JP4449014B2 - Hot-air rotary external combustion engine - Google Patents

Hot-air rotary external combustion engine Download PDF

Info

Publication number
JP4449014B2
JP4449014B2 JP2003368082A JP2003368082A JP4449014B2 JP 4449014 B2 JP4449014 B2 JP 4449014B2 JP 2003368082 A JP2003368082 A JP 2003368082A JP 2003368082 A JP2003368082 A JP 2003368082A JP 4449014 B2 JP4449014 B2 JP 4449014B2
Authority
JP
Japan
Prior art keywords
housing
expansion
compression
working fluid
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003368082A
Other languages
Japanese (ja)
Other versions
JP2005098271A (en
Inventor
孝二 金丸
Original Assignee
孝二 金丸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孝二 金丸 filed Critical 孝二 金丸
Priority to JP2003368082A priority Critical patent/JP4449014B2/en
Publication of JP2005098271A publication Critical patent/JP2005098271A/en
Application granted granted Critical
Publication of JP4449014B2 publication Critical patent/JP4449014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、作動流体を外部から加熱,冷却し膨張,収縮させることによって、熱を運動に変換する外燃機関に関する。  The present invention relates to an external combustion engine that converts heat into motion by heating and cooling a working fluid from outside to expand and contract.

近年、地球環境に対する意識の向上により、熱源を選ばず低騒音で、排気に汚染物質の少ない外燃機関が注目されている。  In recent years, external combustion engines with low noise and low pollutants in exhaust gas have attracted attention due to the improvement of awareness of the global environment.

図7に従来の熱気式外燃機関の構成をしめす。熱気式の外燃機関を動作させるためには2つのシリンダと加熱機構が必要であり、構造が複雑になりやすく、内燃機関のような爆発的なエネルギーが出せないので高出力化が難しい。出力を高めるには多くのシリンダを配置するため複雑化したり、機関を大きくする必要があるという問題点があった。  FIG. 7 shows the configuration of a conventional hot-air external combustion engine. In order to operate a hot-air type external combustion engine, two cylinders and a heating mechanism are required, the structure is likely to be complicated, and explosive energy unlike an internal combustion engine cannot be produced, so it is difficult to increase the output. In order to increase the output, there are problems that it is complicated to arrange many cylinders or that the engine needs to be enlarged.

本発明では、外燃機関にロータリーエンジンの構成を用いることにより、小型化,高出力化を実現する。
図1に本発明の構成をしめす。偏心回転するルーローの三角形を用いたローター1と、それに適合するペリトロコイド曲線を用いたハウジングによるロータリーユニットを、膨張側と圧縮側の2つを配置し、圧縮側ハウジング2の排気口から加熱器4と遮断弁5を含む流路を通して膨張側ハウジング3の吸気口に接続し、膨張側ハウジング3の排気口から冷却器6を含む流路を通して圧縮側ハウジング2の吸気口に接続する。ハウジングに対するローター回転角は、膨張側を圧縮側より90°先行させる。ハウジング内部および流路は、作動流体で満たされており、各吸気口,排気口はローター1の側面により開閉する。
In the present invention, the configuration of the rotary engine is used for the external combustion engine, thereby realizing miniaturization and high output.
FIG. 1 shows the configuration of the present invention. A rotor 1 using a roulau triangle that rotates eccentrically and a rotary unit by a housing using a peritrochoid curve adapted to the rotor 1 are arranged on the expansion side and the compression side, and a heater is provided from the exhaust port of the compression side housing 2 4 and the shut-off valve 5 are connected to the intake port of the expansion side housing 3 through the flow path, and the exhaust port of the expansion side housing 3 is connected to the intake port of the compression side housing 2 through the flow path including the cooler 6. The rotor rotation angle relative to the housing causes the expansion side to precede the compression side by 90 °. The inside of the housing and the flow path are filled with the working fluid, and each intake port and exhaust port are opened and closed by the side surface of the rotor 1.

図2に本発明の動作をしめす。ロータリーエンジン同様、本機関は複数の行程を同時におこなうが、ここでは網掛け部分の作動流体と点をつけたローター面の部分に注目して説明する。
図2(a)は、膨張側ハウジング3が最大容積となり、圧縮側ハウジング2が最小容積となっている状態である。ローターを回転させると、作動流体は膨張側ハウジング3から圧縮側ハウジング2に移動するとともに、冷却器6により冷却される。
図2(b)は、作動流体の移動冷却が完了した状態である。続いて断熱圧縮をおこなうが、このままローターを回転させるとすぐに圧縮側の排気口が開いて、加熱器4を含む流路で作動流体が膨張側ハウジング3に移動してしまうので、遮断弁5を閉じハウジングと流路を切り離して断熱圧縮をおこなう。
図2(c)は、断熱圧縮が完了した状態である。ここで遮断弁5を開き、作動流体を圧縮側ハウジング2から膨張側ハウジング3に移動させるとともに、加熱器4により加熱をおこなう。
図2(d)は、作動流体の移動加熱が完了した状態である。続いて断熱膨張をおこなうが、このままローターを回転させると、膨張側の吸気口が閉じる前に圧縮側の排気口が開いてしまうので、遮断弁5を閉じハウジングと流路を切り離して断熱膨張をおこなう。
断熱膨張が完了すると図2(a)の状態に戻り、以上の繰り返しにより本機関は動作する。
FIG. 2 shows the operation of the present invention. Like the rotary engine, this engine performs a plurality of strokes at the same time. Here, the description will be made by focusing on the shaded portion of the rotor surface and the working fluid.
FIG. 2A shows a state where the expansion side housing 3 has the maximum volume and the compression side housing 2 has the minimum volume. When the rotor is rotated, the working fluid moves from the expansion side housing 3 to the compression side housing 2 and is cooled by the cooler 6.
FIG. 2B shows a state where the moving cooling of the working fluid has been completed. Subsequently, adiabatic compression is performed, but as soon as the rotor is rotated, the compression-side exhaust port opens and the working fluid moves to the expansion-side housing 3 in the flow path including the heater 4. Is closed and the housing and the flow path are separated and adiabatic compression is performed.
FIG. 2C shows a state where adiabatic compression is completed. Here, the shutoff valve 5 is opened, the working fluid is moved from the compression side housing 2 to the expansion side housing 3, and heating is performed by the heater 4.
FIG. 2D shows a state where the moving heating of the working fluid has been completed. Subsequently, adiabatic expansion is performed, but if the rotor is rotated as it is, the exhaust port on the compression side opens before the intake port on the expansion side closes. Therefore, the shutoff valve 5 is closed and the housing and the flow path are separated to perform adiabatic expansion. Do it.
When the adiabatic expansion is completed, the state returns to the state of FIG. 2A, and the engine operates by repeating the above.

図3に本発明の動作チャートをしめす。本機関は図1のように上半分と下半分が同じ構成になっているので、本チャートを簡略にするため下半分の動作の記述を省略する。
各ハウジングの内部空間はローターの3面によって区切られ、複数の行程が同時におこなわれているが、ここでは太線でしめした1サイクルに注目して説明する。ローターの回転により、ハウジング内の各空間の容積は正弦波状に変化する。吸気口,排気口の表示はローター側面により閉じられていない期間をしめす。遮断弁の表示は、閉じている期間をしめす。ローター回転角は、図2のローターに付けた点をローター中心から見た角度に対応する。
ローター回転角0°は、図2(a)の状態に対応する。膨張側の排気口と圧縮側の吸気口が同時に開き、各ハウジングの容積変化に伴い、作動流体が膨張側から圧縮側に移動しながら冷却される。
ローター回転角90°は、図2(b)の状態に対応する。圧縮側の排気口と膨張側の吸気口は共に開いているが、遮断弁が閉じているので断熱圧縮がおこなわれる。
ローター回転角150°は、図2(c)の状態に対応する。遮断弁が開き容積変化に伴って、作動流体が圧縮側から膨張側に移動しながら加熱される。
ローター回転角180°は、図2(d)の状態に対応する。遮断弁が閉じられ、断熱膨張がおこなわれる。
ローター回転角240°は、図2(a)の状態に戻るが移動冷却した作動流体は、圧縮側ローターの先ほどとは別の面で受けられて、サイクルを続行する。
FIG. 3 shows an operation chart of the present invention. Since the upper half and the lower half have the same configuration as shown in FIG. 1, the description of the operation of the lower half is omitted to simplify the chart.
The internal space of each housing is divided by the three surfaces of the rotor, and a plurality of strokes are performed at the same time. Here, explanation will be made by focusing on one cycle indicated by a thick line. Due to the rotation of the rotor, the volume of each space in the housing changes in a sinusoidal shape. The intake and exhaust port indications indicate the period when the rotor side is not closed. The shut-off valve display indicates the closed period. The rotor rotation angle corresponds to the angle when the point attached to the rotor in FIG. 2 is viewed from the rotor center.
The rotor rotation angle of 0 ° corresponds to the state shown in FIG. The exhaust port on the expansion side and the intake port on the compression side open simultaneously, and the working fluid is cooled while moving from the expansion side to the compression side as the volume of each housing changes.
The rotor rotation angle of 90 ° corresponds to the state shown in FIG. The compression-side exhaust port and the expansion-side intake port are both open, but adiabatic compression is performed because the shut-off valve is closed.
The rotor rotation angle of 150 ° corresponds to the state shown in FIG. As the shut-off valve opens and the volume changes, the working fluid is heated while moving from the compression side to the expansion side.
The rotor rotation angle of 180 ° corresponds to the state shown in FIG. The shut-off valve is closed and adiabatic expansion takes place.
The rotor rotation angle of 240 ° returns to the state of FIG. 2A, but the moving and cooled working fluid is received on a different surface from the previous side of the compression side rotor, and the cycle continues.

遮断弁は作動流体の移動を止めるだけでなく、断熱変化時の容積の変化比が大きいほど効率が高くなるので、流路の容積の影響が出にくくなるよう、流路の両側にできるだけハウジングに近くなるように配置している。
移動加熱,移動冷却時の作動流体の状態変化は、圧縮側,膨張側の容積比や流路の容積によって異なる。流路の容積が大きいと作動流体の移動中、容積の変化率が小さいので等容変化に近づき、膨張側容積を圧縮側容積より大きくとって、作動流体の移動開始時と完了時の圧力が同じになるようにすると等圧変化に近づく。
冷却側の流路がない場合、本機関は開放形として動作する。図2(a)の状態から移動冷却なしで、圧縮側吸気口から外気を取り込み作動流体とし、前記と同様に断熱圧縮−移動加熱−断熱膨張をおこない、最後に膨張側排気口より作動流体を外気に戻す。
The shutoff valve not only stops the movement of the working fluid, but also increases the efficiency as the volume change ratio at the time of adiabatic change increases. Arranged to be close.
The change in state of the working fluid during moving heating and moving cooling varies depending on the volume ratio of the compression side and the expansion side and the volume of the flow path. If the volume of the flow path is large, the rate of change of the volume is small during the movement of the working fluid, so that it approaches a constant volume change, the expansion side volume is made larger than the compression side volume, and the pressure at the start and completion of movement of the working fluid If it is made the same, it will approach the isobaric change.
When there is no cooling side flow path, the engine operates as an open type. From the state of FIG. 2A, without moving cooling, outside air is taken in from the compression side intake port to be used as working fluid, adiabatic compression-moving heating-adiabatic expansion is performed in the same manner as above, and finally the working fluid is supplied from the expansion side exhaust port Return to the open air.

本発明はロータリー構成により、従来の外燃機関の4シリンダに相当する行程をおこなう機関を、2つのハウジングにコンパクトに収めている。
従来の外燃機関では、作動流体が外に漏れないようピストンのロッドをシーリングしたり、クランクボックスを加圧したりするが、本発明では余計な加圧部がなく、シーリングすべき個所も最小限で済む。(もちろん同一ハウジング内での吸気口,排気口の筒抜けを防ぐため、ローター側面のシーリングは必要である。)またロータリー構成には、静音,低振動という特長もある。
According to the present invention, an engine that performs a stroke corresponding to four cylinders of a conventional external combustion engine is housed in two housings in a compact manner due to the rotary configuration.
In the conventional external combustion engine, the piston rod is sealed and the crankbox is pressurized so that the working fluid does not leak outside. However, in the present invention, there is no extra pressurizing part and the number of places to be sealed is minimized. Just do it. (Of course, the rotor side sealing is necessary to prevent the intake and exhaust ports from coming off in the same housing.) In addition, the rotary configuration also features quietness and low vibration.

可逆形の熱気機関の出力軸を外部から駆動すると、ヒートポンプになることは周知の事実なので、その応用例および説明は省略する。ここではさらに出力を高めるため、ロータリーユニットを増設した場合の構成の最適化について説明する。Since it is a well-known fact that when the output shaft of a reversible hot air engine is driven from the outside, it becomes a heat pump, its application example and description are omitted. Here, in order to further increase the output, optimization of the configuration when a rotary unit is added will be described.

図4に膨張側,圧縮側のロータリーユニットが、2つづつのときの構成をしめす。
加熱側の流路は、圧縮側ハウジング2a,2bから4本が排気され膨張側ハウジング3a,3bに4本が吸気されるが、4本の流路を集約し切替えることによって加熱器4を共通化し、加熱器4に常に作動流体を流すことができる。また図4では流路の集約に伴い、遮断弁を切替弁とした例をしめしている。
図5に弁構造をしめす。図5(a)は遮断弁の構造であり、高圧の作動流体を用いても応力が最小になるよう、弁の開口が軸対称となるようにしている。図5(b)は切替弁の構造であり、遮断弁と同様に開口を軸対称にし、弁の回転角によって4本の流路のうち1つが選択され加熱器に接続される。選択されていない流路は、遮断状態となる。本弁はシーリングを考慮し、電磁弁を用いることが望ましい。
図6に実施例の動作チャートをしめす。細長い矩形は各吸気口,排気口の開いている期間をしめす。2a,3aのペアと2b,3bのペアが同じ方向にそろっていると、各行程が重なってしまうのでローター回転角にして30°ずらし、加熱期間がa上−b上−a下−b下と順繰りになるようにする。また振動の相殺にはローター回転角を180°反転させた形が望ましいので、ハウジングごと30°ひねった形で配置すると良い。
FIG. 4 shows a configuration when there are two expansion-side and compression-side rotary units.
Four heating-side flow paths are evacuated from the compression-side housings 2a and 2b and four are sucked into the expansion-side housings 3a and 3b. The heater 4 is shared by switching the four flow paths together. Thus, the working fluid can always flow through the heater 4. FIG. 4 shows an example in which the shut-off valve is a switching valve as the flow paths are aggregated.
FIG. 5 shows the valve structure. FIG. 5A shows the structure of the shut-off valve, and the opening of the valve is axisymmetric so that the stress is minimized even when a high-pressure working fluid is used. FIG. 5B shows the structure of the switching valve. The opening is made axially symmetric like the shutoff valve, and one of the four flow paths is selected and connected to the heater according to the rotation angle of the valve. Channels that are not selected are blocked. This valve is preferably a solenoid valve in consideration of sealing.
FIG. 6 shows an operation chart of the embodiment. The elongated rectangle indicates the period during which each inlet and outlet is open. If the pair of 2a, 3a and the pair of 2b, 3b are aligned in the same direction, the strokes overlap each other, so the rotor rotation angle is shifted by 30 °, and the heating period is a above -b above -a below -b below And in order. In addition, since it is desirable that the rotor rotation angle be reversed by 180 ° for canceling out vibrations, it is preferable that the entire housing be twisted by 30 °.

本発明の構成図である。    It is a block diagram of the present invention. 本発明の動作図である。    It is an operation | movement diagram of this invention. 本発明の動作チャート図である。    It is an operation | movement chart figure of this invention. 本発明の実施例の構成図である。    It is a block diagram of the Example of this invention. 本発明の実施例の構成図である。    It is a block diagram of the Example of this invention. 本発明の実施例の動作チャート図である。    It is an operation | movement chart figure of the Example of this invention. 従来の方式の構成図である。    It is a block diagram of the conventional system.

符号の説明Explanation of symbols

1.ローター
2.圧縮側ハウジング
3.膨張側ハウジング
4.加熱器
5.遮断弁
6.冷却器
1. Rotor 2. 2. Compression side housing 3. Expansion side housing 4. Heater Shut-off valve 6. Cooler

Claims (2)

偏心回転するルーローの三角形を用いたローター(1)に適合するペリトロコイド曲線を用いた2つのハウジングである、圧縮側ハウジング(2)と膨張側ハウジング(3)に各々ローター(1)を内蔵し、ハウジングには各々吸気口と排気口を設け、圧縮側ハウジング(2)の排気口と膨張側ハウジング(3)の吸気口を、加熱器(4)と遮断弁(5)を含む流路で接続し、ハウジングに対するローター回転角を膨張側が圧縮側より、90°先行する位相関係になるようローターを配置し、遮断弁(5)を閉じて圧縮側ハウジング(2)内で作動流体の断熱圧縮をおこなった後、遮断弁(5)を開いて作動流体を圧縮側ハウジング(2)から膨張側ハウジング(3)に移動させながら加熱器(4)によって加熱し、その後、遮断弁(5)を閉じて膨張側ハウジング(3)内で作動流体の断熱膨張をおこない、流路には一方向のみに作動流体が流れることを特徴とするロータリー外燃機関。  The rotor (1) is housed in each of the compression housing (2) and the expansion housing (3), which are two housings using peritrochoid curves that fit the rotor (1) using the eccentrically rotating Rouleau triangle. The housing is provided with an intake port and an exhaust port, respectively, and the exhaust port of the compression side housing (2) and the intake port of the expansion side housing (3) are flow paths including the heater (4) and the shutoff valve (5). Connect the rotor so that the rotation angle of the rotor relative to the housing is 90 ° ahead of the compression side of the expansion side, close the shutoff valve (5), and adiabatic compression of the working fluid in the compression side housing (2) After that, the shut-off valve (5) is opened and heated by the heater (4) while moving the working fluid from the compression side housing (2) to the expansion side housing (3). Flip performed adiabatic expansion of the expandable housing (3) in a working fluid, a rotary external combustion engine, wherein a flow only in the working fluid in one direction in the flow path. 膨張側ハウジング(3)の排気口と圧縮側ハウジング(2)の吸気口を冷却器(6)を含む流路で接続し、作動流体を膨張側ハウジング(3)から圧縮側ハウジング(2)に移動させながら冷却する請求項1記載のロータリー外燃機関。  The exhaust port of the expansion side housing (3) and the intake port of the compression side housing (2) are connected by a flow path including a cooler (6), and the working fluid is transferred from the expansion side housing (3) to the compression side housing (2). The rotary external combustion engine according to claim 1, wherein the rotary external combustion engine is cooled while being moved.
JP2003368082A 2003-09-24 2003-09-24 Hot-air rotary external combustion engine Expired - Fee Related JP4449014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368082A JP4449014B2 (en) 2003-09-24 2003-09-24 Hot-air rotary external combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368082A JP4449014B2 (en) 2003-09-24 2003-09-24 Hot-air rotary external combustion engine

Publications (2)

Publication Number Publication Date
JP2005098271A JP2005098271A (en) 2005-04-14
JP4449014B2 true JP4449014B2 (en) 2010-04-14

Family

ID=34463652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368082A Expired - Fee Related JP4449014B2 (en) 2003-09-24 2003-09-24 Hot-air rotary external combustion engine

Country Status (1)

Country Link
JP (1) JP4449014B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904560B2 (en) * 2006-10-13 2012-03-28 邦夫 松本 Rotary Stirling engine
JP5083836B2 (en) * 2009-07-06 2012-11-28 国立大学法人長岡技術科学大学 Heat engine cycle multi-connection system
JP5083835B2 (en) * 2009-07-06 2012-11-28 国立大学法人長岡技術科学大学 Heat engine cycle equipment
JP4917686B1 (en) * 2011-07-01 2012-04-18 泰朗 横山 Rotary Stirling engine
CN109440670B (en) * 2018-10-31 2020-12-08 来斯奥集成家居股份有限公司 Mountain road convex surface reflector

Also Published As

Publication number Publication date
JP2005098271A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP5907023B2 (en) Magnetic heat pump system
US8424284B2 (en) High efficiency positive displacement thermodynamic system
JP5248118B2 (en) Valves and auxiliary exhaust systems for high-pressure steam engines and compressed gas motors
RU2581469C2 (en) Device for compressing gaseous media
JP2007064222A (en) Hydrogen equalizing system for double-acting stirling engine
US4455825A (en) Maximized thermal efficiency hot gas engine
EP1242727A1 (en) Apparatus using oscillating rotating pistons
WO2014126844A1 (en) Valve assembly and method for high temperature engines
JP4449014B2 (en) Hot-air rotary external combustion engine
CA2545519C (en) Hybrid engine
JP6494662B2 (en) Variable volume transfer shuttle capsule and valve mechanism
US7284373B1 (en) Thermodynamic cycle engine with bi-directional regenerators and elliptical gear train and method thereof
CA3053638C (en) A near-adiabatic engine
WO2016134229A1 (en) A nearly full adiabatic engine
JP2615435B2 (en) Gas compressor
KR101749213B1 (en) Single Piston Type Stirling Engine
JPH0719639A (en) Stirling cycle heat pump apparatus
JP2589521B2 (en) Thermal energy utilization equipment
US730495A (en) Compressing system.
JP2000320453A (en) Rotary-type fluid machine having expansion function and compression function and vane-type fluid machine
US20100064681A1 (en) Method for increasing performance of a stirling or free-piston engine
WO2003012257A1 (en) A stirling machine utilizing a double action planetary machine
CN109826703B (en) Rotating arm engine and engine unit
GB2611027A (en) Thermodynamic cycle
CN117957359A (en) Thermodynamic cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees