JPWO2007034960A1 - Rotating machine - Google Patents

Rotating machine Download PDF

Info

Publication number
JPWO2007034960A1
JPWO2007034960A1 JP2007536593A JP2007536593A JPWO2007034960A1 JP WO2007034960 A1 JPWO2007034960 A1 JP WO2007034960A1 JP 2007536593 A JP2007536593 A JP 2007536593A JP 2007536593 A JP2007536593 A JP 2007536593A JP WO2007034960 A1 JPWO2007034960 A1 JP WO2007034960A1
Authority
JP
Japan
Prior art keywords
rotating
rotation
peripheral surface
cover
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007536593A
Other languages
Japanese (ja)
Other versions
JP4919963B2 (en
Inventor
道寛 種田
道寛 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007536593A priority Critical patent/JP4919963B2/en
Publication of JPWO2007034960A1 publication Critical patent/JPWO2007034960A1/en
Application granted granted Critical
Publication of JP4919963B2 publication Critical patent/JP4919963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C3/00Rotary-piston machines or engines with non-parallel axes of movement of co-operating members
    • F01C3/02Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Multiple-Way Valves (AREA)

Abstract

効率が良く、騒音、振動が少ない回転機械を提供するために、側面13の形状を概略扇形に、外周面11及び内周面12の形状を同じ仮想中心点Oを持つ部分球面状にした2つの回転部1a、1bが、仮想中心点O周りに互いに直角をなす回転面で当たらないようにタイミングを合わせて同期回転するように回転機械を構成する。その際、一方の回転部1aは内周面側に支持部4を有し、もう一方の回転部1bは外周面側に支持部3を有し、その支持部4、3とともに回転経路5a、5bを覆う位置にカバー部2を設けて、互いの回転部1a(1b)が相手方の回転部1b(1a)の回転経路5b(5a)を交叉部においてさえぎる形で回転することにより、支持部4(3)、カバー部2、回転部1a(1b)の側面13、及びもう一方の回転部1b(1a)の端面14によって閉じられた空間が両回転部1a、1bの回転とともに変化するようにした。In order to provide a rotating machine with high efficiency and less noise and vibration, the shape of the side surface 13 is approximately sector-shaped, and the shapes of the outer peripheral surface 11 and the inner peripheral surface 12 are partially spherical with the same virtual center point O. The rotating machine is configured so that the two rotating portions 1a and 1b rotate synchronously at the same timing so that they do not contact each other around the virtual center point O on the rotating surfaces that are perpendicular to each other. At that time, one rotating portion 1a has a support portion 4 on the inner peripheral surface side, and the other rotating portion 1b has a support portion 3 on the outer peripheral surface side, together with the support portions 4 and 3, the rotation path 5a, The cover portion 2 is provided at a position covering 5b, and the rotating portions 1a (1b) rotate in such a manner that the rotation path 5b (5a) of the other rotating portion 1b (1a) is blocked at the crossing portion. 4 (3), the space closed by the cover 2, the side surface 13 of the rotating unit 1a (1b), and the end surface 14 of the other rotating unit 1b (1a) is changed with the rotation of both rotating units 1a and 1b. I made it.

Description

この発明は、ポンプ、エンジン、アクチュエータ等として機能し得る回転機械に関する。   The present invention relates to a rotating machine that can function as a pump, an engine, an actuator, or the like.

外部動力を利用して作動する回転機械、或いは作動流体や燃料を注入して動力を出力する回転機械には、例えば偏心動作を利用したポンプ/モータやアクチュエータ、あるいはレシプロ型のピストン運動から回転動力を取り出すエンジン等が広く一般に知られている。これらの回転機械は特に例示するまでもなく周知である。 For a rotary machine that operates using external power, or for a rotary machine that outputs power by injecting working fluid or fuel, for example, a pump / motor or actuator using eccentric operation, or rotational power from reciprocating piston motion. Engines that take out slag are widely known. These rotating machines are well known without needing to be specifically illustrated.

ところが、これら従来のポンプ、エンジン、アクチュエータ等は、ピストンの往復運動やシリンダブロックの偏心に伴う回転中心と回転する部分の重心の不一致によってエネルギーのロスがあり、そのために発生する振動、騒音も大きいという問題があった。   However, these conventional pumps, engines, actuators, etc. have energy loss due to the discrepancy between the center of rotation and the center of gravity of the rotating part due to the reciprocating movement of the piston or the eccentricity of the cylinder block, and the vibration and noise generated due to this are large. There was a problem.

また、偏心していない構造のポンプ等もあるが、このタイプのものはハウジング内でロータがハウジング内壁に線接触するかしないかの状態で回転するようになっているのが通例であるため、気密性が悪く、それを補うために大型化、高回転化したものになっており、高圧ポンプやエンジンには不向きであった。 In addition, there are pumps with a structure that is not eccentric, but this type is typically hermetically sealed because the rotor rotates in the housing with or without linear contact with the inner wall of the housing. It is not suitable for high-pressure pumps and engines because it has poor performance and has been increased in size and rotation to compensate for it.

本発明は、これらの課題に着目してなされたものであって、従来の回転機械の欠点をなくして、電気モータのような高効率、低振動、低騒音、高速回転を可能とする構造の回転機械を実現し、この回転機械をポンプ、エンジン、アクチュエータ等として有効に活用できるようにすることを目的としている。 The present invention has been made paying attention to these problems, and eliminates the disadvantages of conventional rotating machines, and has a structure that enables high efficiency, low vibration, low noise, and high-speed rotation like an electric motor. An object is to realize a rotating machine and to make effective use of the rotating machine as a pump, an engine, an actuator, or the like.

本発明は、以上の目的を達成するために、次のような手段を講じたものである。   In order to achieve the above object, the present invention takes the following measures.

すなわち、本発明の回転機械は、回転部を二つにして、その一部分の形状を扇形にし、回転部の扇形はその形状が持つ球面の仮想中心点を同じ中心にして、互いに直角をなす回転面で当たらないようにタイミングを合わせて回転するようにした。その際、一つの回転部は扇形の小さい方の球面側より、もう一つの回転部は扇形の大きい方の球面側より支持される構造を持つようにして、その支持部と、回転経路のカバー部、及び二つの回転部によって作られた閉じた領域が、回転部の回転により変化する構造を有するものとしたものである。 That is, the rotating machine of the present invention has two rotating parts, and a part of the fan shape is a fan shape, and the fan shape of the rotating part rotates at right angles to each other with the virtual center point of the spherical surface of the shape as the same center. Rotate in time so that it doesn't hit the surface. At that time, one rotating part is supported from the smaller spherical side of the sector, and the other rotating part is supported from the larger spherical side of the sector, so that the supporting part and the rotation path cover are supported. The closed region formed by the rotating part and the two rotating parts has a structure that changes as the rotating part rotates.

このように構成すると、回転中に回転経路の交叉する部分で、一つの回転部がもう一つの回転部の回転経路の前方、後方を閉じる形になる。回転経路の周囲はカバー部と回転部の支持部で閉じられているため、回転部の前方の閉じられた領域は回転と共に狭くなり、回転部の後方の閉じられた領域は回転と共に広くなる。そこで、カバー部の回転経路の交叉する部分近くの位置に穴をあけると、ポンプ、アクチュエータとして機能することとなる。 If comprised in this way, one rotation part will become the form which closes the front and back of the rotation path of another rotation part in the part which a rotation path cross | intersects during rotation. Since the periphery of the rotation path is closed by the cover part and the support part of the rotation part, the closed area in front of the rotation part becomes narrower with rotation, and the closed area behind the rotation part becomes wider with rotation. Therefore, if a hole is made near the intersecting portion of the rotation path of the cover portion, it functions as a pump and an actuator.

そして、これにより可動部を往復運動や偏心回転運動をしない構造にすることができるので、振動や騒音の問題を有効に解決することができ、また、回転部と回転経路とが広範囲にわたって面接触もしくはこれに近い状態に近接させることができるので、気密性を格段に高め、小型・低回転であっても高効率で作動する回転機械とすることが可能となる。   As a result, the movable part can be structured not to reciprocate or eccentrically rotate, so that the problems of vibration and noise can be effectively solved, and the rotating part and the rotating path are in surface contact over a wide range. Alternatively, since it can be brought close to a state close to this, the airtightness can be remarkably improved, and a rotating machine that operates with high efficiency even with a small size and low rotation can be achieved.

具体的には、側面形状を概略扇形に、外周面及び内周面の形状を同じ仮想中心点を持つ部分球面状にした2つの回転部が、前記仮想中心点周りに互いに直角をなす回転面で干渉しないように、タイミングを合わせて同期回転するように構成する。その際、一つの回転部は内周面側に支持部を有し、もう一つの回転部は外周面側に支持部を有し、その支持部とともに回転経路を覆う位置にカバー部を設けて、互いの回転部が相手方の回転部の回転経路を交叉部において経過的に遮る形で回転することにより、その遮っている間、支持部、カバー部、回転部の側面、及びもう一方の回転部の端面によって閉じられた空間が両回転部の回転とともに拡縮変化するようにしたことを特徴とする。   Specifically, two rotating parts having a substantially fan-shaped side surface and a partially spherical shape having the same virtual center point on the outer peripheral surface and the inner peripheral surface are perpendicular to each other around the virtual center point. In order not to interfere with each other, it is configured to rotate synchronously at the same timing. In that case, one rotating part has a supporting part on the inner peripheral surface side, and the other rotating part has a supporting part on the outer peripheral surface side, and a cover part is provided at a position covering the rotation path together with the supporting part. Rotating each other's rotating part in a manner that obstructs the rotation path of the other rotating part at the crossing part, so that the supporting part, the cover part, the side face of the rotating part, and the other rotation The space closed by the end face of the part is adapted to expand and contract with the rotation of both rotating parts.

この場合、振動や騒音防止のためには、一方の支持部は回転部の内周面と同じ仮想中心を持つ球面を内周面と接する位置から扇の円弧方向に拡張した形状とし、他方の支持部は回転部の外周面と同じ仮想中心を持つ球面を外周面と接する位置から扇の円弧方向に拡張した形状とし、それらの拡張部において質量バランスを取り、仮想中心点と回転部及び支持部からなる可動部の重心とを一致させるようにしておくことが有用である。 In this case, in order to prevent vibration and noise, one support portion has a spherical surface having the same virtual center as the inner peripheral surface of the rotating portion and is extended from the position in contact with the inner peripheral surface in the direction of the arc of the fan. The support part has a shape in which a spherical surface having the same virtual center as that of the outer peripheral surface of the rotating part is expanded from the position in contact with the outer peripheral surface in the direction of the arc of the fan. It is useful to make the center of gravity of the movable part made up of parts coincide with each other.

この回転機械を動力伝達系と関連づけるためには、二つの支持部をギヤ等の連動機構で連結し、この連動機構で両回転部の回転のタイミングを合致させるとともに、連動機構を介して回転部への回転力の入力及び回転部からの回転力の出力を行うように構成しておくのがよい。 In order to associate this rotating machine with the power transmission system, the two support parts are connected by an interlocking mechanism such as a gear, and the timing of rotation of both rotating parts is matched by this interlocking mechanism, and the rotating part is connected via the interlocking mechanism. It is preferable that the rotation force is input to and the rotation force is output from the rotation unit.

この回転機械をポンプやモータ、アクチュエータとして機能させるためには、カバー部に、閉じられた空間に開口する穴を設け、回転部の回転に伴う空間の拡縮変化時に、拡張領域に開口する穴が吸込ポートまたは高圧ポートとなり、縮小領域に開口する穴が吐出ポートまたはドレンポートとなるように各穴に流体経路を接続し、また動力伝達系を構成すればよい。流体には水や空気、油など種々のものを利用することができる。 In order for this rotating machine to function as a pump, motor, or actuator, a hole that opens in a closed space is provided in the cover part, and a hole that opens in the expansion area when the space changes due to rotation of the rotating part. A fluid path may be connected to each hole so as to form a suction port or a high-pressure port, and a hole opening in the reduced region becomes a discharge port or a drain port, and a power transmission system may be configured. Various fluids such as water, air, and oil can be used as the fluid.

また、この回転機械をエンジンとして機能させるためには、カバー部に、閉じられた空間に開口する穴を設け、その穴の一部を利用して二つの回転経路を交叉部以外の箇所で接続する接続部分を設けることによって、一方の回転経路において閉じ込められて縮小過程にある空間に導入した混合気体を圧縮し、その混合気体を接続部分を介してもう一方の回転経路において閉じられて拡張過程にある空間に導入し、ここで爆発、膨張させた後に排気するサイクルを連続して営ませるように構成すればよい。 In addition, in order for this rotating machine to function as an engine, a hole that opens in a closed space is provided in the cover part, and two rotation paths are connected at a place other than the crossing part using a part of the hole. By providing a connecting part that compresses the mixed gas that is confined in one rotation path and introduced into the space in the contracting process, the mixed gas is closed in the other rotating path through the connection part and expanded In this case, the exhaust gas is introduced into the space, and after the explosion and expansion, the exhaust cycle is continuously operated.

以上、本発明によれば、可動部である回転部及び支持部が稼動時に慣性抵抗を発生し難い回転構造にできるので、振動や騒音を低減することができ、高回転にも耐用し得る回転機械、これを利用したポンプ/モータ、アクチュエータ、エンジンを実現することができる。また、回転部と回転経路との間で高気密性を保つことができるので、従来の無偏心タイプのものと比べてもよりエネルギーロスの少ない回転機械等としての利用が可能となる。 As described above, according to the present invention, since the rotating part and the supporting part, which are movable parts, can have a rotating structure that hardly generates inertial resistance during operation, vibration and noise can be reduced, and rotation that can withstand high rotations. A machine, a pump / motor, an actuator, and an engine using the machine can be realized. In addition, since high airtightness can be maintained between the rotating part and the rotating path, it can be used as a rotating machine or the like with less energy loss as compared with a conventional non-eccentric type.

本発明の一実施形態に係る回転部と回転経路の関係を示す模式的な図。The schematic diagram which shows the relationship between the rotation part which concerns on one Embodiment of this invention, and a rotation path. 同実施形態に係るカバー部の正面図。The front view of the cover part which concerns on the same embodiment. 同実施形態に係る一方の回転部を外側支持部により支持した状態の可動部を示す側面図。The side view which shows the movable part of the state which supported one rotating part which concerns on the embodiment with the outer side support part. 同実施形態に係る他方の回転部を内側支持部により支持した状態の可動部を示す側面図。The side view which shows the movable part of the state which supported the other rotation part which concerns on the embodiment with the inner side support part. 両可動部の組み付け状態を示す斜視図。The perspective view which shows the assembly | attachment state of both movable parts. 両可動部を収容するカバー部の斜視図。The perspective view of the cover part which accommodates both movable parts. 可動部及びカバー部の分解斜視図。The disassembled perspective view of a movable part and a cover part. 両回転部と回転経路の間に拡縮される空間を説明する斜視図。The perspective view explaining the space expanded / reduced between both rotation parts and a rotation path | route. 両回転部と回転経路の間に拡縮される空間を説明する斜視図。The perspective view explaining the space expanded / reduced between both rotation parts and a rotation path | route. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態の作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process of the embodiment. 同実施形態に適用される連動機構の構成図。The block diagram of the interlocking mechanism applied to the embodiment. 回転部の端面形状の変形例を示す図。The figure which shows the modification of the end surface shape of a rotation part. 図21の組付状態における要部拡大図。The principal part enlarged view in the assembly | attachment state of FIG. 図21及び図22に対応した作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process corresponding to FIG.21 and FIG.22. 図21及び図22に対応した作動行程を説明するための説明図。Explanatory drawing for demonstrating the action | operation process corresponding to FIG.21 and FIG.22. カバー部の変形例を示す図2に対応した正面図。The front view corresponding to FIG. 2 which shows the modification of a cover part.

以下、本発明の一実施形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

この実施形態の回転機械は、図1に実線で示す2つの回転部1(1a、1b)を、同図中想像線で示す互いに直交する回転面に設けた回転経路5a、5bに沿って干渉することなく同期回転させるようにしたものである。回転経路5a、5bは図2及び図6に示すカバー部2によって一部が覆われ、回転部1a、1bは図3〜図5に示す支持部4、3にバックアップされた状態で回転経路5a、5b内に配置される。そして、この状態で回転部1aと支持部4からなる可動部が回転経路5aを閉止した状態で回転し、回転部1bと支持部3からなる可動部が回転経路5bを閉止した状態で回転する構造をなす。図7は回転部とカバー部の組付関係を示す分解図である。 The rotating machine of this embodiment interferes with two rotating parts 1 (1a, 1b) indicated by solid lines in FIG. 1 along rotating paths 5a, 5b provided on rotating surfaces orthogonal to each other indicated by imaginary lines in FIG. It is made to rotate synchronously without doing. The rotation paths 5a and 5b are partially covered by the cover portion 2 shown in FIGS. 2 and 6, and the rotation portions 1a and 1b are backed up by the support portions 4 and 3 shown in FIGS. 5b. In this state, the movable part composed of the rotating part 1a and the support part 4 rotates with the rotation path 5a closed, and the movable part composed of the rotation part 1b and the support part 3 rotates with the rotation path 5b closed. Make a structure. FIG. 7 is an exploded view showing the assembly relationship between the rotating part and the cover part.

具体的に説明すると、回転部1(1a、1b)の外周11及び内周12は同じ仮想中心点Oを持つ球面であり、側面13はその球面である外周11から内周12にかけて球面の中心すなわち同じ仮想中心点Oに向かう線の集まりによって作られる曲面で形成される。この曲面は円錐面である。本明細書において、回転部1の側面形状を「扇形」と称しているが、正確には図1等に明らかなように、外周11と内周12、及び後述する端面14によって形成される側面視部分円環状のものである。他に「扇形」、「扇」と言う場合には同様の意味である。 More specifically, the outer periphery 11 and the inner periphery 12 of the rotating part 1 (1a, 1b) are spherical surfaces having the same virtual center point O, and the side surface 13 is the center of the spherical surface from the outer periphery 11 to the inner periphery 12 as the spherical surface. That is, it is formed by a curved surface formed by a collection of lines toward the same virtual center point O. This curved surface is a conical surface. In this specification, the shape of the side surface of the rotating portion 1 is referred to as a “fan shape”. However, as clearly shown in FIG. 1 and the like, the side surface formed by the outer periphery 11 and the inner periphery 12 and an end surface 14 described later. It is a partial annular view. In addition, the terms “fan” and “fan” have the same meaning.

この回転部1は回転経路5a、5b内において180°よりもやや小さい領域内、すなわち両回転経路5a、5bの交叉部にかからない領域に収まる大きさ(扇の角度が150°程度)にしてあり、回転方向の前方及び後方の端面14の形状は特に限定していない。このようにしても、ある回転位置で気密性がなくなるだけで基本的な機能は同様だからである。回転部1が回転経路5a、5b内においてほぼ180°の領域を占める例については後述する。 The rotating part 1 is sized to fit in a region slightly smaller than 180 ° in the rotation paths 5a and 5b, that is, in a region that does not cover the intersection of the rotation paths 5a and 5b (fan angle is about 150 °). The shape of the front and rear end faces 14 in the rotational direction is not particularly limited. Even if it does in this way, it is because the basic function is the same, only airtightness is lost at a certain rotational position. An example in which the rotating unit 1 occupies a region of approximately 180 ° in the rotation paths 5a and 5b will be described later.

図3〜図5は回転部1a、1bを支持部4、3で支持した状態である。各図において符合31、41で示す部分は扇形をなす回転部1の外周面11及び内周面12と同じ仮想中心Oを持つ球面状の支持面であり、これらの支持部3、4は扇形をなす回転部1の外周側円弧又は内周側円弧をバックアップする位置から円環状に周回するまで拡張した形状を持つ。支持部3,4のうち、支持面31、41を除くその他の部分の形状は任意であって、回転部1の扇形部分の円弧の長さと図3及び図4における紙面に垂直方向の幅、並びに、外周面11及び内周面12を構成する球面の直径は自由に定めることができる。   3 to 5 show a state in which the rotating parts 1a and 1b are supported by the supporting parts 4 and 3. FIG. In each figure, the portions indicated by reference numerals 31 and 41 are spherical support surfaces having the same virtual center O as the outer peripheral surface 11 and the inner peripheral surface 12 of the rotating portion 1 having a fan shape, and these support portions 3 and 4 are fan-shaped. The outer peripheral side arc or the inner peripheral side arc of the rotating unit 1 forming the shape is expanded from a position where it is backed up to a circular shape. Of the support portions 3 and 4, the shape of the other portions excluding the support surfaces 31 and 41 is arbitrary, the length of the arc of the fan-shaped portion of the rotating portion 1 and the width in the direction perpendicular to the paper surface in FIGS. In addition, the diameters of the spherical surfaces constituting the outer peripheral surface 11 and the inner peripheral surface 12 can be freely determined.

図2及び図6及び図7に示すカバー部2については、図中縦方向の回転経路5aの外周側を閉止するカバー外壁22、及び図中横方向の回転経路5bの内周側を閉止するカバー内壁21は同じ仮想中心点Oを持つ球面からなり、回転経路5bの上下を覆うカバー側壁23、24、25、26及び回転経路5aの左右を覆うカバー側壁27a、27b、28a、28bは同じ仮想中心点Oに向かう線の集まりによって作られる曲面で形成される半円に近いものである。これらの曲面も回転部1b、1aの側面13の形状に対応した円錐面である。 2, 6, and 7, the cover outer wall 22 that closes the outer peripheral side of the vertical rotation path 5 a in the drawing and the inner peripheral side of the horizontal rotation path 5 b in the drawing are closed. The cover inner wall 21 is formed of a spherical surface having the same virtual center point O, and the cover side walls 23, 24, 25, 26 covering the upper and lower sides of the rotation path 5b and the cover side walls 27a, 27b, 28a, 28b covering the left and right of the rotation path 5a are the same. It is close to a semicircle formed by a curved surface formed by a collection of lines toward the virtual center point O. These curved surfaces are also conical surfaces corresponding to the shape of the side surface 13 of the rotating portions 1b and 1a.

図2、図6及び図7に示すカバー部2の縦方向の回転経路5aに図1、図4、図5及び図7の回転部1(1a)が、また図2、図6及び図7に示すカバー部2の横方向の回転経路5bに図1、図3、図5及び図7の回転部1(1b)が、それぞれ収容される。回転部1(1a)は支持部4とともに可動部を構成し、回転部1(1b)は支持部3とともに可動部を構成し、これらの可動部がカバー部2に対して仮想中心点Oの周りを回転する。   The rotating portion 1 (1a) of FIGS. 1, 4, 5 and 7 is also provided in the longitudinal rotation path 5a of the cover portion 2 shown in FIGS. 2, 6 and 7, and FIGS. 1, 3, 5, and 7 are accommodated in the horizontal rotation path 5 b of the cover portion 2 shown in FIG. The rotating part 1 (1a) constitutes a movable part together with the support part 4, and the rotating part 1 (1b) constitutes a movable part together with the support part 3, and these movable parts are located at the virtual center point O with respect to the cover part 2. Rotate around.

以上により、回転部1(1a、1b)の側面が回転経路5a、5b同士の交叉部分を除く部位においてカバー側壁23、24、25、26、27a、27b、28a、28bにより8箇所がカバーされ、縦方向の回転経路5aに配置される回転部1aの外周面11が回転経路5a、5b同士の交叉部分を除く部位において部分球面状のカバー外壁22によって上下2箇所がカバーされ、横方向の回転経路5bに配置される回転部1bの内周面12が回転経路5a、5b同士の交叉部分を除く部位において部分球面状のカバー内壁21によって左右2箇所がカバーされる。 As described above, the side surfaces of the rotating portion 1 (1a, 1b) are covered by the cover side walls 23, 24, 25, 26, 27a, 27b, 28a, 28b at the portions other than the crossing portions of the rotating paths 5a, 5b. The outer peripheral surface 11 of the rotating part 1a arranged in the vertical rotation path 5a is covered at two locations in the upper and lower portions by a partial spherical cover outer wall 22 at a portion excluding the intersection of the rotation paths 5a and 5b. The inner peripheral surface 12 of the rotating part 1b arranged in the rotation path 5b is covered at two places on the left and right sides by a partially spherical cover inner wall 21 at a portion excluding the intersection of the rotation paths 5a and 5b.

そして、回転経路5aの内周側が両回転経路5a、5bの交叉部を含めて回転部1aの内側をサポートする円環状の支持部4によって閉止され、回転経路5bの外周側が両回転経路5a、5bの交叉部を含めて回転部1bの外側をサポートする円環状の支持部3によって閉止される構造をなす。 And the inner peripheral side of the rotation path 5a is closed by the annular support part 4 that supports the inside of the rotation part 1a including the crossing part of both rotation paths 5a, 5b, and the outer periphery side of the rotation path 5b is both rotation paths 5a, The structure is closed by an annular support portion 3 that supports the outside of the rotating portion 1b including the crossing portion 5b.

このとき、カバー部2のうちこれら回転部1aと支持部4からなる可動部と接する部分の形状、および回転部1bと支持部3からなる可動部と接する部分の形状は、それらの可動部が回転したとき常時カバー部2の各部位と密接に摺接して気密性が保たれるようにしている。 At this time, the shape of the portion of the cover portion 2 in contact with the movable portion consisting of the rotating portion 1a and the support portion 4 and the shape of the portion in contact with the movable portion consisting of the rotating portion 1b and the support portion 3 are determined as follows. When it rotates, it always slides in close contact with each part of the cover part 2 so that airtightness is maintained.

そして、カバー部2の適当な場所に穴を設け、これらを入出力ポートとすることによって、ポンプ、アクチュエータとして機能させるようにしている。 Then, holes are provided at appropriate locations in the cover portion 2 and these are used as input / output ports to function as pumps and actuators.

本実施形態における穴は、図6に示すように各交叉部近傍における縦方向の回転経路5aのカバー外壁22に各々2箇所(P1、P2、P3、P4)、各交叉部近傍における横方向の回転経路5bのカバー内壁に各々2箇所(P5、P6、P7、P8)、計8箇所に設けてある。 As shown in FIG. 6, there are two holes (P1, P2, P3, P4) on the cover outer wall 22 of the vertical rotation path 5a in the vicinity of each crossing portion, as shown in FIG. Two locations (P5, P6, P7, P8) are provided on the inner wall of the cover of the rotation path 5b, for a total of 8 locations.

次に、この回転機械の作動を簡単に説明する。例えば系が図8の回転状態にあり、回転経路5a、5bの各交叉部で、回転部1a(1b)がもう一方の回転部1b(1a)の回転経路5b(5a)の前方、後方を閉じる形になると、回転部1b(1a)の前方と回転部1a(1b)の側面との間の閉じられた領域Sb1(Sa1)は回転と共に狭くなり、回転部1b(1a)の後方と回転部1a(1b)の側面との間の閉じられた領域Sb2(Sa2)は回転と共に広くなる。よって、この図の場合、P1、P8が流入ポートとなり、P2、P7が流出ポートとなる。あるいは、系が図8に対して180°位相のずれた図9の回転状態にあり、回転経路5a、5bの各交叉部で、回転部1a(1b)がもう一方の回転部1b(1a)の回転経路5b(5a)の前方、後方を閉じる形になると、回転部1b(1a)の前方と回転部1a(1b)の側面との間の閉じられた領域Sb3(Sa3)は回転と共に狭くなり、回転部1b(1a)の後方と回転部1a(1b)の側面との間の閉じられた領域Sb4(Sa4)は回転と共に広くなる。よって、この図の場合、P4、P6が流入ポートとなり、P3、P5が流出ポートとなる。 Next, the operation of this rotating machine will be briefly described. For example, the system is in the rotating state of FIG. 8, and at each crossing portion of the rotation paths 5a and 5b, the rotation section 1a (1b) moves forward and rearward of the rotation path 5b (5a) of the other rotation section 1b (1a). In the closed form, the closed area Sb1 (Sa1) between the front of the rotating part 1b (1a) and the side surface of the rotating part 1a (1b) becomes narrower with the rotation, and the rear part of the rotating part 1b (1a) and the rotation. The closed region Sb2 (Sa2) between the side surfaces of the portion 1a (1b) becomes wider with rotation. Therefore, in this figure, P1 and P8 are inflow ports, and P2 and P7 are outflow ports. Alternatively, the system is in the rotation state of FIG. 9 that is 180 ° out of phase with respect to FIG. 8, and the rotation unit 1a (1b) is the other rotation unit 1b (1a) at each intersection of the rotation paths 5a and 5b. When the front and rear of the rotation path 5b (5a) are closed, the closed region Sb3 (Sa3) between the front of the rotation unit 1b (1a) and the side surface of the rotation unit 1a (1b) becomes narrow with rotation. Thus, the closed region Sb4 (Sa4) between the rear of the rotating part 1b (1a) and the side surface of the rotating part 1a (1b) becomes wider with rotation. Therefore, in this figure, P4 and P6 are inflow ports, and P3 and P5 are outflow ports.

図10〜図19は更に回転経路5a、5bを展開して30°ごとに目盛を振ったものを示しており、各図の右肩には図10の状態から回転部1a、1bがどれだけ回転したか、その位相差が記してある。図13の状態が図8に、図17の状態が図9にほぼ対応している。各ポートP1〜P8には図示しない流路が接続され、それらの流路には適宜の給排弁が設けられているものとする。 FIGS. 10 to 19 show the rotation paths 5a and 5b further expanded and graduated every 30 °. The right shoulder of each figure shows how many rotating parts 1a and 1b are in the state of FIG. It is rotated or its phase difference is noted. The state of FIG. 13 substantially corresponds to FIG. 8, and the state of FIG. 17 substantially corresponds to FIG. It is assumed that a flow path (not shown) is connected to each of the ports P1 to P8, and appropriate supply / discharge valves are provided in the flow paths.

図10の状態は、両回転部1a、1bの前端が交叉部に進入する瞬間を示す。この状態では、8つのポートP1〜P8のうち、ポートP1、P3、P5、P8の4つは全て「閉」、あとのポートP2、P4、P6、P7の4つは「開」の状態となる。この前後において、回転経路5a、5bの交叉部は遮断されていないため、空間の閉じ込め状態での拡縮は起こらない。但し、ポートP1〜P8の給排弁を閉止しておく必要がある。 The state of FIG. 10 shows the moment when the front ends of both rotating parts 1a and 1b enter the crossing part. In this state, of the eight ports P1 to P8, the four ports P1, P3, P5, and P8 are all “closed”, and the remaining four ports P2, P4, P6, and P7 are “open”. Become. Before and after this, the crossing portions of the rotation paths 5a and 5b are not blocked, so that expansion / contraction in a confined state of the space does not occur. However, it is necessary to close the supply / discharge valves of the ports P1 to P8.

図10から15°位相が進んだ図11の状態では、ポートP1、P8が閉→開に切り替わり、ポートP3、P5は依然として「閉」、ポートP2、P4、P6、P7は依然として「開」である。この前後においても、回転経路の交叉部5a、5bは遮断されておらず、空間の閉じ込め状態での拡縮は起こらない。この間、図10の状態と同様、ポートP1〜P8の給排弁を閉止しておく必要がある。 In the state of FIG. 11 in which the phase is advanced by 15 ° from FIG. 10, the ports P1 and P8 are switched from closed to open, the ports P3 and P5 are still “closed”, and the ports P2, P4, P6 and P7 are still “open”. is there. Even before and after this, the crossing portions 5a and 5b of the rotation path are not blocked, and expansion / contraction in a confined state of the space does not occur. During this time, it is necessary to close the supply / discharge valves of the ports P1 to P8 as in the state of FIG.

図10から30°位相が進んだ図12では、ポートP1〜P8の状態は図11と同じであるが、この段階で回転経路5a、5bの交叉部が両回転部1a、1bによって完全に遮断される。このため、この位置から領域Sa2、Sb2が閉じ込められて拡張が開始され、この部位に開口するポートP1、P8の給排弁を開く。これにより、領域Sa2、Sb2にはポートP1、P8を介して流体が流入する。 In FIG. 12, in which the phase is advanced by 30 ° from FIG. 10, the states of the ports P1 to P8 are the same as those in FIG. 11, but at this stage, the crossing portions of the rotation paths 5a and 5b are completely blocked by both rotation portions 1a and 1b. Is done. For this reason, the regions Sa2 and Sb2 are confined from this position and expansion is started, and the supply and discharge valves of the ports P1 and P8 that open to these portions are opened. Thereby, the fluid flows into the regions Sa2 and Sb2 via the ports P1 and P8.

図10から60°位相が進んだ図13の状態では、ポートP4、P6が「閉」になる。このため、少し手前の位置から領域Sa1、Sb1が閉じ込められて縮小が開始され、この部位に開口するポートP2、P7の給排弁を開く。これにより、領域Sa1、Sb1内の流体はポートP2、P7を介して流出する。 In the state of FIG. 13 in which the phase is advanced by 60 ° from FIG. 10, the ports P4 and P6 are “closed”. For this reason, the regions Sa1 and Sb1 are confined from a position slightly ahead, and the reduction starts, and the supply and discharge valves of the ports P2 and P7 that open to these portions are opened. Thereby, the fluid in the regions Sa1 and Sb1 flows out through the ports P2 and P7.

図10から150°位相が進んだ図14の状態は、両回転経路1a、1bの交叉部から両回転部1a、1bの後方が退出し始める瞬間であり、ポートP3、P5が閉→開になり、領域Sa2、Sb2の閉じ込み状態での拡張が終了する。このため、これらの部位に開口するポートP1、P3、P5、P8の給排弁を閉じた状態にする。 The state of FIG. 14 in which the phase is advanced by 150 ° from FIG. 10 is the moment when the rear of both rotating parts 1a and 1b starts to exit from the intersection of both rotating paths 1a and 1b, and the ports P3 and P5 are closed to open. Thus, the expansion in the closed state of the areas Sa2 and Sb2 is completed. For this reason, the ports P1, P3, P5, and P8 that open to these portions are closed.

図10から180°位相が進んだ図15の状態は、両回転部1a、1bの前端が図10とは反対側の交叉部に進入する瞬間を示す。この状態では、8つのポートP1〜P8のうち、ポートP1、P3、P5、P8の4つは「開」、あとのポートP2、P4、P6、P7の4つは「閉」の状態となる。この前後において、回転経路5a、5bの交叉部は遮断されていないため、空間の閉じ込めによる拡縮は起こらない。このため、ポートP1〜P8の給排弁を閉止しておく。 The state of FIG. 15 in which the phase is advanced by 180 ° from FIG. 10 shows the moment when the front ends of both rotating parts 1a and 1b enter the crossing part on the opposite side to FIG. In this state, of the eight ports P1 to P8, four of the ports P1, P3, P5, and P8 are “open”, and the remaining four of the ports P2, P4, P6, and P7 are “closed”. . Before and after this, since the crossing portions of the rotation paths 5a and 5b are not blocked, expansion and contraction due to confinement of the space does not occur. For this reason, the supply / discharge valves of the ports P1 to P8 are closed.

図10から210°位相が進んだ図16の状態では、ポートは図15と同じ状態であるが、この位置から回転経路5a、5bの交叉部が両回転部1a、1bによって完全に遮断される。このため、この位置から領域Sb4、Sb4が閉じ込められて拡張が開始され、これらの部位に開口するポートP4、P6の給排弁を開く。これにより、領域Sa4、Sb4にはポートP4、P6を介して流体が流入する。 In the state of FIG. 16 in which the phase is advanced by 210 ° from FIG. 10, the port is in the same state as in FIG. 15, but from this position, the intersection of the rotation paths 5a and 5b is completely blocked by both rotation portions 1a and 1b. . For this reason, the regions Sb4 and Sb4 are confined from this position and expansion is started, and the supply and discharge valves of the ports P4 and P6 that open to these parts are opened. Thereby, the fluid flows into the regions Sa4 and Sb4 through the ports P4 and P6.

図10から270°位相が進んだ図17の状態では、新たにポートP1、P8が開→閉になる。このため、領域Sa3、Sb3が閉じ込められて縮小が行われ、これらの部位に開口するポートP3、P5の給排弁を開く。これにより、領域Sa3、Sb3内の流体はポートP3、P5を介して流出する。 In the state of FIG. 17 in which the phase is advanced by 270 ° from FIG. 10, the ports P1 and P8 are newly opened → closed. For this reason, the regions Sa3 and Sb3 are confined and reduced, and the supply / discharge valves of the ports P3 and P5 that open to these regions are opened. As a result, the fluid in the areas Sa3 and Sb3 flows out through the ports P3 and P5.

図10から330°位相が進んだ図18の状態では、両回転経路5a、5bの交叉部から回転部1a、1bの後方が退出し始める。これに先立ち、少し前に実質的にポートP2、P7が閉→開となり、領域Sa4、Sb4の綴じ込み状態での拡張が終了する。このため、これらの部位に開口するポートP2、P4、P6、P7の給排弁を閉じた状態にする。 In the state of FIG. 18 in which the phase is advanced by 330 ° from FIG. 10, the rear of the rotating portions 1a and 1b starts to exit from the intersection of the rotating paths 5a and 5b. Prior to this, the ports P2 and P7 are substantially closed and opened shortly before, and the expansion of the regions Sa4 and Sb4 in the binding state is completed. For this reason, the ports P2, P4, P6, and P7 that open to these portions are closed.

図10から345°位相が進んだ図19の状態では、両回転部1a、1bが回転経路5a、5bの交叉部から退出し始め、交叉部の遮断が解除されるので、全てのポートP1〜P8の給排弁を閉止しておく。 In the state of FIG. 19 in which the phase of 345 ° has advanced from FIG. 10, both rotating parts 1a and 1b begin to withdraw from the intersections of the rotation paths 5a and 5b, and the blocking of the intersections is released. Close the P8 supply / discharge valve.

すなわち、この回転機械は、図17に示したように一方の回転部1a(1b)の進行方向の中心がカバー部2の交差部中央にある時、もう一方の回転部1b(1a)の進行方向の中心もカバー部2の反対側の交叉部中央にある位置関係にあり、二つの回転部1a、2aが同じ速度で同時に回転し始めると、図17の状態ではポートP4、P6が流入ポート、ポートP3、P5が流出ポートとなり、図13の状態ではポートP1、P8が流入ポート、ポートP2、P7が流出ポートとなる。このように、二つの交差部で分けられた回転経路5a、5bの8つのポートが入れ替わりながら、給排弁の開閉タイミングに多少のずれはあるにせよ、基本的に4つのポートにおいて流体の流入、流出が同時に行われることとなる。 That is, in this rotating machine, when the center of the rotating direction of one rotating part 1a (1b) is at the center of the intersection of the cover part 2 as shown in FIG. 17, the moving of the other rotating part 1b (1a) The center of the direction is also located at the center of the crossing portion on the opposite side of the cover portion 2, and when the two rotating portions 1a and 2a start to rotate simultaneously at the same speed, the ports P4 and P6 are inflow ports in the state of FIG. Ports P3 and P5 are outflow ports. In the state shown in FIG. 13, ports P1 and P8 are inflow ports and ports P2 and P7 are outflow ports. In this way, while the eight ports of the rotation paths 5a and 5b divided at the two intersections are interchanged, the flow of fluid basically flows through the four ports although there is a slight shift in the opening / closing timing of the supply / discharge valve. The outflow will occur at the same time.

したがって、この回転機械は、連動機構を介して外部から回転動力が与えられることにより、流入ポートから吸込んだ流体を流出ポートから吐出するポンプとして機能させることができ、逆に流入ポートに高圧流体を供給し流出ポートをドレンとすることにより、連動機構から回転動力を取り出してモータあるいはアクチュエータとして機能させることができる。勿論、逆方向の回転に対しても流出入ポートの関係が逆になるだけで上記と全く同様に作動し得る。 Therefore, this rotary machine can function as a pump that discharges the fluid sucked in from the inflow port from the outflow port by receiving rotational power from the outside via the interlocking mechanism. By supplying and draining the outflow port, the rotational power can be taken out from the interlocking mechanism and function as a motor or an actuator. Of course, the operation can be performed in the same manner as described above only by reversing the relationship of the inflow / outflow ports with respect to the rotation in the reverse direction.

因みに、図20に簡単な連動機構6を例示する。この連動機構6は、回転部1aの内周側を支持する支持部4の内周と回転部1bの外周側を支持する支持部3の側面とに、それぞれラック歯6a、6bを周回形成し、これらのラック歯6a、6bに噛合する位置にピニオン歯61を備えたシャフト62を設けたものであり、このシャフト62の回転により、ラック歯6a、6bを介して2つの支持部3、4が仮想軸心点Oを通る直交軸周りに同期回転するようになっている。そして、ピニオン歯61とラック歯6a、6bの歯数を適宜に設定することにより、両支持部3、4ひいては両回転部1a、1bの回転速度を合致させることができる。勿論、これ以外の連動機構も採用可能である。また、給排弁の開閉タイミングは、例えばシャフト62の回転を利用し、電気的、機械的な通常の手法によって容易に同期をとることができるし、また圧力差による自動開閉弁も考えられる。 Incidentally, a simple interlocking mechanism 6 is illustrated in FIG. This interlocking mechanism 6 forms rack teeth 6a and 6b around the inner periphery of the support part 4 that supports the inner peripheral side of the rotating part 1a and the side surface of the support part 3 that supports the outer peripheral side of the rotating part 1b. A shaft 62 provided with pinion teeth 61 is provided at a position where the rack teeth 6a and 6b mesh with each other, and by rotation of the shaft 62, the two support portions 3 and 4 are interposed via the rack teeth 6a and 6b. Are synchronously rotated around an orthogonal axis passing through the virtual axis O. Then, by appropriately setting the number of teeth of the pinion teeth 61 and the rack teeth 6a and 6b, the rotational speeds of both the support portions 3 and 4 and thus both the rotation portions 1a and 1b can be matched. Of course, other interlocking mechanisms can be used. Further, the opening / closing timing of the supply / discharge valve can be easily synchronized by an ordinary electrical and mechanical method using, for example, the rotation of the shaft 62, and an automatic opening / closing valve based on a pressure difference is also conceivable.

この回転機械の一組立手順としては、図7に示すカバー部2のカバー内壁21、22、カバー側壁23、24、25、26、27a、27b、28a、28bを別々に作成し、回転部1b及び外側支持部3からなる可動部は大円Z(図7に示す赤道部)で2つに切って作成する。そして、回転部1a及び内側支持部4からなる可動部にカバー外壁22及びカバー側壁27a、27b、28a、28bを被せる作業と、大円Zで分割した各々の可動部をその間にカバー内壁21を介在させて突き合わせ両側からカバー外壁23、24、25、26を被せる作業とを相互に干渉させずに行い(つまり分割した可動部を突き合わせる際に回転部1a及び内側支持部4からなる可動部を間に介在させ)、最後に隣接するカバー部間を接続ことにより、本実施形態の回転機械の組立を完了する。この場合、前述した連動機構6は、カバー取付前に両支持部3、4にラック歯6a、6bを取り付けるか刻設するかし、これらにピニオン歯61を有するシャフト62を組み付け、ピニオン歯61とラック歯6a、6bの位置調整などを行っておく。 As an assembling procedure of this rotating machine, cover inner walls 21, 22 and cover side walls 23, 24, 25, 26, 27a, 27b, 28a, 28b of the cover part 2 shown in FIG. And the movable part which consists of the outer side support part 3 is cut into two with the great circle Z (equatorial part shown in FIG. 7), and is created. Then, the cover outer wall 22 and the cover side walls 27a, 27b, 28a, and 28b are placed on the movable part composed of the rotating part 1a and the inner support part 4, and each movable part divided by the great circle Z is interposed between the cover inner wall 21 and the movable part. The operation of covering the cover outer walls 23, 24, 25, and 26 from both sides of the abutment is performed without interfering with each other (that is, the movable part including the rotating part 1a and the inner support part 4 when the divided movable parts are abutted) And finally, the adjacent cover parts are connected to complete the assembly of the rotary machine of this embodiment. In this case, the above-described interlocking mechanism 6 attaches or engraves the rack teeth 6a and 6b to both the support portions 3 and 4 before attaching the cover, and attaches the shaft 62 having the pinion teeth 61 to the pinion teeth 61. The position of the rack teeth 6a and 6b is adjusted.

勿論、このような構造、手順に限定されるものではなく、対応するカバー内壁とカバー側壁(例えば21と23、24)、あるいはカバー外壁とカバー側壁(例えば22と27a、27b)などは一体的に作っても良い。また、例えば図7中矢印Tで示すように回転部1aの反対側の位置から外側支持部3を切断すると、必ずしも大円Zで分離せずとも中のパーツである回転部1a及び内側支持部4からなる可動部を挿入することができるし、カバー内壁21も2つの可動部が接合された後からでも装着することができる。 Of course, it is not limited to such a structure and procedure, and the corresponding cover inner wall and cover side wall (for example, 21 and 23, 24) or cover outer wall and cover side wall (for example, 22 and 27a, 27b) are integrated. You can make it. Further, for example, when the outer support portion 3 is cut from the position opposite to the rotating portion 1a as indicated by an arrow T in FIG. 7, the rotating portion 1a and the inner supporting portion that are the inner parts are not necessarily separated by the great circle Z. 4 can be inserted, and the cover inner wall 21 can be mounted even after the two movable parts are joined.

また、扇形状の回転部1a、1bを内側と外側から支持する支持部4、3のうち、球面状の支持面41、31以外の部分は自由に作ることができるため、回転の中心Oと回転部1a及び支持部4からなる可動部の重心、あるいは回転の中心Oと回転部1b及び支持部3からなる可動部の重心を一致させることにより、回転時の振動、騒音、エネルギーの損失を有効に低減することができる。そのためには、支持面41、31以外の部分の肉厚を調整したり、別途にバランスウェイトを取り付けるなど、適宜の手段を講じることができる。そして、かかる支持面41,31以外の部位は、上述したように連動機構6やそれを含む動力伝達系の構成場所としても適切なものとなる。 In addition, among the support portions 4 and 3 that support the fan-shaped rotation portions 1a and 1b from the inside and the outside, portions other than the spherical support surfaces 41 and 31 can be freely formed. By matching the center of gravity of the movable part consisting of the rotating part 1a and the support part 4 or the center of rotation O and the center of gravity of the movable part consisting of the rotating part 1b and the support part 3, vibration, noise and energy loss during rotation can be reduced. It can be effectively reduced. For that purpose, it is possible to take appropriate measures such as adjusting the thickness of the portions other than the support surfaces 41 and 31, or attaching a balance weight separately. And parts other than the support surfaces 41 and 31 are also appropriate as the constituent places of the interlocking mechanism 6 and the power transmission system including the same as described above.

また、両回転部1a、1bがほぼ180°の領域を占め、隙間を空けずに気密性を保って回転する構造としては、例えば、図21〜図24に示すように回転部1a、1bの回転方向の前方及び後方の端面14が回転方向に対し斜めの角度で球の表面より中心Oに向かう面で切って、扇形の長い方の円弧の角度を180度にすることが挙げられる。図23は上記図10〜11の状態にほぼ対応し、図24は上記図15〜図16の状態にほぼ対応している。 Moreover, as the structure which both rotation parts 1a and 1b occupy the area | region of about 180 degrees, and maintains airtightness without leaving a clearance gap, as shown in FIGS. For example, the front and rear end faces 14 in the rotational direction are cut at a slanting angle with respect to the rotational direction in a plane from the surface of the sphere toward the center O, and the angle of the longer arc of the sector is set to 180 degrees. FIG. 23 substantially corresponds to the states of FIGS. 10 to 11, and FIG. 24 substantially corresponds to the states of FIGS.

また、図22の端面14bの斜め部分を上下逆にして二つの扇形を面と面で接触する形状も考えられ、より気密性を高める追求も可能である。 In addition, a shape in which the inclined portion of the end face 14b in FIG. 22 is turned upside down and the two sectors are brought into contact with each other is conceivable, and it is possible to pursue higher airtightness.

より厳密には、図22において紙面に垂直な方向への端面14a、14b同士の相対変位も考慮する必要があるため、総じて言えば、2つの回転部1a、1bの前方、後方の端面が回転しながら気密性を保つような面で構成され、その面は球面より中心に向かう線の集まりで形成されるものであると言うことができる。 More precisely, since it is necessary to consider the relative displacement between the end faces 14a and 14b in the direction perpendicular to the paper surface in FIG. 22, generally speaking, the front and rear end faces of the two rotating portions 1a and 1b are rotated. However, it can be said that it is composed of a surface that keeps hermeticity, and the surface is formed by a collection of lines from the spherical surface toward the center.

なお、端面14を斜めに構成する場合、図23及び図24に示すようにポートP1、P6は両回転経路5a、5bの交叉部の直近に位置することが望ましく、流体経路は斜めに接続することが好ましい。これらのポートP1、P6を設けるカバー部の位置としては、図25に示すようにカバー外壁22やカバー内壁21ではなくカバー側壁24、26を選択することが有効となる。反対側の交叉部においても事情は同じである。また、上記図10〜図19においても各ポートP1〜P8は極力両回転経路5a、5bの交叉部に近い位置に設けておくことが好ましいため、図25と同様の構成を採用することもできる。   When the end face 14 is formed obliquely, as shown in FIGS. 23 and 24, the ports P1 and P6 are preferably located in the immediate vicinity of the intersection of the two rotation paths 5a and 5b, and the fluid paths are connected obliquely. It is preferable. As the position of the cover portion where these ports P1 and P6 are provided, it is effective to select the cover side walls 24 and 26 instead of the cover outer wall 22 and the cover inner wall 21 as shown in FIG. The situation is the same at the crossover on the opposite side. Also, in FIGS. 10 to 19, since the ports P1 to P8 are preferably provided as close to the intersections of the two rotation paths 5a and 5b as much as possible, the same configuration as in FIG. 25 can be employed. .

さらに、本発明の回転機械をエンジンとして使用する態様について略述する。   Furthermore, the aspect which uses the rotary machine of this invention as an engine is outlined.

この回転機械は、カバー部2の適当な場所に二つの経路をつなぐ接続部分(図13及び図18における想像線B参照)を設けることによって、回転経路1a、1bの一方で圧縮した気体をもう一方で爆発、膨張させ、エンジンとして機能させる。 In this rotating machine, by providing a connecting portion (see an imaginary line B in FIGS. 13 and 18) that connects two paths at an appropriate place of the cover unit 2, gas compressed in one of the rotating paths 1a and 1b is already generated. On the other hand, it explodes and expands to function as an engine.

すなわち、エンジンについては、一方の回転経路5bにおいて回転部1bの回転方向の前方で圧縮が、後方で吸気が行われ、もう一方の回転経路5aにおいて回転部1aの回転方向の後方で爆発、膨張、前方で排気が行われるようにする。接続部分Bは、一方の回転経路5bにおいて回転部1bの回転方向の前方で圧縮された混合気体が、もう一方の回転経路5aにおいて回転部1aの回転方向の後方の爆発前の位置へ送り込まれる位置に設けたものである。その際、点火プラグは適宜位置に設ければよく、ディーゼルエンジンのように高圧により着火するように構成してもよい。 That is, with respect to the engine, compression is performed in front of the rotation direction of the rotation unit 1b in one rotation path 5b, intake is performed in the rear, and explosion and expansion are performed in the rotation direction of the rotation unit 1a in the other rotation path 5a. , So that the exhaust is done in front. In the connection portion B, the mixed gas compressed in the rotation direction of the rotation unit 1b in one rotation path 5b is sent to the position before the explosion in the rotation direction of the rotation unit 1a in the other rotation path 5a. It is provided at the position. At that time, the spark plug may be provided at an appropriate position, and may be configured to be ignited by high pressure like a diesel engine.

この場合、図10〜図19で説明した各ポートのうち、閉じ込められて混合気体の圧縮や爆発が行われる空間に開口するポートの給排弁は閉にし、それ以外の空間に開口するポートの給排弁は開放しておくようにする。 In this case, among the ports described in FIGS. 10 to 19, the supply / discharge valve of the port that is confined and opens to the space where the mixed gas is compressed or exploded is closed, and the port that opens to the other space is closed. Keep the supply / discharge valve open.

以上、本発明の実施形態や変形例について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 As mentioned above, although embodiment and the modification of this invention were demonstrated, the specific structure of each part is not limited only to embodiment mentioned above, A various deformation | transformation is possible in the range which does not deviate from the meaning of this invention. is there.

Claims (5)

側面形状を概略扇形に、外周面及び内周面の形状を同じ仮想中心点を持つ部分球面状にした2つの回転部が、前記仮想中心点周りに互いに直角をなす回転面で当たらないようにタイミングを合わせて同期回転するようにしたものであって、一つの回転部は内周面側に支持部を有し、もう一つの回転部は外周面側に支持部を有し、その支持部とともに回転経路を覆う位置にカバー部を設けて、互いの回転部が相手方の回転部の回転経路を交叉部においてさえぎる形で回転することにより、支持部、カバー部、回転部の側面、及びもう一方の回転部の端面によって閉じられた空間が両回転部の回転とともに変化するように構成したことを特徴とする回転機械。 The two rotating parts having a substantially fan-shaped side surface and a partially spherical shape having the same virtual center point on the outer peripheral surface and the inner peripheral surface do not hit the rotating surfaces perpendicular to each other around the virtual center point. Synchronously rotating at the same timing, one rotating part has a supporting part on the inner peripheral surface side, and the other rotating part has a supporting part on the outer peripheral surface side, and the supporting part In addition, a cover portion is provided at a position covering the rotation path, and the respective rotation portions rotate in such a way as to block the rotation path of the other rotation portion at the crossing portion, thereby supporting the support portion, the cover portion, the side surface of the rotation portion, and the other. A rotating machine characterized in that the space closed by the end face of one rotating part changes with the rotation of both rotating parts. 一方の支持部は回転部の内周面と同じ仮想中心を持つ球面を内周面と接する位置から扇の円弧方向に拡張した形状をなし、他方の支持部は回転部の外周面と同じ仮想中心を持つ球面を外周面と接する位置から扇の円弧方向に拡張した形状をなし、それらの拡張部において質量バランスを取り、仮想中心点と回転部及び支持部からなる可動部の重心とを一致させている請求項1記載の回転機械。 One support part has a shape in which a spherical surface having the same virtual center as the inner peripheral surface of the rotating part is expanded from the position in contact with the inner peripheral face in the direction of the arc of the fan, and the other support part is the same virtual as the outer peripheral surface of the rotating part. A spherical surface with a center is expanded from the position in contact with the outer peripheral surface in the direction of the circular arc of the fan. Mass balance is achieved in these expanded parts, and the virtual center point and the center of gravity of the movable part consisting of the rotating part and the support part coincide. The rotating machine according to claim 1. 二つの支持部をギヤ等の連動機構で連結し、この連動機構で両回転部の回転のタイミングを合わせるとともに、連動機構を介して回転部への回転力の入力及び回転部からの回転力の出力を行うようにしている請求項1又は2記載の回転機械。 The two support parts are connected by an interlocking mechanism such as a gear, and the timing of rotation of both rotating parts is adjusted by this interlocking mechanism, and the rotational force input to the rotating part and the rotational force from the rotating part via the interlocking mechanism are adjusted. The rotating machine according to claim 1 or 2, wherein output is performed. カバー部に、閉じられた空間に開口する穴を設け、回転部の回転に伴う空間の変化を利用してポンプ又はアクチュエータとして機能させるようにしていることを特徴とする請求項1〜3記載の回転機械。 The hole which opens in the closed space is provided in the cover part, It is made to function as a pump or an actuator using the change of the space accompanying rotation of a rotation part. Rotating machine. カバー部に、閉じられた空間に開口する穴を設け、その穴の一部を利用して二つの回転経路をつなぐ接続部分を設けることによって、一方の回転経路で圧縮した気体をもう一方の回転経路で爆発、膨張させ、エンジンとして機能させるようにしていることを特徴とする請求項1〜3記載の回転機械。 The cover part is provided with a hole that opens in a closed space, and by using a part of the hole to connect the two rotation paths, the gas compressed in one rotation path is rotated in the other. 4. The rotating machine according to claim 1, wherein the rotating machine is caused to explode and expand along a path to function as an engine.
JP2007536593A 2005-09-26 2006-09-26 Rotating machine Active JP4919963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007536593A JP4919963B2 (en) 2005-09-26 2006-09-26 Rotating machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005310453 2005-09-26
JP2005310453 2005-09-26
PCT/JP2006/319030 WO2007034960A1 (en) 2005-09-26 2006-09-26 Rotary machine
JP2007536593A JP4919963B2 (en) 2005-09-26 2006-09-26 Rotating machine

Publications (2)

Publication Number Publication Date
JPWO2007034960A1 true JPWO2007034960A1 (en) 2009-04-02
JP4919963B2 JP4919963B2 (en) 2012-04-18

Family

ID=37889001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007536593A Active JP4919963B2 (en) 2005-09-26 2006-09-26 Rotating machine

Country Status (2)

Country Link
JP (1) JP4919963B2 (en)
WO (1) WO2007034960A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612873C1 (en) * 2016-04-06 2017-03-13 Аскер Аскерович Гейдаров Rotary internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2034300A1 (en) * 1969-07-14 1971-04-15 May, Rolf, 4010 Hilden Internal combustion engine
JPS4938008A (en) * 1972-08-21 1974-04-09
EP0091975A1 (en) * 1982-04-16 1983-10-26 VON INGELHEIM, Peter, Graf Rotary piston engine with two or more rotary pistons in parallel, angular or crossing arrangement
DE69031495T2 (en) * 1989-08-11 1998-04-02 Mechanology TORODIAL HYPEREXPANDING ROTATING MACHINE, COMPRESSOR, PUMP AND EXPANSION MACHINE
FR2660364B1 (en) * 1990-03-27 1995-08-11 Kohn Elhanan ROTARY HEAT MOTOR.
RU2113608C1 (en) * 1996-10-31 1998-06-20 Гущин Владимир Валентинович Rotary-piston internal combustion engine
JP3718219B1 (en) * 2005-02-03 2005-11-24 広保 前田 Rotating piston engine

Also Published As

Publication number Publication date
WO2007034960A1 (en) 2007-03-29
JP4919963B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4686507B2 (en) Booster system and apparatus
US11098588B2 (en) Circulating piston engine having a rotary valve assembly
JP4973237B2 (en) Rotary fluid machine
CA2450542A1 (en) Arov engine/pump
JP4919963B2 (en) Rotating machine
WO2002070878A1 (en) A rotary engine
CZ198394A3 (en) Voluminous machine
JP6166483B2 (en) Rotary motor with gear transmission using compression medium drive
JP2004527682A5 (en)
JP2018535357A (en) Rotating ejector
JP2004324601A (en) Single screw compressor
JP2009517600A (en) Rotary motor using intermittent rotor motion
JP4858207B2 (en) Multistage compressor
JP4449014B2 (en) Hot-air rotary external combustion engine
JP3718219B1 (en) Rotating piston engine
CN205025568U (en) Ball -type rotary engine
JP2007537395A (en) Rotary engine
WO2008111695A1 (en) Rotary engine
US20120067324A1 (en) Toroidal internal combustion rotary engine
EP1849958A1 (en) Rotary pistons machine
KR20010053816A (en) Rotary engine
JP2023166307A (en) Perfect circle rotary engine
JPS6355302A (en) Fluid driven motor
JP2020125724A (en) Rotary engine
JPH08158880A (en) Rotary engine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4919963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250