したものである。
(4)上記に加えて、光伝送基板は、前記接合面を形成する前記貫通孔の開口の近傍が、前記接合面によって信号光の伝搬方向が変えられるとき、その集光点が前記貫通孔の外側となるような位置である。
(3) In addition to the above, the optical transmission board is formed by disposing the low refractive index portions at both ends of the high refractive index portions, respectively, and forming the joint surfaces in the vicinity of the openings at both ends. .
(4) In addition to the above, when the optical transmission board has the vicinity of the opening of the through-hole forming the joint surface and the propagation direction of the signal light is changed by the joint surface, the condensing point is the through-hole. It is a position which becomes the outside.

(5)上記に加えて、光伝送基板は、前記光伝送体の熱膨張率が、前記基板の熱膨張率の80〜120%の範囲内のものである。 (5) In addition to the above, the optical transmission board has a coefficient of thermal expansion within the range of 80 to 120% of the coefficient of thermal expansion of the board.

(6)上記に加えて、光伝送基板は、少なくとも前記信号光の出射側の開口を含む前記主面上に設けられ、かつ前記光伝送体と光学的に結合する光導波路をさらに有するものである。 (6) In addition to the above, the optical transmission board further includes an optical waveguide provided on the main surface including at least the opening on the signal light emission side and optically coupled to the optical transmission body. is there.

(7)本発明による多層光伝送基板は、上記いずれかの光伝送基板を複数積層したものである。 (7) A multilayer optical transmission board according to the present invention is obtained by laminating a plurality of the above optical transmission boards.

(8)本発明による光伝送装置は、上記いずれかの光伝送基板と、前記光伝送基板の少なくとも一方の前記主面上に設けられ、かつ前記光伝送体と光学的に結合する光半導体デバイスとを有するものである。 (8) An optical transmission device according to the present invention is an optical semiconductor device provided on any one of the main surfaces of at least one of the optical transmission substrate and the optical transmission substrate and optically coupled to the optical transmission body. It has.

(9)本発明による光伝送基板の製造方法は、基板の貫通孔内に透明樹脂を溶融状態にて充填し、その硬化収縮により凹部を形成して前記第2の屈折率をもつ前記低屈折率部を設ける工程と、前記低屈折率部の前記凹部と接するように透明樹脂を溶融状態にて前記貫通孔内に充填し、硬化させることにより前記第1の屈折率をもつ前記高屈折率部を設ける工程とを含むものである。 (9) In the method of manufacturing an optical transmission board according to the present invention, the low refractive index having the second refractive index is obtained by filling a transparent resin in a molten state in a through hole of the board and forming a recess by curing shrinkage. A step of providing a refractive index portion, and filling the through-hole in a molten state with a transparent resin so as to be in contact with the concave portion of the low refractive index portion, and curing the high refractive index having the first refractive index. A step of providing a portion.

(10)本発明による複合光伝送基板は、請求項1〜5のいずれかに記載の光伝送基板である第1の基板と、前記第1の基板と平行に配置された第2の基板と、前記第2の基板における前記第1の基板と対向する主面上に設けられ、かつ前記第1の基板における前記光伝送体と光学的に結合する光導波路とを有する。 (10) A composite optical transmission board according to the present invention includes a first board that is the optical transmission board according to any one of claims 1 to 5, and a second board that is arranged in parallel with the first board. And an optical waveguide provided on a main surface of the second substrate facing the first substrate and optically coupled to the optical transmission body on the first substrate.

本発明の光伝送基板は、基板を貫通する貫通孔内に少なくとも1つの高屈折率部と少なくとも1つの低屈折率部とを形成した光伝送体を有する。この光伝送体は、貫通孔の少なくとも一方の開口近傍に高屈折率部と低屈折率部との接合面を形成しており、この接合面は信号光の光軸方向において低屈折率部側で凹形状となる屈折率界面である。この屈折率界面はレンズ面と同じ役割を果たす。すなわち、光伝送体を伝搬する信号光は、この屈折率界面において光軸に近づくように集光作用を受ける。よって、この接合面近傍の開口から光伝送体に入射する信号光は、その広がり角度が低減されて光伝送体内を伝搬することとなる。また、この接合面近傍の開口において光伝送体から出射する信号光は、その広がり角度を低減されて光伝送体から出射することとなる。   The optical transmission board of the present invention has an optical transmission body in which at least one high refractive index portion and at least one low refractive index portion are formed in a through-hole penetrating the substrate. In this optical transmission body, a joint surface of a high refractive index portion and a low refractive index portion is formed in the vicinity of at least one opening of the through hole, and this joint surface is on the low refractive index portion side in the optical axis direction of the signal light. It is a refractive index interface which becomes a concave shape. This refractive index interface plays the same role as the lens surface. That is, the signal light propagating through the optical transmission body receives a condensing action so as to approach the optical axis at this refractive index interface. Therefore, the signal light incident on the optical transmission body from the opening in the vicinity of the joint surface is propagated through the optical transmission body with its spreading angle reduced. Further, the signal light emitted from the optical transmission body at the opening in the vicinity of the joint surface is emitted from the optical transmission body with its spreading angle reduced.

これにより、基板の一方の主面に発光素子もしくは受光素子を実装し、かつ他方の主面に端部を45度に加工された光路変換ミラーを設けた場合に、基板の厚みに加えて受発光素子と基板表面との間の必要な距離を確保すると同時に、受発光素子と光路変換ミラーとの光結合において信号光を光軸方向に集光させることが可能となる。
つまり、前述の特許文献1及び2の構成では、信号光が拡散するために受発光素子または光導波路との光結合において多くの損失が生じていたが、本発明によれば同様の光結合において十分高い効率を容易に実現できる。
例えば、基板上に形成した光導波路に入射し伝搬する光量、及び基板上の光導波路を伝搬してから受光素子に入射する光量が、自ずと高くなる。このことは、信号光の処理を容易とし、高効率の光信号伝送を可能とする。
最終的に、光回路を含む光電気混載回路の動作が安定すると共に、余分なエネルギー消費が減ることで長寿命が実現できることになる。
As a result, when a light-emitting element or light-receiving element is mounted on one main surface of the substrate, and an optical path conversion mirror whose end is processed at 45 degrees is provided on the other main surface, the light receiving element is received in addition to the thickness of the substrate. At the same time as securing a necessary distance between the light emitting element and the substrate surface, it becomes possible to condense the signal light in the optical axis direction in the optical coupling between the light emitting / receiving element and the optical path conversion mirror.
That is, in the configurations of Patent Documents 1 and 2 described above, a large amount of loss occurs in optical coupling with the light emitting / receiving element or the optical waveguide because the signal light diffuses, but according to the present invention, in the same optical coupling. A sufficiently high efficiency can be easily realized.
For example, the amount of light entering and propagating into the optical waveguide formed on the substrate and the amount of light entering the light receiving element after propagating through the optical waveguide on the substrate naturally increase. This facilitates signal light processing and enables highly efficient optical signal transmission.
Eventually, the operation of the opto-electric hybrid circuit including the optical circuit is stabilized, and a long life can be realized by reducing excess energy consumption.

加えて、本発明の光伝送基板の光伝送体は基板の両端開口間に設けられるため、上記の屈折率界面は必ず貫通孔の内部に位置する。従って、レンズ面である屈折率界面の光軸を貫通孔の軸方向に一致させることは容易である。これは、基板に平行な方向への位置ずれが生じないためである。
これに対し前述の特許文献2では、樹脂組成物を充填した光路用貫通孔の両端開口の外側にレンズが設けられるため、光路用貫通孔の軸方向とレンズの光軸を一致させることは極めて困難である。特許文献2では、レンズを接着または樹脂材料の滴下硬化により形成するとしているが、このような形成方法では、基板に平行な方向に位置ずれが生じやすい。
In addition, since the optical transmission body of the optical transmission board of the present invention is provided between the openings at both ends of the board, the refractive index interface is always located inside the through hole. Therefore, it is easy to make the optical axis of the refractive index interface as the lens surface coincide with the axial direction of the through hole. This is because there is no displacement in the direction parallel to the substrate.
On the other hand, in Patent Document 2 described above, since the lens is provided outside the both end openings of the optical path through hole filled with the resin composition, it is extremely difficult to match the axial direction of the optical path through hole with the optical axis of the lens. Have difficulty. In Patent Document 2, it is assumed that the lens is formed by adhesion or dripping hardening of a resin material. However, such a forming method tends to cause a positional shift in a direction parallel to the substrate.

さらに、本発明の光伝送基板は、光伝送体の両端近傍の双方に接合面が形成されるため、光伝送体への入射直後と、光伝送体からの出射直前の双方において信号光が集光作用を受けるため、結合損失をより低減させることができる。
またさらに、本発明の光伝送基板は、光伝送体の熱膨張率と基板の熱膨張率をほぼ一致させることにより、温度変動に対しても光伝送体と基板との一体性を保持することができる。
Furthermore, since the optical transmission board of the present invention has bonding surfaces near both ends of the optical transmission body, signal light is collected both immediately after entering the optical transmission body and immediately before exiting from the optical transmission body. Due to the light action, the coupling loss can be further reduced.
Furthermore, the optical transmission board of the present invention maintains the integrity of the optical transmission body and the substrate against temperature fluctuations by substantially matching the thermal expansion coefficient of the optical transmission body and the thermal expansion coefficient of the substrate. Can do.

さらに、本発明の光伝送基板において、信号光の出射側の開口を含む主面上に光導波路を設けた場合は、前述の特許文献2に記載のように別の基板上に光導波路を設ける場合と比べて、信号光の入射側との光結合における位置決めの精度を容易に確保できる。特に、光導波路はμmオーダーの高精度でパターン形成が可能なフォトマスクプロセスを用いて加工されるため、光路用貫通孔に対して十分高精度な位置精度で形成が可能である。   Furthermore, in the optical transmission board of the present invention, when the optical waveguide is provided on the main surface including the opening on the signal light emission side, the optical waveguide is provided on another substrate as described in Patent Document 2 described above. Compared to the case, the positioning accuracy in the optical coupling with the signal light incident side can be easily ensured. In particular, since the optical waveguide is processed using a photomask process capable of forming a pattern with high accuracy on the order of μm, it can be formed with sufficiently high positional accuracy with respect to the through hole for the optical path.

さらに、本発明の多層光伝送基板は、本発明の光伝送基板を複数積層することにより、厚い多層基板であっても2つの主面間の光伝送効率を向上させられることに加え、種々の用途に適用される光電気配線混載回路基板を構成できる。
またさらに、本発明の光伝送装置は、本発明の光伝送基板上に光素子を搭載することにより、発光素子からの出射光及び/または受光素子への入射光が光伝送体を通過する際の広がり角を低減して光伝送効率を高めることができる。
Furthermore, the multilayer optical transmission board of the present invention can improve the optical transmission efficiency between the two principal surfaces even if it is a thick multilayer board by laminating a plurality of optical transmission boards of the present invention. An opto-electrical wiring mixed circuit board to be applied to the application can be configured.
Furthermore, the optical transmission device of the present invention has an optical element mounted on the optical transmission substrate of the present invention, so that the light emitted from the light emitting element and / or the light incident on the light receiving element passes through the optical transmission body. The light transmission efficiency can be increased by reducing the divergence angle.

さらに、本発明の光伝送基板の製造方法は、貫通孔内に低屈折率の透明樹脂を溶融状態にて充填し、その硬化収縮により凹部を形成して低屈折率部を設ける。この凹部は、透明樹脂と貫通孔内壁との表面張力により自然に形成されるため、人為的な処理を行うことなく凹部の中心を貫通孔の軸上に位置させることができる。さらに低屈折率部の凹部と接するように高屈折率の透明樹脂を溶融状態にて貫通孔内に充填し、硬化させて高屈折率部を設ける。この製造方法によれば、貫通孔の軸方向と光伝送体の光軸方向とが自然に一致することとなる。従って、前述の特許文献2に開示されたように光路用貫通孔の外側に樹脂を滴下し硬化させてレンズを形成する場合と異なり、基板に平行な方向におけるレンズの位置決めが不要である。   Furthermore, in the method for manufacturing an optical transmission substrate of the present invention, a transparent resin having a low refractive index is filled in a through-hole in a molten state, and a concave portion is formed by curing shrinkage to provide a low refractive index portion. Since the recess is naturally formed by the surface tension between the transparent resin and the inner wall of the through hole, the center of the recess can be positioned on the axis of the through hole without performing an artificial process. Further, a transparent resin having a high refractive index is filled in the through-hole in a molten state so as to be in contact with the concave portion of the low refractive index portion, and cured to provide a high refractive index portion. According to this manufacturing method, the axial direction of the through hole and the optical axis direction of the optical transmission body naturally coincide with each other. Accordingly, unlike the case where the lens is formed by dripping and curing the resin on the outside of the optical path through-hole as disclosed in the above-mentioned Patent Document 2, it is not necessary to position the lens in a direction parallel to the substrate.

さらに、本発明の複合光伝送基板は、上記の光伝送体を備えた光伝送基板を第1の基板とし、第1の基板に平行に第2の基板を配置し、第2の基板の一方の主面上に光導波路を設けている。本発明の複合光伝送基板は、特許文献2と同様に第2の基板上に光導波路を設けているが、特許文献2では第1の基板においてレンズの光軸と貫通孔の軸とを一致させることが困難であるのに対し、本発明では第1の基板においてレンズ面である屈折率界面の光軸と貫通孔の軸とを容易に一致させることができる。従って、2つの基板を備えた複合光伝送基板においても光伝送効率を向上させることができ、種々の用途に適用される光電気配線混載回路基板を構成できる。   Furthermore, the composite optical transmission board of the present invention uses the optical transmission board provided with the above optical transmission body as the first board, and arranges the second board in parallel with the first board, and one of the second boards. An optical waveguide is provided on the main surface. In the composite optical transmission board of the present invention, an optical waveguide is provided on the second substrate as in Patent Document 2, but in Patent Document 2, the optical axis of the lens and the axis of the through hole coincide with each other in the first substrate. However, in the present invention, the optical axis of the refractive index interface that is the lens surface and the axis of the through hole can be easily matched in the first substrate. Therefore, the optical transmission efficiency can be improved even in the composite optical transmission substrate including two substrates, and an opto-electric wiring mixed circuit substrate applied to various applications can be configured.

以下、本発明による光伝送基板の実施形態を図面を参照しつつ説明する。
図1は、本発明による光伝送基板の第1の実施形態の概略構成を示す部分断面図である。図1中、太線は信号光7を、破線は光軸Aを模式的に示している。
図1では、基板2(ここでは基板基材部分を意味する)の2つの主面2a、2bの間に、これらの主面に対し垂直に貫通孔2cが設けられる。この貫通孔2cは、その内部空間に光伝送体1が形成されることにより2つの主面間を結合する信号光の光路となる。貫通孔2cの軸方向は、光伝送体1の光軸Aの方向となる。貫通孔2cの両端開口2d1、2d2はそれぞれ各主面上に位置しており、光伝送体1はこれらの両端開口間に所定の樹脂を充填することにより形成される。
Hereinafter, embodiments of an optical transmission board according to the present invention will be described with reference to the drawings.
FIG. 1 is a partial sectional view showing a schematic configuration of a first embodiment of an optical transmission board according to the present invention. In FIG. 1, the thick line schematically shows the signal light 7 and the broken line schematically shows the optical axis A.
In FIG. 1, a through hole 2 c is provided between two main surfaces 2 a and 2 b of a substrate 2 (here, meaning a substrate base material portion) perpendicular to these main surfaces. The through hole 2c serves as an optical path for signal light that couples the two main surfaces by forming the optical transmission body 1 in the internal space. The axial direction of the through hole 2 c is the direction of the optical axis A of the optical transmission body 1. Both end openings 2d1 and 2d2 of the through-hole 2c are located on the respective main surfaces, and the optical transmission body 1 is formed by filling a predetermined resin between these both end openings.

光伝送体1は、第1の屈折率n1をもつ高屈折率部1a1、1a2と、第1の屈折率n1よりも小さい第2の屈折率n2をもつ低屈折率部1bとを有する。典型的には、高屈折率部及び低屈折率部は、それぞれ適宜の屈折率をもつ透明樹脂から構成される。高屈折率部及び低屈折率部の屈折率の比較は、例えば、屈折式ニアフィールド(RNF)法による屈折率分布測定によりおこなうことができる。具体的には、図1の場合、円柱状である光伝送体1の中心軸を含むように光伝送体1を切断し、さらに、光伝送体1を高屈折率部1a1、1a2および低屈折率部1bに切り分け、それらを、例えば、オプトサイエンス社のOWA−9500等を用いて測定することにより屈折率分布を測定できる。図1の例では、貫通孔2cの軸方向に沿って低屈折率部1bが中間部に配置され、その両端に2つの高屈折率部1a1、1a2がそれぞれ配置されている。高屈折率部1a1、1a2の端部は、それぞれ貫通孔2cの両端開口2d1、2d2に位置する平坦面を形成する。   The optical transmission body 1 includes high refractive index portions 1a1 and 1a2 having a first refractive index n1, and a low refractive index portion 1b having a second refractive index n2 smaller than the first refractive index n1. Typically, the high refractive index portion and the low refractive index portion are each made of a transparent resin having an appropriate refractive index. The comparison of the refractive indexes of the high refractive index portion and the low refractive index portion can be performed, for example, by refractive index distribution measurement by a refractive near field (RNF) method. Specifically, in the case of FIG. 1, the optical transmission body 1 is cut so as to include the central axis of the cylindrical optical transmission body 1, and the optical transmission body 1 is further divided into high refractive index portions 1a1, 1a2 and low refractive index. The refractive index distribution can be measured by cutting into the rate part 1b and measuring them using, for example, OWA-9500 manufactured by Optoscience. In the example of FIG. 1, a low refractive index portion 1b is disposed in the middle along the axial direction of the through hole 2c, and two high refractive index portions 1a1, 1a2 are disposed at both ends thereof. The ends of the high refractive index portions 1a1 and 1a2 form flat surfaces located at both end openings 2d1 and 2d2 of the through hole 2c, respectively.

光伝送体1内部における高屈折率部1a1と低屈折率部1bとの接合面1c1、及び、高屈折率部1a2と低屈折率部1bとの接合面1c2は、それぞれ両端開口2d1、2d2の近傍に形成され、かつ信号光の光軸Aの方向において低屈折率部1b側を凹形状とする曲面に形成される。言い換えるならば、高屈折率部1a1、1a2側が凸形状の曲面となる。ここで、曲面とは少なくとも一部分が湾曲した面のことをいう。また、低屈折率部1b側が凹形状であるとは、柱状である光伝送体1の中心軸を含むように光伝送体を切断した場合、その断面における高屈折率部1a1と低屈折率部1bとの境界線が全体として(例えば、走査型電子顕微鏡や光学顕微鏡などの視野の範囲内に光伝送体1の幅が入る程度の縮尺にて観察したとき)、前記境界線が低屈折率部側にせりだしていることをいう。
接合面1c1、1c2は屈折率界面であり、レンズ面と同じ作用をもつ。これらの接合面1c1、1c2は必ず貫通孔2cの内部に位置するため、レンズ面の光軸Aを貫通孔2cの軸方向に一致させることが容易である。これに対し前述の特許文献2では、樹脂組成物を充填した光路用貫通孔の両端開口の外側にレンズを設けるため位置決めが困難である。
The joint surface 1c1 between the high refractive index portion 1a1 and the low refractive index portion 1b and the joint surface 1c2 between the high refractive index portion 1a2 and the low refractive index portion 1b inside the optical transmission body 1 are respectively open at both end openings 2d1 and 2d2. The curved surface is formed in the vicinity and has a concave shape on the low refractive index portion 1b side in the direction of the optical axis A of the signal light. In other words, the high refractive index portions 1a1, 1a2 are convex curved surfaces. Here, the curved surface means a surface that is at least partially curved. Further, the low refractive index portion 1b side being concave means that when the optical transmission body is cut so as to include the central axis of the columnar optical transmission body 1, the high refractive index portion 1a1 and the low refractive index portion in the cross section thereof. The boundary line with 1b as a whole (for example, when observed at a scale such that the width of the optical transmission body 1 is within the field of view of a scanning electron microscope or an optical microscope), the boundary line has a low refractive index. It means that it is protruding to the club side.
The cemented surfaces 1c1 and 1c2 are refractive index interfaces and have the same function as the lens surface. Since these joint surfaces 1c1, 1c2 are always located inside the through hole 2c, it is easy to make the optical axis A of the lens surface coincide with the axial direction of the through hole 2c. On the other hand, in the above-mentioned Patent Document 2, positioning is difficult because lenses are provided outside both end openings of the optical path through hole filled with the resin composition.

基板2の一方の主面2a(説明の便宜上この面を「表面」とする)上には電極8、ソルダーレジスト9の各層が形成されている。   Each layer of the electrode 8 and the solder resist 9 is formed on one main surface 2a of the substrate 2 (this surface is referred to as “surface” for convenience of description).

なお、基板2の表面上に発光素子もしくは受光素子3(以下、「光素子」と称する)が設けられることにより、この光伝送基板は光伝送装置として機能することとなる。光素子3は、貫通孔2cの開口2d1の直上に所定の間隔を空けて配置され、その発光点または受光点は光伝送体1の光軸A上に位置する。光素子3の端子は、スタッドバンプやハンダボールあるいは導電性樹脂などの導電性接合材5によって電極8に接合され、基板2に実装される。これにより光素子3の光電変換動作が可能になる。   By providing a light emitting element or light receiving element 3 (hereinafter referred to as “optical element”) on the surface of the substrate 2, the optical transmission substrate functions as an optical transmission device. The optical element 3 is arranged at a predetermined interval immediately above the opening 2d1 of the through hole 2c, and the light emitting point or the light receiving point is located on the optical axis A of the optical transmission body 1. The terminals of the optical element 3 are bonded to the electrode 8 by a conductive bonding material 5 such as a stud bump, a solder ball, or a conductive resin, and mounted on the substrate 2. Thereby, the photoelectric conversion operation of the optical element 3 becomes possible.

光素子3と高屈折率部1a1の間には間隙6が存在する。この間隙6は、図1の例では空気であるが、適宜の透明樹脂を充填してもよい。間隙6が空気の場合は、当然高屈折率部1a1より屈折率が小さいが、間隙6に透明樹脂を充填する場合も高屈折率部1a1より十分小さい屈折率とすることが好ましい。   A gap 6 exists between the optical element 3 and the high refractive index portion 1a1. The gap 6 is air in the example of FIG. 1, but may be filled with an appropriate transparent resin. When the gap 6 is air, the refractive index is naturally smaller than that of the high refractive index portion 1a1, but when the gap 6 is filled with a transparent resin, the refractive index is preferably sufficiently smaller than that of the high refractive index portion 1a1.

さらに、基板2の他方の主面2b(説明の便宜上、この面を「裏面」とする)上には光導波路4が設けられている。光導波路4は、基板2側から順に層状の下部クラッド4b、断面矩形のコア4a、層状の上部クラッド4cから構成されており、その端面には光導波路4の軸方向に対して略45度に加工された光路変換ミラー4dが形成される。光路変換ミラー4dは、貫通孔2cの開口2d2の直下に位置し、光伝送体1の光軸A上にコア4aが位置するように配置される。   Furthermore, an optical waveguide 4 is provided on the other main surface 2b of the substrate 2 (for convenience of explanation, this surface is referred to as a “back surface”). The optical waveguide 4 is composed of a layered lower clad 4b, a core 4a having a rectangular cross section, and a layered upper clad 4c in order from the substrate 2 side, and its end face is approximately 45 degrees with respect to the axial direction of the optical waveguide 4. The processed optical path conversion mirror 4d is formed. The optical path conversion mirror 4d is located immediately below the opening 2d2 of the through hole 2c, and is arranged so that the core 4a is located on the optical axis A of the optical transmission body 1.

以上のように構成された図1の光伝送基板もしくは光伝送装置における光伝送は、次の通り行われる。
光素子3が発光素子(例えば面発光レーザ(VCSEL))の場合、その発光点から出射した信号光7は、間隙6で放射状に広がりながら貫通孔2cの開口2d1において光伝送体1の高屈折率部1a1に入射する。その際は間隙6に存在する空気または樹脂と高屈折率部1a1との比屈折率差に応じて信号光7が光軸Aに対して近づくように屈折し、拡がり角が狭まる。
次に、信号光7は、高屈折率部1a1と低屈折率部1bとの接合面1c1を通過し低屈折率部1bに入射する。この接合面1c1は、断面形状が略円弧であり、すなわち立体的には曲面となっている。よって、高屈折率部1a1側から低屈折率部1b側に入射する光は、接合面1c1の曲面形状と比屈折率差に応じてさらに光軸Aに対して近づくように屈折し、拡がり角が狭まる。
このように、光伝送体1の外部から光伝送体1の内部である高屈折率部に入射しさらに低屈折率部へ入射していく場合についても、信号光の拡がり角を狭める効果が得られるため、この場合についても「集光」と称することとする。
Optical transmission in the optical transmission board or optical transmission apparatus of FIG. 1 configured as described above is performed as follows.
When the optical element 3 is a light emitting element (for example, a surface emitting laser (VCSEL)), the signal light 7 emitted from the light emitting point spreads radially in the gap 6 and is highly refracted by the optical transmission body 1 at the opening 2d1 of the through hole 2c. It enters the rate part 1a1. At that time, the signal light 7 is refracted so as to approach the optical axis A according to the relative refractive index difference between the air or resin existing in the gap 6 and the high refractive index portion 1a1, and the spread angle is narrowed.
Next, the signal light 7 passes through the joint surface 1c1 between the high refractive index portion 1a1 and the low refractive index portion 1b and enters the low refractive index portion 1b. The joint surface 1c1 has a substantially circular cross section, that is, a three-dimensional curved surface. Therefore, the light incident on the low refractive index portion 1b side from the high refractive index portion 1a1 side is refracted so as to be closer to the optical axis A according to the curved surface shape of the joint surface 1c1 and the relative refractive index difference, and the divergence angle. Narrows.
As described above, the effect of narrowing the divergence angle of the signal light can be obtained even when the light is incident on the high refractive index portion inside the light transmitting body 1 from the outside of the light transmitting body 1 and further enters the low refractive index portion. Therefore, this case is also referred to as “condensing”.

低屈折率部1bを伝搬した信号光7は、もう1つの高屈折率部1a2に入射するが、最初の場合と同様にその接合面1c2の曲面形状と比屈折率差に応じて光軸Aに対し集光される。
そして信号光7は、貫通孔2cの開口2d2において高屈折率部1a2から光導波路4の下部クラッド4bに入射する。このときも光導波路の下部クラッド4bとの比屈折率差に応じてさらに光軸Aに対して集光され、下部クラッド4bを通過してコア4aに入射する。その後、信号光7は、光路変換ミラー4dで反射して光路を略90度変換され、光導波路4のコア4aの軸方向に伝搬する。
The signal light 7 that has propagated through the low refractive index portion 1b is incident on another high refractive index portion 1a2, but as in the first case, the optical axis A depends on the curved surface shape of the joint surface 1c2 and the relative refractive index difference. Are collected.
The signal light 7 enters the lower clad 4b of the optical waveguide 4 from the high refractive index portion 1a2 at the opening 2d2 of the through hole 2c. Also at this time, the light is further condensed with respect to the optical axis A according to the relative refractive index difference with the lower clad 4b of the optical waveguide, passes through the lower clad 4b, and enters the core 4a. Thereafter, the signal light 7 is reflected by the optical path conversion mirror 4d, and the optical path is converted by approximately 90 degrees, and propagates in the axial direction of the core 4a of the optical waveguide 4.

このように、基板2の表面上に実装した発光素子から出射した信号光7は、基板2の両端開口間に形成した光伝送体1内を集光しながら伝搬した後に、最終的に基板2の裏面上に形成した光導波路4に到達し、光路変換の後にさらに伝搬していく。光伝送体1内部の接合面1c1、1c2及びその両端開口2d1、2d2における集光作用により、発光素子3からの出射光の広がり並びに光伝送体1からの出射光の広がりが修正され、伝送損失が低減される。   As described above, the signal light 7 emitted from the light emitting element mounted on the surface of the substrate 2 propagates while condensing in the optical transmission body 1 formed between the openings at both ends of the substrate 2, and finally the substrate 2. It reaches the optical waveguide 4 formed on the back surface of the light, and further propagates after the optical path conversion. The light condensing action at the joint surfaces 1c1, 1c2 and the both end openings 2d1, 2d2 inside the optical transmission body 1 corrects the spread of the outgoing light from the light emitting element 3 and the spread of the outgoing light from the optical transmission body 1, thereby reducing transmission loss. Is reduced.

ここで、接合面1c1、1c2をそれぞれ設ける貫通孔2cの「両端開口の近傍」の位置とは、接合面1c1、1c2によって信号光の伝搬方向が変えられ、その集光点が貫通孔2cの外側となるような位置をいう。   Here, the position of “the vicinity of the opening at both ends” of the through-hole 2c in which the joint surfaces 1c1 and 1c2 are respectively provided is changed in the propagation direction of the signal light by the joint surfaces 1c1 and 1c2, and the condensing point thereof is the through-hole 2c. A position that is on the outside.

なお、図示しないが、別の実施形態として、図1の形態の高屈折率部1a1、1a2のうちいずれか一方のみを設けた光伝送体としてもよい。高屈折率部を設けない側の光伝送体の端部は、貫通孔開口面まで低屈折率部とする。よって、高屈折率部と低屈折率部との接合面は1つのみとなる。この場合は、高屈折率部を設けた側の貫通孔開口面と、1つの接合面において上記の集光作用が得られる。   In addition, although not shown in figure, as another embodiment, it is good also as an optical transmission body which provided only any one among the high refractive index parts 1a1 and 1a2 of the form of FIG. The end of the optical transmission body on the side where the high refractive index portion is not provided is a low refractive index portion up to the through hole opening surface. Therefore, there is only one joint surface between the high refractive index portion and the low refractive index portion. In this case, the above-described light condensing action can be obtained at the through hole opening surface on the side where the high refractive index portion is provided and one joint surface.

図2(a)〜(e)は、図1に示した本発明の光伝送基板の製造方法の例を工程順に示した部分断面図である。
図2(a)に示す通り、基板2の表面2a上には、回路及び実装構造に合わせて公知のフォトリソグラフィ工程やエッチング工程により電極層8とソルダーレジスト層9が形成されている。なお、裏面2b上にも、後の工程で設ける光導波路以外の箇所に電極層とソルダーレジスト層を形成してもよい。基板2は、プリント配線基板に限らず、基板内部の絶縁層にアルミナ等を用いたセラミック配線基板や、シリコンやガラス等に電気配線を形成した基板を用いてもよい。汎用的なガラスエポキシ配線基板でもよい。なお、基板2として、電気配線層と絶縁層とが交互に積層された多層基板を用い、基板2の内部に電気配線層が形成されていてもよい。
さらに、後の工程で設置される光素子の発光点または受光点に対向する位置に、基板2を貫通する貫通孔2cが設けられる。貫通孔2cの加工には、ドリル又はレーザを用いる。その直径は、通常、直径100〜200μmである。
2A to 2E are partial cross-sectional views showing an example of the method of manufacturing the optical transmission board of the present invention shown in FIG. 1 in the order of steps.
As shown in FIG. 2A, an electrode layer 8 and a solder resist layer 9 are formed on the surface 2a of the substrate 2 by a known photolithography process or etching process according to the circuit and the mounting structure. Note that an electrode layer and a solder resist layer may also be formed on the back surface 2b in places other than the optical waveguide provided in a later step. The substrate 2 is not limited to a printed wiring board, and may be a ceramic wiring board using alumina or the like as an insulating layer inside the board, or a board in which electric wiring is formed on silicon, glass, or the like. A general-purpose glass epoxy wiring board may be used. Note that a multilayer substrate in which electrical wiring layers and insulating layers are alternately stacked may be used as the substrate 2, and the electrical wiring layer may be formed inside the substrate 2.
Furthermore, a through hole 2c that penetrates the substrate 2 is provided at a position facing a light emitting point or a light receiving point of an optical element that is installed in a later step. A drill or a laser is used for processing the through hole 2c. The diameter is usually 100 to 200 μm.

次に、図2(b)に示す通り、基板2の表面2aを鉛直上方に向けて配置し、第2の屈折率n2をもつ低屈折率透明樹脂1b’をシリンジ等を用いて貫通孔2cに滴下する。貫通孔2c内を完全に低屈折率透明樹脂1b’で充填するために、表面側の開口2d1の外側に盛り上がるまで滴下することが望ましい。
低屈折率透明樹脂1b’としては、光導波路用の材料として提供されているポリシラン(屈折率1.6程度)、アクリル(屈折率1.5程度)、エポキシ(屈折率1.5程度)(いずれも波長850nmにて)の樹脂材料を用いることができ、クラッドに用いられる比較的低屈折率の材料が好適である。これらの透明樹脂材料の滴下時の粘度は1000〜2000(mP・s)が好適である。この範囲の粘度であれば、貫通孔2c外へ流れ出たり、貫通孔2c内に滲入しなかったりすることはなく、貫通孔2c内に隙間なく滲入して裏面側の開口2d2まで到達する。そして、基板2の裏面2bと同一平面上にある端面が低屈折率透明樹脂1b’により形成される。
Next, as shown in FIG. 2 (b), the surface 2a of the substrate 2 is disposed vertically upward, and the low refractive index transparent resin 1b ′ having the second refractive index n2 is inserted into the through hole 2c using a syringe or the like. Dripping into. In order to completely fill the inside of the through-hole 2c with the low refractive index transparent resin 1b ′, it is desirable to drop it until it rises outside the opening 2d1 on the surface side.
As the low refractive index transparent resin 1b ′, polysilane (refractive index of about 1.6), acrylic (refractive index of about 1.5), epoxy (refractive index of about 1.5) (provided as materials for optical waveguides) ( In any case, a resin material having a wavelength of 850 nm can be used, and a relatively low refractive index material used for the cladding is preferable. The viscosity at the time of dropping these transparent resin materials is preferably 1000 to 2000 (mP · s). If it is the viscosity of this range, it does not flow out of the through-hole 2c, or does not permeate into the through-hole 2c, but penetrates into the through-hole 2c without a gap and reaches the opening 2d2 on the back surface side. And the end surface which exists on the same plane as the back surface 2b of the board | substrate 2 is formed with low refractive index transparent resin 1b '.

続いて、図2(c)に示す通り、薄い板状工具の端部を基板2の表面2aに押し当てて、基板面と平行に移動させることによって表面2a上に盛り上がった低屈折率透明樹脂1b’を取り除く。この操作により、基板2の表面2aと同一平面上にある端面が低屈折率透明樹脂1b’により形成される。その後、図2(c)の状態から基板2全体を加熱し、低屈折率透明樹脂を硬化させる。   Subsequently, as shown in FIG. 2 (c), the low refractive index transparent resin raised on the surface 2a by pressing the end of the thin plate-shaped tool against the surface 2a of the substrate 2 and moving it parallel to the substrate surface. Remove 1b '. By this operation, an end surface which is on the same plane as the surface 2a of the substrate 2 is formed of the low refractive index transparent resin 1b '. Then, the whole board | substrate 2 is heated from the state of FIG.2 (c), and low refractive index transparent resin is hardened.

硬化後は、図2(d)に示す通り、低屈折率透明樹脂1b’の加熱硬化時の収縮によって両端面が凹形状の曲面1c1’、1c2’となる。これらの凹形状は、低屈折率透明樹脂1b’の貫通孔2c内壁に対する表面張力により決定されるため、通常は貫通孔2cの軸上に凹形状の中心点が自然に定まる。凹形状の曲率は、低屈折率透明樹脂1b’の粘度により調整可能である。こうして低屈折率部1bが形成される。   After curing, as shown in FIG. 2 (d), the low refractive index transparent resin 1b 'becomes a curved surface 1c1', 1c2 'having concave concave ends due to shrinkage during heat curing. Since these concave shapes are determined by the surface tension of the low refractive index transparent resin 1b 'with respect to the inner wall of the through hole 2c, normally the center point of the concave shape is naturally determined on the axis of the through hole 2c. The curvature of the concave shape can be adjusted by the viscosity of the low refractive index transparent resin 1b '. Thus, the low refractive index portion 1b is formed.

続いて、図2(e)に示す通り、図2(d)で形成された凹形状の曲面1c1’、1c2’に対して高屈折率透明樹脂を滴下する。高屈折率透明樹脂としては、光導波路用の材料として提供されているポリシラン(屈折率1.6程度)、アクリル(屈折率1.5程度)、エポキシ(屈折率1.5程度)(いずれも波長850nmにて)の樹脂材料を用いることができ、コアに用いられる比較的高屈折率の材料が好適である。滴下時の粘度は、前述の低屈折率透明樹脂と同程度が好適である。滴下した際には図2(b)と同様に盛り上がりを形成し、その後、図2(c)と同様に薄い板状工具によって平らにする。
その後、基板2全体を加熱し、高屈折率透明樹脂を硬化させる。硬化時の収縮によって再び凹形状の曲面ができるが、本工程を何度か繰り返すことによって最終的に平坦な端面が形成できる。最終的に得られた高屈折率透明樹脂の2つの端面はそれぞれ、基板2の表面2a及び裏面2bと同一平面上にある。こうして、高屈折率部1a1、1a2並びに接合面1c1、1c2が形成される。
なお、別の実施例として、高屈折率透明樹脂の端面が基板2の表面2a及び裏面2bより盛り上がっていてもよい。その場合、高屈折率透明樹脂はレンズとなるため、集光効果がより高くなる。
Subsequently, as shown in FIG. 2E, a high refractive index transparent resin is dropped on the concave curved surfaces 1c1 ′ and 1c2 ′ formed in FIG. As the high refractive index transparent resin, polysilane (refractive index of about 1.6), acrylic (refractive index of about 1.5), epoxy (refractive index of about 1.5), which are provided as materials for optical waveguides (all A resin material having a wavelength of 850 nm can be used, and a relatively high refractive index material used for the core is preferable. The viscosity at the time of dropping is preferably about the same as that of the above-mentioned low refractive index transparent resin. When dropped, a bulge is formed as in FIG. 2 (b), and then flattened with a thin plate-like tool as in FIG. 2 (c).
Thereafter, the entire substrate 2 is heated to cure the high refractive index transparent resin. A concave curved surface is formed again by shrinkage during curing, but a flat end surface can be finally formed by repeating this process several times. The two end surfaces of the finally obtained high refractive index transparent resin are on the same plane as the front surface 2a and the back surface 2b of the substrate 2, respectively. Thus, the high refractive index portions 1a1 and 1a2 and the joint surfaces 1c1 and 1c2 are formed.
As another example, the end surface of the high refractive index transparent resin may be raised from the front surface 2 a and the back surface 2 b of the substrate 2. In that case, since the high refractive index transparent resin becomes a lens, the light condensing effect becomes higher.

以上の図2(e)までの工程で貫通孔2c内の光伝送体が完成する。光伝送体と基板との一体性を保持するために、光伝送体の熱膨張率は、基板の熱膨張率の80〜120%の範囲内とすることが好適である。上記の低屈折率透明樹脂及び高屈折率透明樹脂として、このような熱膨張率条件を満たす材料を選択する。例えば、光伝送体が光硬化性エポキシ樹脂から形成される場合、基板をエポキシ系基板(例えばガラスエポキシ基板等)とする。   The optical transmission body in the through hole 2c is completed through the steps up to FIG. In order to maintain the integrity of the optical transmission body and the substrate, the thermal expansion coefficient of the optical transmission body is preferably in the range of 80 to 120% of the thermal expansion coefficient of the substrate. As the low refractive index transparent resin and the high refractive index transparent resin, materials satisfying such a thermal expansion coefficient are selected. For example, when the optical transmission body is formed of a photocurable epoxy resin, the substrate is an epoxy substrate (for example, a glass epoxy substrate).

最後に、図2(f)に示す通り、基板2の裏面2bに光導波路4を形成する。光導波路4の形成順は、次のステップf1〜f4の通りであり、公知技術である。
・ステップf1:クラッド材料をスピンコーティングなどで塗布して加熱硬化させ下部クラッド層4bを形成する。
・ステップf2:コア材を同様に塗布した後で、フォトマスクを介してコアとなるパターンのみを紫外線露光によって硬化させ、有機溶剤による現像を行って非露光部分を除去する。コア層4aを形成する。コア層4aの断面形状は、50〜100μm角の矩形である。
・ステップf3:再度クラッド材料を同様に塗布して加熱硬化させて上部及び側面のクラッド層4cを形成する。
・ステップf4:最後に、端面の角度が90度であるダイシングブレードを用いて光導波路4の端部を切除し、光軸Aに対して45度の角度である光路変換機能をもつ光路変換ミラー4dを形成する。
Finally, the optical waveguide 4 is formed on the back surface 2b of the substrate 2 as shown in FIG. The order of forming the optical waveguide 4 is as shown in the following steps f1 to f4, which is a known technique.
Step f1: A clad material is applied by spin coating or the like and heated and cured to form the lower clad layer 4b.
Step f2: After applying the core material in the same manner, only the pattern that becomes the core is cured by UV exposure through a photomask, and development with an organic solvent is performed to remove the non-exposed portion. The core layer 4a is formed. The cross-sectional shape of the core layer 4a is a rectangle of 50 to 100 μm square.
Step f3: The clad material is again applied in the same manner and cured by heating to form upper and side clad layers 4c.
Step f4: Finally, an end portion of the optical waveguide 4 is cut off using a dicing blade whose end face has an angle of 90 degrees, and an optical path conversion mirror having an optical path conversion function having an angle of 45 degrees with respect to the optical axis A 4d is formed.

図3は、本発明による光伝送基板の第2の実施形態の概略構成を示す部分断面図である。
図3の実施形態は、図1に示した実施形態と同様に、基板2に貫通孔2cが空けられ、表面2a上に電極8及びソルダーレジスト9の各層が設けられ、裏面2b上に光導波路4が設けられている。表面2aの貫通孔2cの開口2d1に対向する位置に光素子3が設置されることにより光伝送装置として機能する。
FIG. 3 is a partial sectional view showing a schematic configuration of the second embodiment of the optical transmission board according to the present invention.
In the embodiment shown in FIG. 3, as in the embodiment shown in FIG. 1, a through hole 2c is formed in the substrate 2, electrodes 8 and solder resist 9 are provided on the front surface 2a, and an optical waveguide is provided on the back surface 2b. 4 is provided. The optical element 3 is installed at a position facing the opening 2d1 of the through hole 2c on the surface 2a, thereby functioning as an optical transmission device.

図3の形態において、図1の形態との相違点は、貫通孔2c内に形成された光伝送体10の構造である。光伝送体10は、第1の屈折率n1をもつ高屈折率部10aと、第1の屈折率n1よりも小さい第2の屈折率n2をもつ低屈折率部10b1、10b2とを有する。高屈折率部及び低屈折率部は、それぞれ適宜の屈折率をもつ透明樹脂から構成される。図3の例では、貫通孔2cの軸方向に沿って高屈折率部10aが中間部に配置され、その両端に2つの低屈折率部10b1、10b2がそれぞれ配置されている。低屈折率部10b1、10b2の端部は、それぞれ貫通孔2cの両端開口2d1、2d2に位置する平坦面を形成する。   3 differs from the embodiment of FIG. 1 in the structure of the optical transmission body 10 formed in the through hole 2c. The optical transmission body 10 includes a high refractive index portion 10a having a first refractive index n1 and low refractive index portions 10b1 and 10b2 having a second refractive index n2 smaller than the first refractive index n1. The high refractive index portion and the low refractive index portion are each made of a transparent resin having an appropriate refractive index. In the example of FIG. 3, the high refractive index portion 10a is disposed in the middle along the axial direction of the through hole 2c, and two low refractive index portions 10b1 and 10b2 are disposed at both ends thereof. The end portions of the low refractive index portions 10b1 and 10b2 form flat surfaces respectively positioned at both end openings 2d1 and 2d2 of the through hole 2c.

光伝送体10内部における低屈折率部10b1と高屈折率部10aとの接合面10c1、及び、低屈折率部10b2と高屈折率部10aとの接合面10c2は、それぞれ両端開口2d1、2d2の近傍に形成され、かつ信号光の光軸Aの方向において低屈折率部10b1、10b2側を凹形状とする曲面に形成される。言い換えるならば、高屈折率部10a側が凸形状の曲面となる。
接合面10c1、10c2は屈折率界面であり、図1の形態と同様にレンズ面と同じ作用をもつ。図3の形態においても、これらの接合面10c1、10c2は必ず貫通孔2cの内部に位置するため、レンズ面の光軸Aを貫通孔2cの軸方向に一致させることが容易である。
The joint surface 10c1 between the low refractive index portion 10b1 and the high refractive index portion 10a and the joint surface 10c2 between the low refractive index portion 10b2 and the high refractive index portion 10a inside the optical transmission body 10 are respectively open at both end openings 2d1 and 2d2. It is formed in the vicinity, and in the direction of the optical axis A of the signal light, it is formed in a curved surface having a concave shape on the low refractive index portions 10b1, 10b2 side. In other words, the high refractive index portion 10a side is a convex curved surface.
The joint surfaces 10c1 and 10c2 are refractive index interfaces and have the same action as the lens surface in the same manner as in the embodiment of FIG. Also in the embodiment of FIG. 3, these joint surfaces 10c1 and 10c2 are always located inside the through hole 2c, so that it is easy to make the optical axis A of the lens surface coincide with the axial direction of the through hole 2c.

図3の形態の光伝送体10の製造方法は、例えば、次の通りである。先ず、予め両凸の円筒形状に仮硬化した高屈折率透明樹脂を用意しておき、基板2に空けた貫通孔2c内に挿入し、再度加熱硬化することにより高屈折率部10aを形成する。あるいは、高屈折率透明樹脂を貫通孔2c内に適量だけ滴下し滲入させた後、その両端面に金型を押し当てて加熱硬化させることにより高屈折率部10aを形成する。高屈折率部10aを形成した後、前述の図1の形態の製造方法における図2(e)の工程と同様にして、低屈折率透明樹脂を滴下及び硬化させて低屈折率部10b1、10b2を形成する。   The manufacturing method of the optical transmission body 10 of the form of FIG. 3 is as follows, for example. First, a high refractive index transparent resin that has been pre-cured into a biconvex cylindrical shape is prepared in advance, inserted into the through-hole 2c in the substrate 2, and again heated and cured to form the high refractive index portion 10a. . Alternatively, after a suitable amount of high refractive index transparent resin is dropped and infiltrated into the through-hole 2c, a high refractive index portion 10a is formed by pressing a mold against both end faces and curing it. After forming the high refractive index portion 10a, the low refractive index portions 10b1, 10b2 are obtained by dropping and curing a low refractive index transparent resin in the same manner as in the step of FIG. Form.

図3の形態の光伝送体10の別の製造方法は、次の通りである。先ず、貫通孔2cに嵌合しかつ滑動可能な程度の直径であって第1の屈折率n1をもつ高屈折率樹脂製の微小ボールを貫通孔2c内に1個挿入し、続いて同じ屈折率n1の高屈折率透明樹脂を適量だけ滴下し滲入させ、さらにもう1個の高屈折率樹脂製の微小ボールを挿入する。その後、加熱硬化させることにより高屈折率部10aを形成する。高屈折率部10aを形成した後、前述の図1の形態の製造方法における図2(e)の工程と同様にして、低屈折率透明樹脂を滴下及び硬化させて低屈折率部10b1、10b2を形成する。   Another manufacturing method of the optical transmission body 10 in the form of FIG. 3 is as follows. First, one minute ball made of a high refractive index resin having a first refractive index n1 and having a diameter that can be fitted and slid into the through hole 2c is inserted into the through hole 2c, and then the same refraction is performed. An appropriate amount of a high refractive index transparent resin having a refractive index n1 is dropped and infiltrated, and another fine ball made of high refractive index resin is inserted. Thereafter, the high refractive index portion 10a is formed by heat curing. After forming the high refractive index portion 10a, the low refractive index portions 10b1, 10b2 are obtained by dropping and curing a low refractive index transparent resin in the same manner as in the step of FIG. Form.

以上のように構成された図3の光伝送基板もしくは光伝送装置における光伝送は、次の通り行われる。図中、太線は信号光7を、破線は光軸Aを模式的に示している。
光素子3が発光素子(例えば面発光レーザ(VCSEL))の場合、その発光点から出射した信号光7は、間隙6で放射状に広がりながら貫通孔2cの開口2d1において光伝送体1の低屈折率部10b1に入射する。その際は間隙6に存在する空気または樹脂と低屈折率部10b1との比屈折率差に応じて信号光7が光軸Aに対して近づくように屈折し、拡がり角が狭まる。間隙6に樹脂を充填する場合、低屈折率部10b1より小さい屈折率をもつ材料とする。
Optical transmission in the optical transmission board or optical transmission apparatus of FIG. 3 configured as described above is performed as follows. In the figure, the thick line schematically shows the signal light 7 and the broken line schematically shows the optical axis A.
When the optical element 3 is a light emitting element (for example, a surface emitting laser (VCSEL)), the signal light 7 emitted from the light emitting point spreads radially in the gap 6 while being low refraction of the optical transmission body 1 at the opening 2d1 of the through hole 2c. It enters the rate part 10b1. At that time, the signal light 7 is refracted so as to approach the optical axis A according to the relative refractive index difference between the air or resin existing in the gap 6 and the low refractive index portion 10b1, and the spread angle is narrowed. When the gap 6 is filled with resin, a material having a refractive index smaller than that of the low refractive index portion 10b1 is used.

次に、低屈折率部10b1と高屈折率部10aとの接合面10c1を通過し高屈折率部10aに入射する。この接合面10c1は、断面形状が略円弧であり、すなわち立体的には曲面となっている。よって、低屈折率部10b1側から高屈折率部10a側に入射する光は、接合面10c1の曲面形状と比屈折率差に応じてさらに光軸Aに対して近づくように屈折し、拡がり角が狭まる。
このように、光伝送体10の外部から光伝送体10の内部である低屈折率部に入射しさらに高屈折率部へ入射していく場合についても、信号光の拡がり角を狭める効果が得られるため、この場合についても「集光」と称することとする。
Next, the light passes through the joint surface 10c1 between the low refractive index portion 10b1 and the high refractive index portion 10a and enters the high refractive index portion 10a. The joint surface 10c1 has a substantially arc shape in cross section, that is, a three-dimensional curved surface. Therefore, the light incident on the high refractive index portion 10a side from the low refractive index portion 10b1 side is refracted so as to be closer to the optical axis A according to the curved surface shape of the joint surface 10c1 and the relative refractive index difference, and the divergence angle. Narrows.
As described above, the effect of narrowing the divergence angle of the signal light is also obtained when the light is incident on the low refractive index portion inside the light transmitting body 10 from the outside of the light transmitting body 10 and further enters the high refractive index portion. Therefore, this case is also referred to as “condensing”.

高屈折率部10aを伝搬した信号光7は、もう1つの低屈折率部10b2に入射するが、最初の場合と同様にその接合面10c2の曲面形状と比屈折率差に応じて光軸Aに対し集光される。
そして貫通孔2cの開口2d2において低屈折率部10b2から光導波路4の下部クラッド4bに入射する。このときも光導波路の下部クラッド4bとの比屈折率差に応じてさらに光軸Aに対して集光され、下部クラッド4bを通過してコア4aに入射する。その後、光路変換ミラー4dで反射して光路を略90度変換され、光導波路4のコア4aの軸方向に伝搬する。
The signal light 7 that has propagated through the high refractive index portion 10a is incident on another low refractive index portion 10b2, but as in the first case, the optical axis A depends on the curved surface shape of the joint surface 10c2 and the relative refractive index difference. Are collected.
Then, the light enters the lower clad 4b of the optical waveguide 4 from the low refractive index portion 10b2 through the opening 2d2 of the through hole 2c. Also at this time, the light is further condensed with respect to the optical axis A according to the relative refractive index difference with the lower clad 4b of the optical waveguide, passes through the lower clad 4b, and enters the core 4a. After that, the light path is reflected by the optical path conversion mirror 4d and the optical path is converted by approximately 90 degrees, and propagates in the axial direction of the core 4a of the optical waveguide 4.

ここで、接合面10c1、10c2をそれぞれ設ける貫通孔2cの「両端開口の近傍」の位置とは、接合面10c1、10c2によって信号光の伝搬方向が変えられ、その集光点が貫通孔2cの外側となるような位置をいう。   Here, the position of the vicinity of the opening at both ends of the through hole 2c in which the joint surfaces 10c1 and 10c2 are provided, respectively, is such that the propagation direction of the signal light is changed by the joint surfaces 10c1 and 10c2, and the condensing point thereof is the through hole 2c. A position that is on the outside.

なお、図示しないが、別の実施形態として、図3の形態の低屈折率部10b1、10b2のうちいずれか一方のみを設けた光伝送体としてもよい。低屈折率部を設けない側は、貫通孔開口面まで高屈折率部とする。よって、高屈折率部と低屈折率部との接合面は1つのみとなる。この場合は、低屈折率部を設けた側の貫通孔開口面と、1つの接合面において上記の集光作用が得られる。   Although not shown, as another embodiment, an optical transmission body provided with only one of the low refractive index portions 10b1 and 10b2 in the form of FIG. 3 may be used. The side where the low refractive index portion is not provided is the high refractive index portion up to the through hole opening surface. Therefore, there is only one joint surface between the high refractive index portion and the low refractive index portion. In this case, the above-described light condensing action can be obtained at the through hole opening surface on the side where the low refractive index portion is provided and one joint surface.

図4は、図1に示した光伝送基板の変形形態の概略構成を示す部分断面図である。
基板2の貫通孔2c内に形成した光伝送体1の構造は、図1の光伝送基板と同じであり、低屈折率部1bを挟んで両端にそれぞれ高屈折率部1a1、1a2が設けられている。図1の形態と異なる点は、基板2の2つの主面2a、2b上に光導波路4、40がそれぞれ形成されている点である。光導波路4の端部における光路変換ミラー4d2は開口2d2に対向する位置に、光導波路40の端部における光路変換ミラー4d1は開口2d1に対向する位置に配置される。
FIG. 4 is a partial cross-sectional view showing a schematic configuration of a modified embodiment of the optical transmission board shown in FIG.
The structure of the optical transmission body 1 formed in the through hole 2c of the substrate 2 is the same as that of the optical transmission substrate of FIG. 1, and high refractive index portions 1a1 and 1a2 are provided at both ends with the low refractive index portion 1b interposed therebetween. ing. 1 is that optical waveguides 4 and 40 are formed on two main surfaces 2a and 2b of the substrate 2, respectively. The optical path conversion mirror 4d2 at the end of the optical waveguide 4 is disposed at a position facing the opening 2d2, and the optical path conversion mirror 4d1 at the end of the optical waveguide 40 is disposed at a position facing the opening 2d1.

図4のように構成された光伝送基板における光伝送は、次の通り行われる。図中、太線は信号光7を、破線は光軸Aを模式的に示している。
光導波路40を伝搬してきた信号光は、端面に設けた光路変換ミラー4d1によって90度の光路変換を受ける。その後、信号光は広がりつつ伝搬し、開口2d1において光伝送体1の高屈折率部1a1に入射する。その後は、図1の形態と同様に、高屈折率部1a1と低屈折率部1bの屈折率界面、及び、低屈折率部1bと高屈折率部1a2の屈折率界面において集光され、さらに、開口2d2において光導波路4の下部クラッド4bに入射し、端部に設けた光路変換ミラー4d2で光路変換した後にコア4aを伝搬する。
Optical transmission in the optical transmission board configured as shown in FIG. 4 is performed as follows. In the figure, the thick line schematically shows the signal light 7 and the broken line schematically shows the optical axis A.
The signal light propagating through the optical waveguide 40 is subjected to an optical path conversion of 90 degrees by the optical path conversion mirror 4d1 provided on the end face. Thereafter, the signal light propagates while spreading and enters the high refractive index portion 1a1 of the optical transmission body 1 through the opening 2d1. Thereafter, the light is condensed at the refractive index interface between the high refractive index portion 1a1 and the low refractive index portion 1b and at the refractive index interface between the low refractive index portion 1b and the high refractive index portion 1a2, as in the embodiment of FIG. The light enters the lower clad 4b of the optical waveguide 4 through the opening 2d2, and propagates through the core 4a after optical path conversion by the optical path conversion mirror 4d2 provided at the end.

図5は、図1に示した光伝送基板の変形形態を適用した光伝送装置の概略構成を示す部分断面図である。
基板2の貫通孔2c内に形成した光伝送体1の構造は、図1の光伝送基板と同じであり、低屈折率部1bを挟んで両端にそれぞれ高屈折率部1a1、1a2が設けられている。図1の形態と異なる点は、基板2の2つの主面2a、2b上にそれぞれ、光素子3、30、電極8、80及びソルダーレジスト9、90がそれぞれ設置されている点である。光素子3は、図1の形態と同様に開口2d1の直上に配置される。光素子30は開口2d2の直下に配置され、その発光点または受光点が、光伝送体1の光軸A上に位置するように配置される。光素子30の端子は、スタッドバンプやハンダボールあるいは導電性樹脂などの導電性接合材50によって電極80に接合される。これによって光素子30の光電変換動作が可能になる。
FIG. 5 is a partial cross-sectional view showing a schematic configuration of an optical transmission apparatus to which a modification of the optical transmission board shown in FIG. 1 is applied.
The structure of the optical transmission body 1 formed in the through hole 2c of the substrate 2 is the same as that of the optical transmission substrate of FIG. 1, and high refractive index portions 1a1 and 1a2 are provided at both ends with the low refractive index portion 1b interposed therebetween. ing. 1 is that optical elements 3 and 30, electrodes 8 and 80, and solder resists 9 and 90 are respectively installed on two main surfaces 2 a and 2 b of the substrate 2. The optical element 3 is disposed immediately above the opening 2d1 as in the embodiment of FIG. The optical element 30 is disposed immediately below the opening 2d2, and the light emitting point or the light receiving point is disposed on the optical axis A of the optical transmission body 1. The terminal of the optical element 30 is bonded to the electrode 80 by a conductive bonding material 50 such as a stud bump, a solder ball, or a conductive resin. As a result, the photoelectric conversion operation of the optical element 30 becomes possible.

図5のように構成された光伝送基板もしくは光伝送装置における光伝送は、次の通り行われる。図中、太線は信号光7を、破線は光軸Aを模式的に示している。
光素子3が発光素子(例えば面発光レーザ(VCSEL))の場合、その発光点から出射した信号光7は、間隙6で放射状に広がりながら貫通孔2cの開口2d1において光伝送体1の高屈折率部1a1に入射する。その際は間隙6に存在する空気または樹脂と高屈折率部1a1との比屈折率差に応じて信号光7が光軸Aに対して集光される。
次に、高屈折率部1a1と低屈折率部1bとの接合面1c1を通過し低屈折率部1bに入射する。この接合面1c1は、断面形状が略円弧であり、すなわち立体的には曲面となっている。よって、高屈折率部1a1側から低屈折率部1b側に入射する光は、接合面1c1の曲面形状と比屈折率差に応じてさらに光軸に対して集光される。
Optical transmission in the optical transmission board or the optical transmission apparatus configured as shown in FIG. 5 is performed as follows. In the figure, the thick line schematically shows the signal light 7 and the broken line schematically shows the optical axis A.
When the optical element 3 is a light emitting element (for example, a surface emitting laser (VCSEL)), the signal light 7 emitted from the light emitting point spreads radially in the gap 6 and is highly refracted by the optical transmission body 1 at the opening 2d1 of the through hole 2c. It enters the rate part 1a1. At that time, the signal light 7 is collected with respect to the optical axis A according to the relative refractive index difference between the air or resin existing in the gap 6 and the high refractive index portion 1a1.
Next, the light passes through the joint surface 1c1 between the high refractive index portion 1a1 and the low refractive index portion 1b and enters the low refractive index portion 1b. The joint surface 1c1 has a substantially circular cross section, that is, a three-dimensional curved surface. Therefore, the light incident on the low refractive index portion 1b side from the high refractive index portion 1a1 side is further condensed with respect to the optical axis according to the curved surface shape of the joint surface 1c1 and the relative refractive index difference.

低屈折率部1bを伝搬した信号光7は、もう1つの高屈折率部1a2に入射するが、最初の場合と同様にその接合面1c2の曲面形状と比屈折率差に応じて光軸に対し集光される。
そして貫通孔2cの開口2d2において高屈折率部1a2から間隙60に入射する。このときも間隙60との比屈折率差に応じてさらに光軸に対して集光され、受光素子である光素子30の受光点に入射する。
The signal light 7 that has propagated through the low refractive index portion 1b is incident on another high refractive index portion 1a2, but in the same manner as in the first case, the signal light 7 is incident on the optical axis according to the curved surface shape of the joint surface 1c2 and the relative refractive index difference. Condensed.
Then, the light enters the gap 60 from the high refractive index portion 1a2 at the opening 2d2 of the through hole 2c. At this time, the light is further condensed with respect to the optical axis in accordance with the relative refractive index difference with respect to the gap 60 and is incident on the light receiving point of the optical element 30 which is a light receiving element.

図示しないが、本発明による光伝送基板のさらに別の実施形態として、上記の各実施形態に示した光伝送基板を複数積層することにより、多層光伝送基板を構成してもよい。ただし、光導波路は、外部に面した基板の主面上に設けることが一般的である。多層光伝送基板における各層の基板に設けた光伝送体の光軸を一致させて配置することにより、厚い多層基板であっても損失を低減して伝送することができる。   Although not shown, as another embodiment of the optical transmission board according to the present invention, a multilayer optical transmission board may be configured by laminating a plurality of optical transmission boards shown in the above embodiments. However, the optical waveguide is generally provided on the main surface of the substrate facing the outside. By arranging the optical axes of the optical transmission bodies provided on the substrates of the respective layers in the multilayer optical transmission substrate so as to coincide with each other, transmission can be performed with a reduced loss even with a thick multilayer substrate.

図6は、図1に示した光伝送基板を適用した複合光伝送基板の一実施例の概略構成を示す部分断面図である。本発明の複合光伝送基板は、互いに所定の間隔を空けて配置された2枚またはそれ以上の光伝送基板からなる。なお、3枚以上の光伝送基板からなる複合光伝送基板においては、それらの基板のうち隣り合う少なくとも2枚の光伝送基板が図6に示した形態をとる。   FIG. 6 is a partial cross-sectional view showing a schematic configuration of an example of a composite optical transmission board to which the optical transmission board shown in FIG. 1 is applied. The composite optical transmission board of the present invention is composed of two or more optical transmission boards arranged at a predetermined interval from each other. Note that in a composite optical transmission substrate composed of three or more optical transmission substrates, at least two adjacent optical transmission substrates among those substrates take the form shown in FIG.

図6を参照すると、第1の基板2は、図1の光伝送基板とほぼ同じであり貫通孔2c内の光伝送体1の構造は、図1のそれと同じであり、低屈折率部1bを挟んで両端にそれぞれ高屈折率部1a1、1a2が設けられている。第1の基板2の一方の主面2a上には光素子3、電極8及びソルダーレジスト9がそれぞれ配置されている。光素子3は、貫通孔2cの開口の直上に配置される。   Referring to FIG. 6, the first substrate 2 is substantially the same as the optical transmission substrate of FIG. 1, the structure of the optical transmission body 1 in the through hole 2c is the same as that of FIG. 1, and the low refractive index portion 1b. The high refractive index portions 1a1 and 1a2 are provided at both ends with respect to each other. On one main surface 2a of the first substrate 2, an optical element 3, an electrode 8, and a solder resist 9 are arranged. The optical element 3 is disposed immediately above the opening of the through hole 2c.

一方、第1の基板2の他方の主面2b上には、図1の形態と異なり光導波路は設けられていない。その替わりに、第2の基板20が、第1の基板2に対して平行に所定の間隔を空けて配置され、第2の基板の一方の主面20aは、第1の基板2の主面2bに対向している。一実施例では、第1の基板をドーターボードとし、第2の基板をマザーボードとし、双方の基板上の電気配線は、例えば、図示しない適宜の半田接続部を介して電気的に接続されている。別の例では、第1の基板をマザーボードとし、第2の基板をドーターボードとしてもよい。   On the other hand, an optical waveguide is not provided on the other main surface 2b of the first substrate 2 unlike the embodiment of FIG. Instead, the second substrate 20 is arranged in parallel with the first substrate 2 at a predetermined interval, and one main surface 20 a of the second substrate is the main surface of the first substrate 2. 2b. In one embodiment, the first board is a daughter board, the second board is a mother board, and the electrical wirings on both boards are electrically connected via, for example, an appropriate solder connection portion (not shown). . In another example, the first board may be a mother board and the second board may be a daughter board.

第2の基板の主面20a上には光導波路4及び光路変換ミラー4dが設けられている。光導波路4は、基板20側から順に層状の下部クラッド4b、断面矩形のコア4a、層状の上部クラッド4cから構成されており、光導波路4の端面に対向するように、光導波路4の軸方向に対して略45度に加工された光路変換ミラー4dが配置されている。光路変換ミラー4dは、貫通孔2cの開口の直下であって光伝送体1の光軸A上に位置するように配置される。   An optical waveguide 4 and an optical path conversion mirror 4d are provided on the main surface 20a of the second substrate. The optical waveguide 4 is composed of a layered lower cladding 4b, a core 4a having a rectangular cross section, and a layered upper cladding 4c in order from the substrate 20 side, and the axial direction of the optical waveguide 4 is opposed to the end face of the optical waveguide 4. An optical path conversion mirror 4d processed at approximately 45 degrees is disposed. The optical path conversion mirror 4d is disposed so as to be located immediately below the opening of the through hole 2c and on the optical axis A of the optical transmission body 1.

図6のように構成された複合光伝送基板もしくは光伝送装置における光伝送は、次の通り行われる。図中、太線は信号光7を、破線は光軸Aを模式的に示している。光素子3が発光素子(例えば面発光レーザ(VCSEL))の場合、その発光点から出射した信号光7は、間隙6で放射状に広がりながら貫通孔2cの開口において光伝送体1の高屈折率部1a1に入射する。その際は間隙6に存在する空気または樹脂と高屈折率部1a1との比屈折率差に応じて信号光7が光軸Aに対して集光される。
次に、高屈折率部1a1と低屈折率部1bとの接合面1c1を通過し低屈折率部1bに入射する。この接合面1c1は、断面形状が略円弧であり、すなわち立体的には曲面となっている。よって、高屈折率部1a1側から低屈折率部1b側に入射する光は、接合面1c1の曲面形状と比屈折率差に応じてさらに光軸に対して集光される。
Optical transmission in the composite optical transmission board or optical transmission apparatus configured as shown in FIG. 6 is performed as follows. In the figure, the thick line schematically shows the signal light 7 and the broken line schematically shows the optical axis A. When the optical element 3 is a light emitting element (for example, a surface emitting laser (VCSEL)), the signal light 7 emitted from the light emitting point spreads radially in the gap 6 and is high in the refractive index of the optical transmission body 1 at the opening of the through hole 2c. Incident on the part 1a1. At that time, the signal light 7 is collected with respect to the optical axis A according to the relative refractive index difference between the air or resin existing in the gap 6 and the high refractive index portion 1a1.
Next, the light passes through the joint surface 1c1 between the high refractive index portion 1a1 and the low refractive index portion 1b and enters the low refractive index portion 1b. The joint surface 1c1 has a substantially circular cross section, that is, a three-dimensional curved surface. Therefore, the light incident on the low refractive index portion 1b side from the high refractive index portion 1a1 side is further condensed with respect to the optical axis according to the curved surface shape of the joint surface 1c1 and the relative refractive index difference.

低屈折率部1bを伝搬した信号光7は、もう1つの高屈折率部1a2に入射するが、最初の場合と同様にその接合面1c2の曲面形状と比屈折率差に応じて光軸に対し集光される。
そして貫通孔2cの開口において高屈折率部1a2から間隙60に入射する。このときも間隙60との比屈折率差に応じてさらに光軸に対して集光され、光路変換ミラー4dで反射して光路を略90度変換され、光導波路4のコア4aの軸方向に伝搬する。
The signal light 7 that has propagated through the low refractive index portion 1b is incident on another high refractive index portion 1a2, but in the same manner as in the first case, the signal light 7 is incident on the optical axis according to the curved surface shape of the joint surface 1c2 and the relative refractive index difference. Condensed.
And it injects into the gap | interval 60 from the high refractive index part 1a2 in opening of the through-hole 2c. Also at this time, the light is further condensed with respect to the optical axis according to the relative refractive index difference with the gap 60, reflected by the optical path conversion mirror 4d, and the optical path is converted by about 90 degrees, and in the axial direction of the core 4a of the optical waveguide 4 Propagate.

図6の複合光伝送基板の作製方法は、例えば次の通りである。
第1工程では、第2の基板20(例えばマザーボード)の一方の主面20a上に光導波路4を作製する。第2工程では、第1の基板2(例えばドーターボード)に光伝送体1を作製する。なお、第1工程と第2工程は、独立して行えるため順不同である。第3工程では、第1の基板2に光素子3を実装する。最後に、第4工程で、第1の基板を第2の基板上に搭載する。
A method for manufacturing the composite optical transmission substrate of FIG. 6 is as follows, for example.
In the first step, the optical waveguide 4 is produced on one main surface 20a of the second substrate 20 (for example, a mother board). In the second step, the optical transmission body 1 is produced on the first substrate 2 (for example, a daughter board). In addition, since the 1st process and the 2nd process can be performed independently, they are random. In the third step, the optical element 3 is mounted on the first substrate 2. Finally, in the fourth step, the first substrate is mounted on the second substrate.

なお、図6に示した実施形態では、第1の基板2に対して図1に示した光伝送体1と同じものを形成したが、別の実施形態として、図3に示した光伝送体10を形成してもよい。また、第1の基板2の主面1a上に光素子3を実装する替わりに、図4に示した実施形態のように光導波路40を形成してもよい。   In the embodiment shown in FIG. 6, the same optical transmission body 1 as shown in FIG. 1 is formed on the first substrate 2. However, as another embodiment, the optical transmission body shown in FIG. 10 may be formed. Further, instead of mounting the optical element 3 on the main surface 1a of the first substrate 2, an optical waveguide 40 may be formed as in the embodiment shown in FIG.

本発明による光伝送基板の第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the optical transmission board | substrate by this invention. 本発明による光伝送基板の製造方法の各工程を示す断面図である。It is sectional drawing which shows each process of the manufacturing method of the optical transmission board | substrate by this invention. 本発明による光伝送基板の第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the optical transmission board | substrate by this invention. 本発明による光伝送基板の第1の実施形態の適用例を示す断面図である。It is sectional drawing which shows the example of application of 1st Embodiment of the optical transmission board | substrate by this invention. 本発明による光伝送基板の第1の実施形態の別の適用例を示す断面図である。It is sectional drawing which shows another example of application of 1st Embodiment of the optical transmission board | substrate by this invention. 本発明による複合光伝送基板の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the composite optical transmission board | substrate by this invention. 従来の光伝送基板の例を示す図であり、(a)が断面図、(b)が光路用貫通孔の断面図である。It is a figure which shows the example of the conventional optical transmission board | substrate, (a) is sectional drawing, (b) is sectional drawing of the through-hole for optical paths. 従来の光伝送基板の例を示す断面図である。It is sectional drawing which shows the example of the conventional optical transmission board | substrate.

符号の説明Explanation of symbols

1、10 光伝送体
1a、10a 高屈折率部
1b、10b 低屈折率部
1c1、1c2、10c1、10c2 接合面
2 基板(第1の基板)
2a 表面(一方の主面)
2b 裏面(他方の主面)
2c 貫通孔
2d1、2d2 貫通孔の開口
3、30 半導体光素子(発光素子もしくは受光素子)
4 光導波路
4a コア(層)
4b 下部クラッド(層)
4c 上部クラッド(層)
4d 光路変換ミラー
5、50 導電性接合材
6、60 間隙(空気もしくは透明樹脂)
7 信号光
8、80 電極(層)
9、90 ソルダーレジスト(層)
20 第2の基板
20a 表面(一方の主面)
20b 裏面(他方の主面)
A 光軸
DESCRIPTION OF SYMBOLS 1, 10 Optical transmission body 1a, 10a High refractive index part 1b, 10b Low refractive index part 1c1, 1c2, 10c1, 10c2 Joint surface 2 Board | substrate (1st board | substrate)
2a Surface (one main surface)
2b Back surface (the other main surface)
2c Through hole 2d1, 2d2 Opening of through hole 3, 30 Semiconductor optical element (light emitting element or light receiving element)
4 Optical waveguide 4a Core (layer)
4b Lower clad (layer)
4c Upper clad (layer)
4d Optical path conversion mirror 5, 50 Conductive bonding material 6, 60 Gap (air or transparent resin)
7 Signal light 8, 80 Electrode (layer)
9, 90 Solder resist (layer)
20 Second substrate 20a Surface (one main surface)
20b Back surface (the other main surface)
A Optical axis

Claims (10)

2つの主面間に信号光の光路として貫通孔を設けた基板と、
前記貫通孔の両端開口間に設けられた光伝送体であって、第1の屈折率をもつ少なくとも1つの高屈折率部と前記第1の屈折率よりも小さい第2の屈折率をもつ少なくとも1つの低屈折率部とを具備し、前記高屈折率部と前記低屈折率部との接合面が少なくとも一方の開口の近傍に形成されかつ前記信号光の光軸方向において前記低屈折率部側を凹形状とすることにより前記信号光を集光させる光伝送体とを有する光伝送基板。
A substrate provided with a through hole as an optical path of signal light between two main surfaces;
An optical transmission body provided between the openings at both ends of the through-hole, wherein at least one high refractive index portion having a first refractive index and at least a second refractive index smaller than the first refractive index. A low refractive index portion, wherein a joint surface between the high refractive index portion and the low refractive index portion is formed in the vicinity of at least one opening, and the low refractive index portion in the optical axis direction of the signal light An optical transmission board comprising: an optical transmission body for condensing the signal light by making the side concave.
前記低屈折率部の両端にそれぞれ前記高屈折率部を配置することにより前記両端開口の各々の近傍に前記接合面をそれぞれ形成した請求項1に記載の光伝送基板。   2. The optical transmission board according to claim 1, wherein the bonding surface is formed in the vicinity of each of the openings at both ends by disposing the high refractive index portions at both ends of the low refractive index portion. 前記高屈折率部の両端にそれぞれ前記低屈折率部を配置することにより前記両端開口の各々の近傍に前記接合面をそれぞれ形成した請求項1に記載の光伝送基板。   2. The optical transmission board according to claim 1, wherein the bonding surfaces are formed in the vicinity of the openings at both ends by disposing the low refractive index portions at both ends of the high refractive index portion, respectively. 前記接合面を形成する前記貫通孔の開口の近傍は、前記接合面によって前記信号光の伝搬方向が変えられるとき、その集光点が前記貫通孔の外側となるような位置である請求項1〜3のいずれかに記載の光伝送基板。   2. The vicinity of the opening of the through hole forming the joint surface is a position where the condensing point is outside the through hole when the propagation direction of the signal light is changed by the joint surface. The optical transmission board according to any one of? 前記光伝送体の熱膨張率が、前記基板の熱膨張率の80〜120%の範囲内である、請求項1〜4のいずれかに記載の光伝送基板。   The optical transmission substrate according to any one of claims 1 to 4, wherein a thermal expansion coefficient of the optical transmission body is in a range of 80 to 120% of a thermal expansion coefficient of the substrate. 少なくとも前記信号光の出射側の開口を含む前記主面上に設けられ、かつ前記光伝送体と光学的に結合する光導波路をさらに有する請求項1〜5のいずれかに記載の光伝送基板。   The optical transmission board according to any one of claims 1 to 5, further comprising an optical waveguide provided on the main surface including at least an opening on the output side of the signal light and optically coupled to the optical transmission body. 請求項1〜5のいずれかに記載の光伝送基板を複数積層した多層光伝送基板。   A multilayer optical transmission board in which a plurality of the optical transmission boards according to claim 1 are laminated. 請求項1〜6のいずれかに記載の光伝送基板と、
前記光伝送基板の少なくとも一方の前記主面上に設けられ、かつ前記光伝送体と光学的に結合する光半導体デバイスとを有する光伝送装置。
The optical transmission board according to any one of claims 1 to 6,
An optical transmission apparatus comprising: an optical semiconductor device provided on at least one main surface of the optical transmission substrate and optically coupled to the optical transmission body.
請求項2に記載の光伝送基板を製造する方法であって、
前記貫通孔内に透明樹脂を溶融状態にて充填し、その硬化収縮により凹部を形成して前記第2の屈折率をもつ前記低屈折率部を設ける工程と、
前記低屈折率部の前記凹部と接するように透明樹脂を溶融状態にて前記貫通孔内に充填し、硬化させることにより前記第1の屈折率をもつ前記高屈折率部を設ける工程とを含む光伝送基板の製造方法。
A method for manufacturing the optical transmission board according to claim 2, comprising:
Filling the through-hole with a transparent resin in a molten state, forming a recess by curing shrinkage thereof, and providing the low refractive index portion having the second refractive index;
Providing the high refractive index portion having the first refractive index by filling the through hole with a transparent resin in a molten state so as to be in contact with the concave portion of the low refractive index portion, and curing the transparent resin. Manufacturing method of optical transmission board.
請求項1〜5のいずれかに記載の光伝送基板である第1の基板と、
前記第1の基板と平行に配置された第2の基板と、
前記第2の基板における前記第1の基板と対向する主面上に設けられ、かつ前記第1の基板における前記光伝送体と光学的に結合する光導波路とを有する複合光伝送基板。
A first substrate which is the optical transmission substrate according to any one of claims 1 to 5;
A second substrate disposed in parallel with the first substrate;
A composite optical transmission board having an optical waveguide provided on a main surface of the second board facing the first board and optically coupled to the optical transmission body on the first board.
JP2008507504A 2006-03-27 2007-03-27 OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE Expired - Fee Related JP5244585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008507504A JP5244585B2 (en) 2006-03-27 2007-03-27 OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006086179 2006-03-27
JP2006086179 2006-03-27
PCT/JP2007/056317 WO2007111327A1 (en) 2006-03-27 2007-03-27 Optical transmission substrate, its manufacturing method, and optical transmission device
JP2008507504A JP5244585B2 (en) 2006-03-27 2007-03-27 OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE

Publications (2)

Publication Number Publication Date
JPWO2007111327A1 true JPWO2007111327A1 (en) 2009-08-13
JP5244585B2 JP5244585B2 (en) 2013-07-24

Family

ID=38541244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008507504A Expired - Fee Related JP5244585B2 (en) 2006-03-27 2007-03-27 OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE

Country Status (2)

Country Link
JP (1) JP5244585B2 (en)
WO (1) WO2007111327A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251028B1 (en) * 2008-04-26 2013-04-04 광주과학기술원 Optical connection structure and method for fabricating the same
JP5240530B2 (en) 2008-10-02 2013-07-17 ソニー株式会社 Image processing apparatus and method
JP2013105025A (en) * 2011-11-14 2013-05-30 Panasonic Corp Photoelectric wiring board and electronic component mounting body
JP6882030B2 (en) * 2017-03-23 2021-06-02 京セラ株式会社 Electronic device
US20220155539A1 (en) * 2020-11-19 2022-05-19 Intel Corporation High bandwidth optical interconnection architectures

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688770B1 (en) * 2003-11-27 2012-11-14 Ibiden Co., Ltd. Ic chip mounting board, substrate for mother board, device for optical communication, method for manufacturing substrate for mounting ic chip thereon, and method for manufacturing substrate for mother board
JP2005157115A (en) * 2003-11-27 2005-06-16 Ibiden Co Ltd Ic chip mounting substrate, substrate for motherboard, optical communication device, method for manufacturing ic chip mounting substrate, and method for manufacturing substrate for motherboard
JP2006038958A (en) * 2004-07-22 2006-02-09 Sharp Corp Condensing element and its manufacturing method, and photoelectric wiring board and its manufacturing method
JP4646618B2 (en) * 2004-12-20 2011-03-09 イビデン株式会社 Optical path conversion member, multilayer printed wiring board, and optical communication device

Also Published As

Publication number Publication date
WO2007111327A1 (en) 2007-10-04
JP5244585B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
CN108027480B (en) Fiber to chip optical coupler
US6907173B2 (en) Optical path changing device
JP5281075B2 (en) Composite optical transmission board and optical module
JP4704126B2 (en) Optical module
KR20020038594A (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
JP2015184667A (en) Optical device, optical connector assembly, and optical connecting method
JP2013020027A (en) Optical transmission line and method of manufacturing the same
TW200944853A (en) Manufacturing method of optical wiring printed board and optical wiring printed circuit board
JP2007004043A (en) Wiring board, module using wiring board, and module assembly
JP5244585B2 (en) OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE
JP2004294857A (en) Optical coupler and optical element built-in substrate
JP2005195651A (en) Optical connection substrate, optical transmission system, and manufacturing method
JP3748528B2 (en) Optical path conversion device and manufacturing method thereof
JPWO2007114316A1 (en) OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL ELECTRONIC HYBRID SUBSTRATE
JP5078442B2 (en) OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, OPTICAL ELECTRONIC HYBRID SUBSTRATE, AND OPTICAL MODULE
JP4767228B2 (en) OPTICAL TRANSMISSION SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME, OPTICAL TRANSMISSION DEVICE, COMPOSITE OPTICAL TRANSMISSION BOARD
JP5349192B2 (en) Optical wiring structure and optical module having the same
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
KR20100112731A (en) Optical module, optical printed circuit board and method for manufacturing the same
JP4511291B2 (en) Manufacturing method of optical connection device and optical connection device
JP4288604B2 (en) Optical coupling device
JP2005070141A (en) Optical waveguide structure with optical path conversion component and manufacturing method therefor and optical path conversion component
JP2005115190A (en) Opto-electric composite wiring board and laminated optical waveguide structure
JP2005070142A (en) Optical waveguide structure with optical path conversion component, optical path conversion component, and manufacturing method of optical path conversion component
JP5047591B2 (en) Flexible optical waveguide and optical waveguide module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5244585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees