JPWO2006117982A1 - Fluorescent color converting composition, fluorescent color converting method and device using the composition - Google Patents

Fluorescent color converting composition, fluorescent color converting method and device using the composition Download PDF

Info

Publication number
JPWO2006117982A1
JPWO2006117982A1 JP2007514549A JP2007514549A JPWO2006117982A1 JP WO2006117982 A1 JPWO2006117982 A1 JP WO2006117982A1 JP 2007514549 A JP2007514549 A JP 2007514549A JP 2007514549 A JP2007514549 A JP 2007514549A JP WO2006117982 A1 JPWO2006117982 A1 JP WO2006117982A1
Authority
JP
Japan
Prior art keywords
fluorescent color
charge transfer
composition
ferroelectric
containing polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007514549A
Other languages
Japanese (ja)
Inventor
起燮 郭
起燮 郭
藤木 道也
道也 藤木
千里 岡田
千里 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Publication of JPWO2006117982A1 publication Critical patent/JPWO2006117982A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lasers (AREA)

Abstract

電荷移動型色素および強誘電フッ素含有高分子を含有する組成物であって、電荷移動型色素が、DCM、DCM2、Nile RedおよびCoumarin6からなる群から選択される少なくとも1種であり、強誘電フッ素含有高分子が、フッ化ビニリデンとトリフルオロエチレンとの共重合体である組成物、該組成物を使用した蛍光色変換方法、およびそれらを使用した種々のデバイス。A composition comprising a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red and Coumarin 6, A composition in which the contained polymer is a copolymer of vinylidene fluoride and trifluoroethylene, a fluorescent color conversion method using the composition, and various devices using them.

Description

本発明は電荷移動型色素および強誘電フッ素含有高分子を含有する組成物および該組成物の新規機能を利用した蛍光色変換方法およびデバイスに関する。   The present invention relates to a composition containing a charge transfer dye and a ferroelectric fluorine-containing polymer, and to a fluorescent color conversion method and device utilizing a novel function of the composition.

分子内電荷移動(ICT)型色素は、EL/PLデバイス、色素レーザー、色素増感型太陽電池などの発光・光電変換材料として用いられ、溶媒の極性によって発光波長が大きく変化する光特異性を示すことが古くから知られている。例えば、色素レーザーは、色素溶液を変えるだけで任意の波長のレーザーを得ることができるので、波長可変レーザーとして最もよく利用されている。しかしながら、発振波長を変えるに時には、色素溶液を抜き出し、入念に洗浄後、新たな色素溶液を循環させるという非常に煩雑な作業が必要であった。また、溶液であるため、任意の形状等に加工が不可能であるという欠点もあった。   Intramolecular charge transfer (ICT) dyes are used as light-emitting / photoelectric conversion materials for EL / PL devices, dye lasers, dye-sensitized solar cells, etc., and have photospecificity in which the emission wavelength varies greatly depending on the polarity of the solvent. It has been known for a long time. For example, a dye laser is most often used as a wavelength tunable laser because a laser having an arbitrary wavelength can be obtained simply by changing the dye solution. However, in order to change the oscillation wavelength, it is necessary to take a very complicated operation of extracting the dye solution, carefully washing it, and circulating a new dye solution. Moreover, since it is a solution, there also existed a fault that a process to arbitrary shapes etc. was impossible.

そのような欠点のない色素固体デバイスが提案されている(例えば特許文献1)が、そこには、温度の違いにより蛍光色または発光強度を変化させる概念はない。   A dye solid-state device without such a defect has been proposed (for example, Patent Document 1), but there is no concept of changing a fluorescent color or emission intensity depending on a temperature difference.

なお、本願発明が使用しているフッ化ビニリデンとトリフルオロエチレン共重合体を使用し、導電性支持体上に該共重合体と色素を含有する層を積層してなる画像記録体が開示されている(例えば、特許文献2)。しかしながら、特許文献2で使用されている色素は、本願発明で使用されている色素と異なり、また、光吸収-発熱という機能を利用するものである。特許文献2には、温度の違いにより蛍光色または発光強度を変化させる概念はない。
特開2004−346233号公報 特開平3−296769号公報
An image recording material is disclosed in which the vinylidene fluoride and trifluoroethylene copolymer used in the present invention is used, and a layer containing the copolymer and a dye is laminated on a conductive support. (For example, Patent Document 2). However, the dye used in Patent Document 2 is different from the dye used in the present invention and utilizes a function of light absorption and heat generation. In Patent Document 2, there is no concept of changing the fluorescent color or emission intensity depending on the temperature difference.
JP 2004-346233 A JP-A-3-296769

本発明は、種々のポリマーマトリックス中におけるICT型色素の光物性を検討した結果、常誘電−強誘電相転移を示すポリマーマトリックスを使用することにより、ICT型色素の蛍光強度あるいは蛍光波長が可逆的に変化する新規機能を見出した。   As a result of examining the optical properties of ICT dyes in various polymer matrices, the present invention uses a polymer matrix exhibiting a paraelectric-ferroelectric phase transition, so that the fluorescence intensity or wavelength of the ICT dye is reversible. I found a new function that changes.

本発明は、分子内電荷移動型蛍光色素分散ポリマー、該分散ポリマーの新規機能を利用した蛍光色変換方法およびそれらを利用した種々のデバイスを提供することを目的とする。   An object of the present invention is to provide an intramolecular charge transfer type fluorescent dye dispersion polymer, a fluorescent color conversion method using a novel function of the dispersion polymer, and various devices using them.

上記目的は、電荷移動型色素および強誘電フッ素含有高分子を含有する組成物により達成される。より詳しくは、電荷移動型色素が、DCM、DCM2、Nile RedおよびCoumarin6からなる群から選択される少なくとも1種であり、強誘電フッ素含有高分子が、フッ化ビニリデンとトリフルオロエチレンとの共重合体である。   The above object is achieved by a composition containing a charge transfer dye and a ferroelectric fluorine-containing polymer. More specifically, the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red, and Coumarin 6, and the ferroelectric fluorine-containing polymer is a co-polymer of vinylidene fluoride and trifluoroethylene. It is a coalescence.

本発明の組成物は、温度変化により蛍光色を変化させることができる。   The composition of the present invention can change the fluorescent color by temperature change.

フッ化ビニリデン−トリフルオロエチレン共重合体の温度と誘電率の関係を示すグラフ。The graph which shows the temperature and dielectric constant relationship of a vinylidene fluoride-trifluoroethylene copolymer. DCM分散膜のUV−vis吸収スペクトル。The UV-vis absorption spectrum of a DCM dispersion film. DCM分散膜のUV−vis吸収スペクトル。The UV-vis absorption spectrum of a DCM dispersion film. DCM分散膜の蛍光スペクトル。Fluorescence spectrum of DCM dispersion film. DCM分散膜の蛍光スペクトル。Fluorescence spectrum of DCM dispersion film. DCM2分散膜のUV−vis吸収スペクトル。The UV-vis absorption spectrum of a DCM2 dispersion film. DCM2分散膜のUV−vis吸収スペクトル。The UV-vis absorption spectrum of a DCM2 dispersion film. DCM2分散膜の蛍光スペクトル。The fluorescence spectrum of a DCM2 dispersion film. DCM2分散膜の蛍光スペクトル。The fluorescence spectrum of a DCM2 dispersion film. Nile Red分散膜のUV−vis吸収スペクトル。UV-vis absorption spectrum of Nile Red dispersion film. Nile Red分散膜のUV−vis吸収スペクトル。UV-vis absorption spectrum of Nile Red dispersion film. Nile Red分散膜の蛍光スペクトル。Fluorescence spectrum of Nile Red dispersion film. Nile Red分散膜の蛍光スペクトル。Fluorescence spectrum of Nile Red dispersion film. Coumarin6分散膜のUV−vis吸収スペクトル。UV-vis absorption spectrum of Coumarin 6 dispersion film. Coumarin6分散膜のUV−vis吸収スペクトル。UV-vis absorption spectrum of Coumarin 6 dispersion film. Coumarin6分散膜の蛍光スペクトル。Fluorescence spectrum of Coumarin 6 dispersion film. Coumarin6分散膜の蛍光スペクトル。Fluorescence spectrum of Coumarin 6 dispersion film.

電荷移動型色素は、電子ドナーとアクセプターでパイ共役構造をしており、その電荷移動特性に関連した光物性・非線形光学特性が研究されている。本発明に使用できる電荷移動型色素は、従来から知られている色素が使用可であり、商業的には、例えばEXCITON社、Aldrich社、東京化成工業社から種々入手可能である。本実施例で使用している電荷移動型色素は、下記記載の構造および色素名の色素である。下記記載の色素は、分子内移動電荷型色素であり、双極子モーメントが非常に大きく、基底状態および励起状態共に1デバイ以上有し、その差が0.1デバイ以上有する観点から選ばれている。種々公知の色素から本発明に使用できる色素を選ぶ際には左記観点に加え、テトラヒドロフラン(THF)に対して、0.1%以上溶解可能なものから選択するようにすればなおよい。これは、そのような溶媒に溶解しない色素を使用すると、色素が均一に分散したフィルムを作製しにくいからである。下記色素はそのような溶解性をも有する。   Charge transfer dyes have a pi-conjugated structure with electron donors and acceptors, and their optical properties and nonlinear optical properties related to their charge transfer properties have been studied. Conventionally known dyes can be used as the charge transfer dyes that can be used in the present invention, and various commercially available dyes are commercially available from, for example, EXCITON, Aldrich, and Tokyo Chemical Industry. The charge transfer dye used in this example is a dye having the following structure and dye name. The dyes described below are intramolecular transfer charge type dyes, which have a very large dipole moment, have a ground state and an excited state of 1 debye or more, and are selected from the viewpoint of having a difference of 0.1 debye or more. . When selecting a dye that can be used in the present invention from various known dyes, in addition to the viewpoint described on the left, it is preferable to select one that is soluble in tetrahydrofuran (THF) by 0.1% or more. This is because if a dye that does not dissolve in such a solvent is used, it is difficult to produce a film in which the dye is uniformly dispersed. The following dyes also have such solubility.

Figure 2006117982
Figure 2006117982

本発明に使用する強誘電フッ素含有高分子は、フッ化ビニリデンとトリフルオロエチレンとの共重合体である下記一般式[I]で表されるものを使用するようにする。   As the ferroelectric fluorine-containing polymer used in the present invention, a polymer represented by the following general formula [I] which is a copolymer of vinylidene fluoride and trifluoroethylene is used.

Figure 2006117982
Figure 2006117982

上記式中、xとyは共重合比である。図1に、x:yが52:48であるフッ化ビニリデン−トリフルオロエチレン共重合体の誘電率の温度依存性を示した。図1に示されているように該共重合体は、温度50〜70℃で誘電率(ε)が急激に変化し、常誘電−強誘電相転移が起こる。常誘電−強誘電相転移とは、自発分極を持たない常誘電体と自発分極を持つ強誘電体が結晶構造の変化により生じる転移と定義され、常誘電−強誘電相転移温度は、自発分極が消滅する温度(キュリー温度)と定義される。本発明においては、このような常誘電−強誘電相転移が生じる共重合体である限り、x:yの比は特に限定されない。好ましくは常誘電−強誘電相転移がより急激に生じるようなフッ化ビニリデン−トリフルオロエチレン共重合体を使用するようにする。   In the above formula, x and y are copolymerization ratios. FIG. 1 shows the temperature dependence of the dielectric constant of a vinylidene fluoride-trifluoroethylene copolymer in which x: y is 52:48. As shown in FIG. 1, the dielectric constant (ε) of the copolymer rapidly changes at a temperature of 50 to 70 ° C., and a paraelectric-ferroelectric phase transition occurs. The paraelectric-ferroelectric phase transition is defined as a transition caused by a change in crystal structure between a paraelectric that does not have spontaneous polarization and a ferroelectric that has spontaneous polarization, and the paraelectric-ferroelectric phase transition temperature is the spontaneous polarization. Is defined as the temperature at which annihilation occurs (Curie temperature). In the present invention, the ratio of x: y is not particularly limited as long as it is a copolymer that causes such a paraelectric-ferroelectric phase transition. Preferably, a vinylidene fluoride-trifluoroethylene copolymer is used so that the paraelectric-ferroelectric phase transition occurs more rapidly.

なお、誘電率の測定は、x:yが52:48であるフッ化ビニリデン−トリフルオロエチレン共重合体100mgを有機溶媒テトラヒドロフラン(THF)に2mlに溶かしシャーレに流し込み、乾燥させ、作成した透明なフィルムを使用して行った。   The dielectric constant was measured by dissolving 100 mg of vinylidene fluoride-trifluoroethylene copolymer having x: y of 52:48 in 2 ml of an organic solvent tetrahydrofuran (THF), pouring into a petri dish, drying, and preparing a transparent Performed using film.

静電容量C[F]は電極版の面積A[m]に比例し、フィルムの膜厚L(m)に反比例する。
C=(ε・A)/L
上記式中、比例定数εを絶縁体の誘電率といい、単位は[F/m]である。εは物質によって異なり、真空の誘電率をεoとするとε=8.85×10−12[F/m]となり、ε=εr×εの関係より、その物質の比誘電率(εr)を求めることができる。静電容量は、100KHz、20℃で測定した。
The capacitance C [F] is proportional to the area A [m 2 ] of the electrode plate and inversely proportional to the film thickness L (m) of the film.
C = (ε · A) / L
In the above formula, the proportionality constant ε is called the dielectric constant of the insulator, and the unit is [F / m]. ε differs depending on the material, and when the dielectric constant of vacuum is εo, ε = 8.85 × 10 −12 [F / m]. From the relationship of ε = ε r × ε 0 , the relative dielectric constant (ε r ). The capacitance was measured at 100 KHz and 20 ° C.

本発明に使用する強誘電フッ素含有高分子は、テトラヒドロフラン(THF)に対して、0.1%以上溶解可能なものであり、成膜が可能なものを使用するようにする。溶解量が0.1重量%より低いポリマーでは、成膜が難しく、均一な膜厚フィルムを作製しにくい。例えば上記式[I]中、yが0であるフッ化ビニリデンホモポリマーは、溶解させることができず、成膜が難しく、均一な膜厚フィルムを作製できない。   The ferroelectric fluorine-containing polymer used in the present invention is one that can be dissolved by 0.1% or more in tetrahydrofuran (THF), and a polymer that can be formed into a film is used. With a polymer whose dissolved amount is lower than 0.1% by weight, it is difficult to form a film and it is difficult to produce a uniform film thickness. For example, in the above formula [I], a vinylidene fluoride homopolymer having y of 0 cannot be dissolved, film formation is difficult, and a uniform film thickness cannot be produced.

本発明においては、ポリマーマトリックスとして上記したような常誘電−強誘電相転移を示すことが、温度を変化させることにより電荷移動型色素が発する蛍光色を変化させることに大きく関係していると考えられている。係る観点からすると、蛍光体のポリマーマトリックスは上記一般式[I]で表されるフッ化ビニリデン−トリフルオロエチレン共重合体に限定されることなく、他のマトリックスも使用可能であると予想される。   In the present invention, the paraelectric-ferroelectric phase transition as described above as the polymer matrix is considered to be largely related to changing the fluorescent color emitted by the charge transfer dye by changing the temperature. It has been. From such a viewpoint, the polymer matrix of the phosphor is not limited to the vinylidene fluoride-trifluoroethylene copolymer represented by the above general formula [I], and other matrices are expected to be usable. .

電荷移動型色素は、強誘電フッ素含有高分子に対して1PPM〜10重量%の範囲の量で使用するようにすればよい。好ましくは、0.01から1重量%未満の範囲で使用する。電荷移動型色素および強誘電フッ素含有高分子は後述する薄膜を成膜する際に溶媒に溶解させる必要があり、溶解する限り本発明を実施することができる。電荷移動型色素の量は、上記範囲内において目的とする蛍光色、発光強度、発光退化速度等により適宜選定すればよい。   The charge transfer dye may be used in an amount ranging from 1 PPM to 10% by weight with respect to the ferroelectric fluorine-containing polymer. Preferably, it is used in the range of 0.01 to less than 1% by weight. The charge transfer dye and the ferroelectric fluorine-containing polymer need to be dissolved in a solvent when forming a thin film to be described later, and the present invention can be carried out as long as it dissolves. The amount of the charge transfer dye may be appropriately selected depending on the target fluorescent color, emission intensity, emission decay rate, etc. within the above range.

薄膜は、上記電荷移動型色素および強誘電フッ素含有高分子の所定量を適当な溶媒、例えばテトラヒドロフラン、メチルエチルケトン、アセトン、クロロホルム、N,N-ジメチルホルムアミド、ジメチルスルホキシド等に溶解した溶液を、スピンコーティング、ソルベントキャスト法等で塗布乾燥することにより行える。薄膜の膜厚は、特に限定されないが、成膜性や機械的強度を考えると、乾燥後の膜厚が1〜100μmとなるようにすればよい。   The thin film is prepared by spin-coating a solution prepared by dissolving a predetermined amount of the charge transfer dye and the ferroelectric fluorine-containing polymer in an appropriate solvent such as tetrahydrofuran, methyl ethyl ketone, acetone, chloroform, N, N-dimethylformamide, dimethyl sulfoxide, or the like. It can be done by applying and drying by the solvent cast method. The film thickness of the thin film is not particularly limited, but considering the film formability and mechanical strength, the film thickness after drying may be 1 to 100 μm.

以上のようにして得られる薄膜は、温度により、蛍光色を変化させることが可能である。温度は、使用する強誘電フッ素含有高分子の常誘電−強誘電相転移温度を堺にして、該転移温度より低い温度範囲および該転移温度よりも高い温度範囲の間で変化させるようにする。   The thin film obtained as described above can change the fluorescent color depending on the temperature. The temperature is varied between a temperature range lower than the transition temperature and a temperature range higher than the transition temperature, taking into account the paraelectric-ferroelectric phase transition temperature of the ferroelectric fluorine-containing polymer used.

蛍光色の変化は、蛍光波長の変化、発光強度の変化により生じる。また、蛍光色の変化は、蛍光体とフッ化ポリマーの組み合わせ等により種々異なる色の変化が可能である。以下、実施例を用いて本発明を説明する。   The change in fluorescent color is caused by a change in fluorescence wavelength and a change in emission intensity. The fluorescent color can be changed in various colors depending on the combination of the phosphor and the fluorinated polymer. Hereinafter, the present invention will be described using examples.

実施例中、「PVdF−co−TrFE」は、フッ化ビニリデン−3−フッ化エチレン共重合体(共重合体比52:48)(以下、「PVdF52−co−TrFE48」と記載する)を表している。該PVdF52−co−TrFE48は、THFに対して100重量%以上溶解する。In the examples, “PVdF-co-TrFE” is vinylidene fluoride-3-fluorinated ethylene copolymer (copolymer ratio 52:48) (hereinafter referred to as “PVdF 52 -co-TrFE 48 ”). Represents. The PVdF 52 -co-TrFE 48 is dissolved by 100% by weight or more in THF.

実施例1(DCM)
PVdF−co−TrFEとDCMの両方に対して良い溶解性を示すTHFから溶液を調製した。ポリマーとDCMの重量比を500:1とし、ソルベントキヤスト法により透明なフィルム(膜厚3μm)を三角セル中に作製した。得られたDCM分散膜を0℃から90℃へと10℃ずつ加熱し、再び90℃から0℃まで10℃ずつ徐冷しながらUV−vis吸収・蛍光スペクトル測定をした。
Example 1 (DCM)
Solutions were prepared from THF that showed good solubility in both PVdF-co-TrFE and DCM. A weight ratio of polymer to DCM was 500: 1, and a transparent film (film thickness: 3 μm) was prepared in a triangular cell by the solvent casting method. The obtained DCM dispersion film was heated from 0 ° C. to 90 ° C. by 10 ° C., and UV-vis absorption / fluorescence spectrum measurement was performed while gradually cooling from 90 ° C. to 0 ° C. by 10 ° C. again.

図2A〜図2DにDCM分散膜のUV−vis吸収・蛍光スペクトルを示す。UV−vis吸収スペクトルは加熱することによりλmax0℃:460nmから90℃:455.5nmへとブルーシフトし(図2A)、徐冷により元の波長へと戻った(図2B)。   2A to 2D show UV-vis absorption / fluorescence spectra of the DCM dispersion film. The UV-vis absorption spectrum was blue-shifted from λmax 0 ° C .: 460 nm to 90 ° C .: 455.5 nm by heating (FIG. 2A), and returned to the original wavelength by slow cooling (FIG. 2B).

蛍光スペクトルは0℃:581nmから90℃:583.5nmと加熱過程(図2C)・徐冷過程(図2D)においてもほとんどシフトしなかったが、発光強度においては加熱することにより強度が減少した。   The fluorescence spectrum was 0 ° C .: 581 nm to 90 ° C .: 583.5 nm, and there was little shift in the heating process (FIG. 2C) and slow cooling process (FIG. 2D), but the emission intensity decreased with heating. .

蛍光色は加熱と徐冷により、黄色−暗色との間で可逆的に、蛍光色が変化することが肉眼で観察された。   It was observed with the naked eye that the fluorescent color changed reversibly between yellow and dark colors by heating and slow cooling.

実施例2(DCM2)
DCMに変えて、DCM2を用いた以外、実施例1と同様にDCM2分散膜を作製した。
Example 2 (DCM2)
A DCM2 dispersion film was produced in the same manner as in Example 1 except that DCM2 was used instead of DCM.

図3A〜図3DにUV−vis吸収・蛍光スペクトルの結果を示す。UV−vis吸収スペクトルは加熱することにより0℃:500nmから90℃:492.5nmへとブルーシフトした(図3A)。さらに、徐冷することにより90℃:492.5nmから0℃:500.5nmへと元の波長へと戻った(図3B)。   3A to 3D show the results of UV-vis absorption / fluorescence spectra. The UV-vis absorption spectrum was blue-shifted from 0 ° C .: 500 nm to 90 ° C .: 492.5 nm by heating (FIG. 3A). Furthermore, by slow cooling, it returned to the original wavelength from 90 ° C .: 492.5 nm to 0 ° C .: 500.5 nm (FIG. 3B).

蛍光スペクトルは、加熱することにより0℃:584nmから90℃:610nmへ(図3C)、徐冷することにより90℃:610nmから0℃:579.5nmへと大きくシフトした(図3D)。励起状態での分極がとても大きいと言える。   The fluorescence spectrum was greatly shifted from 0 ° C .: 584 nm to 90 ° C .: 610 nm by heating (FIG. 3C), and from 90 ° C .: 610 nm to 0 ° C .: 579.5 nm by slow cooling (FIG. 3D). It can be said that the polarization in the excited state is very large.

蛍光色は加熱と徐冷により、橙色−暗色との間で可逆的に、蛍光色が変化することが肉眼で観察された。   It was observed with the naked eye that the fluorescent color changed reversibly between orange and dark by heating and slow cooling.

実施例3(Nile Red)
DCMに変えて、Nile Redを用いた以外、実施例1と同様にNile Red分散膜を作製した。
Example 3 (Nile Red)
A Nile Red dispersion film was produced in the same manner as in Example 1 except that Nile Red was used instead of DCM.

図4A〜図4DにUV−vis吸収・蛍光スペクトルの結果を示す。UV−vis吸収スペクトルは加熱することにより0℃:545.5nmから90℃:531.5nmへとブルーシフトした(図4A)。さらに、徐冷することにより90℃:531.5nmから0℃:546nmへと元の波長へと戻った(図4B)。   4A to 4D show the results of UV-vis absorption / fluorescence spectra. The UV-vis absorption spectrum was blue-shifted from 0 ° C .: 545.5 nm to 90 ° C .: 531.5 nm by heating (FIG. 4A). Furthermore, by slow cooling, it returned to the original wavelength from 90 ° C .: 531.5 nm to 0 ° C .: 546 nm (FIG. 4B).

蛍光スペクトルは、加熱過程(図4C)・徐冷過程(図4D)においてほとんどシフトしなかった。発光強度においては、加熱することにより強度が増加した。また、加熱と徐冷で異なる強度変化が見られるのは熱ヒステリシスによるものと考えられる。   The fluorescence spectrum hardly shifted during the heating process (FIG. 4C) and the slow cooling process (FIG. 4D). In the emission intensity, the intensity increased by heating. Moreover, it is thought that it is due to thermal hysteresis that different strength changes are observed between heating and slow cooling.

蛍光色は加熱と徐冷により、暗紫色−橙色との間で可逆的に、蛍光色が変化することが肉眼で観察された。   It was observed with the naked eye that the fluorescent color reversibly changes between dark purple and orange by heating and slow cooling.

実施例4(Coumarin6)
DCMに変えて、Coumarin6を用いた以外、実施例1と同様にCoumarin6分散膜を作製した。
Example 4 (Coumarin 6)
A Coumarin 6 dispersion film was produced in the same manner as in Example 1 except that Coumarin 6 was used instead of DCM.

図5A〜図5DにCoumarin6分散膜のUV−vis吸収・蛍光スペクトルの結果を示す。UV−vis吸収スペクトルは、加熱過程で390nm付近の吸収が増加し、450〜550nmにかけての吸収が減少した(図5A)。さらに徐冷により吸収は元に戻った(図5B)。   5A to 5D show the results of UV-vis absorption / fluorescence spectra of the Coumarin 6 dispersion film. In the UV-vis absorption spectrum, absorption near 390 nm increased in the heating process, and absorption between 450 and 550 nm decreased (FIG. 5A). Furthermore, the absorption was restored by slow cooling (FIG. 5B).

発光スペクトルは、加熱することにより550nm付近のピークが低下した(図5C)。さらに徐冷することにより490nmのピークが低下し、550nm付近のピークが少し増加した(図5D)。またこれらのスペクトル変化と同時に、肉眼においても加熱による青緑色発光を確認した。しかし、発光強度は完全には戻らなかった。測定後のCoumarin6分散膜は励起光が当たっていた場所が無色になり、励起光により色素が分解されたと考えられる。   In the emission spectrum, the peak near 550 nm was lowered by heating (FIG. 5C). By further cooling, the peak at 490 nm decreased and the peak near 550 nm increased slightly (FIG. 5D). Simultaneously with these spectral changes, blue-green light emission by heating was also confirmed with the naked eye. However, the emission intensity did not return completely. In the Coumarin 6 dispersion film after the measurement, the place where the excitation light was applied became colorless, and it is considered that the dye was decomposed by the excitation light.

蛍光色は加熱と徐冷により、緑色−青色との間で可逆的に、蛍光色が変化することが肉眼で観察された。   It was observed with the naked eye that the fluorescent color reversibly changes between green and blue by heating and slow cooling.

本発明の分子内電荷移動型蛍光色素分散ポリマーおよびその新規機能を利用した蛍光発現方法を利用することにより、温度変化表示素子、新しいタイプの温度面発光センサー(サーモグラフィー)、温度・極性制御による波長可変プラスチックレーザー、ストレスセンサー、面発光をするバイモルフ型平面スピーカーなどに応用できる。   By utilizing the intramolecular charge transfer type fluorescent dye dispersion polymer of the present invention and the fluorescence expression method utilizing the new function, a temperature change display element, a new type of surface emitting sensor (thermography), a wavelength by temperature / polarity control It can be applied to variable plastic lasers, stress sensors, and bimorph type flat speakers that emit surface light.

以上から、以下の発明が少なくとも提供される。
1.電荷移動型色素および強誘電フッ素含有高分子を含有する組成物であって、電荷移動型色素が、DCM、DCM2、Nile RedおよびCoumarin6からなる群から選択される少なくとも1種であり、強誘電フッ素含有高分子が、フッ化ビニリデンとトリフルオロエチレンとの共重合体である組成物。
As described above, at least the following invention is provided.
1. A composition comprising a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red and Coumarin 6, A composition in which the containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.

2.電荷移動型色素が、強誘電フッ素含有高分子に対して、0.01から1重量%未満の範囲で含まれる上記1に記載の組成物。   2. 2. The composition according to 1 above, wherein the charge transfer dye is contained in the range of 0.01 to less than 1% by weight based on the ferroelectric fluorine-containing polymer.

3.電荷移動型色素および強誘電フッ素含有高分子を含有し、温度により蛍光波長および/または発光強度が変化する蛍光色変換性組成物。   3. A fluorescent color-converting composition comprising a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the fluorescence wavelength and / or the emission intensity varies with temperature.

4.電荷移動型色素および強誘電フッ素含有高分子を含有する組成物であって、電荷移動型色素が、DCM、DCM2、Nile RedおよびCoumarin6からなる群から選択される少なくとも1種であり、強誘電フッ素含有高分子が、フッ化ビニリデンとトリフルオロエチレンとの共重合体である上記3に記載の組成物。   4). A composition comprising a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red and Coumarin 6, 4. The composition according to 3 above, wherein the containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.

5.電荷移動型色素および強誘電フッ素含有高分子からなる薄膜を使用し、該薄膜に付与する温度を変化させることにより、該電荷移動型色素が発する蛍光色を変化させることを特徴とする、蛍光色変換方法。   5). A fluorescent color characterized by using a thin film comprising a charge transfer dye and a ferroelectric fluorine-containing polymer and changing the temperature applied to the thin film to change the fluorescent color emitted by the charge transfer dye. Conversion method.

6.強誘電フッ素含有高分子が、フッ化ビニリデンとトリフルオロエチレンとの共重合体である、上記5に記載の蛍光色変換方法。   6). 6. The fluorescent color conversion method according to 5 above, wherein the ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.

7.蛍光色の変化が、蛍光スペクトル波長の変化による、上記5または6に記載の蛍光色変換方法。   7). 7. The fluorescent color conversion method according to 5 or 6 above, wherein the change in fluorescent color is due to a change in fluorescence spectrum wavelength.

8.電荷移動型色素が、DCM、DCM2、Nile RedおよびCoumarin6からなる群から選択される少なくとも1種である上記5〜上記7いずれかに記載の蛍光変換方法。   8). 8. The fluorescence conversion method according to any one of 5 to 7 above, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red, and Coumarin 6.

9.上記1〜4いずれかに記載の組成物を含有する薄膜を有する、温度変化表示素子。   9. The temperature change display element which has a thin film containing the composition in any one of said 1-4.

10.上記5〜7いずれかに記載の蛍光色変換方法を使用した、温度変化表示素子。


10. The temperature change display element using the fluorescent color conversion method in any one of said 5-7.


Claims (10)

電荷移動型色素および強誘電フッ素含有高分子を含有する組成物であって、電荷移動型色素が、DCM、DCM2、Nile RedおよびCoumarin6からなる群から選択される少なくとも1種であり、強誘電フッ素含有高分子が、フッ化ビニリデンとトリフルオロエチレンとの共重合体である組成物。   A composition comprising a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red and Coumarin 6, A composition in which the containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene. 電荷移動型色素が、強誘電フッ素含有高分子に対して、0.01から1重量%未満の範囲で含まれる請求項1記載の組成物。   The composition according to claim 1, wherein the charge transfer dye is contained in an amount of 0.01 to less than 1% by weight based on the ferroelectric fluorine-containing polymer. 電荷移動型色素および強誘電フッ素含有高分子を含有し、温度により蛍光波長および/または発光強度が変化する蛍光色変換性組成物。   A fluorescent color-converting composition comprising a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the fluorescence wavelength and / or the emission intensity varies with temperature. 電荷移動型色素が、DCM、DCM2、Nile RedおよびCoumarin6からなる群から選択される少なくとも1種であり、強誘電フッ素含有高分子が、フッ化ビニリデンとトリフルオロエチレンとの共重合体である請求項3記載の組成物。   The charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red, and Coumarin 6, and the ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene. Item 4. The composition according to Item 3. 電荷移動型色素および強誘電フッ素含有高分子からなる薄膜を使用し、該薄膜に付与する温度を変化させることにより、該電荷移動型色素が発する蛍光色を変化させることを特徴とする、蛍光色変換方法。   A fluorescent color characterized by using a thin film comprising a charge transfer dye and a ferroelectric fluorine-containing polymer and changing the temperature applied to the thin film to change the fluorescent color emitted by the charge transfer dye. Conversion method. 強誘電フッ素含有高分子が、フッ化ビニリデンとトリフルオロエチレンとの共重合体である、請求項5に記載の蛍光色変換方法。   The fluorescent color conversion method according to claim 5, wherein the ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene. 蛍光色の変化が、蛍光スペクトル波長の変化による、請求項5または6に記載の蛍光色変換方法。   The fluorescent color conversion method according to claim 5 or 6, wherein the change in fluorescent color is due to a change in fluorescence spectral wavelength. 電荷移動型色素が、DCM、DCM2、Nile RedおよびCoumarin6からなる群から選択される少なくとも1種である請求項5〜請求項7いずれかに記載の蛍光変換方法。   The fluorescence conversion method according to any one of claims 5 to 7, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red, and Coumarin6. 請求項1〜4いずれかに記載の組成物を含有する薄膜を有する、温度変化表示素子。   The temperature change display element which has a thin film containing the composition in any one of Claims 1-4. 請求項5〜請求項7にいずれかに記載の蛍光色変換方法を使用した、温度変化表示素子。


The temperature change display element using the fluorescent color conversion method in any one of Claims 5-7.


JP2007514549A 2005-04-28 2006-04-11 Fluorescent color converting composition, fluorescent color converting method and device using the composition Withdrawn JPWO2006117982A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005131793 2005-04-28
JP2005131793 2005-04-28
PCT/JP2006/307649 WO2006117982A1 (en) 2005-04-28 2006-04-11 Fluorescence conversion composition, and fluorescence conversion method and device using said composition

Publications (1)

Publication Number Publication Date
JPWO2006117982A1 true JPWO2006117982A1 (en) 2008-12-18

Family

ID=37307785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007514549A Withdrawn JPWO2006117982A1 (en) 2005-04-28 2006-04-11 Fluorescent color converting composition, fluorescent color converting method and device using the composition

Country Status (2)

Country Link
JP (1) JPWO2006117982A1 (en)
WO (1) WO2006117982A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583908B2 (en) * 2015-04-28 2019-10-02 国立大学法人 筑波大学 Ferroelectric polymer sphere and method for producing the same
CN111256872B (en) * 2020-02-24 2021-12-03 复旦大学 Fluorescent temperature measurement material, temperature measurement method and temperature detection system
CN112921435A (en) * 2021-02-09 2021-06-08 上海大学 Agricultural light conversion sunshade net and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536758B2 (en) * 1987-06-19 1996-09-18 理化学研究所 Polymer film
JPS6416853A (en) * 1987-07-10 1989-01-20 Rikagaku Kenkyusho Increase of pyroelectric current
JP2654078B2 (en) * 1988-04-19 1997-09-17 株式会社ボロンインターナショナル Antistatic resin composition

Also Published As

Publication number Publication date
WO2006117982A1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
Kim et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter
Jinnai et al. Wide‐Range Tuning and Enhancement of Organic Long‐Persistent Luminescence Using Emitter Dopants
Mo et al. Color tuning of avobenzone boron difluoride as an emitter to achieve full‐color emission
Gao et al. Solid-state organic light-emitting diodes based on tris (2, 2 ‘-bipyridine) ruthenium (II) complexes
Nobuyasu et al. Rational design of TADF polymers using a donor–acceptor monomer with enhanced TADF efficiency induced by the energy alignment of charge transfer and local triplet excited states
Santos et al. Engineering the singlet–triplet energy splitting in a TADF molecule
Kwon et al. Advanced organic optoelectronic materials: Harnessing excited‐state intramolecular proton transfer (ESIPT) process
Mai et al. Low amplified spontaneous emission threshold and efficient electroluminescence from a carbazole derivatized excited-state intramolecular proton transfer dye
Kozlov et al. Optical properties of molecular organic semiconductor thin films under intense electrical excitation
JP2011213643A (en) Copper complex compound and organic luminescent element using the same
JP2006236748A (en) Organic electroluminescent device
Cerullo et al. Ultrafast Förster transfer dynamics in tetraphenylporphyrin doped poly (9, 9-dioctylfluorene)
Qin et al. A luminescent inorganic/organic composite ultrathin film based on a 2D cascade FRET process and its potential VOC selective sensing properties
Zhang et al. Two-photon absorption and piezofluorochromism of aggregation-enhanced emission 2, 6-bis (p-dibutylaminostyryl)-9, 10-bis (4-pyridylvinyl-2) anthracene
Lin et al. Highly efficient microcavity organic light-emitting devices with narrow-band pure UV emission
Trattnig et al. Deep blue polymer light emitting diodes based on easy to synthesize, non-aggregating polypyrene
Xu et al. High-performance two-photon absorption luminophores: large action cross sections, free from fluorescence quenching and tunable emission of efficient non-doped organic light-emitting diodes
Nemati Bideh et al. A near infrared light emitting electrochemical cell with a 2.3 V turn-on voltage
de Jong et al. 5, 10-Dihydrobenzo [a] indolo [2, 3-c] carbazoles as Novel OLED Emitters
Danel et al. 1H-pyrazolo [3, 4-b] quinoline and 1H-pyrazolo [3, 4-b] quinoxaline derivatives as promising materials for optoelectronic applications
Su et al. Solid-state light-emitting electrochemical cells employing phosphor-sensitized fluorescence
JPWO2006117982A1 (en) Fluorescent color converting composition, fluorescent color converting method and device using the composition
KR20070028332A (en) Organic electroluminescent device, method for manufacturing same and organic solution
Chen et al. Deep-red light-emitting electrochemical cells based on phosphor-sensitized thermally activated delayed fluorescence
Cole et al. Inkjet‐printed self‐hosted tadf polymer light‐emitting diodes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707