WO2007034960A1 - Rotary machine - Google Patents

Rotary machine Download PDF

Info

Publication number
WO2007034960A1
WO2007034960A1 PCT/JP2006/319030 JP2006319030W WO2007034960A1 WO 2007034960 A1 WO2007034960 A1 WO 2007034960A1 JP 2006319030 W JP2006319030 W JP 2006319030W WO 2007034960 A1 WO2007034960 A1 WO 2007034960A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
rotation
parts
peripheral surface
support
Prior art date
Application number
PCT/JP2006/319030
Other languages
French (fr)
Japanese (ja)
Inventor
Michihiro Taneda
Original Assignee
Michihiro Taneda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michihiro Taneda filed Critical Michihiro Taneda
Priority to JP2007536593A priority Critical patent/JP4919963B2/en
Publication of WO2007034960A1 publication Critical patent/WO2007034960A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C3/00Rotary-piston machines or engines with non-parallel axes of movement of co-operating members
    • F01C3/02Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees

Definitions

  • the present invention relates to a rotating machine that can function as a pump, an engine, an actuator, or the like.
  • the present invention has been made paying attention to these problems, and eliminates the drawbacks of conventional rotating machines, enabling high efficiency, low vibration, low noise, and high-speed rotation like an electric motor.
  • the purpose is to realize a rotating machine with a structure that can be used effectively as a pump, engine, actuator, etc.
  • the present invention takes the following measures.
  • the rotating machine of the present invention has two rotating parts and a shape of a part of the rotating parts.
  • the rotating parts have a phantom center point of the spherical surface of the shape as the same center. straight When it hits on the rotating surface that makes a corner, it is made to rotate at the same timing.
  • one rotating part is supported from the smaller spherical side of the sector, and the other rotating part is supported from the larger spherical side of the sector, so that the supporting part and the rotation path cover are supported.
  • the closed region formed by the rotating part and the two rotating parts has a structure that changes with the rotation of the rotating part.
  • one rotating part closes the front and rear of the rotating path of the other rotating part at the intersection of the rotating paths during rotation. Since the periphery of the rotation path is closed by the cover part and the support part of the rotation part, the closed area in front of the rotation part becomes narrower with the rotation, and the closed area behind the rotation part becomes wider with the rotation. Therefore, if a hole is drilled near the intersection of some rotation paths, it will function as a pump or actuator.
  • the movable part can be structured not to reciprocate or eccentrically rotate, so that the problems of vibration and noise can be effectively solved. Since it can be brought into surface contact or close to a state over a wide range, the airtightness is remarkably improved, and it is possible to make a rotating machine that operates with high efficiency even if it is small * low rotation.
  • the two rotating part forces having a substantially fan-shaped side surface and a partially spherical shape having the same virtual center point on the outer peripheral surface and the inner peripheral surface are perpendicular to each other around the virtual center point. It is configured to synchronize and rotate at the same timing so as not to interfere with the rotating surface.
  • one rotating part has a supporting part on the inner peripheral surface side
  • the other rotating part has a supporting part on the outer peripheral surface side
  • a cover part is provided at a position covering the rotating path together with the supporting part.
  • the rotating parts rotate in such a way as to gradually block the rotation path of the other rotating part at the intersection, so that the supporting part, the cover part, the side surface of the rotating part, and the other
  • This is characterized in that the space closed by the end face of the rotating part of the rotating part expands and contracts with the rotation of both rotating parts.
  • one support portion has a shape in which a spherical surface having the same virtual center as the inner peripheral surface of the rotating portion is expanded in the arc direction of the position force fan in contact with the inner peripheral surface.
  • the other support part is a position where a spherical surface having the same virtual center as the outer peripheral surface of the rotating part is in contact with the outer peripheral surface. It is useful to have a shape that extends in the direction of the arc of the fan, balance the mass at these extended portions, and make the virtual center point coincide with the center of gravity of the movable portion consisting of the rotating portion and the supporting portion.
  • the two support portions are connected by a linkage mechanism such as a gear, and the timing of rotation of both rotation portions is matched by this linkage mechanism, and via the linkage mechanism.
  • a linkage mechanism such as a gear
  • the rotation force is input to the rotation unit and the rotation force is output from the rotation unit.
  • a hole that opens in a closed space is provided in the cover portion, and the space is expanded or contracted due to rotation of the rotating portion. It is only necessary to connect the fluid path to each hole and configure the power transmission system so that the hole that opens is a suction port or a high-pressure port, and the hole that opens to the reduced region becomes a discharge port or drain port.
  • Various fluids such as water, air, and oil can be used as the fluid.
  • a hole that opens in a closed space is provided in the cover portion, and two rotation paths other than the crossing portion are utilized using a part of the hole.
  • the gas mixture confined in one rotation path and introduced into the space in the contracting process is compressed, and the gas mixture is closed in the other rotation path via the connection part. If it is introduced into a space that is in the process of expansion and then explodes, expands and then exhausts continuously, it can be configured to operate continuously.
  • the rotating part and the supporting part which are movable parts, can have a rotating structure that hardly generates inertial resistance during operation, vibration and noise can be reduced, and even at high speeds.
  • a durable rotating machine and a pump Z motor, actuator, and engine using this can be realized.
  • high airtightness can be maintained between the rotating part and the rotating path, it can be used as a rotating machine or the like with less energy loss compared to the conventional non-eccentric type.
  • FIG. 1 A schematic diagram showing the relationship between a rotating part and a rotating path according to an embodiment of the present invention. 2] A front view of the cover according to the embodiment.
  • ⁇ 3 A side view showing a movable part in a state where one rotating part according to the embodiment is supported by an outer support part.
  • FIG. 6 is a perspective view of a cover part that accommodates both movable parts.
  • FIG. 7 is an exploded perspective view of a movable part and a cover part.
  • ⁇ 21 A view showing a modification of the end face shape of the rotating part.
  • FIG. 22 is an enlarged view of a main part in the thread attached state of FIG.
  • FIG. 25 is a front view corresponding to FIG. 2 showing a modification of the cover portion.
  • two rotating parts l (la, lb) indicated by solid lines in FIG. 1 are provided on rotating paths 5a, 5b provided on rotating surfaces orthogonal to each other indicated by imaginary lines in FIG. It is designed to rotate synchronously without interfering along.
  • the rotation paths 5a and 5b are partially covered by the force bar portion 2 shown in FIGS. 2 and 6, and the rotation portions la and lb rotate while being backed up by the support portions 4 and 3 shown in FIGS. It is arranged in the paths 5a and 5b.
  • Fig. 7 is an exploded view showing the assembly relationship between the rotating part and the cover part.
  • the outer periphery 11 and the inner periphery 12 of the rotating part l are spherical surfaces having the same virtual center point O
  • the side surface 13 extends from the outer periphery 11 to the inner periphery 12 as the spherical surface. It is formed by a curved surface created by a collection of lines facing the center of the sphere, that is, the same virtual center point O. This curved surface is a conical surface.
  • the side surface shape of the rotating portion 1 is referred to as a “fan shape”, but it is formed by an outer periphery 11 and an inner periphery 12 and an end surface 14 to be described later, as clearly shown in FIG. It is a partial annular shape in a side view.
  • Other terms “fan” and “fan” have the same meaning.
  • the rotating portion 1 is sized to fit within a region slightly smaller than 180 ° in the rotation paths 5a and 5b, that is, in a region where no force is applied to the intersection of the rotation paths 5a and 5b (the angle of the fan is
  • the shape of the front and rear end faces 14 in the rotational direction is not particularly limited. Even in this way, the basic function is the same as the airtightness only at a certain rotational position. An example in which the rotating unit 1 occupies a region of approximately 180 ° in the rotation paths 5a and 5b will be described later.
  • the portions indicated by reference numerals 31 and 41 are spherical support surfaces having the same virtual center O as the outer peripheral surface 11 and the inner peripheral surface 12 of the rotating portion 1 having a fan shape, and these support portions 3 and 4 are Positional force that backs up the outer circular arc or inner circular arc of the rotating part 1 that forms a fan shape.
  • the shape of the other parts except for the support surfaces 31 and 41 is arbitrary, and the vertical length of the arc of the fan-shaped part of the rotating part 1 and the paper surface in FIGS.
  • the width in the direction and the diameters of the spherical surfaces constituting the outer peripheral surface 11 and the inner peripheral surface 12 can be freely determined.
  • the cover portion 2 has a cover outer wall 22 that closes the outer peripheral side of the vertical rotation path 5 a in the figure, and an inner periphery of the horizontal rotation path 5 b in the figure.
  • the cover inner wall 21 that closes the side also has a spherical force with the same virtual center point O
  • the cover side walls 23, 24, 25, 26 covering the top and bottom of the rotation path 5b and the cover side walls 27a, 27b covering the left and right of the rotation path 5a, 28a and 28b are close to a semicircle formed by a curved surface formed by a collection of lines facing the same virtual center point O.
  • These curved surfaces are also conical surfaces corresponding to the shape of the side surface 13 of the rotating part lb, la.
  • the side surface of the rotating part 1 (la, lb) is placed on the part other than the crossing part of the rotating paths 5a, 5b.
  • J wall 23, 24, 25, 26, 27a, 27b , 28a, and 28b, and the outer peripheral surface 11 of the rotating part la arranged in the longitudinal rotation path 5a is partially spherical at the portion excluding the intersection of the rotation paths 5a and 5b.
  • the cover outer wall 22 covers two places at the top and bottom, and the inner peripheral surface 12 of the rotating part lb arranged in the horizontal rotation path 5b is a partially spherical inner cover wall at the part excluding the intersection of the rotation paths 5a and 5b. 21 covers the left and right.
  • the inner peripheral side of the rotation path 5a is closed by an annular support part 4 that supports the inside of the rotation part la including the intersections of both rotation paths 5a and 5b, and the outer periphery side of the rotation path 5b rotates in both directions.
  • the structure is closed by an annular support portion 3 that supports the outside of the rotating portion lb including the crossing portions of the paths 5a and 5b.
  • holes are provided at appropriate locations in the cover portion 2 and these are used as input / output ports so as to function as a pump and an actuator.
  • the holes in the present embodiment have two locations (Pl, P2, P3, P4) on the cover outer wall 22 of the longitudinal rotation path 5a in the vicinity of each crossing portion, and in the vicinity of each crossing portion. Are provided in two places (P5, P6, P7, P8) on the inner wall of the cover of the horizontal rotation path 5b, for a total of eight places.
  • the system is in the rotation state of FIG. 9 that is 180 ° out of phase with respect to FIG. 8, and at each intersection of the rotation paths 5a and 5b, the rotation part la (lb) is replaced with the other rotation part lb (la ),
  • the closed area Sb3 (Sa3) between the front of the rotating part lb (la) and the side of the rotating part la (lb) rotates.
  • the closed region Sb4 (Sa4) between the rear of the rotating part lb (la) and the side surface of the rotating part la (lb) becomes wider with rotation. Therefore, in this figure, P4 and P6 are inflow ports, and P3 and P5 are outflow ports.
  • FIGS. 10 to 19 further show the rotation paths 5a and 5b developed and graduated every 30 °.
  • the right shoulder of each figure shows the rotating parts la, lb from the state of FIG. It shows how much force is rotated and its phase difference.
  • the state of FIG. 13 substantially corresponds to FIG. 8, and the state of FIG. 17 substantially corresponds to FIG.
  • a flow path (not shown) is connected to each of the ports P1 to P8, and an appropriate supply / discharge valve is provided in each flow path.
  • FIG. 10 shows the moment when the front ends of both rotating parts la and lb enter the crossing part.
  • all four ports Pl, P3, P5, and P8 are “low”, and the other four ports P2, P4, P6, and P7 are “open”.
  • the intersections of the rotation paths 5a and 5b are not blocked, so there is no expansion or contraction in the confinement state of the space. .
  • the supply / discharge valves of ports P1 to P8 must be closed.
  • Fig. 12 which is 30 ° out of phase from Fig. 10, the states of ports P1 to P8 are the same as in Fig. 11. Force At this stage, the intersection of rotation paths 5a and 5b is completely completed by both rotation parts la and lb. Will be blocked. For this reason, the position force regions Sa2 and Sb2 are confined and expansion is started, and the supply and discharge valves of the ports Pl and P8 that open to these portions are opened. As a result, fluid flows into the regions Sa2 and Sb2 via the ports Pl and P8.
  • FIG. 15 The state of FIG. 15 in which the phase is advanced by 180 ° from FIG. 10 shows the moment when the front ends of both rotating parts la and lb enter the crossing part on the opposite side to FIG.
  • the four ports Pl, P3, P5, and P8 are “open”, and the remaining four ports P2, P4, P6, and P7 are “closed”.
  • the intersections of the rotation paths 5a and 5b are not blocked, so that expansion and contraction due to confinement of the space does not occur. For this reason, close the supply and discharge valves of ports P1 to P8.
  • this rotary machine can function as a pump that discharges the fluid sucked in from the inflow port from the outflow port by receiving rotational power from the outside via the interlocking mechanism.
  • this rotary machine can function as a pump that discharges the fluid sucked in from the inflow port from the outflow port by receiving rotational power from the outside via the interlocking mechanism.
  • By supplying a high-pressure fluid to the drain and using the drain port as a drain it is possible to extract rotational power from the interlock mechanism and to function as a motor or an actuator.
  • the operation can be performed in the same manner as described above only by reversing the relationship of the inflow / outflow ports with respect to the reverse rotation.
  • a simple interlocking mechanism 6 is illustrated in FIG.
  • This interlocking mechanism 6 forms rack teeth 6a and 6b around the inner periphery of the support part 4 that supports the inner peripheral side of the rotary part la and the side surface of the support part 3 that supports the outer peripheral side of the rotary part lb, respectively.
  • a shaft 62 having a pinion tooth 61 is provided at a position mating with the rack teeth 6a, 6b, and two support portions are provided via the rack teeth 6a, 6b by the rotation of the shaft 62. 3 and 4 rotate synchronously around the orthogonal axis passing through the virtual axis O.
  • the opening / closing timing of the supply / discharge valve can be easily synchronized with the usual electrical and mechanical methods using, for example, the rotation of the shaft 62, and an automatic opening / closing valve based on a pressure difference is also conceivable. .
  • the movable part consisting of the rotating rod lb and the outer support part 3 is created by cutting it into two with a great circle Z (equatorial part shown in Fig. 7).
  • the cover outer wall 22 and the cover side walls 27a, 27b, 28a, and 28b are covered with the movable portion composed of the rotating portion la and the inner support portion 4, and each movable portion divided by the great circle Z is interposed between the cover inner wall 21 and the cover inner wall 21.
  • the both sides of the butt are placed on the cover outer wall 23, 24, 25, 26 without interfering with each other (i.e., the movable part consisting of the rotating part la and the inner support part 4 when the divided movable parts are brought together).
  • the assembly of the rotating machine according to the present embodiment is completed by connecting a part of the adjacent cover at the end.
  • the above-described interlocking mechanism 6 attaches or engraves the rack teeth 6a and 6b to the two support portions 3 and 4 before attaching the cover, and attaches the shaft 62 having the pinion teeth 61 to them. -Adjust the position of the ON teeth 61 and the rack teeth 6a, 6b.
  • cover inner wall and cover side wall for example, 21 and 23, 24
  • cover outer wall and cover side wall for example, 22 and 27a, 27b
  • the cover outer wall and cover side wall for example, 22 and 27a, 27b
  • the rotating portion la and the inner portion are not necessarily separated by the great circle Z.
  • a movable part composed of the inner support part 4 can be inserted, and the inner wall 21 of the force bar can be mounted even after the two movable parts are joined.
  • portions other than the spherical supporting surfaces 41 and 31 can be freely formed.
  • the center of gravity of the movable part consisting of the center O and the rotating part la and the support part 4 or the center of rotation of the movable part consisting of the center O and the rotating part lb and the supporting part 3 vibration, noise during rotation, The loss of energy can be effectively reduced.
  • it is possible to take appropriate measures such as adjusting the thickness of portions other than the support surfaces 41 and 31, or attaching a balance weight separately.
  • the parts other than the support surfaces 41 and 31 are also suitable as the construction place of the interlocking mechanism 6 and the power transmission system including the same as described above.
  • FIG. 23 substantially corresponds to the state of FIG. 10 to L 1 above
  • FIG. 24 substantially corresponds to the states of FIG. 15 to FIG.
  • the ports Pl and P6 be positioned in the immediate vicinity of the intersection of both the rotation paths 5a and 5b. It is preferable to connect at an angle. As the position of the cover portion where these ports Pl and P6 are provided, it is effective to select the cover side walls 24 and 26 instead of the cover outer wall 22 and the cover inner wall 21 as shown in FIG. The situation is the same at the crossover on the opposite side. Also, in FIGS. 10 to 19, it is preferable that the ports P1 to P8 be provided as close to the intersections of the two rotation paths 5a and 5b as possible. it can.
  • This rotating machine is provided with a connecting portion (see imaginary line B in Fig. 13 and Fig. 18) that connects the two paths at an appropriate location of the cover part 2, so that one of the rotary paths la and lb is pressurized.
  • the compressed gas is exploded and expanded on the other side to function as an engine.
  • connection part B the gas mixture compressed in the rotation direction of the rotation part lb in one rotation path 5b is sent to the position before the explosion in the rotation direction of the rotation part la in the other rotation path 5a. It is provided at the position to be inserted. At that time, the spark plug may be provided at an appropriate position, and may be configured to ignite at high pressure like a diesel engine! /.
  • the supply / discharge valve of the port that is confined and opened to the space where the mixed gas is compressed or exploded is closed and opened to the other space.
  • the supply / discharge valve of the port to be opened should be open.

Abstract

A rotary machine efficiently operable with less noise and vibration. The rotary machine is so formed that two rotating parts (1a, 1b) having side faces (13) formed in roughly fan shapes and outer peripheral surfaces (11) and inner peripheral surfaces (12) formed in partially spherical surfaces with a same virtual center point (O) are rotated in synchronism with each other at such a timing that does not touch each other on rotating surfaces crossed at right angle to each other around the virtual center point (O). One rotating part (1a) comprises a support part (4) on the inner peripheral surface side, and the other rotating part (1b) comprises a support part (3) on the outer peripheral surface side. A cover part (2) is installed at a position for covering the support parts (4, 3) and rotating routes (5a, 5b). The rotating part (1a)[(1b)] is rotated in such a manner that it shields a rotating route (5b)[(5a)] for the mating rotating part (1b)[(1a)] at a crossing part. As a result, a space closed by the support part (4)[(3)], the cover part (2), the side face (13) of the rotating part (1a)[(1b)], and the end face (14) of the other rotating part (1b)[(1a)] can be varied according to the rotation of the both rotating parts (1a, 1b).

Description

明 細 書  Specification
回転機械  Rotating machine
技術分野  Technical field
[0001] この発明は、ポンプ、エンジン、ァクチユエータ等として機能し得る回転機械に関す る。  The present invention relates to a rotating machine that can function as a pump, an engine, an actuator, or the like.
背景技術  Background art
[0002] 外部動力を利用して作動する回転機械、或いは作動流体や燃料を注入して動力を 出力する回転機械には、例えば偏心動作を利用したポンプ zモータゃァクチユエ一 タ、あるいはレシプロ型のピストン運動から回転動力を取り出すエンジン等が広く一般 に知られている。これらの回転機械は特に例示するまでもなく周知である。  [0002] For a rotary machine that operates using external power, or a rotary machine that outputs power by injecting working fluid or fuel, for example, a pump z motor actuator using an eccentric operation or a reciprocating type Engines that extract rotational power from piston motion are widely known. These rotating machines are well known without needing to be specifically illustrated.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところが、これら従来のポンプ、エンジン、ァクチユエータ等は、ピストンの往復運動 ゃシリンダブロックの偏心に伴う回転中心と回転する部分の重心の不一致によってェ ネルギ一のロスがあり、そのために発生する振動、騒音も大きいという問題があった。  [0003] However, these conventional pumps, engines, actuators, etc. have a loss of energy due to the reciprocal movement of the piston due to the discrepancy between the center of rotation and the center of gravity of the rotating part due to the eccentricity of the cylinder block. There was a problem of large vibration and noise.
[0004] また、偏心して ヽな 、構造のポンプ等もある力 このタイプのものはハウジング内で口 ータがハウジング内壁に線接触する力しな 、かの状態で回転するようになって!/、るの が通例であるため、気密性が悪ぐそれを補うために大型化、高回転ィ匕したものにな つており、高圧ポンプやエンジンには不向きであった。  [0004] Also, there is a force that is eccentric and clogged, such as a pump with a structure. This type rotates in the housing without force that the mouth makes line contact with the inner wall of the housing! Because it is a common practice, it has become large and high-speed to compensate for the poor airtightness, making it unsuitable for high-pressure pumps and engines.
[0005] 本発明は、これらの課題に着目してなされたものであって、従来の回転機械の欠点を なくして、電気モータのような高効率、低振動、低騒音、高速回転を可能とする構造 の回転機械を実現し、この回転機械をポンプ、エンジン、ァクチユエータ等として有効 に活用できるようにすることを目的としている。  [0005] The present invention has been made paying attention to these problems, and eliminates the drawbacks of conventional rotating machines, enabling high efficiency, low vibration, low noise, and high-speed rotation like an electric motor. The purpose is to realize a rotating machine with a structure that can be used effectively as a pump, engine, actuator, etc.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、以上の目的を達成するために、次のような手段を講じたものである。 [0006] In order to achieve the above object, the present invention takes the following measures.
[0007] すなわち、本発明の回転機械は、回転部を二つにして、その一部分の形状を扇形に し、回転部の扇形はその形状が持つ球面の仮想中心点を同じ中心にして、互いに直 角をなす回転面で当たらな 、ようにタイミングを合わせて回転するようにした。その際 、一つの回転部は扇形の小さい方の球面側より、もう一つの回転部は扇形の大きい 方の球面側より支持される構造を持つようにして、その支持部と、回転経路のカバー 部、及び二つの回転部によって作られた閉じた領域が、回転部の回転により変化す る構造を有するものとしたものである。 [0007] That is, the rotating machine of the present invention has two rotating parts and a shape of a part of the rotating parts. The rotating parts have a phantom center point of the spherical surface of the shape as the same center. straight When it hits on the rotating surface that makes a corner, it is made to rotate at the same timing. In this case, one rotating part is supported from the smaller spherical side of the sector, and the other rotating part is supported from the larger spherical side of the sector, so that the supporting part and the rotation path cover are supported. The closed region formed by the rotating part and the two rotating parts has a structure that changes with the rotation of the rotating part.
[0008] このように構成すると、回転中に回転経路の交叉する部分で、一つの回転部がもう一 つの回転部の回転経路の前方、後方を閉じる形になる。回転経路の周囲はカバー 部と回転部の支持部で閉じられているため、回転部の前方の閉じられた領域は回転 と共に狭くなり、回転部の後方の閉じられた領域は回転と共に広くなる。そこで、カバ 一部の回転経路の交叉する部分近くの位置に穴をあけると、ポンプ、ァクチユエータ として機會することとなる。  With this configuration, one rotating part closes the front and rear of the rotating path of the other rotating part at the intersection of the rotating paths during rotation. Since the periphery of the rotation path is closed by the cover part and the support part of the rotation part, the closed area in front of the rotation part becomes narrower with the rotation, and the closed area behind the rotation part becomes wider with the rotation. Therefore, if a hole is drilled near the intersection of some rotation paths, it will function as a pump or actuator.
[0009] そして、これにより可動部を往復運動や偏心回転運動をしない構造にすることがで きるので、振動や騒音の問題を有効に解決することができ、また、回転部と回転経路 とが広範囲にわたって面接触もしくはこれに近い状態に近接させることができるので 、気密性を格段に高め、小型 *低回転であっても高効率で作動する回転機械とするこ とが可能となる。  [0009] As a result, the movable part can be structured not to reciprocate or eccentrically rotate, so that the problems of vibration and noise can be effectively solved. Since it can be brought into surface contact or close to a state over a wide range, the airtightness is remarkably improved, and it is possible to make a rotating machine that operates with high efficiency even if it is small * low rotation.
[0010] 具体的には、側面形状を概略扇形に、外周面及び内周面の形状を同じ仮想中心 点を持つ部分球面状にした 2つの回転部力 前記仮想中心点周りに互いに直角をな す回転面で干渉しないように、タイミングを合わせて同期回転するように構成する。そ の際、一つの回転部は内周面側に支持部を有し、もう一つの回転部は外周面側に 支持部を有し、その支持部とともに回転経路を覆う位置にカバー部を設けて、互いの 回転部が相手方の回転部の回転経路を交叉部において経過的に遮る形で回転す ることにより、その遮っている間、支持部、カバー部、回転部の側面、及びもう一方の 回転部の端面によって閉じられた空間が両回転部の回転とともに拡縮変化するよう にしたことを特徴とする。  [0010] Specifically, the two rotating part forces having a substantially fan-shaped side surface and a partially spherical shape having the same virtual center point on the outer peripheral surface and the inner peripheral surface are perpendicular to each other around the virtual center point. It is configured to synchronize and rotate at the same timing so as not to interfere with the rotating surface. At that time, one rotating part has a supporting part on the inner peripheral surface side, and the other rotating part has a supporting part on the outer peripheral surface side, and a cover part is provided at a position covering the rotating path together with the supporting part. Thus, the rotating parts rotate in such a way as to gradually block the rotation path of the other rotating part at the intersection, so that the supporting part, the cover part, the side surface of the rotating part, and the other This is characterized in that the space closed by the end face of the rotating part of the rotating part expands and contracts with the rotation of both rotating parts.
[0011] この場合、振動や騒音防止のためには、一方の支持部は回転部の内周面と同じ仮 想中心を持つ球面を内周面と接する位置力 扇の円弧方向に拡張した形状とし、他 方の支持部は回転部の外周面と同じ仮想中心を持つ球面を外周面と接する位置か ら扇の円弧方向に拡張した形状とし、それらの拡張部において質量バランスを取り、 仮想中心点と回転部及び支持部からなる可動部の重心とを一致させるようにしておく ことが有用である。 [0011] In this case, in order to prevent vibration and noise, one support portion has a shape in which a spherical surface having the same virtual center as the inner peripheral surface of the rotating portion is expanded in the arc direction of the position force fan in contact with the inner peripheral surface. The other support part is a position where a spherical surface having the same virtual center as the outer peripheral surface of the rotating part is in contact with the outer peripheral surface. It is useful to have a shape that extends in the direction of the arc of the fan, balance the mass at these extended portions, and make the virtual center point coincide with the center of gravity of the movable portion consisting of the rotating portion and the supporting portion.
[0012] この回転機械を動力伝達系と関連づけるためには、二つの支持部をギヤ等の連動 機構で連結し、この連動機構で両回転部の回転のタイミングを合致させるとともに、 連動機構を介して回転部への回転力の入力及び回転部からの回転力の出力を行う ように構成しておくのがよい。  [0012] In order to associate this rotating machine with the power transmission system, the two support portions are connected by a linkage mechanism such as a gear, and the timing of rotation of both rotation portions is matched by this linkage mechanism, and via the linkage mechanism. Thus, it is preferable that the rotation force is input to the rotation unit and the rotation force is output from the rotation unit.
[0013] この回転機械をポンプやモータ、ァクチユエータとして機能させるためには、カバー 部に、閉じられた空間に開口する穴を設け、回転部の回転に伴う空間の拡縮変化時 に、拡張領域に開口する穴が吸込ポートまたは高圧ポートとなり、縮小領域に開口す る穴が吐出ポートまたはドレンポートとなるように各穴に流体経路を接続し、また動力 伝達系を構成すればよい。流体には水や空気、油など種々のものを利用することが できる。 [0013] In order for this rotating machine to function as a pump, a motor, or an actuator, a hole that opens in a closed space is provided in the cover portion, and the space is expanded or contracted due to rotation of the rotating portion. It is only necessary to connect the fluid path to each hole and configure the power transmission system so that the hole that opens is a suction port or a high-pressure port, and the hole that opens to the reduced region becomes a discharge port or drain port. Various fluids such as water, air, and oil can be used as the fluid.
[0014] また、この回転機械をエンジンとして機能させるためには、カバー部に、閉じられた空 間に開口する穴を設け、その穴の一部を利用して二つの回転経路を交叉部以外の 箇所で接続する接続部分を設けることによって、一方の回転経路において閉じ込め られて縮小過程にある空間に導入した混合気体を圧縮し、その混合気体を接続部分 を介してもう一方の回転経路において閉じられて拡張過程にある空間に導入し、ここ で爆発、膨張させた後に排気するサイクルを連続して営ませるように構成すればょ ヽ 発明の効果  [0014] In addition, in order for this rotating machine to function as an engine, a hole that opens in a closed space is provided in the cover portion, and two rotation paths other than the crossing portion are utilized using a part of the hole. By providing a connection part connected at this point, the gas mixture confined in one rotation path and introduced into the space in the contracting process is compressed, and the gas mixture is closed in the other rotation path via the connection part. If it is introduced into a space that is in the process of expansion and then explodes, expands and then exhausts continuously, it can be configured to operate continuously.
[0015] 以上、本発明によれば、可動部である回転部及び支持部が稼動時に慣性抵抗を発 生し難い回転構造にできるので、振動や騒音を低減することができ、高回転にも耐用 し得る回転機械、これを利用したポンプ Zモータ、ァクチユエータ、エンジンを実現す ることができる。また、回転部と回転経路との間で高気密性を保つことができるので、 従来の無偏心タイプのものと比べてもよりエネルギーロスの少ない回転機械等として の利用が可能となる。  [0015] As described above, according to the present invention, since the rotating part and the supporting part, which are movable parts, can have a rotating structure that hardly generates inertial resistance during operation, vibration and noise can be reduced, and even at high speeds. A durable rotating machine and a pump Z motor, actuator, and engine using this can be realized. In addition, since high airtightness can be maintained between the rotating part and the rotating path, it can be used as a rotating machine or the like with less energy loss compared to the conventional non-eccentric type.
図面の簡単な説明 圆 1]本発明の一実施形態に係る回転部と回転経路の関係を示す模式的な図。 圆 2]同実施形態に係るカバー部の正面図。 Brief Description of Drawings 圆 1] A schematic diagram showing the relationship between a rotating part and a rotating path according to an embodiment of the present invention. 2] A front view of the cover according to the embodiment.
圆 3]同実施形態に係る一方の回転部を外側支持部により支持した状態の可動部を 示す側面図。 圆 3] A side view showing a movable part in a state where one rotating part according to the embodiment is supported by an outer support part.
圆 4]同実施形態に係る他方の回転部を内側支持部により支持した状態の可動部を 示す側面図。 4] A side view showing the movable part in a state where the other rotating part according to the embodiment is supported by the inner support part.
圆 5]両可動部の組み付け状態を示す斜視図。 [5] A perspective view showing an assembled state of both movable parts.
[図 6]両可動部を収容するカバー部の斜視図。 FIG. 6 is a perspective view of a cover part that accommodates both movable parts.
[図 7]可動部及びカバー部の分解斜視図。 FIG. 7 is an exploded perspective view of a movable part and a cover part.
圆 8]両回転部と回転経路の間に拡縮される空間を説明する斜視図。 [8] A perspective view for explaining a space expanded and contracted between both rotating parts and the rotating path.
圆 9]両回転部と回転経路の間に拡縮される空間を説明する斜視図。 [9] A perspective view for explaining a space expanded and contracted between both rotating parts and the rotating path.
圆 10]同実施形態の作動行程を説明するための説明図。 圆 10] Explanatory drawing for demonstrating the operation process of the embodiment.
圆 11]同実施形態の作動行程を説明するための説明図。 圆 11] Explanatory drawing for demonstrating the operation process of the embodiment.
圆 12]同実施形態の作動行程を説明するための説明図。 12] Explanatory drawing for demonstrating the operation | movement process of the embodiment.
圆 13]同実施形態の作動行程を説明するための説明図。 13] Explanatory drawing for demonstrating the operation process of the embodiment.
圆 14]同実施形態の作動行程を説明するための説明図。 14] Explanatory drawing for demonstrating the action | operation process of the embodiment.
圆 15]同実施形態の作動行程を説明するための説明図。 15] Explanatory drawing for demonstrating the action | operation process of the embodiment.
圆 16]同実施形態の作動行程を説明するための説明図。 16] Explanatory drawing for demonstrating the operation | movement process of the embodiment.
圆 17]同実施形態の作動行程を説明するための説明図。 圆 17] Explanatory drawing for demonstrating the action | operation process of the embodiment.
圆 18]同実施形態の作動行程を説明するための説明図。 18] Explanatory drawing for demonstrating the operation | movement process of the embodiment.
圆 19]同実施形態の作動行程を説明するための説明図。 圆 19] Explanatory drawing for demonstrating the operation process of the embodiment.
圆 20]同実施形態に適用される連動機構の構成図。 20] A configuration diagram of an interlocking mechanism applied to the embodiment.
圆 21]回転部の端面形状の変形例を示す図。 圆 21] A view showing a modification of the end face shape of the rotating part.
[図 22]図 21の糸且付状態における要部拡大図。  FIG. 22 is an enlarged view of a main part in the thread attached state of FIG.
圆 23]図 21及び図 22に対応した作動行程を説明するための説明図。 圆 23] Explanatory drawing for explaining the operation process corresponding to FIG. 21 and FIG.
圆 24]図 21及び図 22に対応した作動行程を説明するための説明図。 圆 24] An explanatory diagram for explaining the operation process corresponding to FIG. 21 and FIG.
[図 25]カバー部の変形例を示す図 2に対応した正面図。 FIG. 25 is a front view corresponding to FIG. 2 showing a modification of the cover portion.
発明を実施するための最良の形態 [0017] 以下、本発明の一実施形態を、図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0018] この実施形態の回転機械は、図 1に実線で示す 2つの回転部 l (la、 lb)を、同図中 想像線で示す互いに直交する回転面に設けた回転経路 5a、 5bに沿って干渉するこ となく同期回転させるようにしたものである。回転経路 5a、 5bは図 2及び図 6に示す力 バー部 2によって一部が覆われ、回転部 la、 lbは図 3〜図 5に示す支持部 4、 3にバ ックアップされた状態で回転経路 5a、 5b内に配置される。そして、この状態で回転部 laと支持部 4からなる可動部が回転経路 5aを閉止した状態で回転し、回転部 lbと支 持部 3からなる可動部が回転経路 5bを閉止した状態で回転する構造をなす。図 7は 回転部とカバー部の組付関係を示す分解図である。  [0018] In the rotating machine of this embodiment, two rotating parts l (la, lb) indicated by solid lines in FIG. 1 are provided on rotating paths 5a, 5b provided on rotating surfaces orthogonal to each other indicated by imaginary lines in FIG. It is designed to rotate synchronously without interfering along. The rotation paths 5a and 5b are partially covered by the force bar portion 2 shown in FIGS. 2 and 6, and the rotation portions la and lb rotate while being backed up by the support portions 4 and 3 shown in FIGS. It is arranged in the paths 5a and 5b. In this state, the movable part composed of the rotating part la and the support part 4 rotates with the rotation path 5a closed, and the movable part composed of the rotation part lb and the support part 3 rotates with the rotation path 5b closed. To make a structure. Fig. 7 is an exploded view showing the assembly relationship between the rotating part and the cover part.
[0019] 具体的に説明すると、回転部 l (la、 lb)の外周 11及び内周 12は同じ仮想中心点 O を持つ球面であり、側面 13はその球面である外周 11から内周 12にかけて球面の中 心すなわち同じ仮想中心点 Oに向力う線の集まりによって作られる曲面で形成される 。この曲面は円錐面である。本明細書において、回転部 1の側面形状を「扇形」と称 しているが、正確には図 1等に明らかなように、外周 11と内周 12、及び後述する端面 14によって形成される側面視部分円環状のものである。他に「扇形」、「扇」と言う場 合には同様の意味である。  Specifically, the outer periphery 11 and the inner periphery 12 of the rotating part l (la, lb) are spherical surfaces having the same virtual center point O, and the side surface 13 extends from the outer periphery 11 to the inner periphery 12 as the spherical surface. It is formed by a curved surface created by a collection of lines facing the center of the sphere, that is, the same virtual center point O. This curved surface is a conical surface. In the present specification, the side surface shape of the rotating portion 1 is referred to as a “fan shape”, but it is formed by an outer periphery 11 and an inner periphery 12 and an end surface 14 to be described later, as clearly shown in FIG. It is a partial annular shape in a side view. Other terms “fan” and “fan” have the same meaning.
[0020] この回転部 1は回転経路 5a、 5b内において 180° よりもやや小さい領域内、すなわ ち両回転経路 5a、 5bの交叉部に力からない領域に収まる大きさ(扇の角度が 150° 程度)にしてあり、回転方向の前方及び後方の端面 14の形状は特に限定していない 。このようにしても、ある回転位置で気密性がなくなるだけで基本的な機能は同様だ 力もである。回転部 1が回転経路 5a、 5b内においてほぼ 180° の領域を占める例に ついては後述する。  [0020] The rotating portion 1 is sized to fit within a region slightly smaller than 180 ° in the rotation paths 5a and 5b, that is, in a region where no force is applied to the intersection of the rotation paths 5a and 5b (the angle of the fan is The shape of the front and rear end faces 14 in the rotational direction is not particularly limited. Even in this way, the basic function is the same as the airtightness only at a certain rotational position. An example in which the rotating unit 1 occupies a region of approximately 180 ° in the rotation paths 5a and 5b will be described later.
[0021] 図 3〜図 5は回転部 la、 lbを支持部 4、 3で支持した状態である。各図において符 合 31、 41で示す部分は扇形をなす回転部 1の外周面 11及び内周面 12と同じ仮想 中心 Oを持つ球面状の支持面であり、これらの支持部 3、 4は扇形をなす回転部 1の 外周側円弧又は内周側円弧をバックアップする位置力 円環状に周回するまで拡張 した形状を持つ。支持部 3, 4のうち、支持面 31、 41を除くその他の部分の形状は任 意であって、回転部 1の扇形部分の円弧の長さと図 3及び図 4における紙面に垂直 方向の幅、並びに、外周面 11及び内周面 12を構成する球面の直径は自由に定め ることがでさる。 3 to 5 show a state in which the rotating parts la and lb are supported by the supporting parts 4 and 3. In each figure, the portions indicated by reference numerals 31 and 41 are spherical support surfaces having the same virtual center O as the outer peripheral surface 11 and the inner peripheral surface 12 of the rotating portion 1 having a fan shape, and these support portions 3 and 4 are Positional force that backs up the outer circular arc or inner circular arc of the rotating part 1 that forms a fan shape. Of the support parts 3 and 4, the shape of the other parts except for the support surfaces 31 and 41 is arbitrary, and the vertical length of the arc of the fan-shaped part of the rotating part 1 and the paper surface in FIGS. The width in the direction and the diameters of the spherical surfaces constituting the outer peripheral surface 11 and the inner peripheral surface 12 can be freely determined.
[0022] 図 2及び図 6及び図 7に示すカバー部 2については、図中縦方向の回転経路 5aの外 周側を閉止するカバー外壁 22、及び図中横方向の回転経路 5bの内周側を閉止す るカバー内壁 21は同じ仮想中心点 Oを持つ球面力もなり、回転経路 5bの上下を覆う カバー側壁 23、 24、 25、 26及び回転経路 5aの左右を覆うカバー側壁 27a、 27b、 2 8a、 28bは同じ仮想中心点 Oに向力う線の集まりによって作られる曲面で形成される 半円に近いものである。これらの曲面も回転部 lb、 laの側面 13の形状に対応した円 錐面である。  2, 6, and 7, the cover portion 2 has a cover outer wall 22 that closes the outer peripheral side of the vertical rotation path 5 a in the figure, and an inner periphery of the horizontal rotation path 5 b in the figure. The cover inner wall 21 that closes the side also has a spherical force with the same virtual center point O, and the cover side walls 23, 24, 25, 26 covering the top and bottom of the rotation path 5b and the cover side walls 27a, 27b covering the left and right of the rotation path 5a, 28a and 28b are close to a semicircle formed by a curved surface formed by a collection of lines facing the same virtual center point O. These curved surfaces are also conical surfaces corresponding to the shape of the side surface 13 of the rotating part lb, la.
[0023] 図 2、図 6及び図 7に示すカバー部 2の縦方向の回転経路 5aに図 1、図 4、図 5及び 図 7の回転部 1 (la)が、また図 2、図 6及び図 7に示すカバー部 2の横方向の回転経 路 5bに図 1、図 3、図 5及び図 7の回転部 1 (lb)が、それぞれ収容される。回転部 1 ( la)は支持部 4とともに可動部を構成し、回転部 1 (lb)は支持部 3とともに可動部を 構成し、これらの可動部がカバー部 2に対して仮想中心点 Oの周りを回転する。  [0023] In the longitudinal rotation path 5a of the cover portion 2 shown in Figs. 2, 6, and 7, the rotation portion 1 (la) of Figs. 1, 4, 5, and 7 is also shown, and Figs. 7 and 7, the rotating part 1 (lb) shown in FIGS. 1, 3, 5 and 7 is accommodated in the horizontal rotating path 5b of the cover part 2, respectively. The rotating part 1 (la) constitutes a movable part together with the support part 4, and the rotating part 1 (lb) constitutes a movable part together with the support part 3, and these movable parts are located at the virtual center point O with respect to the cover part 2. Rotate around.
[0024] 以上により、回転部 1 (la、 lb)の側面が回転経路 5a、 5b同士の交叉部分を除く部 位にお ヽてカノ一佃 J壁 23、 24、 25、 26、 27a, 27b, 28a, 28bにより 8筒所力 ^カノ 一され、縦方向の回転経路 5aに配置される回転部 laの外周面 11が回転経路 5a、 5 b同士の交叉部分を除く部位において部分球面状のカバー外壁 22によって上下 2 箇所がカバーされ、横方向の回転経路 5bに配置される回転部 lbの内周面 12が回 転経路 5a、 5b同士の交叉部分を除く部位において部分球面状のカバー内壁 21に よって左右 2箇所がカバーされる。  [0024] As described above, the side surface of the rotating part 1 (la, lb) is placed on the part other than the crossing part of the rotating paths 5a, 5b. J wall 23, 24, 25, 26, 27a, 27b , 28a, and 28b, and the outer peripheral surface 11 of the rotating part la arranged in the longitudinal rotation path 5a is partially spherical at the portion excluding the intersection of the rotation paths 5a and 5b. The cover outer wall 22 covers two places at the top and bottom, and the inner peripheral surface 12 of the rotating part lb arranged in the horizontal rotation path 5b is a partially spherical inner cover wall at the part excluding the intersection of the rotation paths 5a and 5b. 21 covers the left and right.
[0025] そして、回転経路 5aの内周側が両回転経路 5a、 5bの交叉部を含めて回転部 laの 内側をサポートする円環状の支持部 4によって閉止され、回転経路 5bの外周側が両 回転経路 5a、 5bの交叉部を含めて回転部 lbの外側をサポートする円環状の支持部 3によって閉止される構造をなす。  [0025] Then, the inner peripheral side of the rotation path 5a is closed by an annular support part 4 that supports the inside of the rotation part la including the intersections of both rotation paths 5a and 5b, and the outer periphery side of the rotation path 5b rotates in both directions. The structure is closed by an annular support portion 3 that supports the outside of the rotating portion lb including the crossing portions of the paths 5a and 5b.
[0026] このとき、カバー部 2のうちこれら回転部 laと支持部 4からなる可動部と接する部分の 形状、および回転部 lbと支持部 3からなる可動部と接する部分の形状は、それらの 可動部が回転したとき常時カバー部 2の各部位と密接に摺接して気密性が保たれる ようにしている。 [0026] At this time, the shape of the portion of the cover portion 2 that comes into contact with the movable portion consisting of the rotating portion la and the support portion 4 and the shape of the portion that comes into contact with the movable portion consisting of the rotating portion lb and the support portion 3 are When the movable part is rotated, it always slides in close contact with each part of the cover part 2 and airtightness is maintained. I am doing so.
[0027] そして、カバー部 2の適当な場所に穴を設け、これらを入出力ポートとすることによつ て、ポンプ、ァクチユエータとして機能させるようにしている。  [0027] Then, holes are provided at appropriate locations in the cover portion 2 and these are used as input / output ports so as to function as a pump and an actuator.
[0028] 本実施形態における穴は、図 6に示すように各交叉部近傍における縦方向の回転経 路 5aのカバー外壁 22に各々 2箇所 (Pl、 P2、 P3、 P4)、各交叉部近傍における横 方向の回転経路 5bのカバー内壁に各々 2箇所 (P5、 P6、 P7、 P8)、計 8箇所に設け てある。 [0028] As shown in Fig. 6, the holes in the present embodiment have two locations (Pl, P2, P3, P4) on the cover outer wall 22 of the longitudinal rotation path 5a in the vicinity of each crossing portion, and in the vicinity of each crossing portion. Are provided in two places (P5, P6, P7, P8) on the inner wall of the cover of the horizontal rotation path 5b, for a total of eight places.
[0029] 次に、この回転機械の作動を簡単に説明する。例えば系が図 8の回転状態にあり、 回転経路 5a、 5bの各交叉部で、回転部 la (lb)がもう一方の回転部 lb (la)の回転 経路 5b (5a)の前方、後方を閉じる形になると、回転部 lb (la)の前方と回転部 la (1 b)の側面との間の閉じられた領域 Sbl (Sal)は回転と共に狭くなり、回転部 lb (la) の後方と回転部 la (lb)の側面との間の閉じられた領域 Sb2 (Sa2)は回転と共に広 くなる。よって、この図の場合、 Pl、 P8が流入ポートとなり、 P2、 P7が流出ポートとな る。あるいは、系が図 8に対して 180° 位相のずれた図 9の回転状態にあり、回転経 路 5a、 5bの各交叉部で、回転部 la (lb)がもう一方の回転部 lb (la)の回転経路 5b (5a)の前方、後方を閉じる形になると、回転部 lb (la)の前方と回転部 la (lb)の側 面との間の閉じられた領域 Sb3 (Sa3)は回転と共に狭くなり、回転部 lb (la)の後方 と回転部 la (lb)の側面との間の閉じられた領域 Sb4 (Sa4)は回転と共に広くなる。 よって、この図の場合、 P4、 P6が流入ポートとなり、 P3、 P5が流出ポートとなる。  [0029] Next, the operation of the rotating machine will be briefly described. For example, the system is in the rotation state shown in FIG. 8, and at each intersection of the rotation paths 5a and 5b, the rotation part la (lb) passes the front and rear of the rotation path 5b (5a) of the other rotation part lb (la). When closed, the closed region Sbl (Sal) between the front of the rotating part lb (la) and the side of the rotating part la (1 b) becomes narrower with the rotation, and the rear of the rotating part lb (la) The closed region Sb2 (Sa2) between the sides of the rotating part la (lb) becomes wider with rotation. Therefore, in this figure, Pl and P8 are inflow ports, and P2 and P7 are outflow ports. Alternatively, the system is in the rotation state of FIG. 9 that is 180 ° out of phase with respect to FIG. 8, and at each intersection of the rotation paths 5a and 5b, the rotation part la (lb) is replaced with the other rotation part lb (la ), The closed area Sb3 (Sa3) between the front of the rotating part lb (la) and the side of the rotating part la (lb) rotates. The closed region Sb4 (Sa4) between the rear of the rotating part lb (la) and the side surface of the rotating part la (lb) becomes wider with rotation. Therefore, in this figure, P4 and P6 are inflow ports, and P3 and P5 are outflow ports.
[0030] 図 10〜図 19は更に回転経路 5a、 5bを展開して 30° ごとに目盛を振ったものを示し ており、各図の右肩には図 10の状態から回転部 la、 lbがどれだけ回転した力、その 位相差が記してある。図 13の状態が図 8に、図 17の状態が図 9にほぼ対応している 。各ポート P1〜P8には図示しない流路が接続され、それらの流路には適宜の給排 弁が設けられて ヽるものとする。  [0030] FIGS. 10 to 19 further show the rotation paths 5a and 5b developed and graduated every 30 °. The right shoulder of each figure shows the rotating parts la, lb from the state of FIG. It shows how much force is rotated and its phase difference. The state of FIG. 13 substantially corresponds to FIG. 8, and the state of FIG. 17 substantially corresponds to FIG. A flow path (not shown) is connected to each of the ports P1 to P8, and an appropriate supply / discharge valve is provided in each flow path.
[0031] 図 10の状態は、両回転部 la、 lbの前端が交叉部に進入する瞬間を示す。この状態 では、 8つのポート P1〜P8のうち、ポート Pl、 P3、 P5、 P8の 4つは全て「閑」、あとの ポート P2、 P4、 P6、 P7の 4つは「開」の状態となる。この前後において、回転経路 5a 、 5bの交叉部は遮断されていないため、空間の閉じ込め状態での拡縮は起こらない 。但し、ポート P1〜P8の給排弁を閉止しておく必要がある。 [0031] The state of FIG. 10 shows the moment when the front ends of both rotating parts la and lb enter the crossing part. In this state, of the eight ports P1 to P8, all four ports Pl, P3, P5, and P8 are “low”, and the other four ports P2, P4, P6, and P7 are “open”. Become. Before and after this, the intersections of the rotation paths 5a and 5b are not blocked, so there is no expansion or contraction in the confinement state of the space. . However, the supply / discharge valves of ports P1 to P8 must be closed.
[0032] 図 10から 15° 位相が進んだ図 11の状態では、ポート Pl、 P8が閉→開に切り替わり 、ポート P3、 P5は依然として「閉」、ポート P2、 P4、 P6、 P7は依然として「開」である。 この前後においても、回転経路の交叉部 5a、 5bは遮断されておらず、空間の閉じ込 め状態での拡縮は起こらない。この間、図 10の状態と同様、ポート P1〜P8の給排弁 を閉止しておく必要がある。  [0032] In the state of Fig. 11 where the phase is advanced by 15 ° from Fig. 10, ports Pl and P8 are switched from closed to open, ports P3 and P5 are still "closed", and ports P2, P4, P6 and P7 are still " Open. Even before and after this, the intersections 5a and 5b of the rotation path are not blocked, and expansion and contraction in the confined state of the space does not occur. During this time, it is necessary to close the supply and discharge valves of ports P1 to P8, as in the state of Fig. 10.
[0033] 図 10から 30° 位相が進んだ図 12では、ポート P1〜P8の状態は図 11と同じである 力 この段階で回転経路 5a、 5bの交叉部が両回転部 la、 lbによって完全に遮断さ れる。このため、この位置力 領域 Sa2、 Sb2が閉じ込められて拡張が開始され、この 部位に開口するポート Pl、 P8の給排弁を開く。これにより、領域 Sa2、 Sb2にはポー ト Pl、 P8を介して流体が流入する。  [0033] In Fig. 12, which is 30 ° out of phase from Fig. 10, the states of ports P1 to P8 are the same as in Fig. 11. Force At this stage, the intersection of rotation paths 5a and 5b is completely completed by both rotation parts la and lb. Will be blocked. For this reason, the position force regions Sa2 and Sb2 are confined and expansion is started, and the supply and discharge valves of the ports Pl and P8 that open to these portions are opened. As a result, fluid flows into the regions Sa2 and Sb2 via the ports Pl and P8.
[0034] 図 10から 60° 位相が進んだ図 13の状態では、ポート P4、 P6力 ^閉」になる。このた め、少し手前の位置から領域 Sal、 Sblが閉じ込められて縮小が開始され、この部位 に開口するポート P2、 P7の給排弁を開く。これにより、領域 Sal、 Sbl内の流体はポ ート P2、 P7を介して流出する。  [0034] In the state of Fig. 13 in which the phase is advanced by 60 ° from Fig. 10, port P4, P6 force ^ closed ". For this reason, the areas Sal and Sbl are confined from a position slightly ahead, and the contraction starts, and the ports P2 and P7 that open to this area are opened. As a result, the fluid in the areas Sal and Sbl flows out through the ports P2 and P7.
[0035] 図 10から 150° 位相が進んだ図 14の状態は、両回転経路 la、 lbの交叉部から両 回転部 la、 lbの後方が退出し始める瞬間であり、ポート P3、 P5が閉→開になり、領 域 Sa2、 Sb2の閉じ込み状態での拡張が終了する。このため、これらの部位に開口 するポート Pl、 P3、 P5、 P8の給排弁を閉じた状態にする。  [0035] The state of Fig. 14 where the phase has advanced 150 ° from Fig. 10 is the moment when the rear of both rotating parts la and lb begins to exit from the intersection of both rotating paths la and lb, and ports P3 and P5 are closed. → The area is opened and the expansion in the closed state of areas Sa2 and Sb2 ends. For this reason, the ports Pl, P3, P5, and P8 that open to these parts are closed.
[0036] 図 10から 180° 位相が進んだ図 15の状態は、両回転部 la、 lbの前端が図 10とは 反対側の交叉部に進入する瞬間を示す。この状態では、 8つのポート P1〜P8のうち 、ポート Pl、 P3、 P5、 P8の 4つは「開」、あとのポート P2、 P4、 P6、 P7の 4つは「閉」 の状態となる。この前後において、回転経路 5a、 5bの交叉部は遮断されていないた め、空間の閉じ込めによる拡縮は起こらない。このため、ポート P1〜P8の給排弁を 閉止しておく。  The state of FIG. 15 in which the phase is advanced by 180 ° from FIG. 10 shows the moment when the front ends of both rotating parts la and lb enter the crossing part on the opposite side to FIG. In this state, of the eight ports P1 to P8, the four ports Pl, P3, P5, and P8 are “open”, and the remaining four ports P2, P4, P6, and P7 are “closed”. . Before and after this, the intersections of the rotation paths 5a and 5b are not blocked, so that expansion and contraction due to confinement of the space does not occur. For this reason, close the supply and discharge valves of ports P1 to P8.
[0037] 図 10から 210° 位相が進んだ図 16の状態では、ポートは図 15と同じ状態である力 この位置から回転経路 5a、 5bの交叉部が両回転部 la、 lbによって完全に遮断され る。このため、この位置力も領域 Sb4、 Sb4が閉じ込められて拡張が開始され、これら の部位に開口するポート P4、 P6の給排弁を開く。これにより、領域 Sa4、 Sb4にはポ ート P4、 P6を介して流体が流入する。 [0037] In the state of Fig. 16 where the phase is advanced 210 ° from Fig. 10, the port is the same force as in Fig. 15. From this position, the intersection of rotation paths 5a and 5b is completely blocked by both rotation portions la and lb It is done. For this reason, this positional force is also confined to the regions Sb4 and Sb4, and expansion begins. Open ports P4 and P6 that open to the part of. As a result, fluid flows into the regions Sa4 and Sb4 via the ports P4 and P6.
[0038] 図 10から 270° 位相が進んだ図 17の状態では、新たにポート Pl、 P8が開→閉にな る。このため、領域 Sa3、 Sb3が閉じ込められて縮小が行われ、これらの部位に開口 するポート P3、 P5の給排弁を開く。これにより、領域 Sa3、 Sb3内の流体はポート P3 、 P5を介して流出する。  [0038] In the state of Fig. 17 in which the 270 ° phase has advanced from Fig. 10, the ports Pl and P8 are newly opened and closed. For this reason, the regions Sa3 and Sb3 are confined and reduced, and the supply and discharge valves of the ports P3 and P5 that open to these regions are opened. As a result, the fluid in the regions Sa3 and Sb3 flows out through the ports P3 and P5.
[0039] 図 10から 330° 位相が進んだ図 18の状態では、両回転経路 5a、 5bの交叉部から 回転部 la、 lbの後方が退出し始める。これに先立ち、少し前に実質的にポート P2、 P7が閉→開となり、領域 Sa4、 Sb4の綴じ込み状態での拡張が終了する。このため、 これらの部位に開口するポート P2、 P4、 P6、 P7の給排弁を閉じた状態にする。  [0039] In the state of Fig. 18 in which the phase has advanced by 330 ° from Fig. 10, the rear of the rotating portions la and lb starts to exit from the intersection of the rotating paths 5a and 5b. Prior to this, the ports P2 and P7 are substantially closed and opened shortly before, and the expansion of the regions Sa4 and Sb4 in the binding state is completed. For this reason, the ports P2, P4, P6, and P7 that open to these parts are closed.
[0040] 図 10から 345° 位相が進んだ図 19の状態では、両回転部 la、 lbが回転経路 5a、 5 bの交叉部から退出し始め、交叉部の遮断が解除されるので、全てのポート P1〜P8 の給排弁を閉止しておく。  [0040] In the state of Fig. 19 where the phase is advanced from Fig. 10 by 345 °, both rotating parts la and lb begin to exit from the crossing part of the rotation paths 5a and 5b, and the crossing part is released. Close the supply / discharge valves of ports P1 to P8.
[0041] すなわち、この回転機械は、図 17に示したように一方の回転部 la (lb)の進行方向 の中心がカバー部 2の交差部中央にある時、もう一方の回転部 lb (la)の進行方向 の中心もカバー部 2の反対側の交叉部中央にある位置関係にあり、二つの回転部 la 、 2aが同じ速度で同時に回転し始めると、図 17の状態ではポート P4、 P6が流入ポ ート、ポート P3、 P5が流出ポートとなり、図 13の状態ではポート Pl、 P8が流入ポート 、ポート P2、 P7が流出ポートとなる。このように、二つの交差部で分けられた回転経 路 5a、 5bの 8つのポートが入れ替わりながら、給排弁の開閉タイミングに多少のずれ はあるにせよ、基本的に 4つのポートにおいて流体の流入、流出が同時に行われるこ ととなる。  That is, in this rotating machine, when the center of the traveling direction of one rotating part la (lb) is at the center of the intersection of the cover part 2 as shown in FIG. 17, the other rotating part lb (la ) Is also located at the center of the crossing part on the opposite side of the cover part 2, and when the two rotating parts la and 2a start to rotate at the same speed at the same time, the ports P4 and P6 in the state of FIG. Is the inflow port, ports P3 and P5 are the outflow ports, and in the state shown in Fig. 13, ports Pl and P8 are the inflow ports and ports P2 and P7 are the outflow ports. In this way, although the eight ports of the rotation paths 5a and 5b divided at the two intersections are interchanged, basically there is a slight shift in the opening / closing timing of the supply / discharge valve, but basically the fluid flows at the four ports. Inflow and outflow will occur simultaneously.
[0042] したがって、この回転機械は、連動機構を介して外部から回転動力が与えられること により、流入ポートから吸込んだ流体を流出ポートから吐出するポンプとして機能させ ることができ、逆に流入ポートに高圧流体を供給し流出ポートをドレンとすることにより 、連動機構から回転動力を取り出してモータあるいはァクチユエータとして機能させる ことができる。勿論、逆方向の回転に対しても流出入ポートの関係が逆になるだけで 上記と全く同様に作動し得る。 [0043] 因みに、図 20に簡単な連動機構 6を例示する。この連動機構 6は、回転部 laの内周 側を支持する支持部 4の内周と回転部 lbの外周側を支持する支持部 3の側面とに、 それぞれラック歯 6a、 6bを周回形成し、これらのラック歯 6a、 6bに嚙合する位置にピ ユオン歯 61を備えたシャフト 62を設けたものであり、このシャフト 62の回転により、ラ ック歯 6a、 6bを介して 2つの支持部 3、 4が仮想軸心点 Oを通る直交軸周りに同期回 転するようになっている。そして、ピ-オン歯 61とラック歯 6a、 6bの歯数を適宜に設 定することにより、両支持部 3、 4ひいては両回転部 la、 lbの回転速度を合致させる ことができる。勿論、これ以外の連動機構も採用可能である。また、給排弁の開閉タイ ミングは、例えばシャフト 62の回転を利用し、電気的、機械的な通常の手法によって 容易に同期をとることができるし、また圧力差による自動開閉弁も考えられる。 [0042] Therefore, this rotary machine can function as a pump that discharges the fluid sucked in from the inflow port from the outflow port by receiving rotational power from the outside via the interlocking mechanism. By supplying a high-pressure fluid to the drain and using the drain port as a drain, it is possible to extract rotational power from the interlock mechanism and to function as a motor or an actuator. Of course, the operation can be performed in the same manner as described above only by reversing the relationship of the inflow / outflow ports with respect to the reverse rotation. [0043] Incidentally, a simple interlocking mechanism 6 is illustrated in FIG. This interlocking mechanism 6 forms rack teeth 6a and 6b around the inner periphery of the support part 4 that supports the inner peripheral side of the rotary part la and the side surface of the support part 3 that supports the outer peripheral side of the rotary part lb, respectively. A shaft 62 having a pinion tooth 61 is provided at a position mating with the rack teeth 6a, 6b, and two support portions are provided via the rack teeth 6a, 6b by the rotation of the shaft 62. 3 and 4 rotate synchronously around the orthogonal axis passing through the virtual axis O. Then, by appropriately setting the number of teeth of the pion teeth 61 and the rack teeth 6a and 6b, the rotational speeds of the support portions 3 and 4 and consequently the rotating portions la and lb can be matched. Of course, other interlocking mechanisms can be used. In addition, the opening / closing timing of the supply / discharge valve can be easily synchronized with the usual electrical and mechanical methods using, for example, the rotation of the shaft 62, and an automatic opening / closing valve based on a pressure difference is also conceivable. .
[0044] この回転機械の一組立手順としては、図 7に示すカバー部 2のカバー内壁 21、 22、 カノ一佃 J壁 23、 24、 25、 26、 27a, 27b, 28a, 28bを另 lj々に作成し、回転咅 lb及 び外側支持部 3からなる可動部は大円 Z (図 7に示す赤道部)で 2つに切って作成す る。そして、回転部 la及び内側支持部 4からなる可動部にカバー外壁 22及びカバー 側壁 27a、 27b、 28a, 28bを被せる作業と、大円 Zで分割した各々の可動部をその 間にカバー内壁 21を介在させて突き合わせ両側力もカバー外壁 23、 24、 25、 26を 被せる作業とを相互に干渉させずに行い (つまり分割した可動部を突き合わせる際に 回転部 la及び内側支持部 4からなる可動部を間に介在させ)、最後に隣接するカバ 一部間を接続ことにより、本実施形態の回転機械の組立を完了する。この場合、前述 した連動機構 6は、カバー取付前に両支持部 3、 4にラック歯 6a、 6bを取り付けるか 刻設するかし、これらにピ-オン歯 61を有するシャフト 62を組み付け、ピ-オン歯 61 とラック歯 6a、 6bの位置調整などを行っておく。  [0044] As an assembling procedure of this rotating machine, cover inner walls 21, 22 and Kanoichi J walls 23, 24, 25, 26, 27a, 27b, 28a, 28b of cover 2 shown in FIG. The movable part consisting of the rotating rod lb and the outer support part 3 is created by cutting it into two with a great circle Z (equatorial part shown in Fig. 7). Then, the cover outer wall 22 and the cover side walls 27a, 27b, 28a, and 28b are covered with the movable portion composed of the rotating portion la and the inner support portion 4, and each movable portion divided by the great circle Z is interposed between the cover inner wall 21 and the cover inner wall 21. The both sides of the butt are placed on the cover outer wall 23, 24, 25, 26 without interfering with each other (i.e., the movable part consisting of the rotating part la and the inner support part 4 when the divided movable parts are brought together). The assembly of the rotating machine according to the present embodiment is completed by connecting a part of the adjacent cover at the end. In this case, the above-described interlocking mechanism 6 attaches or engraves the rack teeth 6a and 6b to the two support portions 3 and 4 before attaching the cover, and attaches the shaft 62 having the pinion teeth 61 to them. -Adjust the position of the ON teeth 61 and the rack teeth 6a, 6b.
[0045] 勿論、このような構造、手順に限定されるものではなぐ対応するカバー内壁とカバー 側壁 (例えば 21と 23、 24)、あるいはカバー外壁とカバー側壁 (例えば 22と 27a、 27 b)などは一体的に作っても良い。また、例えば図 7中矢印 Tで示すように回転部 laの 反対側の位置カゝら外側支持部 3を切断すると、必ずしも大円 Zで分離せずとも中のパ ーッである回転部 la及び内側支持部 4からなる可動部を挿入することができるし、力 バー内壁 21も 2つの可動部が接合された後からでも装着することができる。 [0046] また、扇形状の回転部 la、 lbを内側と外側力 支持する支持部 4、 3のうち、球面状 の支持面 41、 31以外の部分は自由に作ることができるため、回転の中心 Oと回転部 la及び支持部 4からなる可動部の重心、あるいは回転の中心 Oと回転部 lb及び支 持部 3からなる可動部の重心を一致させることにより、回転時の振動、騒音、エネルギ 一の損失を有効に低減することができる。そのためには、支持面 41、 31以外の部分 の肉厚を調整したり、別途にバランスウェイトを取り付けるなど、適宜の手段を講じるこ とができる。そして、かかる支持面 41, 31以外の部位は、上述したように連動機構 6 やそれを含む動力伝達系の構成場所としても適切なものとなる。 [0045] Of course, the corresponding cover inner wall and cover side wall (for example, 21 and 23, 24) or the cover outer wall and cover side wall (for example, 22 and 27a, 27b) are not limited to such structures and procedures. May be made in one piece. Further, for example, when the outer support portion 3 is cut from the position opposite to the rotating portion la as indicated by an arrow T in FIG. 7, the rotating portion la and the inner portion are not necessarily separated by the great circle Z. A movable part composed of the inner support part 4 can be inserted, and the inner wall 21 of the force bar can be mounted even after the two movable parts are joined. [0046] In addition, among the support portions 4 and 3 that support the fan-shaped rotating portions la and lb on the inner and outer forces, portions other than the spherical supporting surfaces 41 and 31 can be freely formed. By matching the center of gravity of the movable part consisting of the center O and the rotating part la and the support part 4 or the center of rotation of the movable part consisting of the center O and the rotating part lb and the supporting part 3, vibration, noise during rotation, The loss of energy can be effectively reduced. For that purpose, it is possible to take appropriate measures such as adjusting the thickness of portions other than the support surfaces 41 and 31, or attaching a balance weight separately. The parts other than the support surfaces 41 and 31 are also suitable as the construction place of the interlocking mechanism 6 and the power transmission system including the same as described above.
[0047] また、両回転部 la、 lbがほぼ 180° の領域を占め、隙間を空けずに気密性を保って 回転する構造としては、例えば、図 21〜図 24に示すように回転部 la、 lbの回転方 向の前方及び後方の端面 14が回転方向に対し斜めの角度で球の表面より中心 Oに 向かう面で切って、扇形の長い方の円弧の角度を 180度にすることが挙げられる。図 23は上記図 10〜: L 1の状態にほぼ対応し、図 24は上記図 15〜図 16の状態にほぼ 対応している。  [0047] In addition, as a structure in which both rotating parts la and lb occupy an area of approximately 180 ° and rotates without air gaps while maintaining airtightness, for example, as shown in FIGS. The front and rear end faces 14 in the direction of rotation of lb should be cut at a slant angle with respect to the direction of rotation at the plane from the surface of the sphere toward the center O, so that the angle of the longer arc of the sector is 180 degrees. Can be mentioned. FIG. 23 substantially corresponds to the state of FIG. 10 to L 1 above, and FIG. 24 substantially corresponds to the states of FIG. 15 to FIG.
[0048] また、図 22の端面 14bの斜め部分を上下逆にして二つの扇形を面と面で接触する 形状も考えられ、より気密性を高める追求も可能である。  [0048] In addition, a shape in which the inclined portion of the end face 14b in Fig. 22 is turned upside down and the two fan-shaped surfaces are in contact with each other is conceivable, and it is possible to pursue higher airtightness.
[0049] より厳密には、図 22において紙面に垂直な方向への端面 14a、 14b同士の相対変 位も考慮する必要があるため、総じて言えば、 2つの回転部 la、 lbの前方、後方の 端面が回転しながら気密性を保つような面で構成され、その面は球面より中心に向 力 線の集まりで形成されるものであると言うことができる。  [0049] More precisely, since it is necessary to consider the relative displacement between the end faces 14a and 14b in the direction perpendicular to the paper surface in Fig. 22, generally speaking, the front and rear of the two rotating parts la and lb. It can be said that the end face is formed of a surface that keeps hermeticity while rotating, and that the surface is formed by a collection of force lines centered on the spherical surface.
[0050] なお、端面 14を斜めに構成する場合、図 23及び図 24に示すようにポート Pl、 P6 は両回転経路 5a、 5bの交叉部の直近に位置することが望ましぐ流体経路は斜めに 接続することが好ましい。これらのポート Pl、 P6を設けるカバー部の位置としては、 図 25に示すようにカバー外壁 22やカバー内壁 21ではなくカバー側壁 24、 26を選 択することが有効となる。反対側の交叉部においても事情は同じである。また、上記 図 10〜図 19においても各ポート P1〜P8は極力両回転経路 5a、 5bの交叉部に近 い位置に設けておくことが好ましいため、図 25と同様の構成を採用することもできる。  [0050] When the end face 14 is configured obliquely, as shown in FIGS. 23 and 24, it is desirable that the ports Pl and P6 be positioned in the immediate vicinity of the intersection of both the rotation paths 5a and 5b. It is preferable to connect at an angle. As the position of the cover portion where these ports Pl and P6 are provided, it is effective to select the cover side walls 24 and 26 instead of the cover outer wall 22 and the cover inner wall 21 as shown in FIG. The situation is the same at the crossover on the opposite side. Also, in FIGS. 10 to 19, it is preferable that the ports P1 to P8 be provided as close to the intersections of the two rotation paths 5a and 5b as possible. it can.
[0051] さらに、本発明の回転機械をエンジンとして使用する態様について略述する。 [0052] この回転機械は、カバー部 2の適当な場所に二つの経路をつなぐ接続部分(図 13及 び図 18における想像線 B参照)を設けることによって、回転経路 la、 lbの一方で圧 縮した気体をもう一方で爆発、膨張させ、エンジンとして機能させる。 [0051] Further, an embodiment in which the rotating machine of the present invention is used as an engine will be outlined. [0052] This rotating machine is provided with a connecting portion (see imaginary line B in Fig. 13 and Fig. 18) that connects the two paths at an appropriate location of the cover part 2, so that one of the rotary paths la and lb is pressurized. The compressed gas is exploded and expanded on the other side to function as an engine.
[0053] すなわち、エンジンについては、一方の回転経路 5bにおいて回転部 lbの回転方向 の前方で圧縮が、後方で吸気が行われ、もう一方の回転経路 5aにおいて回転部 la の回転方向の後方で爆発、膨張、前方で排気が行われるようにする。接続部分 Bは、 一方の回転経路 5bにおいて回転部 lbの回転方向の前方で圧縮された混合気体が 、もう一方の回転経路 5aにおいて回転部 laの回転方向の後方の爆発前の位置へ送 り込まれる位置に設けたものである。その際、点火プラグは適宜位置に設ければよく 、ディーゼルエンジンのように高圧により着火するように構成してもよ!/、。  That is, for the engine, compression is performed in front of the rotation direction of the rotation part lb in one rotation path 5b, and intake is performed in the rear direction, and the rotation direction la of the rotation part la in the other rotation path 5a. Explosion, expansion, and exhaust in front. In the connection part B, the gas mixture compressed in the rotation direction of the rotation part lb in one rotation path 5b is sent to the position before the explosion in the rotation direction of the rotation part la in the other rotation path 5a. It is provided at the position to be inserted. At that time, the spark plug may be provided at an appropriate position, and may be configured to ignite at high pressure like a diesel engine! /.
[0054] この場合、図 10〜図 19で説明した各ポートのうち、閉じ込められて混合気体の圧縮 や爆発が行われる空間に開口するポートの給排弁は閉にし、それ以外の空間に開 口するポートの給排弁は開放しておくようにする。  [0054] In this case, among the ports described in FIGS. 10 to 19, the supply / discharge valve of the port that is confined and opened to the space where the mixed gas is compressed or exploded is closed and opened to the other space. The supply / discharge valve of the port to be opened should be open.
[0055] 以上、本発明の実施形態や変形例について説明したが、各部の具体的な構成は、 上述した実施形態のみに限定されるものではなぐ本発明の趣旨を逸脱しない範囲 で種々変形が可能である。  As described above, the embodiments and modifications of the present invention have been described, but the specific configuration of each part is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Is possible.

Claims

請求の範囲 The scope of the claims
[1] 側面形状を概略扇形に、外周面及び内周面の形状を同じ仮想中心点を持つ部分球 面状にした 2つの回転部力 前記仮想中心点周りに互いに直角をなす回転面で当た らな 、ようにタイミングを合わせて同期回転するようにしたものであって、一つの回転 部は内周面側に支持部を有し、もう一つの回転部は外周面側に支持部を有し、その 支持部とともに回転経路を覆う位置にカバー部を設けて、互いの回転部が相手方の 回転部の回転経路を交叉部においてさえぎる形で回転することにより、支持部、カバ 一部、回転部の側面、及びもう一方の回転部の端面によって閉じられた空間が両回 転部の回転とともに変化するように構成したことを特徴とする回転機械。  [1] Two rotating forces that have a fan-shaped side surface and partial spherical surfaces with the same virtual center point on the outer peripheral surface and the inner peripheral surface are applied by rotating surfaces that are perpendicular to each other around the virtual center point. In this case, the rotating parts are synchronized with each other at the same timing. One rotating part has a supporting part on the inner peripheral face side, and the other rotating part has a supporting part on the outer peripheral face side. The cover part is provided at a position that covers the rotation path together with the support part, and the rotation part of each other rotates in such a way as to block the rotation path of the other rotation part at the crossing part. A rotating machine characterized in that the space closed by the side surface of the rotating part and the end face of the other rotating part changes with the rotation of both rotating parts.
[2] 一方の支持部は回転部の内周面と同じ仮想中心を持つ球面を内周面と接する位置 力 扇の円弧方向に拡張した形状をなし、他方の支持部は回転部の外周面と同じ仮 想中心を持つ球面を外周面と接する位置力 扇の円弧方向に拡張した形状をなし、 それらの拡張部において質量バランスを取り、仮想中心点と回転部及び支持部から なる可動部の重心とを一致させている請求項 1記載の回転機械。  [2] One support portion has a shape in which a spherical surface having the same imaginary center as the inner peripheral surface of the rotating portion is expanded in the arc direction of the position force fan in contact with the inner peripheral surface, and the other support portion is the outer peripheral surface of the rotating portion. This is a shape in which the spherical surface with the same virtual center as the position force that touches the outer peripheral surface is expanded in the direction of the circular arc of the fan, and balances the mass in these expanded parts, and the movable part consisting of the virtual center point, rotating part and support part The rotating machine according to claim 1, wherein the center of gravity coincides with the center of gravity.
[3] 二つの支持部をギヤ等の連動機構で連結し、この連動機構で両回転部の回転のタ イミングを合わせるとともに、連動機構を介して回転部への回転力の入力及び回転部 力 の回転力の出力を行うようにしている請求項 1又は 2記載の回転機械。  [3] The two support parts are connected by an interlocking mechanism such as a gear, and the timing of rotation of both rotating parts is adjusted by this interlocking mechanism, and the rotational force input to the rotating part and the rotating part force are transmitted via the interlocking mechanism. The rotating machine according to claim 1 or 2, wherein an output of the rotational force is performed.
[4] カバー部に、閉じられた空間に開口する穴を設け、回転部の回転に伴う空間の変化 を利用してポンプ又はァクチユエータとして機能させるようにしていることを特徴とする 請求項 1〜3記載の回転機械。  [4] The cover portion is provided with a hole that opens in a closed space, and functions as a pump or an actuator by utilizing a change in the space accompanying the rotation of the rotating portion. 3. A rotating machine according to 3.
[5] カバー部に、閉じられた空間に開口する穴を設け、その穴の一部を利用して二つの 回転経路をつなぐ接続部分を設けることによって、一方の回転経路で圧縮した気体 をもう一方の回転経路で爆発、膨張させ、エンジンとして機能させるようにしていること を特徴とする請求項 1〜3記載の回転機械。  [5] The cover part is provided with a hole that opens in a closed space, and by using a part of the hole to provide a connection part that connects the two rotation paths, the gas compressed in one rotation path can be removed. 4. The rotating machine according to claim 1, wherein the rotating machine is caused to explode and expand along one rotating path so as to function as an engine.
PCT/JP2006/319030 2005-09-26 2006-09-26 Rotary machine WO2007034960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007536593A JP4919963B2 (en) 2005-09-26 2006-09-26 Rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-310453 2005-09-26
JP2005310453 2005-09-26

Publications (1)

Publication Number Publication Date
WO2007034960A1 true WO2007034960A1 (en) 2007-03-29

Family

ID=37889001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319030 WO2007034960A1 (en) 2005-09-26 2006-09-26 Rotary machine

Country Status (2)

Country Link
JP (1) JP4919963B2 (en)
WO (1) WO2007034960A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612873C1 (en) * 2016-04-06 2017-03-13 Аскер Аскерович Гейдаров Rotary internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2034300A1 (en) * 1969-07-14 1971-04-15 May, Rolf, 4010 Hilden Internal combustion engine
JPS4938008A (en) * 1972-08-21 1974-04-09
EP0091975A1 (en) * 1982-04-16 1983-10-26 VON INGELHEIM, Peter, Graf Rotary piston engine with two or more rotary pistons in parallel, angular or crossing arrangement
JPH05505223A (en) * 1989-08-11 1993-08-05 メカノロジイ Annular superexpansion rotary engine, compressor, expander, pump and method
JP2002515959A (en) * 1996-10-31 2002-05-28 プラネタリッシェ モートレン アクチェンゲゼルシャフト Rotor reciprocating combustion engine
JP3718219B1 (en) * 2005-02-03 2005-11-24 広保 前田 Rotating piston engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660364B1 (en) * 1990-03-27 1995-08-11 Kohn Elhanan ROTARY HEAT MOTOR.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2034300A1 (en) * 1969-07-14 1971-04-15 May, Rolf, 4010 Hilden Internal combustion engine
JPS4938008A (en) * 1972-08-21 1974-04-09
EP0091975A1 (en) * 1982-04-16 1983-10-26 VON INGELHEIM, Peter, Graf Rotary piston engine with two or more rotary pistons in parallel, angular or crossing arrangement
JPH05505223A (en) * 1989-08-11 1993-08-05 メカノロジイ Annular superexpansion rotary engine, compressor, expander, pump and method
JP2002515959A (en) * 1996-10-31 2002-05-28 プラネタリッシェ モートレン アクチェンゲゼルシャフト Rotor reciprocating combustion engine
JP3718219B1 (en) * 2005-02-03 2005-11-24 広保 前田 Rotating piston engine

Also Published As

Publication number Publication date
JP4919963B2 (en) 2012-04-18
JPWO2007034960A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4686507B2 (en) Booster system and apparatus
US11098588B2 (en) Circulating piston engine having a rotary valve assembly
CN101839186B (en) Cylinder head for a natural aspirated engine and usage of such a cylinder head
WO2006049294A1 (en) Device for removing engine vibration and engine whose stroke characteriscts are variable
CA2450542C (en) Arov engine/pump
WO2007065976A1 (en) Pump or motor
JP2016526636A (en) Spherical chamber two-cycle internal combustion engine
WO2007034960A1 (en) Rotary machine
ES2641739T3 (en) Internal combustion engine
KR100266999B1 (en) Positive displacement machine with reciprocating and rotating pistons, particularly four-stroke engine
JP2000104556A (en) Rotary internal combustion engine
EP1399658A1 (en) A rotary engine
JP2008531926A (en) Rotary engine
JPH01249977A (en) Rotary compressor
KR20160129780A (en) Internal combustion engine using the dual turbine
JP4244578B2 (en) Rotary engine intake system
CN205025568U (en) Ball -type rotary engine
US1703096A (en) burtnett
JP3718219B1 (en) Rotating piston engine
JPS6278453A (en) Intake/exhaust device of internal combustion engine
EP1849958A1 (en) Rotary pistons machine
TW558597B (en) Internal combustion engine
JP2001355403A (en) Spherical z-axis piston engine
WO2008111695A1 (en) Rotary engine
KR20010053816A (en) Rotary engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810555

Country of ref document: EP

Kind code of ref document: A1